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I. INTRODUCTION

The speed-limited particle-in-cell (SLPIC) method1 is a relatively new plasma model-

ing technique. It is most suitable for discharges in which the physics of interest occurs on

relatively slow timescales (e.g., ion transport/profile relaxation) but is nevertheless tied to

kinetic electron behaviors that a fluid/Boltzmann model cannot capture (e.g. distribution

function modifications from neutral collisions or sheath interactions, or Landau damping).

In such simulations, one is typically constrained to model both the heavy, slow ion species

and the light, fast electrons using conventional particle-in-cell (PIC) techniques. The en-

suing computational costs can be (possibly unaffordably) high; simulation timesteps must

resolve the electron plasma frequency since kinetic electrons are present, but ion timescales

of interest may exceed the electron oscillation period by many orders of magnitude.

In the SLPIC approach, conventional PIC is modified to artificially slow down ‘fast’

behaviors which are numerically troublesome, despite being physically unimportant for the

physics of interest. Larger simulation timesteps can thus be used while retaining the detailed

physics behaviors associated with the slower, longer timescales. The specifics of the SLPIC

method will be explained in a later section of this paper, but we will note here that numerical

experiments using SLPIC simulations to model sheath formation in an argon plasma have

shown that remarkable speedup factors (160 times faster than conventional PIC methods2)

can be achieved1. When SLPIC can be appropriately used for modeling, it is both accurate

and powerful.

A concept understood since the early days of PIC modeling is that while one may “recover

more of the essence of the situation being simulated by changing the interaction laws”, such

changes are accompanied by costs: “the more one meddles with the ‘laws’ of nature the more

one must understand the consequences.”3 While this quote in its original context refers to the

various approximations used in PIC simulation (e.g. finite-sized particles, grid spacings, and

timesteps), in this paper we explore its relevance to SLPIC. Although SLPIC is in many

ways similar to conventional PIC, the ways in which it is different introduce additional

effects that one must understand in order to have confidence in its provided solutions –

and this is true even independent of any effects imparted by finite-sized particles, grid

spacings, and timesteps (though such effects are not unimportant). Fundamentally, SLPIC

and PIC methods both seek to statistically approximate the evolution of smooth particle
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distribution functions in a multidimensional phase space, in response to self-consistent fields

and forces – but the underlying evolution equations of the two methods are different and will

yield different physics (e.g. linear plasma wave dispersion) even before any particle-based

approximations are made.

In this work, therefore, we focus on developing an understanding of the behavior of

a plasma evolving with speed-limited dynamics (hereafter SLD). In SLD, the plasma is

governed by continuous, ‘SLPIC-like’ equations of motion that differ from the ones governing

plasma evolution in our universe, but which approximate them in certain limits that we will

quantify. For purposes of comparison, we also designate the dynamics of plasma evolution

in our universe as ‘ordinary dynamics’ (OD). SLPIC and PIC simulation methods are,

respectively, the discrete numerical analogues of the SLD and OD that we will explore.

[Alternatively, one can think of SLD or OD respectively as continuous limits of SLPIC or

PIC, wherein both the timestep ∆t and the grid spacing ∆x approach zero as the velocity

dependence of the distribution function fα becomes smooth.] We will show that some

well-understood physics processes from OD persist in SLD, and that other processes are

substantially modified, some of them in very helpful ways.

More specifically, in this paper we derive and analyze the analytical dispersion rela-

tion in an electrostatic, collisionless, unmagnetized plasma evolving according to modified

Vlasov-Poisson equations which govern SLD. Such a plasma will have different wave modes,

with different dispersion, relative to a real plasma evolving with ordinary dynamics (OD).

By comparison with the dispersive behavior that arises in the conventional (OD) Vlasov-

Poisson system, we demonstrate both analytically and numerically that the speed-limiting

of SLD can quantifiably modify high-frequency behaviors of this plasma (electron plasma os-

cillations) while leaving low-frequency motion (ion acoustic wave decay via electron Landau

damping) undisturbed.

Section II of this paper explains the SLD concept, together with its connections both to

the SLPIC algorithm and to the conventional kinetic theory of OD. In Section III, we discuss

the behavior of an electrostatic ion-electron plasma that evolves with SLD, and derive the

dispersion relation associated with this plasma. Section IV contains an analysis of the various

waves permitted by this dispersion relation, together with the new behaviors imparted by

SLD relative to known OD behaviors. We demonstrate that the speed-limiting significantly

relaxes a fundamental numerical constraint associated with conventional PIC methods and
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makes faster numerical simulation possible. Section V then considers the spatial fluctuation

spectrum associated with SLD and shows it to be the same as that of OD; we briefly compare

SLPIC and PIC simulations to demonstrate this point. Finally, in Section VI, we summarize

our findings, review additional research directions which these findings might enable, and

discuss various applications for the SLPIC concept in plasma modeling more generally.

II. PHASE SPACE EVOLUTION AND ITS CONNECTION TO PIC AND

SLPIC METHODS

To kinetically model plasma with OD (i.e. using the familiar physics of the real world),

we first consider the self-consistent evolution of a distribution function f̂α(x,v, t) of phys-

ical particles of species α. This distribution evolves according to a phase-space continuity

equation

∂

∂t
f̂α(x,v, t) +

∂

∂x
· [vf̂α(x,v, t)] +

∂

∂v
· [a(x,v, t)f̂α(x,v, t)] = 0, (1)

where a(x,v, t) is the self-consistent Lorentz acceleration experienced by a physical particle

in the distribution at position x with velocity v at time t, in response to local (microscopic)

electromagnetic fields. For Hamiltonian systems, the additional phase-space preserving con-

straint (∂/∂x) · v+ (∂/∂v) · a = 0 of Liouville’s theorem allows us to rewrite Eq. (1) in the

familiar Klimontovich form

∂

∂t
f̂α(x,v, t) + v · ∇f̂α(x,v, t) + a · ∂

∂v
f̂α(x,v, t) = 0, (2)

which can be formally solved by the method of characteristics. Along characteristic trajec-

tories

dxjα(t)

dt
= vjα(t) , (3)

dvjα(t)

dt
= a[xjα(t),vjα(t), t] , (4)

the value of the distribution function f̂α[xjα(t),vjα(t), t] is preserved; writing the distribution

function in the form

f̂α(x,v, t) =

Np
α
∑

j=1

δ[x− xjα(t)]δ[v − vjα(t)] (5)
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solves Eq. (2) and captures the detailed microscopic behavior of each of the Np
α particles in

response to the electromagnetic fields they (and the other species in the system) produce.

For realistic physical particle counts, this microscopic behavior is far too detailed to simu-

late numerically in most plasmas, and the singular nature of Eq. (5) is likewise problematic.

If, instead, one passes to the continuum limit (subdividing the discrete particle charges and

masses in a manner that preserves the local volumetric charge, mass, and energy content),

one arrives at the Vlasov equation,

∂

∂t
fα(x,v, t) + v · ∇fα(x,v, t) + a · ∂

∂v
fα(x,v, t) = 0, (6)

which describes the evolution of a continuous (nonsingular) phase space fluid fα from which

the effects of particle discreteness have been removed. More detailed discussion of this transi-

tion, which considers ensemble averages of Eq. (2), two-particle and higher-order correlation

terms, collision operators4, etc., has been considered by other authors5–7, but Eq. (6) suffices

for our purposes here. Like Eq. (2), it can also be solved by the method of characteristics;

with trajectories evolving according to Eqs. (3) – (4), we may formally write

fα(x,v, t) =
Nα
∑

j=1

wjα(t)δ[x− xjα(t)]δ[v − vjα(t)] (7)

and can verify that it is a solution of Eq. (6). The smooth distribution is now represented

as a set of Nα discrete macroparticles which evolve along the trajectories given by Eqs. (3 –

4). The weight function wjα is representative (in some statistical sense) of the local value of

fα in a region near the particle’s initial point on the phase space trajectory. PIC simulation

techniques build upon the fundamental concept that Eqs. (3 - 4) and (7) solve Eq. (6), and

that a sufficiently large number Nα of macroparticles, distributed so as to adequately resolve

the relevant regions of the phase space, can statistically represent the 6D+time evolution of

the smooth distribution function fα(x,v, t).

In this paper we will consider Eqs. (3) - (4) and (6) as the fundamental equations de-

scribing plasma evolution under OD.

Techniques for mapping the equations of PIC onto discrete computational timesteps and

finite grids (broadening the spatial extent of macroparticles from delta-functions to small-

but-finite widths) are discussed extensively in existing literature3,8–13; detailed explanations

and/or derivations of such techniques will not be discussed here except as needed. For the
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present it suffices to note (as the previously cited works discuss) that finite-sized grid cells

and timesteps impose a number of constraints on conventional explicit PIC simulations:

• The Debye length resolution constraint, that a representative grid cell size ∆x should

adequately resolve the Debye length λDα associated with any of the species in the

simulation in order to avoid numerical heating effects [the Debye length of species α is

defined as λ2
Dα ≡ ǫ0Tα/(q

2
αnα), where {qα, nα, Tα} are the species charge, density, and

temperature (in units of energy) and ǫ0 is the permittivity of free space];

• The cell-crossing-time constraint, that the distance traveled by any macroparticle in

the simulation during a finite timestep ∆t should not exceed a representative grid cell

size ∆x, so that forces experienced by a particle during a single simulation timestep

are adequately resolved; and

• The plasma oscillation constraint, that the plasma frequency ωp constrains the

timestep through the relation ωp∆t ≤ 2; otherwise, numerical instability of these

high-frequency oscillations ensues [the plasma frequency is defined as ω2
p ≡

∑

α ω
2
pα,

with the species plasma frequency ωpα defined through ω2
pα ≡ q2αnα/(ǫ0mα). Here,

mα is the mass of species α and the other quantities were defined previously]. To

be precise, this constraint arises from a more general requirement that every plasma

mode frequency must be resolved by the simulation timestep. But for a large class

of problems, including the ones considered in this work, the highest mode frequencies

are on the order of ωp.

These constraints can impose significant restrictions on a plasma simulation. Low tem-

peratures and/or high densities decrease the Debye length and the allowable grid size, neces-

sitating the use of finer grids and smaller timesteps. Further, when both cold, massive ions

and hot, light electrons are simulated with PIC, the timesteps imposed by the plasma oscil-

lation constraint (now dominated by fast electron motion since ωp ∼ ωpe) are so small that

ions may hardly move at all in that time interval. Numerical techniques such as subcycling15,

in which ions are pushed less frequently and with a larger effective timestep, can provide

minor computational savings, but this gains one at most a factor of ∼ 2 in speedup (for typ-

ical cases with comparable electron and ion particle counts) since the timestep constraints
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arising from electron motion remain. For simulations where many periods of harmonic ion

motion are of interest, the number of timesteps required can be enormous.

The speed-limited particle-in-cell approach, and the more general speed-limiting concepts

we explore in this work, are motivated by a desire to relax some of these constraints. The key

idea is simple: the fastest particles and highest-frequency wave phenomena necessitate the

smallest timesteps, and if these fast particle and wave motions can be slowed, the timestep

constraints can be relaxed.

Accordingly, we introduce speed-limited dynamics (SLD), wherein equations from the

derivation of the SLPIC method presented in Ref. 1 govern the plasma dynamics. Here, a

distribution function fα of species α evolves as prescribed by a modified Vlasov equation

∂

∂t
fα(x,v, t) + β(v)v · ∂

∂x
fα(x,v, t) + β(v)a · ∂

∂v
fα(x,v, t) = 0 , (8)

wherein a speed-limiting function β(v) in the range (0, 1] has been introduced. This function

transitions from values at or near unity (for “slow” particles) to values approaching v0/|v|
(for “fast” particles), and we can understand its effect by looking at the characteristic

trajectories of the modified Vlasov equation

dx(t)

dt
= β[v(t)]v(t) , (9)

dv(t)

dt
= β[v(t)]a[x(t),v(t), t] . (10)

The product |v|β(v), the speed at which an element of phase space changes its position x(t)

as it moves through the phase space, now has value ∼ |v| at low velocities but is limited to

value v0 (in the original vector direction of motion) at high velocities. We will hereafter refer

to v0 as the “speed limit”; it is the upper bound on the rate at which motion in the position

coordinate of phase space may proceed. Accordingly, some nuance is required in discussing

the phase space evolution since the meaning of ‘velocity’ is now ambiguous. An element

of phase space has both a ‘true velocity’ (the phase space coordinate v) and a ‘pseudo-

velocity’ dx/dt = βv (the speed and direction at which it is permitted to move from one

physical space coordinate to another)14. In a given time interval, elements in the phase space

with large true velocity v(t) [so that β(v) ≪ 1] experience both smaller pseudo-velocities

[Eq. (9)] as they move through the space, and smaller changes to these pseudo-velocities

(pseudo-acceleration) in response to applied forces [Eq. (10)]. Elements in the phase space

with small true velocity experience no speed-limiting [β(v) ∼ 1] and evolve in the same
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manner as their OD counterparts, as in Eqs. (3) and (4). Transitions across the boundary

|v| = v0 in either direction are well-defined; this has already been demonstrated for SLPIC

in Fig. 4 of Ref. 1, wherein particles are not observed to ‘pile up’ at the boundary.

In this paper we will consider Eqs. (8) - (10) as the fundamental equations describing

plasma evolution under SLD.

Solutions to the SLD Vlasov equation, Eq. (8), can be represented statistically in the

same manner as outlined above, setting

fα(x,v, t) =
Nα
∑

j=1

wjα(t)δ[x− xjα(t)]δ[v − vjα(t)] (11)

for a suitably large number Nα of macroparticles evolving along the characteristic trajec-

tories described by Eqs. (9) – (10). This is the speed-limited particle-in-cell method we

have presented in previous work1. However, this work will not focus on PIC or SLPIC

implementations of Eqs. (6) or (8). Instead, we will consider these equations analytically.

III. A 1D1V ELECTROSTATIC PLASMA MODEL

In this section we will apply the Vlasov equation of OD and the modified Vlasov equation

of SLD to model dispersion in an electrostatic, unmagnetized plasma with a single ion

species, in one spatial dimension and one velocity-space dimension. We will use the analytic

forms of these equations (foregoing for the moment any discussion of the effects of finite

timesteps, grid spacings, or particle sizes) to ensure that we understand the new physics

that the imposed speed-limiting of SLD imparts. Each species will use the kinetic equation

∂fα(x, v, t)

∂t
+ β(v)v

∂fα(x, v, t)

∂x
− β(v)

qα
mα

∂φ(x, t)

∂x

∂fα(x, v, t)

∂v
= 0 . (12)

In SLD, we will use a speed-limiting function of form

β(v) = −v0
v

+
(v0
v

+ 1
)

H(v + v0) +
(v0
v

− 1
)

H(v − v0) , (13)

wherein H(x) is the Heaviside function. An equivalent representation for this speed-limiting

function is

β(v) =







1 ; |v| ≤ v0

v0/|v| ; |v| ≥ v0
. (14)
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In OD, β(v) = 1 (the v0 → ∞ limit of the SLD). The species couple via the Poisson equation,

∂2φ(x, t)

∂x2
= −

∑

α

qα
ǫ0

∫

∞

−∞

fα(x, v, t) dv . (15)

Many equilibrium solutions of Eq. (12) are possible. We will choose physically reasonable

solutions that are stationary Maxwellians in each of the individual species (though we will

allow the two species to have different temperatures, and neglect both the collisional pro-

cesses that have brought the individual species to their present state and the interspecies

collision processes that would further relax the system to a single temperature). Formally,

we write the distribution function of species α as

f0α(x, v, t) = n0

√

mα

2πT0α

exp

(

−mαv
2

2T0α

)

, (16)

where n0 is a species-independent constant number density, T0α is the constant tempera-

ture of species α, and mα is the species mass. With these equilibrium distributions, the

corresponding equilibrium potential φ0(x, t) is a constant that can be set to zero.

Linearizing Eqs. (12 – 13) in perturbed quantities, and Fourier transforming from space-

time coordinates {x, t} to wavenumber and frequency coordinates {k, ω}, yields the result

−iωfα1(k, v, ω) + ikβ(v)vfα1(k, v, ω) = β(v)
qα
me

ikφ1(k, ω)
∂fα0(v)

∂v
, (17)

−k2φ1(k, ω) = −
∑

α

qα
ǫ0

∫

∞

−∞

fα1(k, v, ω) dv . (18)

We obtain, for the perturbed distribution functions,

fα1(k, v, ω) =
kvβ(v)

ω − kvβ(v)

qαφ1(k, ω)

T0α

n0

√

mα

2πT0α

exp

(

−mαv
2

2T0α

)

(19)

which we can then substitute into Eq. (18). The ensuing integrals will be undefined for reso-

nant velocities vβ(v) = ω/k; we will implicitly stipulate that the integrals are to be evaluated

using the Landau contour (traversing below any singularity) to retain both causality and the

resonant physics. (Formally, this can be shown to be equivalent to the use of a Laplace trans-

form, rather than a Fourier transform, in the time domain; it also permits the generalization

of ω to complex values.) We obtain the integral relation

1−
∑

α

q2αn0

k2ǫ0T0α

∫

∞

−∞

kvβ(v)

ω − kvβ(v)

√

mα

2πT0α

e−mαv2/(2T0α) dv = 0 (20)
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which describes the dispersive wave behavior of the plasma in both OD [where β(v) = 1]

and SLD [where Eq. (14) defines β(v)].

In OD, the integral in Eq. (20) can be expressed in terms of the plasma dispersion

function16, defined as

Z(ζ) =
1√
π

∫

∞

−∞

e−t2

t− ζ
dt (21)

for Im(ζ) > 0 and by its analytic continuation for Im(ζ) ≤ 0. In SLD, this integral is more

complicated; given our choice for β(v), there are both high-velocity regions of integration

wherein vβ(v) = ±v0, a constant (the speed limit), and low-velocity regions wherein vβ(v) =

v. We may represent the integrals over these various regions in terms of the complementary

error function and the incomplete plasma dispersion function. The latter function was

introduced by Franklin17 and its properties have been discussed extensively by Baalrud18; it

takes the form [generalized from Eq. (21)]

Z(γ, ζ) =
1√
π

∫

∞

γ

e−t2

t− ζ
dt (22)

for Im(ζ) > 0 and by its analytic continuation for Im(ζ) ≤ 0. It will be useful to note that

Z(−∞, ζ) = Z(ζ) and that Z(∞, ζ) = 0. Additional properties of this function are provided

in Appendix A.

In terms of these functions, we may rewrite Eq. (20) in the form DSLD(k, ω; v0) = 0,

where we define

DSLD(k, ω; v0) ≡ 1 +
∑

α

1

k2λ2
Dα

[

1 +
ζ2αerfc(γα)

γ2
α − ζ2α

+ ζα[Z(−γα, ζα)− Z(γα, ζα)]

]

. (23)

Here, we make use of the parameters γα ≡ v0/(
√
2vtα), a measure of the relative speed-

limiting of species α; ζα = ω/(
√
2kvtα), the conventional (and complex) argument of the

plasma dispersion function; λ2
Dα ≡ ǫ0T0α/(q

2
i n0), the Debye length of species α; and v2tα ≡

T0α/mα, the thermal velocity for species α. The complementary error function is related to

the conventional error function by erfc(x) ≡ 1 − erf(x). The expression DSLD(k, ω; v0) = 0

is the plasma dispersion relation of SLD, and its analysis and solutions will be the topic of

the following section.

Recalling that erfc(∞) = 0 and the limits of the incomplete plasma dispersion function

discussed above, we can show that DSLD(k, ω;∞) = DOD(k, ω), where the latter function
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has the explicit form

DOD(k, ω) = 1 +
∑

α

1

k2λ2
Dα

[1 + ζαZ(ζα)] , (24)

a standard result from elementary plasma kinetic theory19,20. This is the plasma dispersion

relation of OD, against which solutions with SLD will be compared.

IV. ANALYSIS OF THE DISPERSION RELATION

We now consider various limits of DOD(k, ω) and DSLD(k, ω; v0), together with the waves

that arise in these various limits. For clarity, we will consider the physics of OD first, and

will then explore the changes which the speed-limiting of SLD imparts to these familiar

processes.

A. Plasma oscillations

The OD dispersion relation, Eq. (24), admits approximate analytic solutions correspond-

ing to cold-plasma oscillations in the ζα ≫ 1 limit. The asymptotic expansion of Z(ζα) in

this limit,

Z(ζα) ∼ − 1

ζα

(

1 +
1

2ζ2α
+

3

4ζ4α
+ . . .

)

+O
(

e−ζ2α

)

(25)

can be substituted into Eq. (24) to obtain, at lowest order,

DOD(k, ω) = 1−
ω2
pe

ω2
−

ω2
pi

ω2
= 0 (26)

where ω2
pα = q2i n0/(ǫ0mα) is the square of the plasma frequency of species α. These oscil-

lations are dominated by electron motion (the ion term is order me/mi smaller than the

electron term); we may write the solution as ω2 = ω2
pe(1 + me/mi) ≡ ω2

p. We anticipate

the prospect of significant changes to these oscillations in SLD, since the speed-limiting will

preferentially modify the fast electron motion.

What is the behavior of the SLD dispersion relation, Eq. (23), in the same ζα ≫ 1

limit? Using the asymptotic expansions for Z(γ, ζ) presented in Ref. 18 and summarized in

Appendix A, we can show that the SLD version of Eq. (26) takes the form

DSLD(k, ω; v0) = 1−
∑

α

ω2
pα

ω2

(

1 + (2γ2
α − 1)erfc(γα)−

2γαe
−γ2

α

√
π

)

= 0 (27)
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which reproduces Eq. (26) in the v0 → ∞ (i.e. γα → ∞) limit. It admits the solutions

ω2 =
∑

α

ω2
pαh(γα) ; h(γα) ≡

(

1 + (2γ2
α − 1)erfc(γα)−

2γαe
−γ2

α

√
π

)

. (28)

The behavior of the function h(γα) is shown in Figure 1. For small γα, h(γα) ∼ 2γ2
α, while

for large γα, the species is not appreciably speed-limited and h(γα) ≈ 1. Recalling that

γα = v0/
√
2vtα, it will be instructive to express the argument of h strictly in terms of the

electron slowing-down parameter γe; we have γi = γe
√

Temi/(Time). The presence of the

ion-electron mass ratio suggests that unless electrons are much cooler than ions, the quantity

γi will always be much larger than γe. Accordingly, we may generally choose v0 in a way that

alters electron behavior but not ion behavior, consistent with the intentional slowing down

of the fastest particles in SLD while leaving slower particles undisturbed. Such a v0 will be

faster than most ions but much slower than most electrons. For such a choice (v0 = 4vti),

Figure 1 also shows values of γe, γi, and their corresponding h values for a hydrogen plasma

thermalized to 10 eV. In this plasma, ion motion associated with plasma oscillations does

not differ appreciably between SLD and OD, but electron motion is considerably modified.

Since it is primarily the speed-limiting of electrons that affects the oscillation frequencies

predicted by Eq. (28), we examine the behavior of these modified electron plasma oscillations

as a function of the ratio v0/vte (providing intuition as to which velocities in a typical elec-

tron distribution, e.g. a Maxwellian, are restricted by the speed-limiting). The normalized

oscillation frequency of Eq. (28) is shown in Fig. (2) for a monatomic hydrogen plasma with

equal electron and ion temperatures. While the oscillation frequencies of SLD and OD are

identical at large values of v0/vte (minimal speed-limiting), reducing this ratio, and hence

increasing the corresponding fraction erfc(γe) of speed-limited electrons, reduces the SLD

frequency monotonically. As v0/vte → 0, the linear approximation to the plasma frequency

approaches the heuristic estimate made in Ref. 1: ω/ωp ∼ v0/vte. The high-frequency oscil-

lations of OD have been mapped to lower-frequency oscillations in SLD by the speed-limiting

of electrons.

We conclude that in SLD, the frequency of conventional electron-dominated plasma os-

cillations is reduced relative to OD. In Sec. IVC we will consider how this reduction relaxes

the ‘plasma oscillation constraint’ referred to in Sec. II. But we must first determine whether

the speed-limited dynamics preserves physics associated with lower-frequency waves.
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FIG. 2. Frequency of electron-dominated cold plasma oscillations in SLD and OD as a function

of the ratio of speed limit to electron thermal speed (v0/vte =
√
2γe). The electron-dominated

cold plasma oscillation frequency is constant in OD (red dashed line), but in SLD it unphysically

decreases (blue solid line) as v0/vte is reduced. This unphysical frequency means that plasma

oscillations are not correctly simulated, but this can greatly speed up simulation when plasma

oscillations are unimportant to the physics of interest. When v0 ≪ vte, ω/ωp ∼ v0/vte.

ω = ωr + iωi is small, we can perform a Taylor expansion,

D(k, ω) ≈ D(k, ωr) + iωi
∂D(k, ω)

∂ω

∣

∣

∣

∣

ω=ωr

(30)

to show that this equation permits damped wavelike solutions of the form

ω = ± kcs
√

1 + k2λ2
De

− i

√

ǫπ

8

kcs
(1 + k2λ2

De)
2

(31)
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where ǫ is again the electron/ion mass ratio. These are the ion acoustic wave (IAW) modes,

which are essentially longitudinal compressions of the ion mass density that decay via Landau

damping.

What is the corresponding behavior of the SLD dispersion relation? In the ζi ≫ 1, ζe ≪ 1

limit, Eq. (23) can be written with the same multiplicative factor in the form

k2λ2
DeDSLD(k, ω; v0) = 1+ k2λ2

De −
k2c2s
ω2

h(γi) + i
√
πζe [H(ζe − γe)−H(ζe + γe)] = 0 . (32)

Repeating the Taylor expansion procedure above, we can show that the ion acoustic wave

dispersion relation of SLD has approximate analytic solutions

ω = ±ωr − i

√

ǫπ

8

kcsh(γi)

(1 + k2λ2
De)

2

[

H
(ωr

k
+ v0

)

−H
(ωr

k
− v0

)]

, (33)

wherein

ωr ≡
kcs
√

h(γi)
√

1 + k2λ2
De

. (34)

This is the SLD equivalent to Eq. (31). The OD and SLD forms are approximately equivalent

provided that γi is sufficiently large (so that h(γi) ∼ 1, see Fig. 1) and |ωr/k| < v0 (so

that the speed limit v0 exceeds the phase velocity of the ion acoustic wave). Since the

approximation h(γi) ≈ 1 holds to one part in 104 or better for v0 > 4vti, we will write these

constraints as a single condition

v0 > max(4vti, |ωr/k|) . (35)

When v0 is chosen to satisfy this condition, and when the other conditions we assumed in the

derivation [ζi ≫ 1, ζe ≪ 1, Im(ω) ≪ Re(ω)] are valid, the effects of SLD on the propagation

and damping of the IAW are minimal.

What happens when the phase velocity condition is violated, such that v0 < |ωr/k|? In

this case, the explicitly imaginary terms in Eq. (32) (proportional to Heaviside functions)

vanish, and the solutions admitted now only capture the real part of Eq. (33). While the IAW

still propagates, its Landau damping is not correctly modeled. This is consistent with a result

that we have demonstrated in previous work1, namely, that the correct dynamics of resonant

wave-particle interactions cannot be captured by speed-limited particle-in-cell simulations

when particles whose velocities were previously synchronous with the wave velocity are

speed-limited. Particles whose speed-limiting renders them unable to keep up with the wave

15



cannot exchange energy with it, so the dissipative effects which lead to wave damping are

effectively turned off. Although nothing in principle prevents us from choosing a smaller v0

value that violates Eq. (35), the inherent advantage of the velocity-dependent speed-limiting

approach (preservation of IAW physics) would be lost in doing so.

The analytic form of the IAW above is approximate. The dispersion relation can also

be solved numerically to find the complex ω associated with a given k, and we have done

so for a plasma with density n0 = 5.0 × 1016 m−3, Te0 = 10 eV, and Ti0 = 1/40 eV. In

the supplemental materials for Ref. 18, Matlab algorithms for evaluating Z(ζ), Z(γ, ζ), and

their derivatives have been provided. We have made use of these algorithms and Matlab

minimization routines to compute {ω, k} values which satisfy the OD and SLD dispersion

relations within a given tolerance, according to norm-minimization criteria

√

|DSLD(k, ω; v0)|2 ≤ δSLD , (36)
√

|DOD(k, ω)|2 ≤ δOD . (37)

Here, the tolerance parameter δ ≪ 1 is a small positive number which constrains the allow-

able error in the numerical solution of a particular dispersion relation. In these computations

we fix k (and, for SLD, v0), and then numerically evaluate the function D for various com-

plex values of ω. Exact solutions to the dispersion relation have D = 0; we vary ω in the

complex plane in a manner that seeks to minimize the norm of D and thus to approach these

exact solutions. For ω values near an exact solution this norm can in principle be reduced

to be no greater than δ.

Various values for the speed-limiting parameter v0 can be chosen to assess the effect of

speed-limiting on IAW behavior. Depending on the value of v0 and k, to obtain numerical

convergence it is sometimes necessary to raise δSLD to values as high as 10−3, but solutions

can usually be found for δOD < 10−6 and δSLD < 10−5 (and often for δ values that are several

orders of magnitude smaller, when k ≫ 1).

In Fig. 3, we show the real and negative-imaginary parts of the computed frequency ω

for various values of wavenumber k spanning several orders of magnitude. In this figure,

the speed limit v0 has the value 0.2vte; the analytic approximation to the dispersion relation

(valid for kλDe . 1) is also shown. The speed-limiting does not affect the IAW behavior

appreciably; for modes whose wavelengths are large compared to the Debye length (i.e.

where the analytic approximation is valid) the SLD real frequency ω is about half a percent

16



10
-3

10
-2

10
-1

10
0

10
1

10
2

k 
De

 

10
-4

10
-2

10
0

/
p

i

Re( )/
pi

, OD

-Im( )/
pi

, OD

Analytic Approx. OD

Re( )/
pi

, v
0
 = 0.2 v

te

-Im( )/
pi

, v
0
 = 0.2 v

te

FIG. 3. Real and negative-imaginary parts of the normalized IAW frequency, computed nu-

merically from the OD (red) and SLD (blue) dispersion relations, as a function of normalized

wavenumber. Values from the approximate analytic expression, Eq. (31), are also shown (dashed

black curves) and agree well with the exact solutions when kλDe . 1. In the SLD case the speed

limit v0 = 0.2vte. Even though all electrons are restricted to move through the domain with speeds

no greater than v0, the frequency (good to within 0.5%) and damping rate (good to within 3%) for

the ion acoustic wave do not differ appreciably from the OD values. Good agreement between SLD

and OD is maintained even in the kλDe > 1 regime, where the analytic approximations underlying

Eq. (31) are no longer valid.

low relative to the OD value and the SLD damping rate also drops by about 3%. For

shorter-wavelength modes, the effect of the speed-limiting on both the real frequencies and

damping rates is negligible. Nevertheless, the frequency of the modified plasma oscillations

[from Fig. (2)] is decreased to about 0.2ωpe for this case.
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FIG. 4. Variation of the normalized real part of the frequencies which solve the ion acoustic branch

of the SLD dispersion relation, as a function of the speed limit v0 normalized to the wave phase

velocity vφ = Re(ω)/k, for various values of kλDe. The OD frequencies, which are independent of

v0, are also shown for each kλDe value (red dashed lines). Although speed-limiting does not affect

the mode frequencies for v0/vφ ≫ 1, modes whose wavelengths are large compared to the Debye

length (kλDe . 1.0) are reduced in frequency as the speed limit is reduced (moving to the left on

the graph) to be of the same order as the phase velocity. This frequency variation is minimal for

v0 > 5vφ and also for modes whose wavelengths are short relative to the Debye length. For this

case vti/vte = 0.05
√

me/mi.

For more restrictive speed limits v0, greater deviation of IAW frequencies and damping

rates from their non-speed limited (OD) values is observed, though still only for modes whose

wavelengths are long compared to the Debye length. Generally speaking, real frequencies

are shifted downward as the speed limit is decreased, though only by a few percent (<9%
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FIG. 5. Variation of the normalized negative-imaginary part (damping rate) of the frequencies

which solve the ion acoustic branch of the SLD dispersion relation, as a function of the speed-limit

v0 normalized to to the wave phase velocity vφ = Re(ω)/k, for various values of kλDe. The OD

damping rates, which are independent of v0, are also shown for each kλDe value (red dashed lines).

Although speed-limiting does not affect the damping rates when v0/vφ ≫ 1, damping rates for

modes whose wavelengths are large compared to the Debye length (kλDe . 1.0) may be reduced

by several orders of magnitude as the speed limit is reduced (moving to the left on the graph) to

be of the same order as the phase velocity. As is also true for the real frequencies (Fig. 4), the

damping rate variation is minimal for v0 > 5vφ and also for modes whose wavelengths are short

relative to the Debye length. For this case vti/vte = 0.05
√

me/mi.

for v0 = 0.05vte = 2.1cs, and <2% for v0 = 0.1vte = 4.2cs). Damping rates also (generally)

decrease in magnitude as the speed limit is decreased, but the magnitude of the relative

decrease is larger (<42% for v0 = 0.05vte = 2.1cs, <13% for v0 = 0.1vte = 4.2cs). In Figures
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4 and 5 we have plotted the variation of the IAW real frequency and damping rate of SLD

as a function of the speed-limiting velocity normalized to the wave phase velocity, so as

to more generally quantify the effect of the speed-limiting on the IAW dispersive behavior.

These figures illustrate that lowering the speed limit has relatively little effect on either the

real IAW oscillation frequency or damping rate as long as the speed limit is higher than

the wave phase velocity. For longer-wavelength modes (kλDe . 1) in SLD, speed limits

that approach the wave phase velocity generally give rise to modest reductions in the mode

frequency (Fig. 4) and more pronounced reductions of the IAW damping rate (Fig. 5). This

failure to properly capture the Landau damping of the IAW arises because portions of the

distribution function that resonate with the wave (in OD) are prevented from doing so by

the imposed speed-limiting1. As we transition to shorter-wavelength modes (moving up the

graph legend), absolute damping rates are increased to become comparable to the real mode

frequency, while phase velocities are reduced to be of order vti. For these waves, speed-

limiting does not appreciably influence the dynamics since the smallest sensible speed limit

(v0 ∼ 4vti, so as not to speed-limit the bulk ion distribution) still exceeds vφ = ω/k for large

k.

Accordingly, we may assert that SLD preserves the physics of IAW propagation and

damping provided that the condition in Eq. (35) holds, namely, when ions are not speed-

limited and when the speed limit reasonably exceeds the phase velocity of the IAWs in the

system. At the same time, this speed limiting considerably reduces the frequency of plasma

oscillations (as was shown in Section IVA).

C. Normal modes and the plasma oscillation constraint

Having explored the normal modes of our 1D1V plasma, we now revisit the numerical

constraints which the use of a finite timestep ∆t will impose on particle-in-cell simulations

of this plasma.

We have noted in Section II that numerical instability will ensue in a PIC simulation if

the frequency of any plasma mode is not resolved, and that in particular, we must resolve the

frequency associated with electron plasma oscillations. These oscillations are generally the

highest-frequency modes in a PIC simulation containing electrons (because ions introduce

only small corrections to the approximation ωp ≈ ωpe when the electron-ion mass ratio is
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small). Accordingly, any numerical simulation method satisfying the constraint ωp∆t ≥ 2

will resolve both these plasma oscillations and all other modes of lower frequency.

What is the effect of the speed limiting on this constraint?

Because of the speed-limiting, the frequency that we must resolve is now not ωp; rather,

it is the fastest oscillation frequency that the speed-limiting permits. But we have shown

in Sec. IV that ordinarily ‘fast’ plasma oscillations [see Eq. (28)] are considerably slowed in

SLD. Thus, in its most general form, SLPIC replaces the plasma oscillation constraint by

the result [obtained by substituting the frequency derived in Eq. (28) for ωp]

∆t ≤ 2
√

ω2
peh(γe) + ω2

pih(γi)
≈ 2

ωpe

√

h(γe)
(38)

where γα = v0/
√
2vtα is the slowing-down parameter. [For example, when v0/vte = 0.1, we

have γe = 0.07, h(γe) ≈ 9.5× 10−3, and 1/
√

h(γe) ≈ 10, thus relaxing the constraint tenfold

with minimal effect on the ion modes (assuming IAW phase velocities are low compared to

v0).] This constraint is less restrictive than the PIC result ∆t ≤ 2/ωpe, and permits larger

timesteps to be taken in SLPIC simulations without instability or loss of accuracy in the

low-frequency plasma modes. It can also be shown that by limiting the maximum speed to

v0, SLPIC trivially relaxes the cell-crossing-time constraint by nearly the same factor (see

Appendix B). Both the plasma oscillation constraint and the cell-crossing-time constraint

are thus modified by speed-limiting to restrict ∆t ∼ ∆x/v0.

V. ANALYSIS OF THE FLUCTUATION SPECTRUM

From the fluctuation-dissipation theorem and the theory of linear response, the fluctua-

tion spectrum of an electrostatic 1D plasma in thermal equilibrium can be shown13 to take

the form
ǫ0〈E2〉(k)

T0

=
1

D(k, ω = ∞)
− 1

D(k, ω = 0)
, (39)

where T0 is the equilibrium temperature, 〈E2〉(k) is the time-average of the continuous

spatial Fourier transform of the square of the electric field, and D(k, ω) is the dispersion

relation. In OD, taking these limits of Eq. (24) yields the result

(

ǫ0〈E2〉(k)
T0

)

OD

=
1

1
− 1

1 +
∑

α
1

k2λ2

Dα

=
1

1 + k2λ2
D

, (40)
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wherein λ2
D ≡ ǫ0T0/

∑

α(q
2
αnα) is the square of the plasma Debye length.

What is the behavior of the SLD fluctuation spectrum? At low frequencies, where speed-

limiting is not expected to influence the wave dynamics, we likewise recover the same result

as for OD:

DSLD(k, ω = 0; v0) = 1 +
∑

α

1

k2λ2
Dα

. (41)

At high frequencies, we have shown that the behavior of solutions to the dispersion relation

is significantly altered by the speed-limiting. Nevertheless, terms associated with speed-

limiting vanish in the high-frequency limit of the dispersion relation

DSLD(k, ω = ∞; v0) = 1 +
∑

α

1

k2λ2
Dα

(

1− erfc(γα)−
erfc(−γα)

2
+

erfc(γα)

2

)

= 1 (42)

[because erfc(−x) ≡ 2−erfc(x)]; the effects of speed-limiting should therefore have no bearing

on the spatial fluctuation spectrum, Eq. (39). We recover the same result as Eq. (40) for

SLD,
(

ǫ0〈E2〉(k)
T0

)

SLD

=
1

1 + k2λ2
D

. (43)

In a PIC or SLPIC simulation, the fluctuation spectra of Eqs. (40) and (43) are altered by

finite particle size (associated with the transfer of charge and force fields between continuous

particle positions and the discrete grid) as well as by finite grid spacing (associated with

the wavenumber spectrum that is able to be resolved by the simulation). In addition, the

introduction of a discrete grid and a finite volume leads to discrete, finite Fourier spectra

and introduces the possibility of aliasing between gridded fields and subgrid particle modes.

While we do not propose to discuss the effects of finite particle and grid size in detail in this

work, we have used PIC and SLPIC to simulate a 1D single-ion-species hydrogen plasma

in thermal equilibrium and have measured its fluctuation spectrum. For a discrete Fourier

mode this spectrum satisfies a relation of the general form10,12,13

ǫ0|El|2
n0T0

=
1

Np

(

1

1 +K2λ2
D/|S(k)|2

)

(44)

whereinNp is the number of simulation macroparticles of either species, |S(k)|2 is a geometric

factor associated with the particle shape, k = 2πl/L defines the discrete mode index l,

K = k sinc(k∆/2) captures the effect of the 1D Laplacian operator on the discrete 1D grid

with spacing ∆ [with sinc(x) ≡ sin(x)/x], and |El|2 is the time-averaged norm of the l-th

discrete mode in the Fourier transform of the electric field.
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We modeled this scenario with the VSim21 code, using both PIC with a small timestep

(∆t = 1.0 × 10−13 s) and SLPIC with a (50X) larger timestep. We used a highly resolved

grid (80 cells per Debye length, with a 1D simulation length L = 10 Debye lengths), with

equilibrium plasma density n0 = 5.0× 1016 m−3 and temperature T0 = 10 eV. 100 particles

per cell of each species were used; the speed limit v0 for the SLPIC simulations was set

to one-half the electron thermal velocity. Particles were mapped to the grid with a three-

cell (four-gridpoint) stencil using the method prescribed by Esirkepov22. For this mapping,

|S(k)|2 = sinc8(k∆/2). As shown in Figure 6, both PIC and SLPIC capture the general

behavior of the fluctuation spectrum when the effects of finite grid size and particle width

are accounted for. Larger variation between adjacent modes in the spectrum is observed for

SLPIC relative to PIC, an effect which becomes more prominent as γe is decreased (stronger

speed-limiting) and which is perhaps a function of interparticle correlations imposed by the

speed-limiting constraint (since all fast particles now move with the same pseudo-velocity in

the domain). Nevertheless, both methods agree closely with the theory. SLPIC simulations

with smaller timesteps (identical to PIC) were not seen to differ substantially from the

large-timestep result (green curve) in the figure.

A more detailed consideration of the role of finite grid spacing and particle width in

SLPIC is a topic of ongoing interest, and we anticipate future efforts along these lines.

VI. CONCLUSIONS

In this paper we have discussed the linear wave dispersion in a 1D1V unmagnetized

electrostatic plasma that evolves with both ordinary (OD) and speed-limited (SLD) dy-

namics. We have demonstrated that speed-limiting can effectively reduce the frequency of

fast electron oscillations while quantitatively preserving low-frequency ion and electron mo-

tion, e.g. the physics needed to correctly model the Landau damping of ion acoustic waves.

We have also shown that this speed-limiting relaxes the “plasma oscillation constraint” of

the conventional PIC method, permitting larger timesteps, and have demonstrated that

the spatial dependence of the ensuing fluctuation spectrum is nevertheless preserved. These

findings suggest that the speed-limited particle-in-cell (SLPIC) method, as outlined in previ-

ous work1, is a fast, accurate, and powerful technique for modeling plasmas wherein electron

kinetic behavior is significant (such that a fluid/Boltzmann representation for electrons is in-
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FIG. 6. Predicted fluctuation spectrum in the limit of infinite grid resolution and zero particle

size (black), together with the predicted behavior for finite grid resolution and particle shape (red

– and covered by the PIC data except at very high mode numbers), and the observed spectra from

SLPIC (green) and PIC (blue) simulations. While the signals vary more with k for SLPIC than

for PIC, both methods agree closely with the theory for finite ∆.

adequate) but evolution is on ion timescales. In these cases the use of PIC is computationally

demanding, but the use of speed-limited electrons can substantially reduce computational

demands without sacrificing the desired physics.

For plasmas with vti ≪ vφ ≪ vte [where these velocities respectively are the ion thermal

velocity, ion acoustic wave phase velocity ω/k (∼ cs for long-wavelength modes), and the

electron thermal velocity], the speed limit v0 can be chosen with vφ < v0 < vte. Choosing

v0 < vte ensures that the speed-limited plasma oscillation frequency is reduced below the

true plasma oscillation frequency ωp by a factor ω/ωp ∼ v0/vte, and allows the timestep to
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be increased (and the simulation sped up) by a factor vte/v0. However, choosing v0 > vφ

ensures that ion acoustic waves are still accurately simulated (including the Landau damping

rate).

Potential applications for the SLPIC method include its use in the modeling of plasma

thrusters (wherein very small electron/ion mass ratios impose especially demanding nu-

merical constraints) and sheath formation (e.g. near a Langmuir probe23). Collisional low-

temperature plasma discharges are also an area of particular interest; recent efforts have

demonstrated that SLPIC can be used in conjunction with standard Monte Carlo collision

techniques, in the same manner as is done in collisional PIC discharge modeling (PIC-

MCC)24. We anticipate exploring SLPIC’s capability for rapid collisional plasma discharge

modeling in future publications.
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Appendix A: Asymptotic expansions of Z(γ, ζ)

A detailed overview of the properties of the incomplete plasma dispersion function Z(γ, ζ)

was given by Baalrud in Ref. 18. A number of these relations have been used in this work

and are summarized here.

For ζ ≫ 1:

Z(γ, ζ) ∼ iσ
√
πH(ζ − γ)e−ζ2 − erfc(γ)

2ζ
− e−γ2

2
√
πζ2

− 1

ζ3

(

γe−γ2

2
√
π

+
erfc(γ)

4

)

− . . . (A1)

whereinH(x) is the Heaviside function, erfc(x) is the complementary error function erfc(x) =

1− erf(x), and

σ = 1− sign[Im(ζ)] . (A2)
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For ζ ≪ 1:

Z(γ, ζ) ∼ i
√
πH(ζ − γ)e−ζ2 +

E1(γ
2)

2
√
π

+ ζ

(

e−γ2

γ
√
π
− erfc(γ)

)

+ ζ2

(

e−γ2

2
√
πγ2

− E1(γ
2)

2
√
π

)

+ . . .

(A3)

wherein

E1(x) =

∫

∞

1

e−xt

t
dt (A4)

is the exponential integral.

Matlab algorithms for evaluating Z(ζ), Z(γ, ζ), and their derivatives were also provided

in the supplemental materials for Ref. 18. These algorithms were used in the numerical

calculations of this work.

Appendix B: Constraints and speed-limiting

In this appendix we briefly consider the scaling of the numerical constraints outlined in

Section II in SLD.

The Debye length resolution constraint is independent of the speed-limiting. When it is

satisfied, the grid size ∆x = δλDe for some δ . 1.

In SLD, the cell-crossing time constraint is altered by the speed-limiting and becomes

v0∆t < ∆x, since no particle can move faster than the speed limit v0. Substituting the

result from the Debye length resolution constraint then yields the scaling ∆t < δλDe/v0.

The plasma oscillation constraint, in the limit of aggressive speed-limiting (γe → 0),

replaces ωp ∼ ωpe by ωpev0/vte (as shown in the small-γ limit of Fig. 1). Substituting the re-

sult from the Debye length resolution constraint then yields the scaling ∆t < 2vte/(v0ωpe) =

2λDe/v0.

It is significant that the timestep ∆t restriction scales linearly as the ratio of Debye length

to speed limit in both of the latter two constraints. If this were not so, there could be regions

of parameter space where one constraint or the other prevailed, and the speed-limiting

concept would be less useful. But the physical scaling for both constraints is the same – the

largest timestep for speed-limited particles is on the order of the time required for the fastest

such particles to cross a Debye length. This restriction preserves the physics of local Debye

shielding (a time-independent phenomena) even while slowing the rapid plasma oscillations.

In addition, this constraint is independent of the electron-ion mass ratio, suggesting that
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SLPIC can be used even when this ratio is small.

Appendix C: Comparison of speed-limited and relativistic dynamics

It has been noted that SLD exhibits some similarities with relativistic dynamics, wherein

the speed of light c plays a role somewhat analogous to the SLD speed limit v0. Although

we haven’t explored this idea in detail in this work, it is instructive to compare the kinetic

equation for nonrelativistic SLD [using a more general Lorentz acceleration term that in-

cludes the electromagnetic fields E(x, t) and B(x, t)] with the relativistic kinetic (Vlasov)

equation in the form

∂fα
∂t

+ βv · ∂fα
∂x

+ β
qα
mα

E · ∂fα
∂v

+ β
qα
mα

v ×B · ∂fα
∂v

= 0 (SLD) (C1)

∂gα
∂t

+
1

γ
u · ∂gα

∂x
+

qα
mα

E · ∂gα
∂u

+
1

γ

qα
mα

u×B · ∂gα
∂u

= 0 (relativistic) . (C2)

Here, respectively, the SLD distribution fα = fα(x,v, t) is a function of position, velocity,

and time, while the relativistic distribution gα = gα(x,p, t) is a function of position, mo-

mentum, and time. The spatial components of the four-velocity, u ≡ (p/mα), are related to

the conventional three-velocity v through the relativistic Lorentz factor γ =
√

1 + u · u/c2,
such that u = γv.

The structure of these equations is very similar. The relativistic u (whose magnitude

may exceed c) is like the SLD ‘true velocity’ v (whose magnitude may exceed v0), and the

factor 1/γ (∼ 1 for |u| ≪ c, and ∼ c/|u| for |u| ≫ c) plays a role akin to the speed-limiting

function β (∼ 1 for |v| ≪ v0, and ∼ v0/|v| for |v| ≫ v0). The product of these relativistic

functions, u/γ (three-velocity), can never exceed c just as the SLD ‘pseudo-velocity’ can

never exceed v0.

Nevertheless, key differences appear. The term proportional to the electric field, in the

relativistic case, contains no physics equivalent to the speed-limiting that occurs in SLD –

in effect, relativistic physics applies the speed-limiting concept to the magnetic, but not the

electric, components of the Lorentz acceleration. The ensuing trajectories thus vary from

those of SLPIC, wherein the appearance of β in all but the first term of Eq. (C1) can be

viewed as a local rescaling of time (with β) along a trajectory that is constant regardless

of the value of v0. So while SLD is somewhat like relativistic dynamics, in that it tracks

both unbounded (SLD true velocity/relativistic momentum) and bounded (SLD pseudo-
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velocity/relativistic three-velocity) phase space variables, with the latter restricted by fixed

speed limits (SLD v0/relativistic c), the dynamics of the two systems differ enough to make

intuitive comparisons difficult.
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