Computing the Paschen curve for argon with speed-limited particle-in-cell simulation
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Upon inclusion of collisions, the speed-limited particle-in-cell (SLPIC) simulation
method successfully computed the Paschen curve for argon. The 1D3V simulations
modelled an electron cascade across an argon-filled capacitor, including electron-
neutral ionization, electron-neutral elastic collisions, electron-neutral excitation, and
ion-induced secondary electron emission. In electrical breakdown, the timescale dif-
ference between ion and electron motion makes traditional particle-in-cell (PIC)
methods computationally slow. To decrease this timescale difference and speed up
computation, we used SLPIC, a time-domain algorithm that limits the speed of the
fastest electrons in the simulation. The SLPIC algorithm facilitates a straightfor-
ward, fully-kinetic treatment of dynamics and collisions. SLPIC was as accurate as
PIC, but ran up to 200 times faster. SLPIC accurately computed the Paschen curve

for argon over three orders of magnitude in pressure.
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I. INTRODUCTION

Townsend discharge is the conduction of electric current in a gas due to a cascade of ion-
izing collisions.! In typical discharge experiments, the gas is enclosed between the electrodes
of a capacitor, and there is an initial source of free electrons. The electrons accelerate in
an applied electric field and ionize the neutral atoms, creating more electrons, which ionize
more atoms. The ions accelerate towards and impact the cathode, where they can pro-
duce secondary electrons. When the combined effects of ionizing collisions and ion-induced
cathode emission yield more electrons at the cathode than initially seeded, a self-sustaining

discharge is triggered. The voltage difference at which this occurs is the breakdown voltage.

The breakdown voltage V}, of a gas-filled capacitor is (to a good approximation) a function
of pd, where p is the pressure of the gas and d is the distance between the electrodes. A
Paschen curve is the relationship between Vj, and pd for a given gas.? Paschen curves have a
minimum V}, at some intermediate pd and higher V}, at the extremes (this shape is shown later
in Fig. 2). This characteristic shape is due to the competition between ionizing collisions,
which multiply the number of free electrons, and non-ionizing collisions, which prevent
electrons from gaining enough energy to ionize atoms. At low pd, the ionization mean free
path is too long for a sufficient number of ionizations to occur during crossing. At high pd,
the non-ionizing mean free path is too short for electrons to reach the ionization energy.

Paschen curves will be developed further in §IT A.

Electrical discharge and breakdown have been extensively studied both for a multitude of

5 as well as to avoid detri-

applications, including lighting,® plasma processing,* and lasers,
mental effects, including damage to electrical devices,® explosions in chemical processing
facilities,” and damage to aerospace systems.® Following Townsend’s description of the mech-
anism behind gas discharge,! various models and simulation methods have been employed to
study the phenomena.? Analytical models have proven effective for computing breakdown

and steady-state current amplification in simple geometries;” however, understanding the

particle dynamics of discharge and handling complex geometries requires simulation.

Particle-in-cell (PIC) and fluid methods have been the primary simulation techniques
applied to model gas discharges.*!° Fluid approaches evolve the mean properties of a particle
species and can therefore handle situations involving many particles and mean free paths that

are small compared with the system size. However, the fluid approaches assume Maxwellian



particle velocity distributions, while discharges often have non-Maxwellian distributions.!?

PIC methods evolve the distribution function f(x,v,t) in time via the method of char-
acteristics and, therefore, can simulate arbitrary distribution functions.!* Collisions can be
included in PIC using the PIC Monte-Carlo Collisions framework (PIC-MCC).!"13 PIC-
MCC will be discussed further in §III. PIC-MCC requires that the smallest mean free path
be resolved by the grid cell size Ax. Further, in PIC, the timestep At is limited according
to At S Az /Umax, Where vy,4, is the maximum particle speed. In gas discharge simulations,
the large mass difference between the ions and the electrons results in ion timescales much
greater than the timestep imposed by the maximum electron speed. This makes PIC-MCC
simulations computationally slow. Because PIC-MCC is slow, variations of PIC simulation
have been applied to discharge. One approach is treating the ions as immobile to eliminate
the timescale mismatch,'®'® but this technique fails when ion motion becomes relevant as
is the case for Townsend discharge. Another technique is electron sub-cycling, in which the
timestep for the electron is smaller than that of the ion,'® but this technique yields at most
a factor of two speed-up. Hybrid methods combine PIC and fluid approaches (e.g., with
fluid electrons but PIC ions),' but they fail to capture the full velocity distribution as PIC
does.

In this work, we apply the speed-limited particle-in-cell (SLPIC) simulation method!”
to electrical breakdown in argon. SLPIC is a time-domain algorithm that limits the speed
of the fastest particles in the simulation to enable larger time steps and, therefore, faster
computing times. The SLPIC algorithm facilitates a straightforward, fully-kinetic treatment
of effects such as secondary emission at the cathode and collisions. A detailed introduction
to SLPIC is provided in §IIB. This work is the first demonstration of the integration of
SLPIC particles with PIC-MCC, showing that speed-limiting techniques can be used in
collisional low-temperature plasma discharges. We chose to simulate electrical breakdown,
and, specifically, Paschen’s law, because multiple collision mechanisms must be correctly
simulated to compute the breakdown voltage accurately. We were also able to quantify the
speed-up in runtime of the SLPIC simulations relative to the regular PIC simulations.

In this paper, we begin with a review of Paschen curves and SLPIC. We then introduce
the SLPIC Monte Carlo Collisions framework in §III. The simulation design and parameters
will be provided along with our methodology for determining breakdown in §IV. In §V, we

compare our simulation results (a Paschen curve) with experimental data and quantify the
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computational speed-up of the SLPIC algorithm relative to normal PIC.

II. BACKGROUND
A. Paschen Curve

Electrical breakdown in a gas-filled capacitor is caused by the ionization of the neutral gas
by electrons and the secondary emission of electrons at the cathode due to ion impact. The
average number of ions produced per electron per unit length travelled is termed! Townsend’s
first ionization coefficient . The average number of secondary electrons emitted per ion
impact is Townsend’s second ionization coefficient 7. The coefficient o depends on the
voltage V' across the gap and the collision cross-sections. The coefficient v, depends on the
ion species and the electrode material and treatment. When 7,.(e®? — 1) > 1 breakdown
occurs.

Paschen curves relate the breakdown voltage V, of a gas-filled capacitor to the product
of the gas pressure p and the distance d between the electrodes.? Paschen curves are not
monotonic due to a competition between electrons gaining energy in the electric field and
losing energy in collisions. Paschen curves have a characteristic minimum at an intermediate
pd. At low pd, most electrons stream through the capacitor without ionizing enough atoms.
At high pd, few electrons reach the threshold ionization energy due to frequent non-ionizing

collisions. Paschen’s law is a function relating V; to pd:
_ Bpd (1)
In(Apd) — ({1 + 1/7,0)]

Paschen’s law assumes that, except for the initial seed electrons, ion impact at the cathode

Vo

and electron-neutral ionizations are the only sources of electrons, and that o can be expressed

L kTAexp (@) 2)

Ng

as:

where k7' is the thermal energy, n, is the neutral gas density, and E = V/d is the constant
electric field. A and B are related to the collision cross-sections and are determined by
fitting Eq. (2) (which gives the field-intensified ionization cross-section a/n, as a function
of the reduced field E/ny) to the experimental results for a given gas. In Paschen’s law, A
and B are assumed to be constant for a given gas species. Paschen’s law will be plotted in

Fig. 2, with the values of A, B, and ~,. taken from Lieberman and Lichtenberg?*.
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Different gases yield different Paschen curves due to different cross-sections, ionization
energies, and secondary emission yields at the cathode. In this work, we simulated a neutral
argon gas. Argon has been studied extensively in the context of electrical breakdown, includ-

10.18,19 and experimental work.%2%2! Research has been focused on identifying

ing simulation,
the mechanisms responsible for breakdown and the regimes in which these mechanisms are
relevant. In this work, we will compare our simulation results to experimental results com-

piled by Phelps and Petrovic?.

B. SLPIC

Before describing how collisions can be implemented within the SLPIC method in §III,
we review the derivation of SLPIC, following Werner et al.'”. PIC numerically evolves a

particle distribution f(x,v,t) according to the Vlasov equation:
O f(x,v,t) = —v -0 f(x,v,t) —a- 0y f(x,v,1), (3)

where the acceleration a = a(x,v,t) is typically determined by electromagnetic fields.
SLPIC numerically evolves f(x,v,t) according to an approximate Vlasov equation. We
multiply Eq. (3) by a yet-to-be-chosen function (v) (where v = ||v||), which will turn out

to limit particle speeds,

5atf(x7 v, t) = —ﬁV ' aXf<Xa v, t) - ﬂa ’ an(Xa v, t)a (4)

and then make the critical “speed-limiting” approximation:

BOyf ~ O, f. (5)

This approximation is valid if either (1) 9,f(x,v,t) &~ 0 or (2) 8(v) &~ 1.22 Thus we arrive

at the “speed-limited” approximation to the Vlasov equation
8tf(xa v, t) = _BV ’ axf(xa v, t) - ﬁa ’ avf(xv v, t) (6)

In the special case of a steady state (i.e., d;f = 0), the speed-limiting approximation is
exact and SLPIC, though different from PIC, is as accurate as PIC. For the special choice
of f(v) = 1, SLPIC is exactly the same as PIC.

Just as PIC simulation evolves the Vlasov equation via the method of characteristics,

SLPIC evolves Eq. (6). We posit a solution that is a sum over macroparticles p that follow
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trajectories [x,(t), v,(t)] with weights w,(¢) (a macro-electron with weight w, represents w,

electrons; i.e., it has mass w,m,. and charge —w,e):
v t) =D wy(t)S[x — %, (8)]6°[v — v,y (1) (7)
p

where S is the particle shape function'! and ¢ the Dirac delta function. Unlike PIC, SLPIC
requires the particle weight to vary in time. Plugging Eq. (7) into Eq. (6), we find that it

yields a solution if:

Xp = S(vp) v (8)
v, = B(vy)a(xp, Vp, t) (9)
wy, = w,[Ox - (V) + Oy - (Ba)] = fw,[dy - v + Oy - a] + wpa - Oy = w,B3/8  (10)

where we have assumed that dy - v+ 0, - a = 0—i.e., the true motion must be phase-space-
volume preserving (Liouville’s theorem proves this for any Hamiltonian motion). We have
also substituted 8 = (d/dt)B(v,(t)) = fa - ,p.

When f(v,) = 1, these are the usual (PIC) equations of motion. When 0 < §(v,) < 1,
a SLPIC macroparticle, representing physical particles with true velocity v, travels with
pseudo-velocity x, = ((v,)v, and pseudo-acceleration v, = [S(v,)a(x,(t),v,(t),t). The
SLPIC macroparticle follows the same path through phase space as the physical particles it
represents, but slower; e.g., in a short time At, the macroparticle moves (v,,a)3At, while
a physical particle moves (v,,a)At. For example, a SLPIC electron in a uniform magnetic
field will have the correct gyroradius, but its gyrofrequency will be (unphysically) reduced
by a factor 3,,.

Choosing (v,) < 1 invokes the SLPIC approximation [Eq. (5)], reducing accuracy; how-
ever, it limits the simulated speed of macroparticles from v, to & = f(v,)v,, which allows
larger timesteps, hence faster simulation. In most cases, the PIC timestep must be smaller
than At S Az/vmax, where Ax is the grid cell size and vyax is the maximum particle speed.
With SLPIC, a larger timestep is allowed: At S Ax/[8(Vmax)VUmax]- Typically, we choose
a speed limit vy < Umayx, and then define 3(v,) = vy/v, to ensure that for all particles,
|1%|| < v, so that we can use At =~ Ax/vy > Az /vm.x. For particles with v, < vy, however,
we define B(v,) = 1 so that they experience “true” motion. In this way, we speed-limit
only the particles (with v, > vg) that need to be speed-limited to allow a large timestep,

At = vg/Ax. Tt turns out that speed-limiting also reduces the plasma frequency so that it is
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resolved by the large At and poses no instability.'”?® For simplicity, we will use this specific
B(v,) for the rest of the paper: ((v,) = vo/v, for v, > vy, and f(v,) = 1 for v, < vy, or,

equivalently:
B(v,) = O(v, — v)vo /vy + O(vg — vp) (11)

where © is the Heaviside step function (and v, = ||v]]).

As a macroparticle accelerates so that v, > vy, its simulated speed &, = fv, remains at
vo, and its weight w,(t) decreases. The decrease in w,(t) reflects the fact that the physical
particle density represented by the macroparticle at time ¢ decreases, and the macroparticle
represents fewer physical particles at time ¢ + At. In this way, SLPIC can correctly simulate
a steady-state beam within which particles accelerate such that their density decreases (like
cars exiting a steady-state traffic jam). In SLPIC, a beam macroparticle with v, > vy
experiences an acceleration and its true velocity v, increases, but its pseudo-velocity z, =
Bv, = vy does not, so the density of macroparticles throughout the beam remains uniform.
The decrease in physical density thus results from the decrease in macroparticle weight, and
not (as in PIC) from the decrease in macroparticle density. While SLPIC may sometimes
result in a more uniform macroparticle density, this is an unintended bonus and it may
not always be the case. SLPIC is orthogonal to techniques for managing macroparticles
weights /numbers for efficiency and accuracy.?*?°

Therefore, as v, increases above vy, (v,) decreases, and so too must w, decrease. Equa-
tion (10) shows that w,/B(v,) is constant over any particle trajectory; we define this constant
to be w;, = w,/H(v,). Here we choose the subscript j because w;, facilitates calculation of
the flux density distribution j(x,v,t).

Simulating macroparticles following Eqgs. (8-10), we can compute the phase-space density
distribution function f at any time via Eq. (7). However, with SLPIC it is often especially
useful to consider particle fluxes. We can compute the flux density distribution, j(x,v,t) =

vf(x,v,t), as follows:
(x,v,1) Z Vpwy (1) S[x — x,(1)]6°[v = v, (t)] = Z Bvp)Vpw;pS[x — %, (1)]6°[v — v, (1)].
P (12)

To estimate the flux j - ndA through some surface element ndA from the macroparticles

crossing it in time At, we consider that a macroparticle with x will cross the surface if it
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is within a distance XAt - nn of the surface. From Eq. (12) we see that, since x = ((v,)v,,
the flux (integrated over time At) through the surface element is simply the sum of the w;,,
over all macroparticles crossing the surface in At.

Because the w; , are constant in time, a macroparticle always represents the same physical
flux whenever it crosses a surface. If a macroparticle p has w;, = 100, then every time it
crosses a surface, it represents 100 physical particles crossing the surface. This statement
is trivial in PIC, but in SLPIC, where w,(t) varies in time, it is nontrivial and very useful.
For example, it ensures that, if a macroparticle enters into some volume V' and later exits
that volume, the time-integrated flux through the surface (due to that particle) is zero.

At this point readers might suspect a paradox in the SLPIC treatment arising from a
difference between w, and w;,. Consider a macroparticle with v, = 10vy, f(v,) = 0.1,
w;, = 100, and w, = 10, and suppose it crosses a surface to enter volume V' during time
interval At. That macroparticle represents w, = 10 physical particles in volume V'; however,
it represented w;, = 100 physical particles crossing the surface into V. This counterintuitive
behavior is correct for SLPIC. It is counterintuitive because PIC has led us to assume that
a macroparticle with w, and (x,, v,) represents a swarm of w, physical particles within the
volume d*r d*% around (x,,v,), and that those physical particles travel roughly with the
macroparticle to (x, +x,At, v, +v,At) over time At. Fundamentally, however, a macropar-
ticle represents a chunk of the distribution fd% d%, and SLPIC decouples macroparticles
from the physical particles they represent. A speed-limited SLPIC macroparticle moves in
phase space with x, and v, slower than the physical particles it represents. Thus the same
macroparticle may represent one set of physical particles at time t and a different set of
particles at time t + At.

In the above example, the density represented by the SLPIC macroparticle corresponds
to w, = 10 physical particles that are near [x,(t), v,(f)] at time ¢; however, over time inter-
val At, the physical flux represented by the macroparticle includes all the physical particles
that would would be near [x,(t'), v,(t')] at any time ¢’ € [t, ¢+ At]. Since the physical parti-
cles travel 10 times faster than the macroparticle, the physical flux is 10w, (t) /At = w,,/At.

It is important to remember that SLPIC is accurate only if f(x,v,t) changes sufficiently
slowly—and it is as accurate as PIC in the steady-state limit. The f(x,v,t) describing a
single particle with v > vy is not a slowly-changing function; therefore, one typically cannot

verify SLPIC based on single-particle thought experiments. In the above single-particle



example, the continuity equation is violated because f(x,v,t) changes too rapidly for the
SLPIC approximation to be valid.

Exactly what constitutes “sufficiently slowly” for SLPIC accuracy remains an open ques-
tion. We have previously observed that for (Langmuir) wave-particle interaction in 1D,
“sufficiently slowly” means that the wave phase velocity must be slower than the SLPIC
speed limit for accurate simulation'™?3. Similarly, although studying SLPIC in magnetized
plasmas is beyond the scope of this work, we imagine that the electron-cyclotron resonance
interaction will be too fast for accurate simulation, as long as SLPIC reduces the electron
gyrofrequency—but ion-cyclotron resonance might be accurately simulated. Although dis-
advantageous, it is precisely because SLPIC neglects fast motions that it can offer faster
simulation. Importantly, in this paper we apply SLPIC to a steady-state problem in the
sense that in the very beginning of breakdown, the space charge has negligible effect on
the applied constant field; in the steady-state limit, we expect SLPIC to be essentially as
accurate as PIC.

Reiterating an important point: the flux weight w;, = w,(t)/B(v,(t)) of a SLPIC
macroparticle is a constant in time, and this ensures that the flux density is divergence-
less in the steady-state limit. For example, if a particle receives an abrupt kick—whether
from the electric field or from a collision—its w; , remains constant. If the impulse increases
the particle’s speed vy, its density weight w, must change accordingly so that w, = (v,)w;,.
In Sec. III, we will see that the flux weight is conserved when simulating collisions involving

SLPIC particles.

III. COLLISIONS IN SLPIC

Collisions can be simulated in PIC with a PIC-MCC algorithm;* 13 the MCC algorithm
can be used for SLPIC with just a few modifications: (1) using the flux weight w,, instead of
the density weight w, (cf. §IIB), and (2) considering the slowing of time when determining
the collision rate. (Since most SLPIC simulations will have macroparticles with a distribution
of w; ,, the PIC-MCC algorithm must be able to handle macroparticles with different weights
before modification for SLPIC.)

Before discussing collisions in SLPIC, we briefly review the pertinent aspects of collisions

in PIC. In PIC-MCC, a binary macroparticle collision is not at all the same as a binary



collision between two physical particles. The collision between two macroparticles must
statistically represent collisions between the two swarms of physical particles represented
by the macroparticles. The spatial distribution of physical particles is usually assumed to
be uniform within the same grid cell containing the macroparticle centers, regardless of the
macroparticle shape S [cf. Eq. (7)], and zero outside that cell.

For concreteness, let us consider electron impact ionization in PIC-MCC, in which a pri-
mary electron collides with a primary neutral atom, resulting in the scattering of the primary
electron, the neutral “becoming” an ion, and the “creation” of a secondary electron. (Al-
though there are other kinds of collisions, e.g., elastic or excitation, between electrons and
neutrals that do not ionize, we consider only ionizing collisions for simplicity.) A primary
electron macroparticle p with weight w,y and velocity v, collides with a neutral macro-
atom with w,o and v,o. The primary electron macroparticle will be split into two parts:
one part with weight w,; represents uncollided electrons and the other with weight w},; rep-
resents scattered primary electrons (recoiling from having just ionized atoms). Similarly,
wy,1 is the weight of uncollided neutrals, and w; the weight of “scattered” neutrals, which
are really ions and are now subject to acceleration in the applied electric field. In addition,
secondary electrons are created with weight w,.. In principle there could be many scat-
tered /secondary macroparticles with different velocities, but for simplicity we will assume

at most one per primary species. The uncollided particles retain the original velocities; the

/

other particles must be assigned new velocities according to the ionization process: v,

Vi,
and v,.. Conservation of subatomic particles requires wpo = wp; + w;ﬂ, Wpo = Wy1 + w;, and
wyy = w; = wse = We, where W, is the number of (physical-particle) collisions expected to
take place when the two macroparticles “collide.”

The expected number of collisions W, within a time interval At in a cell volume AV

between two arbitrary particle distributions, f, (primary electrons) and f,, (neutrals) is

W, = AV At / d3vpo / d*Vyo Fo(vp0) £ (Vi) o (Vo — Vo) [ Vo — Vio| (13)

where o(v,.) is the collision cross-section, which depends on the relative velocity v, between
colliding particles. To calculate W, between two PIC macroparticles in the same grid cell,
we substitute the appropriate distributions, i.e., f,(v) = (wy/AV)8*(v — vy) and f,(v) =
(wno/AV)8* (v — vy0), ignoring the shape functions of the macroparticles, treating them as

uniform in one cell and zero outside. The expected number of collisions between the two
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macroparticles is then

pr Wno

We=AVIyAv®

(Vno = Vo) [ Vo = Vol AL, (14)

This can be verified by considering a single electron moving through a swarm of atoms of
density n,o = wy,o/AV with velocity v,o. In the reference frame co-moving with the atoms,
d = ||Vao — Vpol/At is the distance traveled by the electron in At, and Apg = (nge0) ™"
is its mean free path. Therefore d/Ang, is the expected number of collisions that a single
electron would experience (for small At such that d/Ang < 1). The total number of electron
collisions is then W, = wyod/Angp, which is identical to Eq. (14).

There are multiple Monte Carlo strategies for colliding pairs of macroparticles that all
yield the same W, on average. For example, if W, = 0.01w,y, we could avoid splitting
the primary macroparticles and creating small-weight scattered/secondary particles by ig-
noring 99% of colliding pairs, and colliding 1% with an enhanced W/ = w,,. We will not
discuss this in any detail, because these strategies are identical for PIC and SLPIC. We also
omit other practical details that need no modification for SLPIC, such as determining scat-
tered and secondary macroparticle velocities according to given differential cross-sections,
and dealing with exceptional cases such as W. > w,o (indicating that At is too large).
The only differences introduced by SLPIC are the determination of W, and the resulting
macroparticle weights.

As described in §II B, in SLPIC it is better to verify physical accuracy by considering
particle fluxes rather than numbers or densities. Thus the basic thought-experiment for
developing SLPIC collision algorithms is not the collision of two macroparticles, but of two
narrow beams of macroparticles intersecting in a small volume; the particle fluxes into and
out of that volume must satisfy the appropriate conservation laws. For electron impact

/

.. . o ! L — o .
ionization, this means that w;y,0 = wjp + W) 1, Wino = Wjn1 + wj;, and wj

= wj,; =
wjse = Wj.. Because flux weights w; are constant in time [unlike density weights w,(t)],
this ensures that the fluxes of particles entering and exiting AV are appropriately perserved;
i.e., the flux of unscattered plus scattered primaries leaving AV equals the flux of primaries
entering AV, and the fluxes of secondary electrons and scattered primaries leaving AV are
equal, etc.

The rule for determining the collision rate, W;./At, is that SLPIC preserves the physical

mean free path. For example, consider a steady-state, monoenergetic beam of particles in
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the +z direction, entering some scattering medium with mean free path A,g. Scattering
causes the density of original beam particles to decrease as ~ exp(—z/Amgp). Because this
is a steady-state, SLPIC should render this density profile accurately, requiring that SLPIC
macroparticles experience the physical mean free path. In other words, SLPIC macroparticle
must scatter with probability d'/Amep = AL/ Amgy = B(v)VAL/ Mg within time At (in
contrast, a physical particle would scatter with probability d/Ame, = TAE/ Mg, = VAL Amip)-
This can also be viewed as the reduction in collision rate due to the slowing down of time

by a factor S(v). The collision rate (in terms of fluxes) in AV must therefore be

Wj,c _ wj’po d/ :Aij’pO/At

At A g AV

N0 (Vo — Vo)|| Vi — Vil Bp(vp0 ) Al (15)

where (3,(v) is the speed-limiting function for electrons. This merely says that—if one were
to measure fluxes into and out of AV—the flux of scattered electrons (i.e., W;./At) would
equal the flux of incident electrons (i.e., wjy0/At) times d'/Amip-

The above expression involves the neutral density: 1,0 = wno/AV = 5, (Vo) W;jno/AV.
(In most applications, atoms will be slow and not speed-limited, hence 3, = 1, but we want

this treatment to extend to arbitrary collisions.) Thus:

W; po 5n(vn0)wj,n0

Wie = AV 2 2200 (Vi = Vo) [V = Vpoll Gy () At
Wi po Win
= AV T (v, — vy0)[Vao = Vyoll B en0) B30 At 16)

This expression (or rather W, ./At) yields the number of physical electrons scattered per At
from the collision of particles represented by two SLPIC macroparticles. It is the same as
Eq. (14), except: (1) flux weights w; are used (not density weights w), and (2) the timestep
is modified by a factor B, (vn0) B, (vpo)-

After calculating W, . using Eq. (16), the rest of the collision algorithm proceeds as in
PIC, except that where a weight was used in the PIC algorithm, the flux weight must be
used in SLPIC. Once a macroparticle’s flux weight w, , is determined, its density weight is

set by w, = f(v)w; .

IV. SIMULATION SETUP AND METHODOLOGY

We modelled an argon-filled parallel plate capacitor with one spatial dimension and three

velocity dimensions. The electrodes were treated as particle-absorbing boundaries and the
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gap-distance was fixed at d = 1 cm. We imposed a constant electric field E = V/d. The cell
size Ax was set to a quarter of the mean free path. The number of cells for each simulation
is given in Table I. We ran both SLPIC and PIC simulations. The setup parameters for
the SLPIC and PIC simulations were identical except for the timestep. For PIC, we used
a timestep given by At = Ax/Upax, Where vpa = \/W was the maximum electron
speed. For SLPIC, we used a timestep given by At = Az /vy, where vy = Umax\/m was
the electron speed limit imposed by ((v,) given in Eq. (11). This vy was chosen because it
provided the maximum speed up without affecting the ion motion. The large mass difference
between electrons and argon ions resulted in the SLPIC timestep being 270 times larger than
the PIC timestep. Therefore, the SLPIC simulations required 270 times fewer timesteps than
PIC. The number of timesteps for each simulation is given in Table I.

To initiate the discharge we injected 100 electrons at the cathode in the first timestep
with zero initial velocity. We simulated five types of electron-neutral collisions: ionization,
elastic collisions, and three excitations. Many different types of collisions occur between
electrons and argon, but we simulated only the five most likely. The other collisions had
negligible cross-sections in the relevant electron energy range. The cross-sections were ex-
tracted from the Biagi-v7.1 database?® and Phelps database?' on www.lxcat.net on August
15, 2020. We did not include any ion collisions. Although ion collisions could increase V},
vse depends only weakly on the ion energy, so the effect of these collisions is negligible.
For excitation collisions, the electrons were scattered isotropically with an energy reduced
by the excitation threshold. For elastic collisions, the electrons were scattered according
to the Vahedi-Surendra algorithm.?” For ionization collisions, the products were generated
according to an algorithm developed by Kutasi and Donké!'®. We used an energy-dependent
model of secondary electron emission due to ion impact at the cathode.? Secondary electrons
were emitted from the cathode with zero velocity with a probability given by Eq. (17) that

depends weakly on the energy of the incident ion ¢;.

0.09 (z5:c)", € < 700 eV -
Vse =
0.09 ()™, & > 700 eV

To determine whether the simulation voltage V' was above or below V,, we tracked the
ion population in the simulation over 30 ion crossing times (304/2ma,d/eE). For V < V;,

the ion population decreases with time after an initial rise, eventually returning to zero. For
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V' >V}, the ion population increases with time. This criterion is equivalent to the breakdown
condition given by v,.(e®? — 1) > 1. This method provided a clear binary classification
method of simulation results. For each pressure, we performed a grid search in the vicinity
of the experimental V;. Once a simulation above and a simulation below breakdown were
found, we bracketed the interval with the respective voltages. These brackets are indicated
by the bars in Fig. 2.

The evolutions of the ion population for simulations above and below breakdown at
1 Torr cm are shown in Fig. 1, for both SLPIC and PIC. It can be seen that for V' > V;, the
ion population increases with time, and for V' < V,, the ion population decreases with time
after the initial rise. While SLPIC and PIC give the same results for V}, the dynamics of the
simulation are clearly different. The initial rise in ion population is steeper for PIC because
the seed electrons cross the simulation domain and ionize the argon gas almost immediately,
while in SLPIC, the speed-limited seed electrons cross the domain more slowly and therefore
take longer to ionize the argon gas. The speed limiting also causes the ion population to
evolve more smoothly as electrons and ions now have comparable velocities and oscillate in
and out of the simulation domain at similar frequencies, but out of phase. SLPIC cannot
capture the transient behavior of the particles since the speed-limiting approximation Eq. (5)
is not satisfied in this regime. However, we do see convergence of the SLPIC dynamics to
PIC as we increase the speed-limit.

We bracketed the breakdown voltage for 11 values of pd ranging from 0.3 to 300 Torr cm.
We performed simulations with the Vorpal?® code distributed in VSim-11. The simulations
ran on the CORI supercomputer at the National Energy Research Scientific Computing

Center (NERSC). The number of cores for each simulation is given in Table I.

V. SIMULATION RESULTS

SLPIC accurately computed the Paschen curve for argon over three orders of magnitude
in pd, 0.3 to 300 Torr cm, agreeing with PIC over the range where PIC was feasible, 0.3 to
2 Torr cm. For each value of pd, we bracketed the breakdown voltage with one simulation
above and below breakdown. The Paschen curve generated by the SLPIC and PIC simula-
tions is shown along with Paschen’s law and experimental data from Phelps and Petrovic?

in Fig. 2. For the values of pd where PIC was run, PIC and SLPIC classified each simula-
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FIG. 1. The number of ions in the simulation domain as a function of time for the simulations with
V nearest Vj, at pd = 1 Torr cm. The SLPIC results are given for V' > V}, (orange) and V <V},
(cyan). The PIC results are given for V' >V, (black) and V' < V}, (purple). The number of ions in

the simulation domain increases over time when V > V;, and decreases when V < V.
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FIG. 2. The Paschen curve for argon. The experimental data (solid, green circles) was extracted
from Phelps and Petrovic®. The values of A, B, and 7s. in Paschen’s law (solid, black line) were
taken from Lieberman and Lichtenberg?. The SLPIC results (blue bars connected by dashed,
blue line) display the upper and lower brackets on the simulated breakdown voltage. The 5 lowest

pressures (open, red circles) were also simulated using PIC, which yielded the same bounds as

SLPIC.
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TABLE I. Summary of setup parameters and performance for PIC and SLPIC simulations with
V = V4. The gap-distance was fixed at d =1 cm. The number of timesteps is given by Np.“Cores”
refers to the number of CORI cores that the simulation was run on. The runtime T is given in

core-hours. The speed-up is given by Tpic/TsLpiC-

P (Torr) V (V) Cells NT,SLPIC NT,PIC Cores TSLPIC TPIC Speed—up

0.3 260 66 4.0x103 1.1x 10 4 0.26 11 42
0.4 195 88 5.3%x10°3 1.4x108 4 0.27 14 52
0.6 175 131 7.9%x103 2.1x106 4 0.49 91 187
1 170 219 1.3x10* 3.5x109 4 0.78 113 146
2 185 437 2.6x10% 7.1%x106 4 1.8 91 51
4 225 874 5.2x10% 1.4x107 4 6.3 1308 2 208
6 262 1310 7.9%10% N/A 4 9.2 N/A N/A
10 340 2184 1.3x10° N/A 4 13 N/A N/A
30 620 6550 3.9%10° N/A 128 105 N/A N/A
100 1400 21832 1.3x106 N/A 128 771 N/A N/A
300 3100 65494 3.9x10° N/A 128 6400 2 N/A N/A

® time based on extrapolation due to time restrictions on CORI

tion identically, thus yielding the same brackets. Below 3 Torr cm, the simulated breakdown
voltages were lower than those measured in experiment. At low pd the experiments approach
the vacuum discharge regime where processes such as out-gassing, vacuum arc by burned
cathode, and flashover become relevant to breakdown.'®?? We did not simulate these effects,
which may account for the discrepancy. Paschen’s law, given in Eq. (1), is plotted using
the values of A = 11.5 cm™! Torr™!, B = 176 V ecm™! Torr~ !, and ~,. = 0.07 taken from
Lieberman and Lichtenberg?. Below 0.3 Torr cm, the simulation did not break down. This

matches Paschen’s law [Eq. (1)] which exhibits a singularity below 0.3 Torr cm.

SLPIC ran 40 to 200 times faster than PIC. The simulation parameters and performance
for a subset of simulations run near the breakdown voltage are given in Table I. The speed-
ups are the ratios of the PIC runtimes to the SLPIC runtimes and are given in the rightmost

column. On average, the SLPIC simulations in Table I ran 116 times faster than PIC. Above
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4 Torr c¢m, it became unfeasible to run PIC simulations. SLPIC enabled us to explore these

higher pressures with a fully kinetic treatment.

VI. SUMMARY

Fast, accurate electrical discharge simulations are needed for the design of plasma pro-
cessing equipment, sensitive microchips, and volatile chemical processing facilities. We have
demonstrated that SLPIC is as accurate as PIC, but faster in predicting breakdown voltages
of a gas-filled capacitor. SLPIC accurately computed the Paschen curve V;(pd) for argon for
pd ranging from 0.3 to 300 Torr cm. SLPIC and PIC produced identical results, but SLPIC
ran 40 to 200 times faster and extended the range of feasible simulations. In accurately com-
puting the Paschen curve for argon, SLPIC has demonstrated that it can accurately model
collisions, including electron-neutral ionization, electron-neutral elastic collisions, electron-
neutral excitations, and ion-induced secondary electron emission. We expect that SLPIC
will also be as accurate as PIC, but much faster, in simulating voltage breakdown in gases in
more complicated 3D geometries as well as in the glow discharge regime where the discharge

current alters the applied electric field.
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