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ABSTRACT

We prove, under an assumption on the critical points of a real-
valued function, that the symmetric Ising perceptron exhibits the
‘frozen 1-RSB’ structure conjectured by Krauth and Mézard in the
physics literature; that is, typical solutions of the model lie in clus-
ters of vanishing entropy density. Moreover, we prove this in a
very strong form conjectured by Huang, Wong, and Kabashima:
a typical solution of the model is isolated with high probability
and the Hamming distance to all other solutions is linear in the
dimension. The frozen 1-RSB scenario is part of a recent and in-
triguing explanation of the performance of learning algorithms
by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove
this structural result by comparing the symmetric Ising perceptron
model to a planted model and proving a comparison result between
the two models. Our main technical tool towards this comparison
is an inductive argument for the concentration of the logarithm of
number of solutions in the model.
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1 INTRODUCTION

The perceptron model is a simple model of a neural network storing
random patterns. It has been studied in several fields including
information theory [19], statistical physics [23, 24, 29, 37], and
probability theory [28, 38, 39].

There are several variants of the model, grouped into two main
categories: spherical perceptrons in which patterns are N-dimensional
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vectors on the unit sphere and Ising perceptrons in which patterns
are +1 vectors of length N. In each case, we want to understand how
many random patterns can be ‘stored’ by a neural network formed
by taking random synapses J;; and applying a given activation
function. Here we will study the Ising perceptron.

Let 2 = {+1}Y and let {X;};>1 be a sequence of indepen-
dent N-dimensional standard Gaussian vectors'. For a real valued
function ¢, a real number k, and X € RN, define

Hy o (X) = {a ) ((x, a)/«/ﬁ) < K} .

The solution space of the Ising perceptron with Gaussian disorder,
activation function ¢, threshold x, and m constraints is the random
subset of X 7,

m
S =SpuNm = |Hpx(Xi).

i=1

Thus S is a random subset of the Hamming cube X ;. We call the
vectors X; constraint vectors. The constraints depend on the set of
constraint vectors, the activation function ¢, and the threshold .
The classic Ising perceptron corresponds to the choice ¢(x) = x
where the most studied case is k = 0 (e.g. [21, 29]).

1.1 Structure of the Solution Space

We will be concerned with the typical structure of the solution
space S as a function of ¢, k, and the constraint density & := m/N,
as N — oo.

The most basic structural question is whether S is empty or not.
The capacity of the perceptron is defined as the random variable

M¢,K(N) = max{m : SqS,K,N,m #0},

and the critical capacity density

ac,p(x) = inf {a : l}i\r]nﬁil(;lfP(S¢m,N’ laN] =0) = 1}

is the typical constraint density of the capacity.

For densities below the critical capacity density, when the solu-
tion space is typically non-empty, we can ask about its structure,
and how this structure affects the performance of learning algo-
rithms: algorithms that find some solution in S given the instance
defined by X = (X1, ..., Xm).

Basic structural questions include whether solutions appear in
connected clusters or are isolated; and what the typical distance is
from a solution to the next nearest solution. For these structural

!In another variant of the model the constraint vectors X; are given by independent
samples from X r (Bernoulli disorder). While there are significant differences between
the spherical and Ising perceptrons, the choice of Gaussian or Bernoulli disorder is
insignificant for the properties discussed here.
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properties we regard Xy as the Hamming cube endowed with
Hamming distance: for 0,0’ € Iy,
n—{o,0’)
2
The perspective taken in recent work on Ising perceptrons in
both statistical physics and computer science is to view the Ising

perceptron as a random constraint satisfaction problem (CSP): 2 n
is the set of possible solutions, and each random vector X; defines

a constraint ¢ ((X, a)/\/ﬁ) < k on possible solutions ¢ € X . The

critical capacity density a. g is then the satisfiability threshold of
the model.

Just as in the random k-SAT, random k-NAE-SAT, or random
k-XOR-SAT problems, each constraint rules out a constant fraction
of all solutions in X . Where the perceptron differs from these
other models is that in the perceptron each constraint involves all
of the N coordinates, while in the other models each constraint
only involves k, which is held constant as N — co.

Random CSP’s have been studied extensively in computer sci-
ence, statistical physics, probability, and combinatorics since Mitchell,
Selman, and Levesque [32] observed empirically that random k-
SAT formulae at certain densities proved extremely challenging
for widely used SAT solvers. Understanding this phenomenon is a
major ongoing challenge that has led to the development of a new
field of inquiry at the intersection of computer science, physics,
and mathematics.

A key to the current understanding of random CSP’s is under-
standing the typical structure of the solution space at different
constraint densities. A beautifully detailed but non-rigorous picture
was put forth by Krzakala, Montanari, Ricci-Tersenghi, Semerjian,
and Zdeborova [30], based on the cavity method from statistical
physics.

In a paper that transformed the computer science perspective on
random computational problems, Achlioptas and Coja-Oghlan [2]
proved the existence of a ‘clustering threshold’ at which the solution
space of certain random CSP’s breaks apart into exponentially many
clusters separated by linear Hamming distance. They also observed
that this clustering threshold coincides asymptotically with the
threshold at which known efficient search algorithms for these
problems fail.

A further structural property is freezing. Given a solution o, a
variable (or coordinate) is free if flipping that coordinate results
in another solution ¢”’. Variables that are not free are frozen. The
freezing threshold for a random CSP is the threshold at which
typical solutions have a linear number of frozen variables [33, 42].

These two properties — clustering and freezing — are conjec-
tured to be the source of computational hardness in random CSP’s.
Identifying thresholds for the onset of these and other structural
phenomena and rigorously connecting them to the performance of
algorithms have been a main focus of the field of random computa-
tional problems in the last decade.

For the Ising perceptron, the conjectured structural picture looks
strikingly different. Krauth and Mezard [29] conjectured, by means
of the replica method, that at all densities below the critical capacity,
the solution space of the perceptron is dominated by clusters of van-
ishing entropy density (that is, of size €°(")), each cluster separated
from the others by linear Hamming distance. Wong, Kabashima, and

dist(d,0’) = |{i : 0; # o]} =
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Huang [27] and Huang and Kabashima [26] refined these conjec-
tures and posited that in fact typical solution in the Ising perceptron
are completely frozen; that is, all coordinates are frozen and the so-
lutions lie in clusters of size 1, separated from all other solutions by
linear Hamming distance. Thus the Ising perceptron exhibits clus-
tering and freezing in the strongest possible form throughout the
entire satisfiability regime. Based on the current conjectural under-
standing of random CSP’s (see e.g. [44]), one might venture a guess
that finding a solution in the Ising perceptron is computationally
hard at all positive densities.

However, this theory is at odds with other work in physics on
learning algorithms for the perceptron. Braunstein and Zecchina [15]
observed empirically that a simple message-passing algorithm is
able to find solutions at positive densities in the Ising perceptron
(further algorithms followed in [6, 8]). Attempting to reconcile this
apparent contradiction between the theory and empirical obser-
vations, Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina [10]
conjectured that these successful learning algorithms were in fact
finding solutions belonging to rare clusters of positive entropy den-
sity. That is, although a 1 — o(1) fraction of solutions belong to
isolated, frozen clusters, an exponentially small fractions of solu-
tions belong to clusters that are exponentially large; strikingly, the
authors observed that learning algorithms find solutions in these
rare clusters. Specifically, the solutions that contribute to the dom-
inant portion of the partition function (number of solutions) and
determine the equilibrium properties of the model are completely
distinct from those solutions that efficient algorithms find. This
work was followed by the proposal of several different algorithms
to target these subdominant clusters [7, 11].

In [5], a symmetric Ising perceptron, with activation function
¢(x) = |x|, was studied as a model conjectured to exhibit the same
structural and algorithmic properties, but more amenable to mathe-
matical analysis. Baldassi, Della Vecchia, Lucibello, and Zecchina [9]
confirmed that on the level of the physics predictions this model
has the same qualitative behavior as the Ising perceptron with
activation function ¢(x) = x.

In summary, the Ising perceptron, and its symmetric variants, are
conjectured to exhibit ‘frozen 1-RSB behavior’ at all positive densi-
ties below the critical capacity density. The current understanding
of the link between clustering, freezing, and the performance of
algorithms would suggest that finding a solution in these models
is therefore intractable . This, however, is seemingly in contradic-
tion with empirical observations, and one hypothesis suggests that
learning algorithms find exponentially rare solutions with atypical
structural properties.

Resolving these questions is a pressing problem since the hy-
pothesis about subdominant clusters calls into question the link
between the equilibrium properties of these models and algorith-
mic tractability. In this work, we take a first step in addressing this
problem rigorously by establishing the frozen 1-RSB picture for the
symmetric Ising perceptron (Theorem 1 below), under an assump-
tion on the critical points of a real-valued function (Assumption 1).

1.2 Previous Results

There are few rigorous results on the Ising perceptron, and most
are concerned with bounds on the critical capacity.
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For the classic Ising perceptron Krauth and Mézard [29] pre-
dicted, using the replica method, that a.(x) = axpm(k) for a com-
plicated but explicit function axy (with agp(0) ~ .83). Following
some previous bounds of Kim and Roche and Talagrand [28, 38],
Ding and Sun [21] recently proved that ac(x) > axm(x) using a
sophisticated form of the second-moment method guided by the
Thouless—Anderson-Palmer (TAP) equations [40]. Their result as-
sumes a technical condition on a certain real-valued function, akin
to Assumption 1 below.

Much of the technical difficulty of [21] comes from the asymme-
try inherent in the activation function ¢(x) = x; this necessitates
a conditioning argument and the sophisticated second-moment
calculation. On the other hand, Aubin, Perkins, and Zdeborova [5]
considered two symmetric activation functions: ¢,(x) = |x| and
¢u(x) = —|x|, which they called the rectangular and ‘v’ activa-
tion functions respectively. Studying symmetric constraints has a
long history in the random CSP literature: the random k-NAE-SAT
model is a symmetric variant of the random k-SAT model. While
the qualitative properties of the two models are expected to be
very similar, the symmetric model is often more amenable to rig-
orous analysis, and thus a clearer understanding can be obtained
(see e.g., [14, 20, 36] for recent work on the k-NAE-SAT model).
Studying symmetric perceptrons allows us to prove stronger and
more detailed results than are currently attainable for the classic
perceptron, but the phenomena studied are expected to be universal.

Aubin, Perkins, and Zdeborova [5] determine the critical capacity
density for the symmetric perceptron with rectangular activation
function:

log 2

log p(x)

where p(x) = P(|Z| < ) for a standard Gaussian random variable
Z. This result, like that of [21], is contingent on an assumption
about a certain real-valued function. This function will also prove
useful in our work. Let H(f) = —flog f — (1 — ) log(1 — p) be the
Shannon entropy function (all logarithms in this paper are base e)
and let

ar (k) = —

qx(P) = P(1Z1] < k. 1Z2] < x) V)

where (Z1, Z3) is a jointly Gaussian vector with means 0, variances
1, and covariance 2 — 1.

AssumPTION 1 ([5]). The function

Fo(P) = H(B) + alog qx(B),

has a single critical point for § € (0,1/2) whenever F}/(1/2) < 0.

REMARK 1. We (and the authors of [5]) have plotted Fy () for
many choices of @ and k and in all instances the function has the
shape depicted in Figure 1, consistent with Assumption 1. We believe
a proof of the assumption might be possible adapting the methods
of [4, Proof of Lemma 3].

Xu [41] proved a general sharp threshold result (an analogue of
Friedgut’s sharp threshold result for random graphs and CSP’s [22]),
which, combined with [5], gives a sharp threshold for the existence
of solutions: for any ¢ > 0,

P(Sqﬁr,K,N(ar,chs)N =0)—> 1lasN — oo,
P(Sqﬁr,rc,N(ar,c—s)N =0) > 0as N — .
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Both statements hold also for the u-function in a range of k values,
and the results of [21, 41] prove that the second statement holds for
the classic perceptron. Proving the matching upper bound on the
critical capacity for the classic perceptron remains a challenging
open problem.

Baldassi, Della Vecchia, Lucibello, and Zecchina [9] used the
second-moment method to show the existence of pairs of solutions
at arbitrary distances in the symmetric Ising perceptron.

1.3 Main Results

We will study properties of typical solutions in the symmetric Ising
perceptron (with the rectangular activation function @(x) = |x|).
We now specialize and simplify the notation from above.

For X € RN and x > 0, define

He(X) = {0 € Zn : [{X,0)| < kVN}.
Let {X;}i>1 be a sequence of i.i.d. N-dimensional standard Gaus-
sians, and define the solution space

laN]|
$=Sa(N)= ()] He(Xp). 2)
i=1

The critical capacity density, determined in [5], is a; = ac(x) =
—log 2/log p(x).

The main result of this paper confirms the frozen 1-RSB scenario
in the symmetric Ising perceptron: typical solutions are completely
frozen with high probability for & < a.. Let

Be = Be(x, @) = p € (0,1/2) : F(P) — alogp(x) =0.  (3)

See Figure 1 for a depiction of .. We show in Lemma 5 that for
a < ag, Pe > 0 exists and is uniquely defined.

a=1.69

a=1381

F,(p) — alog p(k)

-0.04 |

Figure 1: Fy(f) — ap(x) plotted for a = {1.69,1.75,1.81} and
k = 1. The dots mark f, for the three values of «.

THEOREM 1. Letk > 0 and @ < (k). Let o be uniformly sampled
from S conditioned on the event S # (). Under Assumption 1, for any

d €(0, Be),
{0’ € S : dist(s,0") < (Bc = 8)N} ={o}.

with probability 1 — o(1) as as N — co. In particular, o is completely
frozen with probability 1 — o(1).
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Note that o is selected according to two sources of randomness:
the randomness of the perceptron instance X and the random choice
of o from S.

The next result shows that the logarithm of the number of num-
ber of solutions in the rectangular Ising perceptron is tightly con-
centrated below the critical density.

THEOREM 2. Under Assumption 1, fora < a.

log |S| log N

= log 2+a 10gp(1<)+O]p( ) as N — oo in probability .

In particular, for @ < ac, S is non-empty with probability 1 — o(1).

The second statement of the Theorem 2 proves that the symmet-
ric Ising perceptron undergoes a sharp satisfiability phase transition
at o, answering an open question from [5] (where the complemen-
tary statement that for « > ac, S = 0 with high probability is
proved). This could also be proved by adapting the sharp threshold
result of [41] to the symmetric perceptron.

1.4 Overview of the Techniques

We study the properties of a typical solution drawn from S by way
of the planted model: the experiment of first selecting a uniformly
random solution from X 5y, then choosing a random configuration of
constraints consistent with this solution. Planted models have been
studied extensively in the random CSP literature and beyond. They
are used as a toy model for statistical inference: e.g. the ‘teacher-
student model’ [43] or the stochastic block model [1]. They are used
to understand the condensation threshold in random CSP’s [13, 16—
18]. They are used to understand the structure of the solution space
in random CSP’s [2, 3, 33, 34].

Given N,m € N, k > 0, and following [2], we define two prob-
ability distributions on pairs (6*,X) € =y x (RN)™ of solutions
and configurations of m constraint vectors.

In the random model we:

(1) Sample m i.i.d. N-dimensional standard Gaussian constraint
vectors X = (Xi,...,Xp,), conditioned on the event that
S(X) = N2, He(X;) # 0.
(2) Sample ¢* uniformly at random from S.
We denote the law of the random model with Py, E; to distinguish
the law from both the unconditional perceptron model and the
planted model below. The random model is simply the experiment
of selecting a uniformly random solution from the symmetric Ising
perceptron conditioned on satisfiability.

In the planted model we:

(1) Sample o* uniformly at random from X .

(2) Sample a configuration of m ii.d. constraint vectors X =
(X1,...Xm), with each X; distributed as a standard
N-dimensional Gaussian vector conditioned on the event
that o™ € Hy(X;).

We denote the law of the planted model with Py}, Ep).

The key to using the planted model to understand the original
model is to show that at low enough constraint densities, the two
distributions on (¢, X) are close. Proving that the distributions are
close, as we do below in Lemma 19, amounts to proving that the
number of solutions, |S|, is typically not too far from its expectation,
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E|S|. The better concentration of |S| one can prove, the more one
can deduce about the original model from the planted model. In [2]
it is shown (in the case of g-colorings of a random graph) that if
log |S| = log E|S| + o(N), then events that occur with probability
at most exp(—0(N)) in the planted model occur with probability
o(1) as N — oo in the random model. This notion of closeness
is ‘quiet planting’ [31] and it suffices to prove some structural
results on the solution spaces such as clustering [2]. On the other
hand, much stronger notions of closeness have been proved: ‘silent
planting’ [12] which implies the two distributions are mutually
contiguous: any event with probability o(1) in the planted model
has probability o(1) in the random model. This has been used to
prove stronger structural results [33]. Proving contiguity requires
much stronger concentration of log |S|. A very general result on
the contiguity of the planted and random model for symmetric
CSP’s [16] involves a rigorous implementation of the cavity method
and the small subgraph conditioning method. In the setting of
the perceptron, neither of these tools exist and so we must prove
concetration via another route.

We prove Theorem 1 in three steps.

In Section 2, we prove that the planted solution is isolated and
the next nearest solution is at linear Hamming distance with high
probability in the planted model (Lemma 6).

In Section 3 we prove Theorem 2, showing that for ¢ < a,
the logarithm of the number of solutions in the random model
is concentrated around the logarithm of the expected number of
solutions. To the best of our knowledge, our approach to proving
concentration in this way is new, and we expect the technique to
have further applications.

In Section 4 we transfer our results about the planted model to the
random model by showing that events that occur with probability
at most N~() in the planted model occur with probability o(1) in
the standard model (Lemma 19). This relies on the concentration
properties of the logarithm of the number of solutions.

1.5 Extensions and Future Work

Both Theorem 1 and Theorem 2 can be extended verbatim to the u-
function Ising perceptron studied in [5], for k € (0, .817) (the same
range of k for which the second-moment method works there).

The main open problem in this area is to resolve the concep-
tual dilemma described in Section 1.1 and answer the questions
raised in [10]. Are there efficient learning algorithms that always
find out-of-equilibrium solutions in subdominant clusters? This
would raise a serious challenge to the belief that an understanding
of the associated equilibrium statistical mechanics model (on the
level of the free energy) can explain computational tractability or
intractability.

Concretely, now that we have verified the frozen 1-RSB sce-
nario, we can ask for provably efficient learning algorithms for the
symmetric Ising perceptron.

QUESTION 3. Is there a polynomial-time algorithm that, with prob-
ability 1 — o(1), finds a solution to the symmetric Ising perceptron for
some density a € (0,ac)?

Alternatively, one could leverage the structure results we have
proved here and rule out some class of learning algorithms.
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We leave the following additional open problems for future work.

1. Prove that the classic perceptron with activation function
¢(x) = x exhibits the frozen 1-RSB property. It is not at all clear
how to extend the method of this paper to this case. As discussed
in [16, Sec. 2.4], for asymmetric random CSP’s, like the random
k-SAT model, the planted model, at least in its straightforward
implementation, is not useful to compare to the random model
(in particular it is not contiguous with the random model at any
positive density). We expect the same with the classic perceptron,
and so our strategy of arguing via the planted model will not work.

2. Prove full contiguity between the random and planted models
for a < a;. Our comparison result (Lemma 19) suffices for our
purposes here, but it is natural to ask for more (as is the case for a
large class of symmetric random CSP’s [16]).

CoNJECTURE 4. For a < a., the random and planted models of
the symmetric Ising perceptron are mutually contiguous. That is, if
Pp1(A) = o(1) then Pr(A) = o(1) and vice versa.

2 THE PLANTED MODEL
Consider the planted model with planted solution ¢* and con-
straints X = (X1, X2, . . ., Xin). Define S(X) = ﬂLaNJ Hi(X;) as in

i>1
(2). Recall the definition of . from (3). We show that S exists and

is unique for a € (0, a;).

LEMMA 5. Under Assumption 1, for a € (0, ac), there exists a
unique f € (0,1/2) so that

Fa(p) — alogp(k) = 0.
Also, for any § € (0, B¢ /2),

Fo(B) — alogp(x) < 0. (4)

sup
S<f<fc—8

ProoF. Let G(f) = Fu(f) — alog p(x). Then since g, (0) = p(k)
and H(0) = 0, we have G(0) = 0. As observed in [5], G’(0) = —oc0
and so for some ¢ > 0, G(x) < 0 for x € (0,¢). Moreover, since
a < a¢, G(1/2) > 0, and so by continuity there exists € (0,1/2)
with G(f) = 0. By Assumption 1 this § is unique. In addition,
Assumption 1 implies that G(f) is first strictly decreasing and then
strictly increasing on f € (0,1/2). This gives (4). O

The following result says the planted solution is completely
frozen with high probability in the planted model.

LEMMA 6. Under Assumption 1, for any a € (0, a.) and any d €
(0, Bc), there exists a constant cg > 0 such that

Ppl({a €S :dist(o,0") < (fc —6)N} # {O'*}) < exp {—c(ﬂ/N} .
Before proving Lemma 6 we introduce some notation. Let g(m) =

P(o, 0’ € Hc(X)), where 0,0’ € 3 are two arbitrary vectors with
(6,0’) = m and X is a standard N-dimensional Gaussian vector.

Then
where g is defined in (1).
Lemma 6 will follow from the following results.

m

q(m) = qx(%
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LEMMA 7. There exists a constant € > 0 sufficiently small such
that for allm < eN,

log Epill{o € S : (0. 0™)| = N = m}[] < —cVmN .

ProOF. Let o be an vector in X 5. Note that

2

o:{0,00)=N-m

- (N)(M
(6)

7\ p)
We claim that uniformly over all |[m| < eN with sufficiently small
€,

Epll{o €S: (0,0") = N - m}]]

P(c € S|op€S)

-

q(N —m) < p(k) —cym/N

Provided with (7), we have

(7)

(6) < exp {mlog(zN/m)/z - cm} < exp { - c\/ﬁ} .

Hence Lemma 7 follows. Now it remains to prove (7). To this end,
let 1 be the all 1’s vector of length N and 1,, be an N-dimensional
vector with the first (N — m) coordinates +1 and the remaining m
coordinates —1. We write

p(x) = q(N = m) =P(|(1, X)| < kVN, [(1m,X)| > kVN)

N-TF N
>P Z X; € (xVN, kVN + vm), Z X; € (=3vm, —2v/m)
i i=N-12

1 i=N-"3+1
VAR ES N , K N +\/T

\fN—% \N-Z N-#Z
Vm/N

where Zj, Z; are two independent standard Gaussian random vari-
ables. This proves (7). o

i=
1

,Zy € (-3V2, —zﬁ))

=P
>c

LEmMA 8. For any e > 0, uniformly in |m| < N — €N,
1 m
L

2 2N)_alogp('c)”

®)

I\%iil)lm‘%loglﬁpln{a €S: (o, 0"y =m}|| - [F(
=0.

Proor. Note that

. N\ (gm)
E,|{oc €S:{o,07) =m} :( )( ) 9)
pl H ” N;—m p(K)
and that for any € > 0, uniformly in eN < k < N — €N,
Llog (¥
2l NS
H(k/N)
Combining these with (5) yields (8). O

Proof of Lemma 6. Let § € (0, §;). It suffices to show that
Epl{o € $: 0 < dist(o, ") < (B — 5)N}| < exp {—c(;\/ﬁ} .

This bound follows from Lemmas 7 and 8 and (4).
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3 CONCENTRATION OF THE NUMBER OF
SOLUTIONS

Fixing N, consider the symmetric perceptron as a discrete-time

stochastic process with one constraint vector added at each time

step. The solution space at time ¢ € N is defined as

t
St = | He(Xi)
i=1

which is the intersection of t random rectangles.
The following strengthening of Theorem 2 is the main result of
this section.

THEOREM 9. Under Assumption 1, for every € > 0 there exists
M = M(e) such that for any a < ac,

. IS¢
limsup sup P |lo ( ‘ZMIO N|<e. (10)
N oo 012N ( & E[|5t|]) &

Theorem 2 follows immediately since % logE|S;| = log2 +

% log p(x).

Theorem 9 says that the cardinality of the solution space will
only deviate from its expectation slightly after adding N random
constraints. To prove this theorem, we will look at the change in
this deviation at each time when a new constraint is added. Write

t

15t) 1Sil/1Si-1]
=] = I |
0 =og g3 2.t (i)
Note that E[|S;|]/E[|Si-1]] = p(x). Let
S S 0 Y
) ( ISe-1] ).

so that

t

Qt=§;mg1+n). (11)
i=1

Since 0 < |S¢| < |S¢—1], we have that =1 < Y; < (1 — p(x))/p(x);

however, we expect that the Y;’s are very close to zero with high

probability. Hence by a Taylor expansion, as N — oo,

: Y?
Qi =) Vi~ +of1).
i=1

In fact, we will prove in Lemma 11 that Y; is roughly of order N -1/2

provided that S;—; is “regular” (see Definition 10). Thus if the S;’s
are all regular, we expect the second term Z;"ZI\{ Yl.2 be of order O(1).
In addition, notice that (Zfzo Yi)¢>0 is a martingale with respect

to the filtration
Ft = 0(S1,S2, ..., St),

Hence if the S;’s are all regular, we also expect the first term Z?’:]Y Y;
to be of order O(1), and hence Q; = O(1).

t>1.

DEFINITION 10. For eacht > 0, we let (0’51))1‘21 be independent
uniform random samples in Sy and denote Py(-) := P(- | F7), B¢ [] :=
E[- | F¢]. We say S; is regular if

Pi(1(e", o) < C,VNIQ/ +TogN) = 1- N0
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Roughly speaking, S; is regular if two random samples from S;
are almost orthogonal with high probability. Define the stopping
time

tg = inf {¢ > 0 : S is not regular} .
The following lemma says that for regular S;, Y;41 is roughly of
order N~1/2,

LEmMA 11. There exists a constant C > 0 such that for allt > 0,

+log N
1r6>:Pt (|Yt+1| 2 G4 ngx) < Cexp(—x).

By (11), Lemma 11 provides an upper bound on Y41, which can
be used to control the increment of |Q;|. This will be one of the key
ingredients in proving Lemma 12, which gives an upper bound on
|Q¢| for time ¢ before a stopping time defined below.

With C3 > 0 a constant to be determined later in Lemma 18, we
define

“i[+logN
W:Mtzumqugﬂi%—mN,
N (12)

1Q = inf{t >0:|0¢ = (logN)z} ,
and
(13)
LEMMA 12. There exists a constant C > 0 such that forallt > 1,
E[|Q¢ar-1l] < exp(Ct/N)log N . (14)

Lemma 13 says that the stopping time 7 will occur later than time
aN with high probability. Theorem 9 will be a direct consequence
of Lemmas 12 and 13.

T=Ts ATy N1Q.

LEmMA 13. Under Assumption 1, for any a < ac,

lim P(r <aN)=0.
N—-oo

Proof of Theorem 9. By Lemmas 12 and 13, the probability
bound (10) follows from Markov’s inequality. O

3.1 Proof of Lemma 11

In this section, we consider an arbitrary subset A C ¥ and define
the the probability measure P4 under which (o;);>1 are indepen-
dent uniformly random vectors in A.

Lemma 11 follows from the following lemma.

LEMMA 14. There exists constant C, ¢ > 0 depending only on x such
that for all N sufficiently large, all A C X, and oN € R satisfying

84 = Pa((o1.02)| > onVN) < 2N 2, (15)
we have
[He(X) NA| PNX
(B2 ) o

where X is a standard N-dimensional Gaussian vector.
The rest of this section is devoted to prove Lemma 14.

LEmMMA 15. For all N sufficiently large and every B C A C 2, if
we denote

54 =Pa(l{o1,02)| > oNVN) and q=Pa(o1 ¢ B),
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then forall1 < k < 45A

2kda\k
PalEr®) = (0= =)
where
Er(B) (16)
={oi¢BV1<i<k}n
Proor. We will prove the following by induction

2t8 2
PaEr1 | E)2q- T2 for 1<t<—.  (17)
q 454"

First, since P4(E1) = P4(o1 € B) = 1 — g, we see that (17) holds
fort =1.

Next, we suppose (17) is true for t = k with k < W — 1. Since
0.1 is independent of E., we have

PA(Ek+1 | Ex)

k
> Pa(oks1 € B Eg) — ZPA(I(Gi, or+1)l > oN VN | Eg)
i=1

= q—kPA((ok, k1) > oN VN | Eg) .
Also, since (041, o) is independent of E;_; and Ex_; D Ey,
Pa(l(0%, ok+1)| > N VN | Eg)
< Pall(ok. opr )| > ¢nVN} N E )
PA(Eg)

=Pa(|(o1, 0k41)| > onVN) - PIE’?E;;)

By the induction hypothesis
P(Eg-1) _ 1
P(E) — P(Eg |Ek D=

NI'Q

where we used the assumption k < & — 1. Combining with the

previous two inequalities, we get

2ké6
Pa(Egs1 | Ex) 2 q— TA

Hence (17) holds. O

LEMMA 16. For any k > 0 and m € N, there exists constants
¢, C > 0 such that if we let (X;)i>1 be a Gaussian vector with

E[X;]=0, E[X/]=1, [E[X;Xj]| <cem™,
then
P( min |X;| > k) < CP(|X1] > x)™,
1<i<m
P( max |X;| <x) < CP(|X1] < x)™
1<i<m

We omit the proof of Lemma 16 in this extended abstract, and
proceed to prove Lemma 14.

Proof of Lemma 14. We will prove that

|He (X) N A _¢N¥
P Al <p(x) N

The other direction can be proved similarly.

< Cexp(—cx). (18)

{I(ai,aj)l < (pN\/ﬁVl <ij<k,i ;tj}.
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Recall Ef(-) as in (16) and denote

+={(o)k, € A [(oi, o) < oNVN V1<ij<ki#j}.

Then

E[PAEH«X)] = > AITB(o; ¢ HoO) VI <1< k).

(O'l)k EAL
By Lemma 16, we have that for k = [cx o)y 14/N] and all (cr,)l 1€
AJ_
P(o; ¢ He(X),V1 < i < k) < CP(1Z] > ©)F.

Hence
E[Pa(Ex(He(X)))] < CB(Z| > 1)F . (19)
On the other hand, we set
PNX
A= ——.
VN

Then (15) implies A > %4 Therefore, it follows from Lemma 15

that on the event {IPA(cn ¢ He(X) | He(X)) = P(1Z]| > ) + A},
we have

k
Pa(EHc 001 | He(X) > (Pa(or € Ho(X) | He(X) - A/2)
> P(|Z] > k)kekA/2,
Combined with (19), this yields (18). m]

3.2 Proof of Lemma 12
By the definitions (12) and (13), we see that forall0 <i <7 -1,

\/th_1| +logN _ c\/(logN)z +logN
N = N :

lY;l <C

Hence it follows from |log(1 + x) — x| < x? for all x > —3/5 that
tAT-1

) > log(1+1y) ‘ Z Yil+
i=1

Since 7 < 75, Lemma 11 implies

tAT

3 > ovEs ‘ZYI‘ ZY HYenel.
i=1

E[|Qi-1|17>i-1] + log N

E[Yizlrzi] = E[E;- 1[ ]1T>l 1] < c’ N

Therefore, since (Zfﬁf
we have

Yi)¢>1is amartingale and t A7 < 7 < 75,

tAT—1
E‘ > log(1+Yi)| <
i=1

tAT tAT
EZ y? +EZ Y2 +E[Yinc|
i=1 i=1

t
< 215:2 Y175+ 1+E[Yerc]

i=1
tlogN + X1 BlIQinr—ll 2

N ’ p(x)

c’-

bl

where C’ is a constant. Hence

tlog N + X !Z1 E[|Qinr—1l] L
N p(K))

Bl Q:nr1l] < 3¢ (
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We claim that this yields (14). To prove this, we define by := E[|Q1a7—

and for t > 2 define

tlgN+ X!l 1
by = 30 (oL Zizt b —). (20)
N p(x)
Then a straightforward induction argument shows that
bt > E[|Qtar-1l] fort>1. (21)

On the other hand, (20) implies

b _3C,(logN+b;_1 (t-1)logN+XiZ3b; 1 )
' N N px)
_ , logN +bs_q bi—1
=3C ( N 3¢’ ) ‘

This implies

’

¢ -1
by +log N = (l+%)(bt_1+logN)= (1+%) (b1 +10g N).
(22)

Note that So = {1, 1}, Qp = 0 and P(r > 1) = 1. We get by = 0.

Hence Lemma (14) follows from (21) and (22). We complete the
proof of Lemma 12.

3.3 Proof of Lemma 13

LEmMMA 17. Under Assumption 1, there exists a constant Cy such
that for every1 <t < aN,

p (Pt(|<a§’), o\ > C,VNQ; +log N) > N‘“’) < N1

As a result,

P(rs < aN) < N710. (23)

Proor. It follows from (9), Assumption 1, and F”(%) < 0 (see
[5]) that there exists a constant ¢ > 0 such that for any A > 0 and
t>0,

E[|{(01,02) € St : [{o1, 02)| = AVN}] < exp(=cA®)E[|S, [*].

Under Assumption 1, we have E[|S;|?] < CE[|S¢|]? (see [5]). Hence
we have that

[ P(l(al”, 6{)] = AN N)gre

Therefore,
o 5y2
2
/ et (# > /1) da
0 N
SC/ che 7 4 dl
0

<C.

IS¢ |2

< Cexp(—cA?),
ElIs. |2 ] P

< a(” (t)>2

E [ex
N

=E

IS¢ 2
E[1S:112

Hence, there exists a constant C such that

P((o\", a{")| = CYNVQ; + log N) < N1,

which yields the desired result.

1]
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LEMMA 18. There exists a constant C3 > 0 such that

P(ry < 15,7y < aN) < N8

P(|Qrp-1] < (logN)?/2,79 < 15,79 <aN) < N%  (24)

Proor. (11) follows from Lemma 11 and a union bound. Lemma
11 gives
P(|Qrp-1] < (log N)? /2,70 < 15,70 = t +1)
= E[Pr(1Qr +log(1 + Yrr1)| = (log N)*)1|0, | <(log N)2/2, 75 51+1)
<E[Pi(Y;

<N710

< —1/2)1)0, | <(log N /2,75 21+1)

This yields (24).

Proof of Lemma 13. Write

P(r > t) < P(rs < aN) + P(ry < 75,7y < aN)
+P(rg < t,70 = 7,|Qrg-1] < (log N)*/2)
+P(rg < .70 =1.|Qrp-1] = (log N)?/2).
Lemma 18 and (23) give upper bounds on the first three probability
on the right hand. In addition, Lemma 12 and the Markov inequality
yield
P(rg < t,70 = 7, |Qrp-1] = (log N)*/2)
< ((log N /2) ' E[Qinr-1:70 < t, 10 = T, |Qrp-11 > (log N)?/2]
< ((log N)*/2)E[|Qear-11]
< (log N)™V/2.

Combining these bounds yields P(z > t) < 2(log N)_l/z.

4 FROM THE PLANTED MODEL TO THE
RANDOM MODEL

Theorem 1 will follow from Lemma 6 and the following lemma on
the planted model.

LEmMMA 19. Suppose A € {(o,U) : 0 € U C In}, and suppose
a < ac. IfPy((0”,5(X)) € A) < N™™N for some my — oo, then

Pr((c*,5(X)) € A) >0 asN — co.
We start by characterizing the planted distribution.
LEmMMA 20. ForanyN,m > 1, withAC {(o,U):0 € U C IN},

1SX)|

Byi((0".5(X)) € 4) = B; [u(m sxpe 5(x)|] B(S(X) # 0).

We omit the Proof of Lemma 20 in this extended abstract.

Proof of Lemma 19. Theorem 2 implies the event
S
o { S|

1
Es] > > exp{-mn ogN}}
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has probability 1 — o(1). Therefore, as N — oo,

Po((c*,S) € A) < Pr({(a*, S)e A} n G) +P(G)/B(S # 0)

IA

+0(1)

N
exp{my log N}E [1(0*,S)€A B

exp{mn log N}P,1((c", S) € A)/P(S # 0) + o(1)
o(1).

where we used Lemma 20 and Theorem 2. This yields Lemma 19. O

Finally we prove Theorem 1.

ProoF oF THEOREM 1. Let

A={(r,U):{oceU:(o,7) 2 (d: +5)N} # {r}} .
Then Lemma 6 implies that
Po((c*,S(X)) € 4) < exp {—cx/ﬁ}
Combined with Lemma 19, this yields
Pr((07, S(X)) € A) = 0(1),

and thus Theorem 1. ]
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