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I. INTRODUCTION

The speed-limited particle-in-cell (SLPIC) method! is a relatively new plasma model-
ing technique. It is most suitable for discharges in which the physics of interest occurs on
relatively slow timescales (e.g., ion transport/profile relaxation) but is nevertheless tied to
kinetic electron behaviors that a fluid/Boltzmann model cannot capture (e.g. distribution
function modifications from neutral collisions or sheath interactions, or Landau damping).
In such simulations, one is typically constrained to model both the heavy, slow ion species
and the light, fast electrons using conventional particle-in-cell (PIC) techniques. The en-
suing computational costs can be (possibly unaffordably) high; simulation timesteps must
resolve the electron plasma frequency since kinetic electrons are present, but ion timescales

of interest may exceed the electron oscillation period by many orders of magnitude.

In the SLPIC approach, conventional PIC is modified to artificially slow down ‘fast’
behaviors which are numerically troublesome, despite being physically unimportant for the
physics of interest. Larger simulation timesteps can thus be used while retaining the detailed
physics behaviors associated with the slower, longer timescales. The specifics of the SLPIC
method will be explained in a later section of this paper, but we will note here that numerical
experiments using SLPIC simulations to model sheath formation in an argon plasma have
shown that remarkable speedup factors (160 times faster than conventional PIC methods?)
can be achieved!. When SLPIC can be appropriately used for modeling, it is both accurate

and powerful.

A concept understood since the early days of PIC modeling is that while one may “recover
more of the essence of the situation being simulated by changing the interaction laws”, such
changes are accompanied by costs: “the more one meddles with the ‘laws’ of nature the more
one must understand the consequences.”?® While this quote in its original context refers to the
various approximations used in PIC simulation (e.g. finite-sized particles, grid spacings, and
timesteps), in this paper we explore its relevance to SLPIC. Although SLPIC is in many
ways similar to conventional PIC, the ways in which it is different introduce additional
effects that one must understand in order to have confidence in its provided solutions —
and this is true even independent of any effects imparted by finite-sized particles, grid
spacings, and timesteps (though such effects are not unimportant). Fundamentally, SLPIC

and PIC methods both seek to statistically approximate the evolution of smooth particle



distribution functions in a multidimensional phase space, in response to self-consistent fields
and forces — but the underlying evolution equations of the two methods are different and will
yield different physics (e.g. linear plasma wave dispersion) even before any particle-based
approximations are made.

In this work, therefore, we focus on developing an understanding of the behavior of
a plasma evolving with speed-limited dynamics (hereafter SLD). In SLD, the plasma is
governed by continuous, ‘SLPIC-like’ equations of motion that differ from the ones governing
plasma evolution in our universe, but which approximate them in certain limits that we will
quantify. For purposes of comparison, we also designate the dynamics of plasma evolution
in our universe as ‘ordinary dynamics’ (OD). SLPIC and PIC simulation methods are,
respectively, the discrete numerical analogues of the SLD and OD that we will explore.
[Alternatively, one can think of SLD or OD respectively as continuous limits of SLPIC or
PIC, wherein both the timestep At and the grid spacing Az approach zero as the velocity
dependence of the distribution function f, becomes smooth.] We will show that some
well-understood physics processes from OD persist in SLD, and that other processes are
substantially modified, some of them in very helpful ways.

More specifically, in this paper we derive and analyze the analytical dispersion rela-
tion in an electrostatic, collisionless, unmagnetized plasma evolving according to modified
Vlasov-Poisson equations which govern SLD. Such a plasma will have different wave modes,
with different dispersion, relative to a real plasma evolving with ordinary dynamics (OD).
By comparison with the dispersive behavior that arises in the conventional (OD) Vlasov-
Poisson system, we demonstrate both analytically and numerically that the speed-limiting
of SLD can quantifiably modify high-frequency behaviors of this plasma (electron plasma os-
cillations) while leaving low-frequency motion (ion acoustic wave decay via electron Landau
damping) undisturbed.

Section II of this paper explains the SLD concept, together with its connections both to
the SLPIC algorithm and to the conventional kinetic theory of OD. In Section III, we discuss
the behavior of an electrostatic ion-electron plasma that evolves with SLD, and derive the
dispersion relation associated with this plasma. Section IV contains an analysis of the various
waves permitted by this dispersion relation, together with the new behaviors imparted by
SLD relative to known OD behaviors. We demonstrate that the speed-limiting significantly

relaxes a fundamental numerical constraint associated with conventional PIC methods and



makes faster numerical simulation possible. Section V then considers the spatial fluctuation
spectrum associated with SLD and shows it to be the same as that of OD; we briefly compare
SLPIC and PIC simulations to demonstrate this point. Finally, in Section VI, we summarize
our findings, review additional research directions which these findings might enable, and

discuss various applications for the SLPIC concept in plasma modeling more generally.

II. PHASE SPACE EVOLUTION AND ITS CONNECTION TO PIC AND
SLPIC METHODS

To kinetically model plasma with OD (i.e. using the familiar physics of the real world),
we first consider the self-consistent evolution of a distribution function fa(x, v,t) of phys-
ical particles of species a. This distribution evolves according to a phase-space continuity

equation

A~

Falev,t) £ L v, ]+ 2 [k, v, ) fa(x, v, £)] = 0, (1)

ot ox ov

where a(x, v, t) is the self-consistent Lorentz acceleration experienced by a physical particle
in the distribution at position x with velocity v at time ¢, in response to local (microscopic)
electromagnetic fields. For Hamiltonian systems, the additional phase-space preserving con-
straint (0/0x) - v + (0/0v) - a = 0 of Liouville’s theorem allows us to rewrite Eq. (1) in the
familiar Klimontovich form

9 fa(x,v,t) =0, (2)

2fa(x,v,t)+V-Vfa(x,v,t)+a~ P

ot

which can be formally solved by the method of characteristics. Along characteristic trajec-

tories
dea(t) .
dt - Vja(t) ) (3)
dea(t) .
dt — a[Xja(t)7 Vja<t>7 t] 9 (4)

the value of the distribution function f,[X;s(t), Vja(t),t] is preserved; writing the distribution

function in the form

(x,v,1) 25 X — Xjo(t)]0[V — Vja(t)] (5)



solves Eq. (2) and captures the detailed microscopic behavior of each of the N? particles in
response to the electromagnetic fields they (and the other species in the system) produce.

For realistic physical particle counts, this microscopic behavior is far too detailed to simu-
late numerically in most plasmas, and the singular nature of Eq. (5) is likewise problematic.
If, instead, one passes to the continuum limit (subdividing the discrete particle charges and
masses in a manner that preserves the local volumetric charge, mass, and energy content),
one arrives at the Vlasov equation,

ifa(x, v,t) =0, (6)

2fa(x,v,t)+V~Vfa(x,v,15)%—a- v

ot

which describes the evolution of a continuous (nonsingular) phase space fluid f,, from which
the effects of particle discreteness have been removed. More detailed discussion of this transi-
tion, which considers ensemble averages of Eq. (2), two-particle and higher-order correlation
terms, collision operators?, etc., has been considered by other authors® 7, but Eq. (6) suffices
for our purposes here. Like Eq. (2), it can also be solved by the method of characteristics;

with trajectories evolving according to Egs. (3) — (4), we may formally write

b, vot) = 3 31157~ X D]5TY — V0] )

and can verify that it is a solution of Eq. (6). The smooth distribution is now represented
as a set of N, discrete macroparticles which evolve along the trajectories given by Eqs. (3 —
4). The weight function wj, is representative (in some statistical sense) of the local value of
fo in a region near the particle’s initial point on the phase space trajectory. PIC simulation
techniques build upon the fundamental concept that Eqgs. (3 - 4) and (7) solve Eq. (6), and
that a sufficiently large number N, of macroparticles, distributed so as to adequately resolve
the relevant regions of the phase space, can statistically represent the 6D-+time evolution of
the smooth distribution function f,(x,v,t).

In this paper we will consider Eqs. (3) - (4) and (6) as the fundamental equations de-
scribing plasma evolution under OD.

Techniques for mapping the equations of PIC onto discrete computational timesteps and
finite grids (broadening the spatial extent of macroparticles from delta-functions to small-
but-finite widths) are discussed extensively in existing literature®®3; detailed explanations

and/or derivations of such techniques will not be discussed here except as needed. For the
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present it suffices to note (as the previously cited works discuss) that finite-sized grid cells

and timesteps impose a number of constraints on conventional explicit PIC simulations:

e The Debye length resolution constraint, that a representative grid cell size Ax should
adequately resolve the Debye length A\p, associated with any of the species in the
simulation in order to avoid numerical heating effects [the Debye length of species « is
defined as A%, = €07,/ (¢°ne), where {qa, na, To} are the species charge, density, and

temperature (in units of energy) and ¢, is the permittivity of free space];

e The cell-crossing-time constraint, that the distance traveled by any macroparticle in
the simulation during a finite timestep At should not exceed a representative grid cell
size Ax, so that forces experienced by a particle during a single simulation timestep

are adequately resolved; and

o The plasma oscillation constraint, that the plasma frequency w, constrains the
timestep through the relation w,At < 2; otherwise, numerical instability of these
high-frequency oscillations ensues [the plasma frequency is defined as wg =>, wga,
with the species plasma frequency wy defined through w2, = ¢2n./(€oma). Here,
me is the mass of species a and the other quantities were defined previously]. To
be precise, this constraint arises from a more general requirement that every plasma
mode frequency must be resolved by the simulation timestep. But for a large class

of problems, including the ones considered in this work, the highest mode frequencies

are on the order of wy,.

These constraints can impose significant restrictions on a plasma simulation. Low tem-
peratures and /or high densities decrease the Debye length and the allowable grid size, neces-
sitating the use of finer grids and smaller timesteps. Further, when both cold, massive ions
and hot, light electrons are simulated with PIC, the timesteps imposed by the plasma oscil-
lation constraint (now dominated by fast electron motion since w, ~ w,.) are so small that
ions may hardly move at all in that time interval. Numerical techniques such as subcycling!®,
in which ions are pushed less frequently and with a larger effective timestep, can provide
minor computational savings, but this gains one at most a factor of ~ 2 in speedup (for typ-

ical cases with comparable electron and ion particle counts) since the timestep constraints
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arising from electron motion remain. For simulations where many periods of harmonic ion
motion are of interest, the number of timesteps required can be enormous.

The speed-limited particle-in-cell approach, and the more general speed-limiting concepts
we explore in this work, are motivated by a desire to relax some of these constraints. The key
idea is simple: the fastest particles and highest-frequency wave phenomena necessitate the
smallest timesteps, and if these fast particle and wave motions can be slowed, the timestep
constraints can be relaxed.

Accordingly, we introduce speed-limited dynamics (SLD), wherein equations from the
derivation of the SLPIC method presented in Ref. 1 govern the plasma dynamics. Here, a

distribution function f, of species a evolves as prescribed by a modified Vlasov equation

9 f vty =0, (8)

O b xvt) + BV - 2 (v 1) + B(v)a - 2

ot 0x

wherein a speed-limiting function S(v) in the range (0, 1] has been introduced. This function
transitions from values at or near unity (for “slow” particles) to values approaching vy/|v|
(for “fast” particles), and we can understand its effect by looking at the characteristic
trajectories of the modified Vlasov equation

dx(t)

— L = BVOIV(D) | )
d‘c’l_it) = Blv(t)]ax(t),v(t),1] . (10)

The product |v|5(v), the speed at which an element of phase space changes its position x(t)
as it moves through the phase space, now has value ~ |v| at low velocities but is limited to
value vy (in the original vector direction of motion) at high velocities. We will hereafter refer
to vy as the “speed limit”; it is the upper bound on the rate at which motion in the position
coordinate of phase space may proceed. Accordingly, some nuance is required in discussing
the phase space evolution since the meaning of ‘velocity’ is now ambiguous. An element
of phase space has both a ‘true velocity’ (the phase space coordinate v) and a ‘pseudo-
velocity’ dx/dt = (v (the speed and direction at which it is permitted to move from one
physical space coordinate to another)!4. In a given time interval, elements in the phase space
with large true velocity v(t) [so that §(v) < 1] experience both smaller pseudo-velocities
[Eq. (9)] as they move through the space, and smaller changes to these pseudo-velocities
(pseudo-acceleration) in response to applied forces [Eq. (10)]. Elements in the phase space

with small true velocity experience no speed-limiting [$(v) ~ 1] and evolve in the same
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manner as their OD counterparts, as in Eqs. (3) and (4). Transitions across the boundary
|v| = vp in either direction are well-defined; this has already been demonstrated for SLPIC
in Fig. 4 of Ref. 1, wherein particles are not observed to ‘pile up’ at the boundary.

In this paper we will consider Egs. (8) - (10) as the fundamental equations describing
plasma evolution under SLD.

Solutions to the SLD Vlasov equation, Eq. (8), can be represented statistically in the

same manner as outlined above, setting
Na
Fal%, V1) = Y wia(t)0[x = Xja(t)]6[V = Vja(t)] (11)
j=1

for a suitably large number N, of macroparticles evolving along the characteristic trajec-
tories described by Egs. (9) — (10). This is the speed-limited particle-in-cell method we
have presented in previous work!. However, this work will not focus on PIC or SLPIC

implementations of Egs. (6) or (8). Instead, we will consider these equations analytically.

III. A 1D1V ELECTROSTATIC PLASMA MODEL

In this section we will apply the Vlasov equation of OD and the modified Vlasov equation
of SLD to model dispersion in an electrostatic, unmagnetized plasma with a single ion
species, in one spatial dimension and one velocity-space dimension. We will use the analytic
forms of these equations (foregoing for the moment any discussion of the effects of finite
timesteps, grid spacings, or particle sizes) to ensure that we understand the new physics

that the imposed speed-limiting of SLD imparts. Each species will use the kinetic equation

Ofa(z,v,t) Ofa(x,v,t) Qo OB(1,t) Ofa(z,v,t)
ot +Av)y ox ﬁ(v)ma ox ov =0 (12)
In SLD, we will use a speed-limiting function of form
v v v
Bv) = =22 4 (2 +1) Hw+vo) + (22 1) H{v — ) | (13)

wherein H(x) is the Heaviside function. An equivalent representation for this speed-limiting

function is

Bv) = | =0 (14)



In OD, 5(v) = 1 (the vg — oo limit of the SLD). The species couple via the Poisson equation,

2
agfzt ZZZ/ fa(z,v,t) d (15)
Many equilibrium solutions of Eq. (12) are possible. We will choose physically reasonable
solutions that are stationary Maxwellians in each of the individual species (though we will
allow the two species to have different temperatures, and neglect both the collisional pro-
cesses that have brought the individual species to their present state and the interspecies
collision processes that would further relax the system to a single temperature). Formally,

we write the distribution function of species « as

Ma M v?
a\Ly Uy t) = - ) 16
fO («T v ) 1o 27TT0a exp < 2T0a ) ( )

where ng is a species-independent constant number density, Tg, is the constant tempera-
ture of species a, and m,, is the species mass. With these equilibrium distributions, the
corresponding equilibrium potential ¢(x,t) is a constant that can be set to zero.
Linearizing Eqs. (12 — 13) in perturbed quantities, and Fourier transforming from space-
time coordinates {z,t} to wavenumber and frequency coordinates {k,w}, yields the result

—iw fr (K, v, w) + ikB(0)0 for (ke v, w) = 5<v)%¢k¢1(k,w)af g‘;(”) , (17)

— k2 (k, w) Z qa/ Far(k,v,0) dv . (18)
We obtain, for the perturbed dlstrlbutlon functions,

koB(v) qudr(kiw) [T p(_mav2>

(6% k? ) =
Jaalkov,w) = 2080 T "V 20 P\ " omn

(19)

which we can then substitute into Eq. (18). The ensuing integrals will be undefined for reso-
nant velocities v3(v) = w/k; we will implicitly stipulate that the integrals are to be evaluated
using the Landau contour (traversing below any singularity) to retain both causality and the
resonant physics. (Formally, this can be shown to be equivalent to the use of a Laplace trans-
form, rather than a Fourier transform, in the time domain; it also permits the generalization

of w to complex Values.) We obtain the integral relation

< kvB(v) Mo nen?/(2Ton)
ma?/(Toa) gy = 20
Z k‘2€0T0a / W — k:vﬁ(v) 27TT’0OCe v ( )




which describes the dispersive wave behavior of the plasma in both OD [where f(v) = 1]
and SLD [where Eq. (14) defines 5(v)].
In OD, the integral in Eq. (20) can be expressed in terms of the plasma dispersion

function'®, defined as

20 - [ 1)

for Im(¢) > 0 and by its analytic continuation for Im(¢) < 0. In SLD, this integral is more
complicated; given our choice for f(v), there are both high-velocity regions of integration
wherein v3(v) = £y, a constant (the speed limit), and low-velocity regions wherein v3(v) =
v. We may represent the integrals over these various regions in terms of the complementary
error function and the incomplete plasma dispersion function. The latter function was
introduced by Franklin!” and its properties have been discussed extensively by Baalrud'®; it

takes the form [generalized from Eq. (21)]

%m:%[?%ﬁ (22)

for Im(¢) > 0 and by its analytic continuation for Im(¢) < 0. It will be useful to note that
Z(—00,() = Z(¢) and that Z (oo, () = 0. Additional properties of this function are provided
in Appendix A.

In terms of these functions, we may rewrite Eq. (20) in the form Dgpp(k,w;vg) = 0,

where we define

1 2erfe(va
Dspp(k,wive) =1+ oy {H C‘j;rf<32) 6l Z (Vs Ca) = Z(Yar C)]| - (23)

Here, we make use of the parameters v, = vg/ (\/va), a measure of the relative speed-
limiting of species o; (, = w/(v/2kuvy,), the conventional (and complex) argument of the
plasma dispersion function; A%, = ¢yToa/(¢?n0), the Debye length of species «; and v2, =
Toa/Ma, the thermal velocity for species . The complementary error function is related to
the conventional error function by erfc(z) = 1 — erf(x). The expression Dgpp(k,w;v9) = 0
is the plasma dispersion relation of SLD, and its analysis and solutions will be the topic of
the following section.

Recalling that erfc(co) = 0 and the limits of the incomplete plasma dispersion function

discussed above, we can show that Dgyp(k,w;00) = Dop(k,w), where the latter function
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has the explicit form
1
Dop@%w):]fFE:Zgyr{1+CaZ@Aﬂ, (24)
o Da

a standard result from elementary plasma kinetic theory!%2°. This is the plasma dispersion

relation of OD, against which solutions with SLD will be compared.

IV. ANALYSIS OF THE DISPERSION RELATION

We now consider various limits of Dop(k,w) and Dgyp(k,w;vg), together with the waves
that arise in these various limits. For clarity, we will consider the physics of OD first, and
will then explore the changes which the speed-limiting of SLD imparts to these familiar

processes.

A. Plasma oscillations

The OD dispersion relation, Eq. (24), admits approximate analytic solutions correspond-

ing to cold-plasma oscillations in the (, > 1 limit. The asymptotic expansion of Z((,) in

this limit,
2(C) ~ - (1+i+i+...> Lo (eﬁ) (25)
Ca 26 4G
can be substituted into Eq. (24) to obtain, at lowest order,
2 2
Dop(k,w) =1— WP; - w—g =0 (26)

where wza = ¢?no/(eomy) is the square of the plasma frequency of species . These oscil-

lations are dominated by electron motion (the ion term is order m./m; smaller than the

2
b

electron term); we may write the solution as w? = wf)e(l + me/m;) = w;. We anticipate
the prospect of significant changes to these oscillations in SLD, since the speed-limiting will
preferentially modify the fast electron motion.

What is the behavior of the SLD dispersion relation, Eq. (23), in the same (, > 1
limit? Using the asymptotic expansions for Z(7, () presented in Ref. 18 and summarized in
Appendix A, we can show that the SLD version of Eq. (26) takes the form

2

ws, 2, e Vo
Dsip(k,w;vg) =1 — Z w_p2 (1 + (292 — 1)erfe(v,) — 7\/6% ) =0 (27)

a
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which reproduces Eq. (26) in the vy — oo (i.e. 7, — o0) limit. It admits the solutions

2
w2 = za:wgah(%é) ; h(v,) = (1 + (272 — 1)erfe(v,) — %) . (28)
The behavior of the function A(v,) is shown in Figure 1. For small vy, h(7,) ~ 272, while
for large 7,, the species is not appreciably speed-limited and h(v,) =~ 1. Recalling that
Yo = Vo/ V2014, it will be instructive to express the argument of h strictly in terms of the
electron slowing-down parameter 7.; we have v, = 7, \/W . The presence of the
ion-electron mass ratio suggests that unless electrons are much cooler than ions, the quantity
v; will always be much larger than .. Accordingly, we may generally choose vy in a way that
alters electron behavior but not ion behavior, consistent with the intentional slowing down
of the fastest particles in SLD while leaving slower particles undisturbed. Such a vy will be
faster than most ions but much slower than most electrons. For such a choice (vy = 4vy;),
Figure 1 also shows values of 7., 7;, and their corresponding h values for a hydrogen plasma
thermalized to 10 eV. In this plasma, ion motion associated with plasma oscillations does
not differ appreciably between SLD and OD, but electron motion is considerably modified.
Since it is primarily the speed-limiting of electrons that affects the oscillation frequencies
predicted by Eq. (28), we examine the behavior of these modified electron plasma oscillations
as a function of the ratio vg /vy (providing intuition as to which velocities in a typical elec-
tron distribution, e.g. a Maxwellian, are restricted by the speed-limiting). The normalized
oscillation frequency of Eq. (28) is shown in Fig. (2) for a monatomic hydrogen plasma with
equal electron and ion temperatures. While the oscillation frequencies of SLD and OD are
identical at large values of vy/v (minimal speed-limiting), reducing this ratio, and hence
increasing the corresponding fraction erfc(y,) of speed-limited electrons, reduces the SLD
frequency monotonically. As vg/vse — 0, the linear approximation to the plasma frequency
approaches the heuristic estimate made in Ref. 1: w/w, ~ vg/v.. The high-frequency oscil-
lations of OD have been mapped to lower-frequency oscillations in SLD by the speed-limiting
of electrons.
We conclude that in SLD, the frequency of conventional electron-dominated plasma os-
cillations is reduced relative to OD. In Sec. IV C we will consider how this reduction relaxes
the ‘plasma oscillation constraint’ referred to in Sec. II. But we must first determine whether

the speed-limited dynamics preserves physics associated with lower-frequency waves.
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FIG. 1. Behavior of the function h(vy,) in Eq. (28) as a function of the species speed-limiting
parameter v, = vo/(v/2vts). For high values of vy relative to the species thermal velocity, speed-
limiting does not occur in densely populated portions of the phase space and this function (a
multiplicative factor in the dispersion relation) approaches unity. When vy; < v < v, consider-
able speed-limiting of the electron distribution can be achieved without appreciable effect on the
ion distribution, such that h(v.) < 1 while h(y;) &~ 1. To illustrate this point, values of 7, and
the ensuing h(7,) are shown for a case with vy = 4vy;, in a hydrogen plasma with both species at

temperature 10 eV.

B. Ion acoustic waves

The OD dispersion relation, Eq. (24), also admits approximate analytic solutions corre-
sponding to ion acoustic waves. Physically, these solutions are associated with ‘hot’ electrons
(¢, < 1) and ‘cold’ ions (¢; > 1), and in these limits the dispersion relation can be written
in the approximate form

k22

k*)},Dop(k,w) = 1+ E*A},, + Ceiv/m — w; =0, (29)

where the multiplicative factor of A?\%, simplifies the algebra and where ¢, the sound speed,

satisfies the relation ¢? = Tp./m;. Assuming that the imaginary part of the (now complex)
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FIG. 2. Frequency of electron-dominated cold plasma oscillations in SLD and OD as a function
of the ratio of speed limit to electron thermal speed (vo/vie = \/ifye). The electron-dominated
cold plasma oscillation frequency is constant in OD (red dashed line), but in SLD it unphysically
decreases (blue solid line) as vg/vi is reduced. This unphysical frequency means that plasma
oscillations are not correctly simulated, but this can greatly speed up simulation when plasma

oscillations are unimportant to the physics of interest. When vy < vte, w/wp ~ vo/te.

W = w, + 1w; is small, we can perform a Taylor expansion,

0D(k,w)

D(k,w) = D(k,w,) + iw; (30)
w Ww=wp
to show that this equation permits damped wavelike solutions of the form
ke, . Jem ke
- 4 S S . B 31
B e el R C S AN Y
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where € is again the electron/ion mass ratio. These are the ion acoustic wave (IAW) modes,
which are essentially longitudinal compressions of the ion mass density that decay via Landau
damping.

What is the corresponding behavior of the SLD dispersion relation? In the ¢; > 1,(. < 1

limit, Eq. (23) can be written with the same multiplicative factor in the form

k2c? ,
k:2/\2DeDSLD<k7 wj UO) =1 + k:Q/\QDe - . h(’%) + Z\/ECe [H(Ce - '76) - H(Ce + ’76)] =0. (32)

w2

Repeating the Taylor expansion procedure above, we can show that the ion acoustic wave

dispersion relation of SLD has approximate analytic solutions
. Jem kesh(y:) Wy Wy
N 3T P B )
i Vi a re s el R P (33)

kcs h(’)/z)
Wy = —F——— .
V14 K2,

This is the SLD equivalent to Eq. (31). The OD and SLD forms are approximately equivalent

wherein

(34)

provided that ~; is sufficiently large (so that h(y;) ~ 1, see Fig. 1) and |w,/k| < vy (so
that the speed limit vy exceeds the phase velocity of the ion acoustic wave). Since the
approximation h(7;) &~ 1 holds to one part in 10% or better for vy > 4vy;, we will write these

constraints as a single condition
vo > max(4vy, |w,/k|) . (35)

When vy is chosen to satisfy this condition, and when the other conditions we assumed in the
derivation [(; > 1,(, < 1,Im(w) < Re(w)] are valid, the effects of SLD on the propagation
and damping of the IAW are minimal.

What happens when the phase velocity condition is violated, such that vy < |w,./k|? In
this case, the explicitly imaginary terms in Eq. (32) (proportional to Heaviside functions)
vanish, and the solutions admitted now only capture the real part of Eq. (33). While the TAW
still propagates, its Landau damping is not correctly modeled. This is consistent with a result
that we have demonstrated in previous work!, namely, that the correct dynamics of resonant
wave-particle interactions cannot be captured by speed-limited particle-in-cell simulations
when particles whose velocities were previously synchronous with the wave velocity are

speed-limited. Particles whose speed-limiting renders them unable to keep up with the wave

15



cannot exchange energy with it, so the dissipative effects which lead to wave damping are
effectively turned off. Although nothing in principle prevents us from choosing a smaller v
value that violates Eq. (35), the inherent advantage of the velocity-dependent speed-limiting
approach (preservation of IAW physics) would be lost in doing so.

The analytic form of the IAW above is approximate. The dispersion relation can also
be solved numerically to find the complex w associated with a given k, and we have done
so for a plasma with density ny = 5.0 x 106 m™, T, = 10 eV, and Tjy = 1/40 eV. In
the supplemental materials for Ref. 18, Matlab algorithms for evaluating Z(¢), Z(v, (), and
their derivatives have been provided. We have made use of these algorithms and Matlab
minimization routines to compute {w, k} values which satisfy the OD and SLD dispersion

relations within a given tolerance, according to norm-minimization criteria

VIDsLo(k,w;v0)> < ds1p (36)
[Dop(k,w)]* < dop - (37)

Here, the tolerance parameter 6 < 1 is a small positive number which constrains the allow-
able error in the numerical solution of a particular dispersion relation. In these computations
we fix k& (and, for SLD, vg), and then numerically evaluate the function D for various com-
plex values of w. Exact solutions to the dispersion relation have D = 0; we vary w in the
complex plane in a manner that seeks to minimize the norm of D and thus to approach these
exact solutions. For w values near an exact solution this norm can in principle be reduced
to be no greater than 4.

Various values for the speed-limiting parameter vy can be chosen to assess the effect of
speed-limiting on IAW behavior. Depending on the value of vy and £, to obtain numerical
convergence it is sometimes necessary to raise dszp to values as high as 1072, but solutions
can usually be found for dop < 1075 and §5;,p < 1075 (and often for § values that are several
orders of magnitude smaller, when k > 1).

In Fig. 3, we show the real and negative-imaginary parts of the computed frequency w
for various values of wavenumber k spanning several orders of magnitude. In this figure,
the speed limit vy has the value 0.2v;.; the analytic approximation to the dispersion relation
(valid for kAp. < 1) is also shown. The speed-limiting does not affect the IAW behavior
appreciably; for modes whose wavelengths are large compared to the Debye length (i.e.

where the analytic approximation is valid) the SLD real frequency w is about half a percent
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FIG. 3. Real and negative-imaginary parts of the normalized TAW frequency, computed nu-
merically from the OD (red) and SLD (blue) dispersion relations, as a function of normalized
wavenumber. Values from the approximate analytic expression, Eq. (31), are also shown (dashed
black curves) and agree well with the exact solutions when kAp. < 1. In the SLD case the speed
limit vg = 0.2v.. Even though all electrons are restricted to move through the domain with speeds
no greater than vy, the frequency (good to within 0.5%) and damping rate (good to within 3%) for
the ion acoustic wave do not differ appreciably from the OD values. Good agreement between SLD

and OD is maintained even in the kAp. > 1 regime, where the analytic approximations underlying

Eq. (31) are no longer valid.

low relative to the OD value and the SLD damping rate also drops by about 3%. For
shorter-wavelength modes, the effect of the speed-limiting on both the real frequencies and
damping rates is negligible. Nevertheless, the frequency of the modified plasma oscillations

[from Fig. (2)] is decreased to about 0.2w,. for this case.

17



- - — - — - SR BB D[ BB B[ B - -]
- — — — — HIBHB R R HE — 8 £ —F3E— 5 8- — —
L — — — SOOI Y IODB0RK — H =X — Mo MK — e X —r= e — — —|]
L 000 AADAN— AL AN D DD — — —
100 | = RO s D 2 X DT E O KApe=100
- — £ OO —G- 6 098 0= 96— - _ kA g, =50
TR — i & e — s kA ,=20
A krp,=10
<—>W - & V6 -6 V- —— * Ky =5
° kADe=2
WW —FT VYT I-T IV 0 kg =1 |
% kAp =05 |]
O kApg=0.2
\VA k)\De=0.1
— — OD values| |
10° 10’ 102 103 10*

k vy/Re(w)

FIG. 4. Variation of the normalized real part of the frequencies which solve the ion acoustic branch
of the SLD dispersion relation, as a function of the speed limit vy normalized to the wave phase
velocity vy = Re(w)/k, for various values of kAp.. The OD frequencies, which are independent of
v, are also shown for each kApe value (red dashed lines). Although speed-limiting does not affect
the mode frequencies for vg/vy > 1, modes whose wavelengths are large compared to the Debye
length (kApe < 1.0) are reduced in frequency as the speed limit is reduced (moving to the left on
the graph) to be of the same order as the phase velocity. This frequency variation is minimal for

vg > 5vg and also for modes whose wavelengths are short relative to the Debye length. For this

case vy /e = 0.05y/me/m;.

For more restrictive speed limits vy, greater deviation of IAW frequencies and damping
rates from their non-speed limited (OD) values is observed, though still only for modes whose
wavelengths are long compared to the Debye length. Generally speaking, real frequencies

are shifted downward as the speed limit is decreased, though only by a few percent (<9%
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FIG. 5. Variation of the normalized negative-imaginary part (damping rate) of the frequencies
which solve the ion acoustic branch of the SLD dispersion relation, as a function of the speed-limit
vp normalized to to the wave phase velocity vy = Re(w)/k, for various values of kAp.. The OD
damping rates, which are independent of vy, are also shown for each kApe value (red dashed lines).
Although speed-limiting does not affect the damping rates when vg/vy > 1, damping rates for
modes whose wavelengths are large compared to the Debye length (kAp. < 1.0) may be reduced
by several orders of magnitude as the speed limit is reduced (moving to the left on the graph) to
be of the same order as the phase velocity. As is also true for the real frequencies (Fig. 4), the

damping rate variation is minimal for vg > 5v4 and also for modes whose wavelengths are short

relative to the Debye length. For this case vy /vie = 0.05y/me/m;.

for vy = 0.05v4 = 2.1¢,, and <2% for vy = 0.1v = 4.2¢,). Damping rates also (generally)
decrease in magnitude as the speed limit is decreased, but the magnitude of the relative

decrease is larger (<42% for vy = 0.05vy, = 2.1¢,, <13% for vy = 0.1vy = 4.2¢,). In Figures
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4 and 5 we have plotted the variation of the IAW real frequency and damping rate of SLD
as a function of the speed-limiting velocity normalized to the wave phase velocity, so as
to more generally quantify the effect of the speed-limiting on the IAW dispersive behavior.
These figures illustrate that lowering the speed limit has relatively little effect on either the
real TAW oscillation frequency or damping rate as long as the speed limit is higher than
the wave phase velocity. For longer-wavelength modes (kAp. < 1) in SLD, speed limits
that approach the wave phase velocity generally give rise to modest reductions in the mode
frequency (Fig. 4) and more pronounced reductions of the IAW damping rate (Fig. 5). This
failure to properly capture the Landau damping of the IAW arises because portions of the
distribution function that resonate with the wave (in OD) are prevented from doing so by
the imposed speed-limiting!. As we transition to shorter-wavelength modes (moving up the
graph legend), absolute damping rates are increased to become comparable to the real mode
frequency, while phase velocities are reduced to be of order vy;. For these waves, speed-
limiting does not appreciably influence the dynamics since the smallest sensible speed limit
(vg ~ 4vy;, so as not to speed-limit the bulk ion distribution) still exceeds vy = w/k for large
k.

Accordingly, we may assert that SLD preserves the physics of IAW propagation and
damping provided that the condition in Eq. (35) holds, namely, when ions are not speed-
limited and when the speed limit reasonably exceeds the phase velocity of the IAWSs in the
system. At the same time, this speed limiting considerably reduces the frequency of plasma

oscillations (as was shown in Section IV A).

C. Normal modes and the plasma oscillation constraint

Having explored the normal modes of our 1D1V plasma, we now revisit the numerical
constraints which the use of a finite timestep At will impose on particle-in-cell simulations
of this plasma.

We have noted in Section II that numerical instability will ensue in a PIC simulation if
the frequency of any plasma mode is not resolved, and that in particular, we must resolve the
frequency associated with electron plasma oscillations. These oscillations are generally the
highest-frequency modes in a PIC simulation containing electrons (because ions introduce

only small corrections to the approximation w, ~ w,. when the electron-ion mass ratio is
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small). Accordingly, any numerical simulation method satisfying the constraint w,At > 2
will resolve both these plasma oscillations and all other modes of lower frequency.

What is the effect of the speed limiting on this constraint?

Because of the speed-limiting, the frequency that we must resolve is now not w,; rather,
it is the fastest oscillation frequency that the speed-limiting permits. But we have shown
in Sec. IV that ordinarily ‘fast’ plasma oscillations [see Eq. (28)] are considerably slowed in
SLD. Thus, in its most general form, SLPIC replaces the plasma oscillation constraint by

the result [obtained by substituting the frequency derived in Eq. (28) for w,)]

2 2
~ (38)

\/w2 h(ve) +wih(yi) e h(7e)

where v, = v9/v/204 is the slowing-down parameter. [For example, when vy /v, = 0.1, we
have 7, = 0.07, h(7.) = 9.5 x 1072, and 1/4/h(7.) ~ 10, thus relaxing the constraint tenfold
with minimal effect on the ion modes (assuming IAW phase velocities are low compared to
vp).] This constraint is less restrictive than the PIC result At < 2/w,., and permits larger
timesteps to be taken in SLPIC simulations without instability or loss of accuracy in the
low-frequency plasma modes. It can also be shown that by limiting the maximum speed to
vg, SLPIC trivially relaxes the cell-crossing-time constraint by nearly the same factor (see
Appendix B). Both the plasma oscillation constraint and the cell-crossing-time constraint

are thus modified by speed-limiting to restrict At ~ Az /vy.

V. ANALYSIS OF THE FLUCTUATION SPECTRUM

From the fluctuation-dissipation theorem and the theory of linear response, the fluctua-
tion spectrum of an electrostatic 1D plasma in thermal equilibrium can be shown'? to take

the form
eo(E?) (k) 1 B 1
Ty,  D(kw=o00) D(kw=0)"

(39)
where Ty is the equilibrium temperature, (E?)(k) is the time-average of the continuous
spatial Fourier transform of the square of the electric field, and D(k,w) is the dispersion
relation. In OD, taking these limits of Eq. (24) yields the result

(60<E2>(k))OD 1 1 __ 1 (40)

Ty 1 1+Zaﬁ L+ k20,7
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wherein M, = 0T/ Y, (¢2na) is the square of the plasma Debye length.
What is the behavior of the SLD fluctuation spectrum? At low frequencies, where speed-

limiting is not expected to influence the wave dynamics, we likewise recover the same result

as for OD:
1
DSLD<k,W:0;UO) = 1+ZW . (41)
- Da
At high frequencies, we have shown that the behavior of solutions to the dispersion relation

is significantly altered by the speed-limiting. Nevertheless, terms associated with speed-

limiting vanish in the high-frequency limit of the dispersion relation

1 erfe(—,, erfe(,
Dsrp(k,w =o00;1v9) =1+ E IO (1 —erfe(vy) — <2 Vo) + 2<7 )) =1 (42)
o Do

[because erfc(—x) = 2—erfe(z)]; the effects of speed-limiting should therefore have no bearing

on the spatial fluctuation spectrum, Eq. (39). We recover the same result as Eq. (40) for

SLD,
€0 (E?) (k) B 1
( Ty sip  LHE2AE (43)

In a PIC or SLPIC simulation, the fluctuation spectra of Eqgs. (40) and (43) are altered by
finite particle size (associated with the transfer of charge and force fields between continuous
particle positions and the discrete grid) as well as by finite grid spacing (associated with
the wavenumber spectrum that is able to be resolved by the simulation). In addition, the
introduction of a discrete grid and a finite volume leads to discrete, finite Fourier spectra
and introduces the possibility of aliasing between gridded fields and subgrid particle modes.
While we do not propose to discuss the effects of finite particle and grid size in detail in this
work, we have used PIC and SLPIC to simulate a 1D single-ion-species hydrogen plasma
in thermal equilibrium and have measured its fluctuation spectrum. For a discrete Fourier

mode this spectrum satisfies a relation of the general form!%1213

olE* _ 1 1 (44)
noly N, \ 1+ K2)\3/|S(k)|?

wherein N, is the number of simulation macroparticles of either species, |S(k)|? is a geometric
factor associated with the particle shape, k& = 27l/L defines the discrete mode index I,
K =k sinc(kA/2) captures the effect of the 1D Laplacian operator on the discrete 1D grid
with spacing A [with sinc(z) = sin(x)/z], and |E|? is the time-averaged norm of the I-th

discrete mode in the Fourier transform of the electric field.
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We modeled this scenario with the VSim?!' code, using both PIC with a small timestep
(At = 1.0 x 107 s) and SLPIC with a (50X) larger timestep. We used a highly resolved
grid (80 cells per Debye length, with a 1D simulation length L = 10 Debye lengths), with
equilibrium plasma density ng = 5.0 x 10 m™ and temperature Ty = 10 eV. 100 particles
per cell of each species were used; the speed limit vy for the SLPIC simulations was set
to one-half the electron thermal velocity. Particles were mapped to the grid with a three-
cell (four-gridpoint) stencil using the method prescribed by Esirkepov?2. For this mapping,
|S(k)|> = sinc®(kA/2). As shown in Figure 6, both PIC and SLPIC capture the general
behavior of the fluctuation spectrum when the effects of finite grid size and particle width
are accounted for. Larger variation between adjacent modes in the spectrum is observed for
SLPIC relative to PIC, an effect which becomes more prominent as . is decreased (stronger
speed-limiting) and which is perhaps a function of interparticle correlations imposed by the
speed-limiting constraint (since all fast particles now move with the same pseudo-velocity in
the domain). Nevertheless, both methods agree closely with the theory. SLPIC simulations
with smaller timesteps (identical to PIC) were not seen to differ substantially from the
large-timestep result (green curve) in the figure.

A more detailed consideration of the role of finite grid spacing and particle width in

SLPIC is a topic of ongoing interest, and we anticipate future efforts along these lines.

VI. CONCLUSIONS

In this paper we have discussed the linear wave dispersion in a 1D1V unmagnetized
electrostatic plasma that evolves with both ordinary (OD) and speed-limited (SLD) dy-
namics. We have demonstrated that speed-limiting can effectively reduce the frequency of
fast electron oscillations while quantitatively preserving low-frequency ion and electron mo-
tion, e.g. the physics needed to correctly model the Landau damping of ion acoustic waves.
We have also shown that this speed-limiting relaxes the “plasma oscillation constraint” of
the conventional PIC method, permitting larger timesteps, and have demonstrated that
the spatial dependence of the ensuing fluctuation spectrum is nevertheless preserved. These
findings suggest that the speed-limited particle-in-cell (SLPIC) method, as outlined in previ-
ous work?, is a fast, accurate, and powerful technique for modeling plasmas wherein electron

kinetic behavior is significant (such that a fluid/Boltzmann representation for electrons is in-
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FIG. 6. Predicted fluctuation spectrum in the limit of infinite grid resolution and zero particle
size (black), together with the predicted behavior for finite grid resolution and particle shape (red
— and covered by the PIC data except at very high mode numbers), and the observed spectra from
SLPIC (green) and PIC (blue) simulations. While the signals vary more with & for SLPIC than

for PIC, both methods agree closely with the theory for finite A.

adequate) but evolution is on ion timescales. In these cases the use of PIC is computationally
demanding, but the use of speed-limited electrons can substantially reduce computational
demands without sacrificing the desired physics.

For plasmas with v; < vy < vge [Where these velocities respectively are the ion thermal
velocity, ion acoustic wave phase velocity w/k (~ ¢, for long-wavelength modes), and the
electron thermal velocity], the speed limit vy can be chosen with v, < vy < vi. Choosing
vy < vy ensures that the speed-limited plasma oscillation frequency is reduced below the

true plasma oscillation frequency w, by a factor w/w, ~ vy/vt, and allows the timestep to
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be increased (and the simulation sped up) by a factor v, /vo. However, choosing vy > v
ensures that ion acoustic waves are still accurately simulated (including the Landau damping
rate).

Potential applications for the SLPIC method include its use in the modeling of plasma
thrusters (wherein very small electron/ion mass ratios impose especially demanding nu-
merical constraints) and sheath formation (e.g. near a Langmuir probe®?). Collisional low-
temperature plasma discharges are also an area of particular interest; recent efforts have
demonstrated that SLPIC can be used in conjunction with standard Monte Carlo collision
techniques, in the same manner as is done in collisional PIC discharge modeling (PIC-
MCC)?*!. We anticipate exploring SLPIC’s capability for rapid collisional plasma discharge

modeling in future publications.

ACKNOWLEDGMENTS

This research was financially supported by the U.S. Department of Energy, SBIR
Phase I/II Award DE-SC0015762, and by the U.S. National Science Foundation, Grant
PHY1707430. The data that support the findings of this work are available from the cor-
responding author upon reasonable request. We thank the reviewers of this manuscript for

their constructive comments.

Appendix A: Asymptotic expansions of Z(v, ()

A detailed overview of the properties of the incomplete plasma dispersion function Z (-, ¢)
was given by Baalrud in Ref. 18. A number of these relations have been used in this work

and are summarized here.

For { > 1:

. 2 erfe(n) e 1 [~re™  erfe(y)
Z2(7,¢) ~ioymH( = y)e ¢ — 2% —2\/&2—5(2\5 +— )— (A1)

wherein H (z) is the Heaviside function, erfc(x) is the complementary error function erfc(z) =
1 —erf(z), and
o =1 —sign[Im(¢)] . (A2)
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For ( < 1:

Z(7,0) ~iVTH( = 7)e ¢ + EQL\/? +¢ (e_7 - erfc('y)> e ( ¢’ E1(72)) 4o

wherein

is the exponential integral.
Matlab algorithms for evaluating Z(¢), Z(7, (), and their derivatives were also provided
in the supplemental materials for Ref. 18. These algorithms were used in the numerical

calculations of this work.

Appendix B: Constraints and speed-limiting

In this appendix we briefly consider the scaling of the numerical constraints outlined in
Section II in SLD.

The Debye length resolution constraint is independent of the speed-limiting. When it is
satisfied, the grid size Ax = dAp, for some § < 1.

In SLD, the cell-crossing time constraint is altered by the speed-limiting and becomes
v At < Ax, since no particle can move faster than the speed limit vy. Substituting the
result from the Debye length resolution constraint then yields the scaling At < dAp./vo.

The plasma oscillation constraint, in the limit of aggressive speed-limiting (v, — 0),
replaces w, ~ wpe by wpetio/vge (as shown in the small-y limit of Fig. 1). Substituting the re-
sult from the Debye length resolution constraint then yields the scaling At < 2w,/ (vowpe) =
2Ape/vo-

It is significant that the timestep At restriction scales linearly as the ratio of Debye length
to speed limit in both of the latter two constraints. If this were not so, there could be regions
of parameter space where one constraint or the other prevailed, and the speed-limiting
concept would be less useful. But the physical scaling for both constraints is the same — the
largest timestep for speed-limited particles is on the order of the time required for the fastest
such particles to cross a Debye length. This restriction preserves the physics of local Debye
shielding (a time-independent phenomena) even while slowing the rapid plasma oscillations.

In addition, this constraint is independent of the electron-ion mass ratio, suggesting that
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SLPIC can be used even when this ratio is small.

Appendix C: Comparison of speed-limited and relativistic dynamics

It has been noted that SLD exhibits some similarities with relativistic dynamics, wherein
the speed of light ¢ plays a role somewhat analogous to the SLD speed limit vy. Although
we haven’t explored this idea in detail in this work, it is instructive to compare the kinetic
equation for nonrelativistic SLD [using a more general Lorentz acceleration term that in-
cludes the electromagnetic fields E(x,t) and B(x,t)] with the relativistic kinetic (Vlasov)

equation in the form

afoa afoc 8fa afa _
+ Bv + ﬁ Y oy + 6 . oy 0 (SLD) (C1)
3ga 1 0ga Go rn 990 | 1 qa 9o .
5 + ’yu o + maE 7 + ’Ymau x B T 0 (relativistic) . (C2)

Here, respectively, the SLD distribution f, = f.(x,v,?) is a function of position, velocity,
and time, while the relativistic distribution g, = g.(X,p,t) is a function of position, mo-
mentum, and time. The spatial components of the four-velocity, u = (p/m,), are related to
the conventional three-velocity v through the relativistic Lorentz factor v = \/m ,
such that u = yv.

The structure of these equations is very similar. The relativistic u (whose magnitude
may exceed ¢) is like the SLD ‘true velocity’ v (whose magnitude may exceed vy), and the
factor 1/ (~ 1 for |u| < ¢, and ~ ¢/|u| for |u| > ¢) plays a role akin to the speed-limiting
function § (~ 1 for |v| < vy, and ~ wvy/|v| for |v| > vy). The product of these relativistic
functions, u/vy (three-velocity), can never exceed ¢ just as the SLD ‘pseudo-velocity’ can
never exceed vg.

Nevertheless, key differences appear. The term proportional to the electric field, in the
relativistic case, contains no physics equivalent to the speed-limiting that occurs in SLD —
in effect, relativistic physics applies the speed-limiting concept to the magnetic, but not the
electric, components of the Lorentz acceleration. The ensuing trajectories thus vary from
those of SLPIC, wherein the appearance of § in all but the first term of Eq. (C1) can be
viewed as a local rescaling of time (with ) along a trajectory that is constant regardless
of the value of vy. So while SLD is somewhat like relativistic dynamics, in that it tracks

both unbounded (SLD true velocity/relativistic momentum) and bounded (SLD pseudo-
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velocity /relativistic three-velocity) phase space variables, with the latter restricted by fixed
speed limits (SLD vg/relativistic ¢), the dynamics of the two systems differ enough to make

intuitive comparisons difficult.
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