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Abstract—This work studies the model identification problem
of a class of post-nonlinear mixture models in the presence of
dependent latent components. Particularly, our interest lies in
latent components that are nonnegative and sum-to-one. This
problem is motivated by applications such as hyperspectral
unmixing under nonlinear distortion effects. Many prior works
tackled nonlinear mixture analysis using statistical independence
among the latent components, which is not applicable in our
case. A recent work by Yang et al. put forth a solution
for this problem leveraging functional equations. However, the
identifiability conditions derived there are somewhat restrictive.
The associated implementation also has difficulties—the function
approximator used in their work may not be able to represent
general nonlinear distortions and the formulated constrained
neural network optimization problem may be challenging to
handle. In this work, we advance both the theoretical and
practical aspects of the problem of interest. On the theory
side, we offer a new identifiability condition that circumvents
a series of stringent assumptions in Yang et al.’s work. On the
algorithm side, we propose an easy-to-implement unconstrained
neural network-based algorithm—without sacrificing function
approximation capabilities. Numerical experiments are employed
to support our design.

Index Terms—post-nonlinear mixture, dependent component
analysis, identifiability, neural networks, nonnegative matrix
factorization

I. INTRODUCTION

Latent component analysis has been an essential tool for
a large variety of applications in signal processing (SP) and
machine learning (ML). Many component analysis tools have
been proposed, e.g., principal component analysis (PCA) [1],
independent component analysis (ICA) [2], [3], nonnegative
matrix factorization (NMF) [4], [5], dictionary learning/sparse
coding [6], and tensor decomposition models [7], just to name
a few.

One of the most important theoretical aspects pertaining
to component analysis is model identifiability—since these
tools are oftentimes associated with unsupervised learning and
blind signal processing tasks, e.g., topic model learning [8],
community detection [9], and blind source separation [2]. With
model identifiability, the latent components of interest can be
identified (often up to trivial ambiguities such as scaling and
permutation) through learning the model parameters of the
employed component analysis models from the observed data.
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Establishing model identifiability is a nontrivial task. In a
nutshell, many component analysis models can be understood
as matrix factorization models—which is in general non-
unique, thereby lacking identifiability. A common practice to
circumvent this issue is introducing structural information as
constraints, e.g., statistical independence in ICA, nonnegativity
in NMF, and sparsity in dictionary learning. The identifiability
analyses for these classic component analysis models are
elegant, and the model uniqueness results have improved
performance of many core tasks in SP and ML; see [2], [4],
[6], [7], [10].

On the other hand, most classic component analysis models
can be understood as variants of matrix and tensor fac-
torization models. These models essentially assume that all
the data vectors are generated from a linear subspace (a
Khatri-Rao subspace for tensors). This is often over-simplified
for reality—since nonlinear distortions happen ubiquitously.
Starting from the 1980s, efforts have been made towards
incorporating nonlinear distortions into component analysis
[11]. One notable line of work is the so-called nonlinear
independent component analysis (nICA) [12]–[19]. The nICA
framework considers unknown nonlinear distortions on top of
the ICA model. One take-home point learned is that general
nonlinear distortion is not identifiable under the framework
of ICA [12]. To circumvent this, one may exploit certain
structures of nonlinear distortions—e.g., under the so-called
post-nonlinear mixture model [15]–[18] that is considered
realistic for a number of sensing problems in radar, wireless
communications and bioinformatics. One may also utilize
more prior information from the data to remove nonlinear
distortions, e.g., temporal correlations; see [13], [14], [19].

The model identifiability results under the nonlinear ICA
frameworks are encouraging—showing that nonlinear distor-
tions may be provably removable. However, assuming sta-
tistical independence among the latent components may be
stringent. To relax this assumption, the recent work in [20]
addresses the problem of dependent component identifica-
tion under the post-nonlinear mixture model. To be specific,
the authors of [20] considered a model where the latent
components are nonnegative and sum-to-one—which is often
considered in weighted mixture models such as soft clustering
[21] and hyperspectral imaging [22]. Working from there, and
combining insights from NMF identifiability, latent component



identifiability was shown.
However, some challenges remain. First, the work in [20]

assumes that the model parameters are all nonnegative, which
may restrict the applicability in some cases. Second, the
nonlinear model identifiability hinges on a special assumption
that the composition of the learned nonlinearity-compensating
function and the nonlinear distortion is convex or concave—
which is hard to verify or control, thereby being restrictive.
Third, the work in [20] utilizes a neural network (NN) to
approximate the “inverse” of the unknown nonlinear distortion,
but the NN used there has positive weights for regularity pur-
poses. This may cause performance losses—although NNs are
universal function approximators, the function-approximation
capacity of positive NNs is unknown. Optimization involving
positivity-constrained NNs is also challenging.

In this work, we put forth a new solution for the nonlinear
model identification problem in [20] and its extensions. Our
contribution is twofold: First, we offer a new identifiability
result that does not rely on the restrictive assumptions used in
[20]. This may substantially enlarge the spectrum of applicable
cases for this nonlinear component analysis model. Second,
we propose a general-purpose neural network (other than a
special positive neural network) based implementation for the
formulated problem. This way, the risk of not being able
to approximate certain nonlinear functions is removed. The
associated optimization problem is also much easier to handle,
leveraging existing optimizers for NNs, e.g., Adam [23]—
which makes our implementation easily scalable. Numerical
experiments are employed to showcase the performance of the
proposed approach.

II. BACKGROUND

A. Linear and Nonlinear Independent Component Analysis

Many classic latent component analysis models start with
the following linear mixture model (LMM):

x` = As`, ` = 1, 2, . . . (1)

where x` ∈ RM denotes the `th observed data sample,
A ∈ RM×K the “mixing system” (or the basis of the subspace
where x`’s reside), and s` ∈ RK the vector that holds the K
latent components. When M ≥ K, the system is considered
“over-determined” and can be reduced to an M = K case via
dimensionality reduction approaches, e.g., PCA [24]. In this
work, we let M = K for simplicity.

Many applications are concerned with identifying A and/or
{s`} from {x`}. Model identifiability has been established
under various conditions. For example, ICA assumes that
sk,`’s are statistically independent [25], and NMF assumes
that A and s` are element-wise nonnegative [4], [26], [27].
Beyond the classic LMMs, nonlinear mixtures have also been
considered, mostly under the umbrella of nonlinear ICA. The
notable line of work in [12]–[14], [19] considers the model

x` = g(s`), ` = 1, 2, . . .

where g(·) : RK → RK is an invertible continuous nonlinear
distortion applied onto the latent components. This model is

in general not identifiable, even if one assumes that sk,`’s are
statistically independent [12]. A series of additional structural
information on s` (e.g., temporal correlations) has been ex-
ploited to establish identifiability. Another way for establishing
model identifiability is to exploit structural information of the
nonlinear distortions, other than that of the latent components.
The post-nonlinear mixture (PNM) model is often considered
[15]–[18], [20], where we have

x` = g(As`), ` = 1, 2, . . . (2)

in which g(·) = [g1(·), . . . , gM (·)]> and gm(·) : R → R
is a scalar-to-scalar nonlinear continuous invertible function.
The PNM model has a variety of applications in sensing-
related problems, e.g., radar, wireless communications, and
biomedical sensing; see discussions in [17]. Under the PNM
model, the identifiability of s` has also been established—
using the statistical independence of the latent components
[17], [18].

B. Nonlinear Dependent Component Analysis: Prior Art
Very recently, Yang et al. [20] considered a problem under

the PNM model. Instead of having sk,`’s to be statistically
independent, the model assumption is that

s` ∈ ∆, ∆ = {s ∈ RK |1>s = 1, s ≥ 0}. (3)

Under this model, the observations (i.e., x`’s) are generated as
weighted combinations (or, more precisely, convex combina-
tions) of a1, . . . ,aK and then distorted by g1(·), . . . , gM (·).
Note that the convex combination model is a particularly
important one that finds applications in topic modeling [8],
soft clustering [21], and hyperspectral unmixing [22]. The g-
part is also critical in modeling nonlinear effects happening
in practice, e.g., those hyperspectral imaging [28]. Note that
since 1>s` = 1, the latent components are dependent.

The work in [20] utilizes the sum-to-one structure to con-
struct a functional equation, and shows that under some con-
ditions a carefully constructed model identification criterion
can “remove” g(·) through learning a nonlinear function f(·).
Then, the problem for identifying s` becomes a classic NMF
problem. There are a number of caveats. First, the assumptions
for g-removal might be restrictive. The assumptions include
thatA being nonnegative and incoherent, and that the elements
of f ◦g are convex or concave functions. The last condition is
particularly hard to enforce since one has no control for it—or
even a way for checking it. Second, when implementing the
learning criterion, the authors in [20] use a neural network to
represent f . However, the NN there is with positive network
weights for enforcing function invertibility. This construction
may have hindered the function-approximation capability of
NNs. The associated constrained optimization problem is also
challenging to handle. The work in [20] uses a trust-region
based nonconvex quadratic programming method, which may
not be scalable.

III. PROPOSED APPROACH

In this work, we offer a new solution under the PNM model
and (3) that effectively circumvent the challenges in [20].



A. A Functional Equation-based Formulation

Ideally, we expect to learn element-wise invertible nonlinear
function f such that the following holds:

1>f(x`) = 1>f ◦ g(As`) = 1>h(As`) = 1, (4)

for all `. Here h is also an element-wise function with hi =
fi ◦ gi. In other words, our learning objective is to find an
invertible function to reverse the distortions introduced by g
so that the sum-to-one condition can be satisfied.

Formally, we wish to have the following criterion satisfied
in terms of f -searching:

find f (5a)

s.t. 1>f(x) = 1, ∀x ∈ X (5b)
fi is invertible over X , ∀i, (5c)

where X = {x ∈ RM | x = g(As), ∀s ∈ int∆, s ∈ RK}, in
which int∆ means the interior of ∆. Note that the criterion is
identical to what was proposed in [20], where the functional
equations in (5b) play key role in removing the nonlinear
distortions. The difference lies in model assumptions. In
particular, Yang et al. assumed that A is generic, nonnegative
and incoherent in [20]. In this work, we only require that A is
generic (i.e., the entries are drawn from any jointly continuous
distribution). Yang et al. showed the following theorem:

Theorem 1 [20] Consider the post-nonlinear mixture model
x` = g(As`) where A ∈ RK×K with the constraint s` ∈
int∆, where gi(·) for all K are continuous and invertible.
Assume that N →∞ and all points in X are available. Also
assume thatA is drawn from any joint continuous distribution.
In addition, assume that

1) A is nonnegative and is incoherent (see the definition
in [20]); and that

2) by solving problem (5), the resulting hi = fi ◦ gi’s are
all convex or concave for i = 1, . . . ,K.

Then, hi has to be an affine functions almost surely; i.e., any
fi that is a solution of (5) satisfies

hi(x) = fi ◦ gi(x) = cix+ di, i = 1, . . . ,K,

where ci, di are constants. In addition, if
∑K

i=1 di 6= 0, we
have hi(x) = fi ◦ gi(x) = αix, i = 1, . . . ,K, αi 6= 0, ∀i.

The theorem showed that the PNM model is identifiable even
under dependent latent components. The challenge is that both
conditions 1) and 2) may be restrictive—especially condition
2). In this work, we show that these conditions are in fact not
needed. To proceed, we show the following:

Lemma 1 Consider s = [s1, . . . , sK ]> ∈ int∆. Then, ∂si
∂sj

=
0 for i 6= j where i, j = 1, · · · ,K − 1.

Proof: Lemma 1 can be shown as follows. First, for s` ∈
int ∆K , we only have K − 1 free variables, i.e., without loss
of generality, si for i = 1, . . . ,K − 1. For any fixed s̄i, sj
can be any possible values in a nonempty continuous domain

(e.g., if si = 0.5 then the domain of sj is (0, 0.5) regardless
of other components). Hence, if one treats si as a function of
sj , then the sensitivity of si w.r.t. sj is defined as

∂si
∂sj

= lim
∆sj→0

si(sj + ∆sj)− si(sj)
∆sj

= lim
∆sj→0

s̄i − s̄i
∆sj

= 0.

This completes the proof.
This lemma is important for deriving our main theorem:

Theorem 2 (Nonlinearity Removal) Consider the post-
nonlinear mixture model x` = g(As`) with the constraint
s` ∈ int∆, where gi(·) for all i are continuous and invertible.
Assume that N → ∞ and all points in X are available. In
addition, assume that K ≥ 3, that A ∈ RK×K is drawn
from any joint continuous distribution, and that the learned
hi = fi ◦ gi is twice differentiable for all i = 1, . . . ,K. Then,
by solving problem (5), the resulting hi’s are affine functions
almost surely; i.e., any fi that is a solution of (5) satisfies
hi(x) = fi ◦ gi(x) = cix+ di, i = 1, . . . ,K, where ci, di are
constants. In addition, if

∑K
i=1 di 6= 0, we have

hi(x) = fi ◦ gi(x) = αix, i = 1, . . . ,K, αi 6= 0, ∀i. (6)

The proof sketch is as follows. According to Lemma 1, we
have ∂si

∂sj
= 0 for s ∈ int ∆. Then, by taking second order

derivatives of the equality constraint in (4) w.r.t. si and sj ,
it ends up with a system of linear equations that involves the
vector h′′ = [h′′1 , · · · , h′′M ]>, i.e., Hh′′ = 0. By utilizing the
assumptions, one can show that H has full column rank—
which immediately implies h′′ = 0. This further leads to that
all hi’s are affine. We defer the detailed proof to a pertinent
journal version.

We would like to remark that Theorem 2 offers a set
of conditions that are substantially more relaxed relative to
Theorem 1. Notably, the conditions in 1) and 2) of Theorem 1
are not used in our theorem. Relaxing the nonnegativity of A
makes the method applicable to a lot more problems where
the mixing system can have negative entries (e.g., speech
separation). Removing 2) is also quite desirable, since this
condition cannot be guaranteed or checked when implement-
ing the criterion.

B. Latent Component Identification

Note that under (6), the following holds:

f(x`) = CAs` = Bs`, ` = 1, 2, . . . , N

where C = Diag(α1, . . . , αM ). This model is identical to the
structural matrix factorization model in [24], [26], [29], which
is identifiable if {s`} satisfies certain conditions, e.g., the
separability condition or the sufficiently scattered condition;
see details in [4], [26], [29], [30]. Hence, a simple strategy is
to first implement the criterion in (4) for nonlinearity removal.
Then, any structural matrix factorization algorithm proposed
in the literature, e.g., those in [29], [30], can be employed
for identifying s` from f(x`). In this work, we utilize the
minimum-volume enclosing simplex (MVES) algorithm from
[30] for s`-identification after nonlinearity removal.



C. Neural Network-based Implementation

We have shown that solving Problem (5) removes the
nonlinear distortions. However, Problem (5) is not really
“workable” since it involves continuous functional searching.
To approach this formulation, we parameterize the function
f with neural networks due to their universal approximation
ability. Each fi is approximated by an individual neural
network. Hence, the practical formulation is as follows:

min
θf ,θg

N∑
`=1

(
1− 1>fNN(x`)

)2
(7)

+ λ

N∑
`=1

‖x` − gNN(fNN(x`))‖22

where two neural networks fNN = [f
(1)
NN , . . . , f

(M)
NN ]> and

gNN = [g
(1)
NN , . . . , g

(M)
NN ]> are parameterized by θf and θg ,

respectively. Note that gNN can be regarded as estimation for
the ground-truth g.

To explain the above formulation, note that the first fitting
term is for approximating the equality constraint in (5b). The
second term articulates the difference between our implemen-
tation and that in [20]. The latter does not have the second term
in (7). Instead, a constraint θf > 0 is employed. The reason is
that under this positivity constraint, the function fNN is always
invertible, which satisfies the problem specification in (5c).
However, this may be problematic since positive NNs may
not retain the universal approximation property for nonlinear
functions—while the universal function approximation ability
is the reason why one uses NNs in the first place.

In our implementation, we use the second term in (7) to
promote invertibility of the learned fNN. It is not hard to see
the following:

Lemma 2 Assume that there exists a function gNN such that
for all x ∈ X , and that x = gNN(fNN(x)) holds. Then, fNN

is invertible over X .

Hence, when N is large, the regularization approximately
enforces invertibility over X .

Another benefit of employing our formulation other than
the positivity constraint formulation as in [20] is that uncon-
strained optimization for NNs is much easier. A number of
off-the-shelf optimizers developed for large-scale NN-related
optimization, e.g., Adam [23] based stochastic gradient, can
be utilized to handle the formulated problem.

IV. NUMERICAL RESULTS

We use two baselines in our simulations, i.e., nonlinear
matrix factor recovery (NMFR) [20] that was developed under
the same model and the linear model MVES [30].

Our formulation is tackled by PyTorch-based Adam al-
gorithm [23] with the initial step size being 10−3. Adam is
a stochastic gradient algorithm that works under mini-batch
settings. The batch size is 5, 000 in our simulations. The
algorithm stops after running 5, 000 epochs. The parameter λ
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Fig. 1. Nonlinearity removal effects compared with baselines.

is set to be 10−5. For fNN and gNN, each channel is modeled
with a single hidden layer neural network with 256 neurons.
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Fig. 2. Impact of N . From top to bottom, N is 5000, 10000 and 20000,
respectively.

For the first simulation, we set K = 3 and the three
nonlinear functions are: g1(x) = 5sigmoid(x)+0.3x, g2(x) =
−3tanh(x) − 0.2x and g3 = 0.4 exp(x). The number of
samples is 10, 000. The matrix A is drawn from standard
Gaussian distribution. The learned f

(i)
NN ◦ gi’s are shown in

Fig. 1. One can see that the proposed method works re-
markably better than the NMFR from [20]. Although the two
methods start with the same conceptual formulation in (5),
the performance difference may come from implementation
strategies: since Yang et al.’s implementation uses positive
NNs, it may not be able to approximate the true solution f ;



TABLE I
MSE BETWEEN S AND ESTIMATED Ŝ

N Proposed NMFR MVES
5000 3.67e−3 ± 1.53e−3 1.30e−1 ± 4.48e−2 5.49e−2 ± 4.50e−3

10000 1.11e−3 ± 5.54e−4 9.68e−2 ± 2.84e−2 5.84e−2 ± 8.60e−3

20000 1.58e−4 ± 1.65e−4 8.01e−2 ± 1.78e−2 4.96e−2 ± 3.11e−3

in addition, constrained optimization may be much harder than
dealing with our unconstrained formulation.

For the next simulation, we qualitatively show the influence
of the sample size N . With the same setting as in Fig. 1, we
randomly select two channels of the observations and show
the learned composite functions in Fig. 2. The figure clearly
illustrates that as more samples are available, the nonlinearity
removal performance improves substantially. This also echoes
our main theorem—which was developed under N =∞ (more
precisely, uncontably infinite “samples”).

In the last simulation, we combine nonlinearity removal
and s`-identification, where the second phase is conducted
by applying MVES to fNN(x`) for ` = 1, . . . , N . The
performance measure here is the mean squared error (MSE) of
the estimated S = [s1, . . . , sN ] [29]. The results are shown in
Table. I, which are averaged over 10 random trials. It can be
seen that the performance of the proposed approach exhibits
the best performance—and shows a notable margin over the
baselines. In particular, the MSE performance is one or two
orders of magnitude lower compared to NMFR and MVES.

V. CONCLUSION

In this work, we address the nonlinearity removal and latent
component identification problems under the post-nonlinear
model in the presence of nonnegative and sum-to-one depen-
dent components. Our contribution is two fold: first, we have
tightened the sufficient conditions under which the nonlin-
earity is removable—which offers substantially more relaxed
conditions relative to a recently derived result; second, we
offer a new NN-based formulation that has better function
approximation ability and is easier to optimize. As a result,
the numerical performance is largely improved compared to
prior work.
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