
Computing the Paschen curve for argon with speed-limited particle-in-cell simulation

Joseph G. Theis,1, a) Gregory R. Werner,1 Thomas G. Jenkins,2 and John R. Cary1, 2

1)Center for Integrated Plasma Studies, University of Colorado, Boulder,

Colorado 80309, USA

2)Tech-X Corporation, 5621 Arapahoe Avenue Suite A, Boulder, Colorado 80303,

USA

(Dated: 2 July 2021)

Upon inclusion of collisions, the speed-limited particle-in-cell (SLPIC) simulation

method successfully computed the Paschen curve for argon. The 1D3V simulations

modelled an electron cascade across an argon-filled capacitor, including electron-

neutral ionization, electron-neutral elastic collisions, electron-neutral excitation, and

ion-induced secondary electron emission. In electrical breakdown, the timescale dif-

ference between ion and electron motion makes traditional particle-in-cell (PIC)

methods computationally slow. To decrease this timescale difference and speed up

computation, we used SLPIC, a time-domain algorithm that limits the speed of the

fastest electrons in the simulation. The SLPIC algorithm facilitates a straightfor-

ward, fully-kinetic treatment of dynamics and collisions. SLPIC was as accurate as

PIC, but ran up to 200 times faster. SLPIC accurately computed the Paschen curve

for argon over three orders of magnitude in pressure.
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I. INTRODUCTION

Townsend discharge is the conduction of electric current in a gas due to a cascade of ion-

izing collisions.1 In typical discharge experiments, the gas is enclosed between the electrodes

of a capacitor, and there is an initial source of free electrons. The electrons accelerate in

an applied electric field and ionize the neutral atoms, creating more electrons, which ionize

more atoms. The ions accelerate towards and impact the cathode, where they can pro-

duce secondary electrons. When the combined effects of ionizing collisions and ion-induced

cathode emission yield more electrons at the cathode than initially seeded, a self-sustaining

discharge is triggered. The voltage difference at which this occurs is the breakdown voltage.

The breakdown voltage Vb of a gas-filled capacitor is (to a good approximation) a function

of pd, where p is the pressure of the gas and d is the distance between the electrodes. A

Paschen curve is the relationship between Vb and pd for a given gas.2 Paschen curves have a

minimum Vb at some intermediate pd and higher Vb at the extremes (this shape is shown later

in Fig. 2). This characteristic shape is due to the competition between ionizing collisions,

which multiply the number of free electrons, and non-ionizing collisions, which prevent

electrons from gaining enough energy to ionize atoms. At low pd, the ionization mean free

path is too long for a sufficient number of ionizations to occur during crossing. At high pd,

the non-ionizing mean free path is too short for electrons to reach the ionization energy.

Paschen curves will be developed further in §II A.

Electrical discharge and breakdown have been extensively studied both for a multitude of

applications, including lighting,3 plasma processing,4 and lasers,5 as well as to avoid detri-

mental effects, including damage to electrical devices,6 explosions in chemical processing

facilities,7 and damage to aerospace systems.8 Following Townsend’s description of the mech-

anism behind gas discharge,1 various models and simulation methods have been employed to

study the phenomena.9 Analytical models have proven effective for computing breakdown

and steady-state current amplification in simple geometries;9 however, understanding the

particle dynamics of discharge and handling complex geometries requires simulation.

Particle-in-cell (PIC) and fluid methods have been the primary simulation techniques

applied to model gas discharges.4,10 Fluid approaches evolve the mean properties of a particle

species and can therefore handle situations involving many particles and mean free paths that

are small compared with the system size. However, the fluid approaches assume Maxwellian
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particle velocity distributions, while discharges often have non-Maxwellian distributions.10

PIC methods evolve the distribution function f(x, v, t) in time via the method of char-

acteristics and, therefore, can simulate arbitrary distribution functions.11 Collisions can be

included in PIC using the PIC Monte-Carlo Collisions framework (PIC-MCC).11–13 PIC-

MCC will be discussed further in §III. PIC-MCC requires that the smallest mean free path

be resolved by the grid cell size ∆x. Further, in PIC, the timestep ∆t is limited according

to ∆t <∼ ∆x/vmax, where vmax is the maximum particle speed. In gas discharge simulations,

the large mass difference between the ions and the electrons results in ion timescales much

greater than the timestep imposed by the maximum electron speed. This makes PIC-MCC

simulations computationally slow. Because PIC-MCC is slow, variations of PIC simulation

have been applied to discharge. One approach is treating the ions as immobile to eliminate

the timescale mismatch,14,15 but this technique fails when ion motion becomes relevant as

is the case for Townsend discharge. Another technique is electron sub-cycling, in which the

timestep for the electron is smaller than that of the ion,16 but this technique yields at most

a factor of two speed-up. Hybrid methods combine PIC and fluid approaches (e.g., with

fluid electrons but PIC ions),10 but they fail to capture the full velocity distribution as PIC

does.

In this work, we apply the speed-limited particle-in-cell (SLPIC) simulation method17

to electrical breakdown in argon. SLPIC is a time-domain algorithm that limits the speed

of the fastest particles in the simulation to enable larger time steps and, therefore, faster

computing times. The SLPIC algorithm facilitates a straightforward, fully-kinetic treatment

of effects such as secondary emission at the cathode and collisions. A detailed introduction

to SLPIC is provided in §II B. This work is the first demonstration of the integration of

SLPIC particles with PIC-MCC, showing that speed-limiting techniques can be used in

collisional low-temperature plasma discharges. We chose to simulate electrical breakdown,

and, specifically, Paschen’s law, because multiple collision mechanisms must be correctly

simulated to compute the breakdown voltage accurately. We were also able to quantify the

speed-up in runtime of the SLPIC simulations relative to the regular PIC simulations.

In this paper, we begin with a review of Paschen curves and SLPIC. We then introduce

the SLPIC Monte Carlo Collisions framework in §III. The simulation design and parameters

will be provided along with our methodology for determining breakdown in §IV. In §V, we

compare our simulation results (a Paschen curve) with experimental data and quantify the
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computational speed-up of the SLPIC algorithm relative to normal PIC.

II. BACKGROUND

A. Paschen Curve

Electrical breakdown in a gas-filled capacitor is caused by the ionization of the neutral gas

by electrons and the secondary emission of electrons at the cathode due to ion impact. The

average number of ions produced per electron per unit length travelled is termed1 Townsend’s

first ionization coefficient α. The average number of secondary electrons emitted per ion

impact is Townsend’s second ionization coefficient γse. The coefficient α depends on the

voltage V across the gap and the collision cross-sections. The coefficient γse depends on the

ion species and the electrode material and treatment. When γse(e
αd − 1) > 1 breakdown

occurs.

Paschen curves relate the breakdown voltage Vb of a gas-filled capacitor to the product

of the gas pressure p and the distance d between the electrodes.2 Paschen curves are not

monotonic due to a competition between electrons gaining energy in the electric field and

losing energy in collisions. Paschen curves have a characteristic minimum at an intermediate

pd. At low pd, most electrons stream through the capacitor without ionizing enough atoms.

At high pd, few electrons reach the threshold ionization energy due to frequent non-ionizing

collisions. Paschen’s law is a function relating Vb to pd:

Vb =
Bpd

ln(Apd)− ln[ln(1 + 1/γse)]
. (1)

Paschen’s law assumes that, except for the initial seed electrons, ion impact at the cathode

and electron-neutral ionizations are the only sources of electrons, and that α can be expressed

as:
α

ng

= kTA exp

(

−kTBng

E

)

(2)

where kT is the thermal energy, ng is the neutral gas density, and E = V/d is the constant

electric field. A and B are related to the collision cross-sections and are determined by

fitting Eq. (2) (which gives the field-intensified ionization cross-section α/ng as a function

of the reduced field E/ng) to the experimental results for a given gas. In Paschen’s law, A

and B are assumed to be constant for a given gas species. Paschen’s law will be plotted in

Fig. 2, with the values of A, B, and γse taken from Lieberman and Lichtenberg 4 .
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Different gases yield different Paschen curves due to different cross-sections, ionization

energies, and secondary emission yields at the cathode. In this work, we simulated a neutral

argon gas. Argon has been studied extensively in the context of electrical breakdown, includ-

ing simulation,10,18,19 and experimental work.9,20,21 Research has been focused on identifying

the mechanisms responsible for breakdown and the regimes in which these mechanisms are

relevant. In this work, we will compare our simulation results to experimental results com-

piled by Phelps and Petrovic 9 .

B. SLPIC

Before describing how collisions can be implemented within the SLPIC method in §III,

we review the derivation of SLPIC, following Werner et al. 17 . PIC numerically evolves a

particle distribution f(x,v, t) according to the Vlasov equation:

∂tf(x,v, t) = −v · ∂
x
f(x,v, t)− a · ∂

v
f(x,v, t), (3)

where the acceleration a = a(x,v, t) is typically determined by electromagnetic fields.

SLPIC numerically evolves f(x,v, t) according to an approximate Vlasov equation. We

multiply Eq. (3) by a yet-to-be-chosen function β(v) (where v = ‖v‖), which will turn out

to limit particle speeds,

β∂tf(x,v, t) = −βv · ∂
x
f(x,v, t)− βa · ∂

v
f(x,v, t), (4)

and then make the critical “speed-limiting” approximation:

β∂tf ≈ ∂tf. (5)

This approximation is valid if either (1) ∂tf(x,v, t) ≈ 0 or (2) β(v) ≈ 1.22 Thus we arrive

at the “speed-limited” approximation to the Vlasov equation

∂tf(x,v, t) = −βv · ∂
x
f(x,v, t)− βa · ∂

v
f(x,v, t). (6)

In the special case of a steady state (i.e., ∂tf ≡ 0), the speed-limiting approximation is

exact and SLPIC, though different from PIC, is as accurate as PIC. For the special choice

of β(v) ≡ 1, SLPIC is exactly the same as PIC.

Just as PIC simulation evolves the Vlasov equation via the method of characteristics,

SLPIC evolves Eq. (6). We posit a solution that is a sum over macroparticles p that follow
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trajectories [xp(t),vp(t)] with weights wp(t) (a macro-electron with weight wp represents wp

electrons; i.e., it has mass wpme and charge −wpe):

f(x,v, t) =
∑

p

wp(t)S[x− xp(t)]δ
3[v − vp(t)] (7)

where S is the particle shape function11 and δ the Dirac delta function. Unlike PIC, SLPIC

requires the particle weight to vary in time. Plugging Eq. (7) into Eq. (6), we find that it

yields a solution if:

ẋp = β(vp)vp (8)

v̇p = β(vp)a(xp,vp, t) (9)

ẇp = wp[∂x · (βv) + ∂
v
· (βa)] = βwp[∂x · v + ∂

v
· a] + wpa · ∂

v
β = wpβ̇/β (10)

where we have assumed that ∂
x
· v+ ∂

v
· a = 0—i.e., the true motion must be phase-space-

volume preserving (Liouville’s theorem proves this for any Hamiltonian motion). We have

also substituted β̇ ≡ (d/dt)β(vp(t)) = βa · ∂
v
β.

When β(vp) = 1, these are the usual (PIC) equations of motion. When 0 < β(vp) < 1,

a SLPIC macroparticle, representing physical particles with true velocity vp, travels with

pseudo-velocity ẋp = β(vp)vp and pseudo-acceleration v̇p = β(vp)a(xp(t),vp(t), t). The

SLPIC macroparticle follows the same path through phase space as the physical particles it

represents, but slower; e.g., in a short time ∆t, the macroparticle moves (vp, a)β∆t, while

a physical particle moves (vp, a)∆t. For example, a SLPIC electron in a uniform magnetic

field will have the correct gyroradius, but its gyrofrequency will be (unphysically) reduced

by a factor βvp .

Choosing β(vp) < 1 invokes the SLPIC approximation [Eq. (5)], reducing accuracy; how-

ever, it limits the simulated speed of macroparticles from vp to ẋ = β(vp)vp, which allows

larger timesteps, hence faster simulation. In most cases, the PIC timestep must be smaller

than ∆t <∼ ∆x/vmax, where ∆x is the grid cell size and vmax is the maximum particle speed.

With SLPIC, a larger timestep is allowed: ∆t <
∼ ∆x/[β(vmax)vmax]. Typically, we choose

a speed limit v0 ≪ vmax, and then define β(vp) ≡ v0/vp to ensure that for all particles,

‖ẋ‖ ≤ v0, so that we can use ∆t ≈ ∆x/v0 ≫ ∆x/vmax. For particles with vp < v0, however,

we define β(vp) ≡ 1 so that they experience “true” motion. In this way, we speed-limit

only the particles (with vp > v0) that need to be speed-limited to allow a large timestep,

∆t = v0/∆x. It turns out that speed-limiting also reduces the plasma frequency so that it is
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resolved by the large ∆t and poses no instability.17,23 For simplicity, we will use this specific

β(vp) for the rest of the paper: β(vp) = v0/vp for vp ≥ v0, and β(vp) = 1 for vp < v0, or,

equivalently:

β(vp) ≡ Θ(vp − v0)v0/vp +Θ(v0 − vp) (11)

where Θ is the Heaviside step function (and vp = ‖v‖).

As a macroparticle accelerates so that vp > v0, its simulated speed ẋp = βvp remains at

v0, and its weight wp(t) decreases. The decrease in wp(t) reflects the fact that the physical

particle density represented by the macroparticle at time t decreases, and the macroparticle

represents fewer physical particles at time t+∆t. In this way, SLPIC can correctly simulate

a steady-state beam within which particles accelerate such that their density decreases (like

cars exiting a steady-state traffic jam). In SLPIC, a beam macroparticle with vp > v0

experiences an acceleration and its true velocity vp increases, but its pseudo-velocity ẋp =

βvp = v0 does not, so the density of macroparticles throughout the beam remains uniform.

The decrease in physical density thus results from the decrease in macroparticle weight, and

not (as in PIC) from the decrease in macroparticle density. While SLPIC may sometimes

result in a more uniform macroparticle density, this is an unintended bonus and it may

not always be the case. SLPIC is orthogonal to techniques for managing macroparticles

weights/numbers for efficiency and accuracy.24,25

Therefore, as vp increases above v0, β(vp) decreases, and so too must wp decrease. Equa-

tion (10) shows that wp/β(vp) is constant over any particle trajectory; we define this constant

to be wj,p ≡ wp/β(vp). Here we choose the subscript j because wj,p facilitates calculation of

the flux density distribution j(x,v, t).

Simulating macroparticles following Eqs. (8–10), we can compute the phase-space density

distribution function f at any time via Eq. (7). However, with SLPIC it is often especially

useful to consider particle fluxes. We can compute the flux density distribution, j(x,v, t) =

vf(x,v, t), as follows:

j(x,v, t) =
∑

p

vpwp(t)S[x− xp(t)]δ
3[v − vp(t)] =

∑

p

β(vp)vpwj,pS[x− xp(t)]δ
3[v − vp(t)].

(12)

To estimate the flux j · n̂dA through some surface element n̂dA from the macroparticles

crossing it in time ∆t, we consider that a macroparticle with ẋ will cross the surface if it
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is within a distance ẋ∆t · n̂ of the surface. From Eq. (12) we see that, since ẋ = β(vp)vp,

the flux (integrated over time ∆t) through the surface element is simply the sum of the wj,p

over all macroparticles crossing the surface in ∆t.

Because the wj,p are constant in time, a macroparticle always represents the same physical

flux whenever it crosses a surface. If a macroparticle p has wj,p = 100, then every time it

crosses a surface, it represents 100 physical particles crossing the surface. This statement

is trivial in PIC, but in SLPIC, where wp(t) varies in time, it is nontrivial and very useful.

For example, it ensures that, if a macroparticle enters into some volume V and later exits

that volume, the time-integrated flux through the surface (due to that particle) is zero.

At this point readers might suspect a paradox in the SLPIC treatment arising from a

difference between wp and wj,p. Consider a macroparticle with vp = 10v0, β(vp) = 0.1,

wj,p = 100, and wp = 10, and suppose it crosses a surface to enter volume V during time

interval ∆t. That macroparticle represents wp = 10 physical particles in volume V ; however,

it represented wj,p = 100 physical particles crossing the surface into V . This counterintuitive

behavior is correct for SLPIC. It is counterintuitive because PIC has led us to assume that

a macroparticle with wp and (xp,vp) represents a swarm of wp physical particles within the

volume d3x d3v around (xp,vp), and that those physical particles travel roughly with the

macroparticle to (xp+ ẋp∆t,vp+ v̇p∆t) over time ∆t. Fundamentally, however, a macropar-

ticle represents a chunk of the distribution fd3x d3v, and SLPIC decouples macroparticles

from the physical particles they represent. A speed-limited SLPIC macroparticle moves in

phase space with ẋp and v̇p slower than the physical particles it represents. Thus the same

macroparticle may represent one set of physical particles at time t and a different set of

particles at time t+∆t.

In the above example, the density represented by the SLPIC macroparticle corresponds

to wp = 10 physical particles that are near [xp(t),vp(t)] at time t; however, over time inter-

val ∆t, the physical flux represented by the macroparticle includes all the physical particles

that would would be near [xp(t
′),vp(t

′)] at any time t′ ∈ [t, t+∆t]. Since the physical parti-

cles travel 10 times faster than the macroparticle, the physical flux is 10wp(t)/∆t = wj,p/∆t.

It is important to remember that SLPIC is accurate only if f(x,v, t) changes sufficiently

slowly—and it is as accurate as PIC in the steady-state limit. The f(x,v, t) describing a

single particle with v > v0 is not a slowly-changing function; therefore, one typically cannot

verify SLPIC based on single-particle thought experiments. In the above single-particle
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example, the continuity equation is violated because f(x,v, t) changes too rapidly for the

SLPIC approximation to be valid.

Exactly what constitutes “sufficiently slowly” for SLPIC accuracy remains an open ques-

tion. We have previously observed that for (Langmuir) wave-particle interaction in 1D,

“sufficiently slowly” means that the wave phase velocity must be slower than the SLPIC

speed limit for accurate simulation17,23. Similarly, although studying SLPIC in magnetized

plasmas is beyond the scope of this work, we imagine that the electron-cyclotron resonance

interaction will be too fast for accurate simulation, as long as SLPIC reduces the electron

gyrofrequency—but ion-cyclotron resonance might be accurately simulated. Although dis-

advantageous, it is precisely because SLPIC neglects fast motions that it can offer faster

simulation. Importantly, in this paper we apply SLPIC to a steady-state problem in the

sense that in the very beginning of breakdown, the space charge has negligible effect on

the applied constant field; in the steady-state limit, we expect SLPIC to be essentially as

accurate as PIC.

Reiterating an important point: the flux weight wj,p = wp(t)/β(vp(t)) of a SLPIC

macroparticle is a constant in time, and this ensures that the flux density is divergence-

less in the steady-state limit. For example, if a particle receives an abrupt kick—whether

from the electric field or from a collision—its wj,p remains constant. If the impulse increases

the particle’s speed vp, its density weight wp must change accordingly so that wp = β(vp)wj,p.

In Sec. III, we will see that the flux weight is conserved when simulating collisions involving

SLPIC particles.

III. COLLISIONS IN SLPIC

Collisions can be simulated in PIC with a PIC-MCC algorithm;11–13 the MCC algorithm

can be used for SLPIC with just a few modifications: (1) using the flux weight wj,p instead of

the density weight wp (cf. §II B), and (2) considering the slowing of time when determining

the collision rate. (Since most SLPIC simulations will have macroparticles with a distribution

of wj,p, the PIC-MCC algorithm must be able to handle macroparticles with different weights

before modification for SLPIC.)

Before discussing collisions in SLPIC, we briefly review the pertinent aspects of collisions

in PIC. In PIC-MCC, a binary macroparticle collision is not at all the same as a binary
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collision between two physical particles. The collision between two macroparticles must

statistically represent collisions between the two swarms of physical particles represented

by the macroparticles. The spatial distribution of physical particles is usually assumed to

be uniform within the same grid cell containing the macroparticle centers, regardless of the

macroparticle shape S [cf. Eq. (7)], and zero outside that cell.

For concreteness, let us consider electron impact ionization in PIC-MCC, in which a pri-

mary electron collides with a primary neutral atom, resulting in the scattering of the primary

electron, the neutral “becoming” an ion, and the “creation” of a secondary electron. (Al-

though there are other kinds of collisions, e.g., elastic or excitation, between electrons and

neutrals that do not ionize, we consider only ionizing collisions for simplicity.) A primary

electron macroparticle p with weight wp0 and velocity vp0 collides with a neutral macro-

atom with wn0 and vn0. The primary electron macroparticle will be split into two parts:

one part with weight wp1 represents uncollided electrons and the other with weight w′

p1 rep-

resents scattered primary electrons (recoiling from having just ionized atoms). Similarly,

wn1 is the weight of uncollided neutrals, and wi the weight of “scattered” neutrals, which

are really ions and are now subject to acceleration in the applied electric field. In addition,

secondary electrons are created with weight wse. In principle there could be many scat-

tered/secondary macroparticles with different velocities, but for simplicity we will assume

at most one per primary species. The uncollided particles retain the original velocities; the

other particles must be assigned new velocities according to the ionization process: v′

p1, vi,

and vse. Conservation of subatomic particles requires wp0 = wp1 +w′

p1, wn0 = wn1 +wi, and

w′

p1 = wi = wse = Wc, where Wc is the number of (physical-particle) collisions expected to

take place when the two macroparticles “collide.”

The expected number of collisions Wc within a time interval ∆t in a cell volume ∆V

between two arbitrary particle distributions, fp (primary electrons) and fn (neutrals) is

Wc = ∆V∆t

∫

d3vp0

∫

d3vn0 fp(vp0)fn(vp0)σ(vn0 − vp0)‖vn0 − vp0‖ (13)

where σ(vr) is the collision cross-section, which depends on the relative velocity vr between

colliding particles. To calculate Wc between two PIC macroparticles in the same grid cell,

we substitute the appropriate distributions, i.e., fp(v) = (wp0/∆V )δ3(v− vp0) and fn(v) =

(wn0/∆V )δ3(v − vn0), ignoring the shape functions of the macroparticles, treating them as

uniform in one cell and zero outside. The expected number of collisions between the two
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macroparticles is then

Wc = ∆V
wp0

∆V

wn0

∆V
σ(vn0 − vp0)‖vn0 − vp0‖∆t. (14)

This can be verified by considering a single electron moving through a swarm of atoms of

density nn0 = wn0/∆V with velocity vn0. In the reference frame co-moving with the atoms,

d = ‖vn0 − vp0‖∆t is the distance traveled by the electron in ∆t, and λmfp = (nn0σ)
−1

is its mean free path. Therefore d/λmfp is the expected number of collisions that a single

electron would experience (for small ∆t such that d/λmfp ≪ 1). The total number of electron

collisions is then Wc = wp0d/λmfp, which is identical to Eq. (14).

There are multiple Monte Carlo strategies for colliding pairs of macroparticles that all

yield the same Wc on average. For example, if Wc = 0.01wp0, we could avoid splitting

the primary macroparticles and creating small-weight scattered/secondary particles by ig-

noring 99% of colliding pairs, and colliding 1% with an enhanced W ′

c = wp0. We will not

discuss this in any detail, because these strategies are identical for PIC and SLPIC. We also

omit other practical details that need no modification for SLPIC, such as determining scat-

tered and secondary macroparticle velocities according to given differential cross-sections,

and dealing with exceptional cases such as Wc > wp0 (indicating that ∆t is too large).

The only differences introduced by SLPIC are the determination of Wc and the resulting

macroparticle weights.

As described in §II B, in SLPIC it is better to verify physical accuracy by considering

particle fluxes rather than numbers or densities. Thus the basic thought-experiment for

developing SLPIC collision algorithms is not the collision of two macroparticles, but of two

narrow beams of macroparticles intersecting in a small volume; the particle fluxes into and

out of that volume must satisfy the appropriate conservation laws. For electron impact

ionization, this means that wj,p0 = wj,p1 + w′

j,p1, wj,n0 = wj,n1 + wj,i, and w′

j,p1 = wj,i =

wj,se = Wj,c. Because flux weights wj are constant in time [unlike density weights wp(t)],

this ensures that the fluxes of particles entering and exiting ∆V are appropriately perserved;

i.e., the flux of unscattered plus scattered primaries leaving ∆V equals the flux of primaries

entering ∆V , and the fluxes of secondary electrons and scattered primaries leaving ∆V are

equal, etc.

The rule for determining the collision rate, Wj,c/∆t, is that SLPIC preserves the physical

mean free path. For example, consider a steady-state, monoenergetic beam of particles in

11



the +x direction, entering some scattering medium with mean free path λmfp. Scattering

causes the density of original beam particles to decrease as ∼ exp(−x/λmfp). Because this

is a steady-state, SLPIC should render this density profile accurately, requiring that SLPIC

macroparticles experience the physical mean free path. In other words, SLPIC macroparticle

must scatter with probability d′/λmfp = ẋ∆t/λmfp = β(v)v∆t/λmfp within time ∆t (in

contrast, a physical particle would scatter with probability d/λmfp = ẋ∆t/λmfp = v∆t/λmfp).

This can also be viewed as the reduction in collision rate due to the slowing down of time

by a factor β(v). The collision rate (in terms of fluxes) in ∆V must therefore be

Wj,c

∆t
=

wj,p0

∆t

d′

λmfp

= ∆V
wj,p0/∆t

∆V
nn0σ(vn0 − vp0)‖vni − vpi‖βp(vp0)∆t (15)

where βp(v) is the speed-limiting function for electrons. This merely says that—if one were

to measure fluxes into and out of ∆V—the flux of scattered electrons (i.e., Wj,c/∆t) would

equal the flux of incident electrons (i.e., wj,p0/∆t) times d′/λmfp.

The above expression involves the neutral density: nn0 = wn0/∆V = βn(vn0)wj,n0/∆V .

(In most applications, atoms will be slow and not speed-limited, hence βn ≡ 1, but we want

this treatment to extend to arbitrary collisions.) Thus:

Wj,c = ∆V
wj,p0

∆V

βn(vn0)wj,n0

∆V
σ(vn0 − vp0)‖vn0 − vp0‖βp(vp0)∆t

= ∆V
wj,p0

∆V

wj,n0

∆V
σ(vn0 − vp0)‖vn0 − vp0‖βn(vn0)βp(vp0)∆t. (16)

This expression (or rather Wj,c/∆t) yields the number of physical electrons scattered per ∆t

from the collision of particles represented by two SLPIC macroparticles. It is the same as

Eq. (14), except: (1) flux weights wj are used (not density weights w), and (2) the timestep

is modified by a factor βn(vn0)βp(vp0).

After calculating Wj,c using Eq. (16), the rest of the collision algorithm proceeds as in

PIC, except that where a weight was used in the PIC algorithm, the flux weight must be

used in SLPIC. Once a macroparticle’s flux weight wj,p is determined, its density weight is

set by wp = β(v)wj,p.

IV. SIMULATION SETUP AND METHODOLOGY

We modelled an argon-filled parallel plate capacitor with one spatial dimension and three

velocity dimensions. The electrodes were treated as particle-absorbing boundaries and the
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gap-distance was fixed at d = 1 cm. We imposed a constant electric field E = V/d. The cell

size ∆x was set to a quarter of the mean free path. The number of cells for each simulation

is given in Table I. We ran both SLPIC and PIC simulations. The setup parameters for

the SLPIC and PIC simulations were identical except for the timestep. For PIC, we used

a timestep given by ∆t = ∆x/vmax, where vmax =
√

2eV/me was the maximum electron

speed. For SLPIC, we used a timestep given by ∆t = ∆x/v0, where v0 = vmax

√

me/mAr was

the electron speed limit imposed by β(vp) given in Eq. (11). This v0 was chosen because it

provided the maximum speed up without affecting the ion motion. The large mass difference

between electrons and argon ions resulted in the SLPIC timestep being 270 times larger than

the PIC timestep. Therefore, the SLPIC simulations required 270 times fewer timesteps than

PIC. The number of timesteps for each simulation is given in Table I.

To initiate the discharge we injected 100 electrons at the cathode in the first timestep

with zero initial velocity. We simulated five types of electron-neutral collisions: ionization,

elastic collisions, and three excitations. Many different types of collisions occur between

electrons and argon, but we simulated only the five most likely. The other collisions had

negligible cross-sections in the relevant electron energy range. The cross-sections were ex-

tracted from the Biagi-v7.1 database26 and Phelps database21 on www.lxcat.net on August

15, 2020. We did not include any ion collisions. Although ion collisions could increase Vb,

γse depends only weakly on the ion energy, so the effect of these collisions is negligible.

For excitation collisions, the electrons were scattered isotropically with an energy reduced

by the excitation threshold. For elastic collisions, the electrons were scattered according

to the Vahedi-Surendra algorithm.27 For ionization collisions, the products were generated

according to an algorithm developed by Kutasi and Donkó 19 . We used an energy-dependent

model of secondary electron emission due to ion impact at the cathode.9 Secondary electrons

were emitted from the cathode with zero velocity with a probability given by Eq. (17) that

depends weakly on the energy of the incident ion ǫi.

γse =











0.09
(

ǫi
700 eV

)0.05
, ǫi < 700 eV

0.09
(

ǫi
700 eV

)0.72
, ǫi ≥ 700 eV

(17)

To determine whether the simulation voltage V was above or below Vb, we tracked the

ion population in the simulation over 30 ion crossing times (30
√

2mArd/eE). For V < Vb,

the ion population decreases with time after an initial rise, eventually returning to zero. For
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V > Vb, the ion population increases with time. This criterion is equivalent to the breakdown

condition given by γse(e
αd − 1) > 1. This method provided a clear binary classification

method of simulation results. For each pressure, we performed a grid search in the vicinity

of the experimental Vb. Once a simulation above and a simulation below breakdown were

found, we bracketed the interval with the respective voltages. These brackets are indicated

by the bars in Fig. 2.

The evolutions of the ion population for simulations above and below breakdown at

1 Torr cm are shown in Fig. 1, for both SLPIC and PIC. It can be seen that for V > Vb, the

ion population increases with time, and for V < Vb, the ion population decreases with time

after the initial rise. While SLPIC and PIC give the same results for Vb, the dynamics of the

simulation are clearly different. The initial rise in ion population is steeper for PIC because

the seed electrons cross the simulation domain and ionize the argon gas almost immediately,

while in SLPIC, the speed-limited seed electrons cross the domain more slowly and therefore

take longer to ionize the argon gas. The speed limiting also causes the ion population to

evolve more smoothly as electrons and ions now have comparable velocities and oscillate in

and out of the simulation domain at similar frequencies, but out of phase. SLPIC cannot

capture the transient behavior of the particles since the speed-limiting approximation Eq. (5)

is not satisfied in this regime. However, we do see convergence of the SLPIC dynamics to

PIC as we increase the speed-limit.

We bracketed the breakdown voltage for 11 values of pd ranging from 0.3 to 300 Torr cm.

We performed simulations with the Vorpal28 code distributed in VSim-11. The simulations

ran on the CORI supercomputer at the National Energy Research Scientific Computing

Center (NERSC). The number of cores for each simulation is given in Table I.

V. SIMULATION RESULTS

SLPIC accurately computed the Paschen curve for argon over three orders of magnitude

in pd, 0.3 to 300 Torr cm, agreeing with PIC over the range where PIC was feasible, 0.3 to

2 Torr cm. For each value of pd, we bracketed the breakdown voltage with one simulation

above and below breakdown. The Paschen curve generated by the SLPIC and PIC simula-

tions is shown along with Paschen’s law and experimental data from Phelps and Petrovic 9

in Fig. 2. For the values of pd where PIC was run, PIC and SLPIC classified each simula-
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FIG. 1. The number of ions in the simulation domain as a function of time for the simulations with

V nearest Vb at pd = 1 Torr cm. The SLPIC results are given for V > Vb (orange) and V < Vb

(cyan). The PIC results are given for V > Vb (black) and V < Vb (purple). The number of ions in

the simulation domain increases over time when V > Vb, and decreases when V < Vb.
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FIG. 2. The Paschen curve for argon. The experimental data (solid, green circles) was extracted

from Phelps and Petrovic 9 . The values of A, B, and γse in Paschen’s law (solid, black line) were

taken from Lieberman and Lichtenberg 4 . The SLPIC results (blue bars connected by dashed,

blue line) display the upper and lower brackets on the simulated breakdown voltage. The 5 lowest

pressures (open, red circles) were also simulated using PIC, which yielded the same bounds as

SLPIC.
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TABLE I. Summary of setup parameters and performance for PIC and SLPIC simulations with

V ≈ Vb. The gap-distance was fixed at d =1 cm. The number of timesteps is given by NT .“Cores”

refers to the number of CORI cores that the simulation was run on. The runtime T is given in

core-hours. The speed-up is given by TPIC/TSLPIC.

p (Torr) V (V) Cells NT,SLPIC NT,PIC Cores TSLPIC TPIC Speed-up

0.3 260 66 4.0×103 1.1×106 4 0.26 11 42

0.4 195 88 5.3×103 1.4×106 4 0.27 14 52

0.6 175 131 7.9×103 2.1×106 4 0.49 91 187

1 170 219 1.3×104 3.5×106 4 0.78 113 146

2 185 437 2.6×104 7.1×106 4 1.8 91 51

4 225 874 5.2×104 1.4×107 4 6.3 1308 a 208

6 262 1310 7.9×104 N/A 4 9.2 N/A N/A

10 340 2184 1.3×105 N/A 4 13 N/A N/A

30 620 6550 3.9×105 N/A 128 105 N/A N/A

100 1400 21832 1.3×106 N/A 128 771 N/A N/A

300 3100 65494 3.9×106 N/A 128 6400 a N/A N/A

a time based on extrapolation due to time restrictions on CORI

tion identically, thus yielding the same brackets. Below 3 Torr cm, the simulated breakdown

voltages were lower than those measured in experiment. At low pd the experiments approach

the vacuum discharge regime where processes such as out-gassing, vacuum arc by burned

cathode, and flashover become relevant to breakdown.15,29 We did not simulate these effects,

which may account for the discrepancy. Paschen’s law, given in Eq. (1), is plotted using

the values of A = 11.5 cm−1 Torr−1, B = 176 V cm−1 Torr−1, and γse = 0.07 taken from

Lieberman and Lichtenberg 4 . Below 0.3 Torr cm, the simulation did not break down. This

matches Paschen’s law [Eq. (1)] which exhibits a singularity below 0.3 Torr cm.

SLPIC ran 40 to 200 times faster than PIC. The simulation parameters and performance

for a subset of simulations run near the breakdown voltage are given in Table I. The speed-

ups are the ratios of the PIC runtimes to the SLPIC runtimes and are given in the rightmost

column. On average, the SLPIC simulations in Table I ran 116 times faster than PIC. Above
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4 Torr cm, it became unfeasible to run PIC simulations. SLPIC enabled us to explore these

higher pressures with a fully kinetic treatment.

VI. SUMMARY

Fast, accurate electrical discharge simulations are needed for the design of plasma pro-

cessing equipment, sensitive microchips, and volatile chemical processing facilities. We have

demonstrated that SLPIC is as accurate as PIC, but faster in predicting breakdown voltages

of a gas-filled capacitor. SLPIC accurately computed the Paschen curve Vb(pd) for argon for

pd ranging from 0.3 to 300 Torr cm. SLPIC and PIC produced identical results, but SLPIC

ran 40 to 200 times faster and extended the range of feasible simulations. In accurately com-

puting the Paschen curve for argon, SLPIC has demonstrated that it can accurately model

collisions, including electron-neutral ionization, electron-neutral elastic collisions, electron-

neutral excitations, and ion-induced secondary electron emission. We expect that SLPIC

will also be as accurate as PIC, but much faster, in simulating voltage breakdown in gases in

more complicated 3D geometries as well as in the glow discharge regime where the discharge

current alters the applied electric field.
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