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ABSTRACT

Tomographic reconstruction recovers an unknown image

given its projections from different angles. State-of-the-art

methods addressing this problem assume the angles asso-

ciated with the projections are known a-priori. Given this

knowledge, the reconstruction process is straightforward as

it can be formulated as a convex problem. Here, we tackle

a more challenging setting: 1) the projection angles are

unknown, 2) they are drawn from an unknown probability

distribution. In this set-up our goal is to recover the image

and the projection angle distribution using an unsupervised

adversarial learning approach. For this purpose, we formulate

the problem as a distribution matching between the real pro-

jection lines and the generated ones from the estimated image

and projection distribution. This is then solved by reaching

the equilibrium in a min-max game between a generator and

a discriminator. Our novel contribution is to recover the un-

known projection distribution and the image simultaneously

using adversarial learning. To accommodate this, we use

Gumbel-softmax approximation of samples from categorical

distribution to approximate the generator’s loss as a function

of the unknown image and the projection distribution. Our

approach can be generalized to different inverse problems.

Our simulation results reveal the ability of our method in suc-

cessfully recovering the image and the projection distribution

in various settings.

Index Terms— Tomographic reconstruction, adversarial

learning, unsupervised learning, gumbel-softmax, categorical

distribution, computed tomography

1. INTRODUCTION

X-ray computed tomography (CT) is a popular imaging tech-

nique that allows for non-invasive examination of patients in

medical/clinical settings. In a CT setup, the measurements,

i.e. projections, are modeled as the line integrals of the un-

derlying 2D object along different angles. The ultimate goal

in CT reconstruction is to recover the 2D object given a large

set of noisy projections.

If the projection angles are known, the tomographic

reconstruction problem is often solved via Filtered Back-

projection (FBP), direct Fourier methods [1] or formulated as

a regularized optimization problem [2]. However, the knowl-

edge of the projection angles is not always available or it

Fig. 1. An illustration of our pipeline.

might be erroneous, which adversely affects the quality of the

reconstruction. To account for the uncertainty in the projec-

tion angles, iterative methods that solve for the 2D image and

the projection angles in alternating steps are proposed in [3].

While proven effective, these methods are computationally

expensive and sensitive to initialization.

Recently, the use of deep learning (DL) approaches for

tomographic reconstruction has surged. DL-based CT recon-

struction methods in sparse-view regimes learn either a map-

ping from the sinograms to the image domain [4, 5] or a de-

noiser that reduces the artifacts from the initial FBP recon-

structed image from the sinogram [6, 7, 8, 9, 10, 11]. Fur-

thermore, DL-based sinogram denoising or completion is pro-

posed in [12, 13]. Solving the optimization formulation of to-

mographic reconstruction along the gradient descent updates

with machine learning components is suggested in [14, 15].

While these methods rely on the knowledge of the projec-

tion angles, they also require large paired training sets to learn

from. However, here we address a more challenging problem

where the projection angles are unknown in advance.

To overcome the challenges for unknown view CT re-

construction, we propose UVTomo-GAN, an unsupervised

adversarial learning based approach for tomographic recon-

struction with unknown projection angles. Our method is un-

supervised, thus there is no need for large paired training sets.

Our approach benefits from the proven potential of generative

adversarial networks (GAN) [16] to recover the image and

projection angle distribution that match the given projection

measurements in a distribution sense. Our approach is mainly

inspired by CryoGAN [17]. Unlike CryoGAN, we have a

more challenging setting, as we assume that the distribution
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of the projection angles is unknown. Therefore, we seek to

recover this distribution alongside the image. We show that

the original generator’s loss involves sampling from the pro-

jection angles distribution which is non-differentiable. To al-

low for back-propagation through this non-differentiable op-

erator, we alter the training loss at the generator side using

gumbel-softmax approximation of samples from a categori-

cal distribution [18]. Our proposed idea is general and can

be applied to a wide range of inverse problems with similar

setups. Our results confirm the potential of our method in un-

known view tomographic reconstruction task under different

noise regimes. Our implementation is available at https:

//github.com/MonaZI/UVTomogan.

2. PROJECTION FORMATION MODEL

We assume the projection formation model for X-ray CT as,

ξℓ = PθℓI + εℓ, ℓ ∈ {1, 2, ..., L} (1)

where I : R2 → R is an unknown 2D compactly supported

image we wish to estimate. Pθℓ denotes the tomographic pro-

jection operator that takes the line integral along the direction

specified by θℓ ∈ [0, π], i.e.

(PθℓI)(x) =

∞∫

−∞

I(RT
θℓ
x)dy (2)

where x = [x, y]T represents the 2D Cartesian coordinates

and Rθℓ is the 2D rotation matrix specified by angle θℓ.
Here, we assume that {θℓ}

L
ℓ=1

are unknown and are ran-

domly drawn from an unknown distribution p. Finally, the

discretized projections are contaminated by additive white

Gaussian noise εℓ with zero mean and variance σ2. An unbi-

ased estimator of σ can be obtained from the variance of the

projection lines but here we assume that σ is known.

In this paper, our goal is to recover the underlying image I
and the unknown distribution of the projection angles p, given

a large set of noisy projection lines, i.e. {ξℓ}
L
ℓ=1

.

3. METHOD

Our approach involves recovering I and p such that the distri-

bution of the projection lines generated from I and p matches

the distribution of the real projection lines. To this end, we

adopt an adversarial learning framework, illustrated in Fig. 1.

Our adversarial learning approach consists of a discrimi-

nator Dφ and a generator G. Unlike classic GAN models, we

replace the generator G by the a-priori known forward model

defined in (1). The generator’s goal is to output projection

lines that match the distribution of the real projection dataset

{ξℓreal}
L
ℓ=1

and fool the discriminator. For our model, the un-

knowns we seek to estimate at the generator side are the image

I and the projection angle distribution p. On the other hand,

the discriminator Dφ, parameterized by φ, tries to distinguish

between real and fake projections.
Similar to [17], we choose Wasserstein GAN [19] with

gradient penalty (WGAN-GP) [20]. Our loss function and
the mini-max objective for I , p and φ are defined as,

Algorithm 1 UVTomo-GAN

Require: αφ, αI , αp: learning rates for φ, I and p. ndisc: the

number of iterations of the discriminator (critic) per generator

iteration. γI
TV , γI

ℓ2
, γp

TV , γp
ℓ2

: the weights of total variation

and ℓ2-regularizations for I and p.

Require: Initialize I randomly and p with Unif(0, π).
Output: Estimates I and p given {ξreal

ℓ }Lℓ=1
.

1: while φ has not converged do

2: for t = 0, ..., ndisc do

3: Sample a batch from real data, {ξbreal}
B
b=1

4: Sample a batch of simulated projections using es-

timated I and p, i.e. {ξbsyn}
B
b=1

where ξbsyn = PθI + εb,

εb ∼ N (0, σ)
5: Generate interpolated samples {ξbint}

B
b=1

, ξbint =
α ξbreal + (1− α) ξbsyn with α ∼ Unif(0, 1)

6: Update the discriminator using gradient ascent

steps using the gradient of (3) with respect to φ.

7: end for

8: Sample a batch of {ri,b}
B
b=1

using (7)
9: Update I and p using gradient descent steps by taking

the gradients of the following with respect to I and p,

L(I, p) = LG(I, p) + γ
I
TV TV(I) + γ

I
ℓ2

‖I‖
2

+ γ
p
TV

TV(p) + γ
p
ℓ2

‖p‖
2

10: end while

L(I, p, φ)=

B∑

b=1

Dφ(ξ
b
real)−Dφ(ξ

b
syn)+λ

(
‖∇ξDφ(ξ

b
int)‖−1

)
2

(3)

Î , p̂ = argmin
I,p

max
φ

L(I, p, φ), (4)

where L denotes the loss as a function of I , p and φ. B
and b denote the batch size and the index of a sample in the

batch respectively. Also, ξreal mark the real projections while

ξsyn are the synthetic projections from the estimated image Î

and projection distribution p̂ with ξsyn = Pθ Î+ε, θ ∼ p̂ and

ε ∼ N (0, σ). Note that the last term in (3) is the gradient

penalty with weight λ and roots from the Liptschitz conti-

nuity constraint in a WGAN setup. We use ξint to denote a

linearly interpolated sample between a real and a synthetic

projection line, i.e. ξint =α ξreal+(1−α) ξsim, α∼Unif(0, 1).
Note that (4) is a min-max problem. We optimize (4) by alter-

nating updates between φ and the generator’s variables, i.e. I
and p, based on the associated gradients.

Given Dφ, the loss that is optimized at the generator is,

LG(I, p) = −
B∑

b=1

Dφ(PθbI + εb), θb ∼ p. (5)

Notice that (5) is a differentiable function with respect to I .

However, it involves sampling θb based on the distribution p,

which is non-differentiable with respect to p. Thus, here the

main question that we ask is: what is an alternative approxi-

mation for (5), which is a differentiable function of p?

To answer this question, we first discretize the support

of the projection angles, i.e. [0, π], uniformly into Nθ bins.

1813

Authorized licensed use limited to: University of Illinois. Downloaded on August 16,2021 at 18:05:56 UTC from IEEE Xplore.  Restrictions apply. 



0

0.5

1

Phantom

0
0.2
0.4
0.6
0.8

Lung

Fig. 2. Examples of clean (red) and noisy (blue) projection

lines for the experiments with SNR = 1 in Fig. 4.
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Fig. 3. Comparison between the ground truth sample distri-

bution of the projection angles (red) and the one estimated by

our method (blue). The setting of these experiments are the

same as the ones in Fig. 4.

Therefore, p becomes a probability mass function (PMF), rep-

resented by a vector of length Nθ where
Nθ∑
i=1

pi = 1, and

pi ≥ 0, ∀i. This discretization has made the distribution over

the projection angles discrete or categorical. In other words,

the sampled projection angles from p can only belong to Nθ

discrete categories. This allows us to approximate (5) using

the notions of gumbel-softmax distribution [18] as follows,

LG(I, p) ≈ −
B∑

b=1

Nθ∑

i=1

ri,bDφ(PθiI + εb), (6)

with

ri,b=
exp ((gb,i + log(pi))/τ)

Nθ∑
j=1

exp ((gb,j+log(pj))/τ)

, gb,i∼Gumbel(0, 1) (7)

where τ is the softmax temperature factor. As τ → 0,

ri,b → one-hot (argmaxi[gb,i+log(pi)]). Furthermore, sam-

ples from the Gumbel(0, 1) distribution are obtained by draw-

ing u ∼ Unif(0, 1), g=− log(− log(u)) [18]. Note that due

to the reparametrization trick applied in (6), the approximated

generator’s loss has a tangible gradient with respect to p.

We present the pseudo-code for UVTomo-GAN in Alg. 1.

In all our experiments, we use a batch-size of B = 50. We

have three different learning rates for the discriminator, image

and the PMF denoted by αφ, αI and αp. We reduce the learn-

ing rates by a factor of 0.9, with different schedules for differ-

ent learning rates. We use SGD as the optimizers for the dis-

criminator and the image with a momentum of 0.9 and update

the PMF using gradient descent steps. We clip the gradients

of the discriminator and the image by 1 and 10 respectively

and normalize the gradients of the PMF. Following common

practice, we train the discriminator ndisc = 4 times per up-

dates of I and p. We discretize the domain of the projection

angle, i.e. [0, π], by roughly 2d equal-sized bins, where d is

the image size.

Due to the structure of the underlying images, we add ℓ2
and TV regularization terms for the image, with γI

ℓ2
and γI

TV

weights. Furthermore, we assume that the unknown PMF is

a piece-wise smooth function of projection angles (which is a

valid assumption especially in single particle analysis in cryo-

electron microscopy [21]), therefore adding ℓ2 and TV regu-

larization terms for the PMF with γp
ℓ2

and γp
TV weights.

Our default architecture of the discriminator consists of

five fully connected (FC) layers with 2048, 1024, 512, 256
and 1 output sizes. We choose ReLU [22] as the activation

functions. To impose the non-negativity constraint over the

image, we set I to be the output of a ReLU layer. In addi-

tion, to enforce the PMF to have non-negative values while

summing up to one, we set it to be the output of a Softmax

layer. Our implementation is in PyTorch and we use Astra-

toolbox [23] to define the tomographic projection operator.

4. EXPERIMENTAL RESULTS

We use two different images, a Shepp-Logan phantom and

a biomedical image of lungs of size 64 × 64 in our experi-

ments. We refer to these images as phantom and lung images

throughout this section. We discretize the projection angle do-

main [0, π] with 120 equal-sized bins and generate a random

piece-wise smooth p. We use this PMF to generate the projec-

tion dataset following (1). We test our approach on a no noise

regime (i.e. σ = 0) and a noisy case where the signal-to-noise

(SNR) ratio for the projection lines is 1. For experiments with

noisy phantom image, we use a smaller discriminator network

with 512, 256, 128, 64 and 1 as it leads to improved recon-

struction compared to the default architecture. For all experi-

ments the number of projection lines L = 20, 000. To assess

the quality of reconstruction, we use peak signal to noise ra-

tio (PSNR) and normalized cross correlation (CC). The higher

the value of these metrics, the better the quality of the recon-

struction. We use total variation distance (TV) to evaluate the

quality of the recovered PMF compared to the ground truth.

We compare the results of UVTomo-GAN with unknown

PMF on four baselines, 1) UVTomo-GAN with known PMF,

2) UVTomo-GAN with unknown PMF but fixing it with a

Uniform distribution during training, 3) TV regularized con-

vex optimization, 4) expectation-maximization (EM). In the

first baseline, similar to [17], we assume that the ground truth

PMF of the projection angles is given. Thus, in Alg 1, we

no longer update p (step 9). In the second baseline, we also

do not update the PMF and during training assume that it is

a Uniform distribution. In the third baseline, we assume that

the angles associated to the projection lines are known, so

formulate the reconstruction problem as a TV-regularized op-

timization solved using alternating direction method of multi-

pliers (ADMM) [24] and implement using GlobalBioIm [25].

In the fourth baseline, unlike the third one, we do not know

the projection angles. Thus, we formulate the problem as a
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Fig. 4. Visual comparison of UVTomo-GAN with different baselines. The description of the columns: 1) ground truth image (GT),

2) TV-reqularized reconstruction with known projection angles, 3) UVTomo-GAN with known p, 4) UVTomo-GAN with unknown p, 5)

UVTomo-GAN with unknown p but assumed to be a Uniform distribution, 6) EM initialized with low-pass filtered GT image, 7) EM with

random initialization. The PSNR and CC, comparing the reconstructed images and the GT are provided underneath each image. The first two

rows correspond to no noise experiments while for the last two rows SNR = 1. Examples of projection lines for the noisy experiments are

provided in Fig. 2.

maximum-likelihood estimation and solve it via EM.

Quality of reconstructed image: Figure 4 compares the

results of UVTomo-GAN with unknown PMF against the

ground truth image and the four baselines. Note that the

results of UVTomo-GAN with unknown p closely resem-

bles UVTomo-GAN with known p, both qualitatively and

quantitatively. However, with unknown p, the reconstruction

problem is more challenging. Furthermore, we observe that

with known p, UVTomo-GAN converges faster compared to

the unknown p case. Also, comparing the fourth and fifth

columns in Fig. 4 shows the importance of updating p. While

in the second baseline, the outline of the reconstructed images

are reasonable, they lack accuracy in high-level details.

Note that while the first and third baselines are perform-

ing well on the reconstruction task, they have the advantage

of knowing the projection angles or their distribution. Also,

in our experiments we observed that EM is sensitive to the

initialization. The EM results provided in Fig. 4 sixth column

are initialized with low-pass filtered versions of the ground

truth images. We observed that EM fails in successful de-

tailed reconstruction if initialized poorly (Fig. 4 last column).

Quality of reconstructed PMF: Comparison between the

ground truth distribution of the projection angles and the one

recovered by UVTomo-GAN with unknown PMF is provided

in Fig. 3. Note that the recovered PMF matches the ground

truth distribution, thus proving the ability of our approach to

recover p under different distributions and noise regimes.

5. CONCLUSION

In this paper, we proposed an adversarial learning approach

for the tomographic reconstruction problem. We assumed

neither the projection angles nor their probability distribution

they are drawn from is known a-priori and we addressed the

recovery of this unknown PMF alongside the image from the

projection data. We formulated the reconstruction problem as

a distribution matching problem which is solved via a min-

max game between a discriminator and a generator. While

updating the generator (i.e. the signal and the PMF), to en-

able gradient backpropagation through the sampling operator,

we use gumbel-softmax approximation of samples from cate-

gorical distribution. Numerical results demonstrate the ability

of our approach in accurate recovery of the image and the pro-

jection angle PMF.
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