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ABSTRACT
We prove, under an assumption on the critical points of a real-

valued function, that the symmetric Ising perceptron exhibits the

‘frozen 1-RSB’ structure conjectured by Krauth and Mézard in the

physics literature; that is, typical solutions of the model lie in clus-

ters of vanishing entropy density. Moreover, we prove this in a

very strong form conjectured by Huang, Wong, and Kabashima:

a typical solution of the model is isolated with high probability

and the Hamming distance to all other solutions is linear in the

dimension. The frozen 1-RSB scenario is part of a recent and in-

triguing explanation of the performance of learning algorithms

by Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina. We prove

this structural result by comparing the symmetric Ising perceptron

model to a planted model and proving a comparison result between

the two models. Our main technical tool towards this comparison

is an inductive argument for the concentration of the logarithm of

number of solutions in the model.

CCS CONCEPTS
• Mathematics of computing → Probability and statistics; •
Theory of computation → Randomness, geometry and dis-
crete structures.
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1 INTRODUCTION
The perceptron model is a simple model of a neural network storing

random patterns. It has been studied in several fields including

information theory [19], statistical physics [23, 24, 29, 37], and

probability theory [28, 38, 39].

There are several variants of the model, grouped into two main

categories: spherical perceptrons inwhich patterns areN -dimensional
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vectors on the unit sphere and Ising perceptrons in which patterns

are±1 vectors of lengthN . In each case, we want to understand how

many random patterns can be ‘stored’ by a neural network formed

by taking random synapses Ji j and applying a given activation

function. Here we will study the Ising perceptron.

Let ΣN = {±1}N and let {Xi }i≥1 be a sequence of indepen-

dent N -dimensional standard Gaussian vectors
1
. For a real valued

function ϕ, a real number κ, and X ∈ RN , define

Hϕ,κ (X ) =
{
σ ∈ ΣN : ϕ

(
⟨X ,σ ⟩/

√
N

)
≤ κ

}
.

The solution space of the Ising perceptron with Gaussian disorder,
activation function ϕ, threshold κ, andm constraints is the random

subset of ΣN ,

S = Sϕ,κ ,N ,m =

m⋂
i=1

Hϕ,κ (Xi ) .

Thus S is a random subset of the Hamming cube ΣN . We call the

vectors Xi constraint vectors. The constraints depend on the set of

constraint vectors, the activation function ϕ, and the threshold κ.
The classic Ising perceptron corresponds to the choice ϕ(x) = x
where the most studied case is κ = 0 (e.g. [21, 29]).

1.1 Structure of the Solution Space
We will be concerned with the typical structure of the solution

space S as a function of ϕ,κ, and the constraint density α :=m/N ,

as N → ∞.

The most basic structural question is whether S is empty or not.

The capacity of the perceptron is defined as the random variable

Mϕ,κ (N ) = max{m : Sϕ,κ ,N ,m , ∅} ,

and the critical capacity density

αc ,ϕ (κ) = inf

{
α : lim inf

N→∞
P(Sϕ,κ ,N , ⌊αN ⌋ = ∅) = 1

}
is the typical constraint density of the capacity.

For densities below the critical capacity density, when the solu-

tion space is typically non-empty, we can ask about its structure,

and how this structure affects the performance of learning algo-

rithms: algorithms that find some solution in S given the instance

defined by X = (X1, . . . ,Xm ).

Basic structural questions include whether solutions appear in

connected clusters or are isolated; and what the typical distance is

from a solution to the next nearest solution. For these structural

1
In another variant of the model the constraint vectors Xi are given by independent

samples from ΣN (Bernoulli disorder). While there are significant differences between

the spherical and Ising perceptrons, the choice of Gaussian or Bernoulli disorder is

insignificant for the properties discussed here.
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properties we regard ΣN as the Hamming cube endowed with

Hamming distance: for σ ,σ ′ ∈ ΣN ,

dist(σ ,σ ′) = |{i : σi , σ ′
i }| =

n − ⟨σ ,σ ′⟩

2

.

The perspective taken in recent work on Ising perceptrons in

both statistical physics and computer science is to view the Ising

perceptron as a random constraint satisfaction problem (CSP): ΣN
is the set of possible solutions, and each random vector Xi defines

a constraint ϕ
(
⟨X ,σ ⟩/

√
N

)
≤ κ on possible solutions σ ∈ ΣN . The

critical capacity density αc ,ϕ is then the satisfiability threshold of

the model.

Just as in the random k-SAT, random k-NAE-SAT, or random
k-XOR-SAT problems, each constraint rules out a constant fraction

of all solutions in ΣN . Where the perceptron differs from these

other models is that in the perceptron each constraint involves all

of the N coordinates, while in the other models each constraint

only involves k , which is held constant as N → ∞.

Random CSP’s have been studied extensively in computer sci-

ence, statistical physics, probability, and combinatorics sinceMitchell,

Selman, and Levesque [32] observed empirically that random k-
SAT formulae at certain densities proved extremely challenging

for widely used SAT solvers. Understanding this phenomenon is a

major ongoing challenge that has led to the development of a new

field of inquiry at the intersection of computer science, physics,

and mathematics.

A key to the current understanding of random CSP’s is under-

standing the typical structure of the solution space at different

constraint densities. A beautifully detailed but non-rigorous picture

was put forth by Krzakała, Montanari, Ricci-Tersenghi, Semerjian,

and Zdeborová [30], based on the cavity method from statistical

physics.

In a paper that transformed the computer science perspective on

random computational problems, Achlioptas and Coja-Oghlan [2]

proved the existence of a ‘clustering threshold’ at which the solution

space of certain randomCSP’s breaks apart into exponentially many

clusters separated by linear Hamming distance. They also observed

that this clustering threshold coincides asymptotically with the

threshold at which known efficient search algorithms for these

problems fail.

A further structural property is freezing. Given a solution σ , a
variable (or coordinate) is free if flipping that coordinate results

in another solution σ ′
. Variables that are not free are frozen. The

freezing threshold for a random CSP is the threshold at which

typical solutions have a linear number of frozen variables [33, 42].

These two properties – clustering and freezing – are conjec-

tured to be the source of computational hardness in random CSP’s.

Identifying thresholds for the onset of these and other structural

phenomena and rigorously connecting them to the performance of

algorithms have been a main focus of the field of random computa-

tional problems in the last decade.

For the Ising perceptron, the conjectured structural picture looks

strikingly different. Krauth and Mezard [29] conjectured, by means

of the replica method, that at all densities below the critical capacity,

the solution space of the perceptron is dominated by clusters of van-

ishing entropy density (that is, of size eo(n)), each cluster separated

from the others by linear Hamming distance.Wong, Kabashima, and

Huang [27] and Huang and Kabashima [26] refined these conjec-

tures and posited that in fact typical solution in the Ising perceptron

are completely frozen; that is, all coordinates are frozen and the so-

lutions lie in clusters of size 1, separated from all other solutions by

linear Hamming distance. Thus the Ising perceptron exhibits clus-

tering and freezing in the strongest possible form throughout the

entire satisfiability regime. Based on the current conjectural under-

standing of random CSP’s (see e.g. [44]), one might venture a guess

that finding a solution in the Ising perceptron is computationally

hard at all positive densities.

However, this theory is at odds with other work in physics on

learning algorithms for the perceptron. Braunstein and Zecchina [15]

observed empirically that a simple message-passing algorithm is

able to find solutions at positive densities in the Ising perceptron

(further algorithms followed in [6, 8]). Attempting to reconcile this

apparent contradiction between the theory and empirical obser-

vations, Baldassi, Ingrosso, Lucibello, Saglietti, and Zecchina [10]

conjectured that these successful learning algorithms were in fact

finding solutions belonging to rare clusters of positive entropy den-

sity. That is, although a 1 − o(1) fraction of solutions belong to

isolated, frozen clusters, an exponentially small fractions of solu-

tions belong to clusters that are exponentially large; strikingly, the

authors observed that learning algorithms find solutions in these

rare clusters. Specifically, the solutions that contribute to the dom-

inant portion of the partition function (number of solutions) and

determine the equilibrium properties of the model are completely

distinct from those solutions that efficient algorithms find. This

work was followed by the proposal of several different algorithms

to target these subdominant clusters [7, 11].

In [5], a symmetric Ising perceptron, with activation function

ϕ(x) = |x |, was studied as a model conjectured to exhibit the same

structural and algorithmic properties, but more amenable to mathe-

matical analysis. Baldassi, Della Vecchia, Lucibello, and Zecchina [9]

confirmed that on the level of the physics predictions this model

has the same qualitative behavior as the Ising perceptron with

activation function ϕ(x) = x .
In summary, the Ising perceptron, and its symmetric variants, are

conjectured to exhibit ‘frozen 1-RSB behavior’ at all positive densi-

ties below the critical capacity density. The current understanding

of the link between clustering, freezing, and the performance of

algorithms would suggest that finding a solution in these models

is therefore intractable . This, however, is seemingly in contradic-

tion with empirical observations, and one hypothesis suggests that

learning algorithms find exponentially rare solutions with atypical

structural properties.

Resolving these questions is a pressing problem since the hy-

pothesis about subdominant clusters calls into question the link

between the equilibrium properties of these models and algorith-

mic tractability. In this work, we take a first step in addressing this

problem rigorously by establishing the frozen 1-RSB picture for the

symmetric Ising perceptron (Theorem 1 below), under an assump-

tion on the critical points of a real-valued function (Assumption 1).

1.2 Previous Results
There are few rigorous results on the Ising perceptron, and most

are concerned with bounds on the critical capacity.

1580



Frozen 1-RSB Structure of the Symmetric Ising Perceptron STOC ’21, June 21–25, 2021, Virtual, Italy

For the classic Ising perceptron Krauth and Mézard [29] pre-

dicted, using the replica method, that αc (κ) = αKM(κ) for a com-

plicated but explicit function αKM (with αKM(0) ≈ .83). Following

some previous bounds of Kim and Roche and Talagrand [28, 38],

Ding and Sun [21] recently proved that αc (κ) ≥ αKM(κ) using a

sophisticated form of the second-moment method guided by the

Thouless–Anderson–Palmer (TAP) equations [40]. Their result as-

sumes a technical condition on a certain real-valued function, akin

to Assumption 1 below.

Much of the technical difficulty of [21] comes from the asymme-

try inherent in the activation function ϕ(x) = x ; this necessitates
a conditioning argument and the sophisticated second-moment

calculation. On the other hand, Aubin, Perkins, and Zdeborová [5]

considered two symmetric activation functions: ϕr (x) = |x | and
ϕu (x) = −|x |, which they called the rectangular and ‘u’ activa-

tion functions respectively. Studying symmetric constraints has a

long history in the random CSP literature: the random k-NAE-SAT
model is a symmetric variant of the random k-SAT model. While

the qualitative properties of the two models are expected to be

very similar, the symmetric model is often more amenable to rig-

orous analysis, and thus a clearer understanding can be obtained

(see e.g., [14, 20, 36] for recent work on the k-NAE-SAT model).

Studying symmetric perceptrons allows us to prove stronger and

more detailed results than are currently attainable for the classic

perceptron, but the phenomena studied are expected to be universal.

Aubin, Perkins, and Zdeborová [5] determine the critical capacity

density for the symmetric perceptron with rectangular activation

function:

αr ,c (κ) = −
log 2

logp(κ)

where p(κ) = P(|Z | ≤ κ) for a standard Gaussian random variable

Z . This result, like that of [21], is contingent on an assumption

about a certain real-valued function. This function will also prove

useful in our work. Let H (β) = −β log β − (1 − β) log(1 − β) be the
Shannon entropy function (all logarithms in this paper are base e)
and let

qκ (β) = P(|Z1 | ≤ κ, |Z2 | ≤ κ) (1)

where (Z1,Z2) is a jointly Gaussian vector with means 0, variances

1, and covariance 2β − 1.

Assumption 1 ([5]). The function

Fα (β) = H (β) + α logqκ (β) ,

has a single critical point for β ∈ (0, 1/2) whenever F ′′α (1/2) < 0.

Remark 1. We (and the authors of [5]) have plotted Fα (β) for
many choices of α and κ and in all instances the function has the
shape depicted in Figure 1, consistent with Assumption 1. We believe
a proof of the assumption might be possible adapting the methods
of [4, Proof of Lemma 3].

Xu [41] proved a general sharp threshold result (an analogue of

Friedgut’s sharp threshold result for random graphs and CSP’s [22]),

which, combined with [5], gives a sharp threshold for the existence

of solutions: for any ε > 0,

P(Sϕr ,κ ,N (αr ,c+ε )N = ∅) → 1 as N → ∞ ,

P(Sϕr ,κ ,N (αr ,c−ε )N = ∅) → 0 as N → ∞ .

Both statements hold also for the u-function in a range of κ values,

and the results of [21, 41] prove that the second statement holds for

the classic perceptron. Proving the matching upper bound on the

critical capacity for the classic perceptron remains a challenging

open problem.

Baldassi, Della Vecchia, Lucibello, and Zecchina [9] used the

second-moment method to show the existence of pairs of solutions

at arbitrary distances in the symmetric Ising perceptron.

1.3 Main Results
We will study properties of typical solutions in the symmetric Ising

perceptron (with the rectangular activation function ϕ(x) = |x |).
We now specialize and simplify the notation from above.

For X ∈ RN and κ > 0, define

Hκ (X ) := {σ ∈ ΣN : |⟨X ,σ ⟩| ≤ κ
√
N } .

Let {Xi }i≥1 be a sequence of i.i.d. N -dimensional standard Gaus-

sians, and define the solution space

S = Sα (N ) =

⌊αN ⌋⋂
i=1

Hκ (Xi ) . (2)

The critical capacity density, determined in [5], is αc = αc (κ) =
− log 2/logp(κ).

The main result of this paper confirms the frozen 1-RSB scenario

in the symmetric Ising perceptron: typical solutions are completely

frozen with high probability for α < αc . Let

βc = βc (κ,α) = β ∈ (0, 1/2) : F (β) − α logp(κ) = 0 . (3)

See Figure 1 for a depiction of βc . We show in Lemma 5 that for

α < αc , βc > 0 exists and is uniquely defined.

Figure 1: Fα (β) − αp(κ) plotted for α = {1.69, 1.75, 1.81} and
κ = 1. The dots mark βc for the three values of α .

Theorem 1. Letκ > 0 and α < αc (κ). Let σ be uniformly sampled
from S conditioned on the event S , ∅. Under Assumption 1, for any
δ ∈ (0, βc ),

{σ ′ ∈ S : dist(σ ,σ ′) ≤ (βc − δ )N } = {σ } .

with probability 1 − o(1) as as N → ∞. In particular, σ is completely
frozen with probability 1 − o(1).
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Note that σ is selected according to two sources of randomness:

the randomness of the perceptron instanceX and the random choice

of σ from S .
The next result shows that the logarithm of the number of num-

ber of solutions in the rectangular Ising perceptron is tightly con-

centrated below the critical density.

Theorem 2. Under Assumption 1, for α < αc

log |S |

N
= log 2+α logp(κ)+OP

(
logN

N

)
as N → ∞ in probability .

In particular, for α < αc , S is non-empty with probability 1 − o(1).

The second statement of the Theorem 2 proves that the symmet-

ric Ising perceptron undergoes a sharp satisfiability phase transition

at αc , answering an open question from [5] (where the complemen-

tary statement that for α > αc , S = ∅ with high probability is

proved). This could also be proved by adapting the sharp threshold

result of [41] to the symmetric perceptron.

1.4 Overview of the Techniques
We study the properties of a typical solution drawn from S by way

of the planted model: the experiment of first selecting a uniformly

random solution from ΣN , then choosing a random configuration of

constraints consistent with this solution. Planted models have been

studied extensively in the random CSP literature and beyond. They

are used as a toy model for statistical inference: e.g. the ‘teacher–

student model’ [43] or the stochastic block model [1]. They are used

to understand the condensation threshold in random CSP’s [13, 16–

18]. They are used to understand the structure of the solution space

in random CSP’s [2, 3, 33, 34].

Given N ,m ∈ N, κ > 0, and following [2], we define two prob-

ability distributions on pairs (σ ∗,X) ∈ ΣN × (RN )m of solutions

and configurations ofm constraint vectors.

In the random model we:
(1) Samplem i.i.d. N -dimensional standard Gaussian constraint

vectors X = (X1, . . . ,Xm ), conditioned on the event that

S(X) =
⋂m
i=1 Hκ (Xi ) , ∅.

(2) Sample σ ∗
uniformly at random from S .

We denote the law of the random model with Pr,Er to distinguish

the law from both the unconditional perceptron model and the

planted model below. The random model is simply the experiment

of selecting a uniformly random solution from the symmetric Ising

perceptron conditioned on satisfiability.

In the planted model we:
(1) Sample σ ∗

uniformly at random from ΣN .

(2) Sample a configuration of m i.i.d. constraint vectors X =
(X1, . . .Xm ), with each Xi distributed as a standard

N -dimensional Gaussian vector conditioned on the event

that σ ∗ ∈ Hκ (Xi ).

We denote the law of the planted model with P
pl
,E

pl
.

The key to using the planted model to understand the original

model is to show that at low enough constraint densities, the two

distributions on (σ ∗,X) are close. Proving that the distributions are
close, as we do below in Lemma 19, amounts to proving that the

number of solutions, |S |, is typically not too far from its expectation,

E|S |. The better concentration of |S | one can prove, the more one

can deduce about the original model from the planted model. In [2]

it is shown (in the case of q-colorings of a random graph) that if

log |S | = logE|S | + o(N ), then events that occur with probability

at most exp(−θ (N )) in the planted model occur with probability

o(1) as N → ∞ in the random model. This notion of closeness

is ‘quiet planting’ [31] and it suffices to prove some structural

results on the solution spaces such as clustering [2]. On the other

hand, much stronger notions of closeness have been proved: ‘silent

planting’ [12] which implies the two distributions are mutually

contiguous: any event with probability o(1) in the planted model

has probability o(1) in the random model. This has been used to

prove stronger structural results [33]. Proving contiguity requires

much stronger concentration of log |S |. A very general result on

the contiguity of the planted and random model for symmetric

CSP’s [16] involves a rigorous implementation of the cavity method

and the small subgraph conditioning method. In the setting of

the perceptron, neither of these tools exist and so we must prove

concetration via another route.

We prove Theorem 1 in three steps.

In Section 2, we prove that the planted solution is isolated and

the next nearest solution is at linear Hamming distance with high

probability in the planted model (Lemma 6).

In Section 3 we prove Theorem 2, showing that for α < αc ,
the logarithm of the number of solutions in the random model

is concentrated around the logarithm of the expected number of

solutions. To the best of our knowledge, our approach to proving

concentration in this way is new, and we expect the technique to

have further applications.

In Section 4we transfer our results about the plantedmodel to the

random model by showing that events that occur with probability

at most N−ω(1)
in the planted model occur with probability o(1) in

the standard model (Lemma 19). This relies on the concentration

properties of the logarithm of the number of solutions.

1.5 Extensions and Future Work
Both Theorem 1 and Theorem 2 can be extended verbatim to the u-
function Ising perceptron studied in [5], for κ ∈ (0, .817) (the same

range of κ for which the second-moment method works there).

The main open problem in this area is to resolve the concep-

tual dilemma described in Section 1.1 and answer the questions

raised in [10]. Are there efficient learning algorithms that always

find out-of-equilibrium solutions in subdominant clusters? This

would raise a serious challenge to the belief that an understanding

of the associated equilibrium statistical mechanics model (on the

level of the free energy) can explain computational tractability or

intractability.

Concretely, now that we have verified the frozen 1-RSB sce-

nario, we can ask for provably efficient learning algorithms for the

symmetric Ising perceptron.

Question 3. Is there a polynomial-time algorithm that, with prob-
ability 1 − o(1), finds a solution to the symmetric Ising perceptron for
some density α ∈ (0,αc )?

Alternatively, one could leverage the structure results we have

proved here and rule out some class of learning algorithms.
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We leave the following additional open problems for future work.

1. Prove that the classic perceptron with activation function

ϕ(x) = x exhibits the frozen 1-RSB property. It is not at all clear

how to extend the method of this paper to this case. As discussed

in [16, Sec. 2.4], for asymmetric random CSP’s, like the random

k-SAT model, the planted model, at least in its straightforward

implementation, is not useful to compare to the random model

(in particular it is not contiguous with the random model at any

positive density). We expect the same with the classic perceptron,

and so our strategy of arguing via the planted model will not work.

2. Prove full contiguity between the random and planted models

for α < αc . Our comparison result (Lemma 19) suffices for our

purposes here, but it is natural to ask for more (as is the case for a

large class of symmetric random CSP’s [16]).

Conjecture 4. For α < αc , the random and planted models of
the symmetric Ising perceptron are mutually contiguous. That is, if
P
pl
(A) = o(1) then Pr(A) = o(1) and vice versa.

2 THE PLANTED MODEL
Consider the planted model with planted solution σ ∗

and con-

straints X = (X1,X2, . . . ,Xm ). Define S(X) =
⋂ ⌊αN ⌋

i≥1 Hκ (Xi ) as in
(2). Recall the definition of βc from (3). We show that βc exists and

is unique for α ∈ (0,αc ).

Lemma 5. Under Assumption 1, for α ∈ (0,αc ), there exists a
unique β ∈ (0, 1/2) so that

Fα (β) − α logp(κ) = 0 .

Also, for any δ ∈ (0, βc/2),

sup

δ<β<βc−δ
Fα (β) − α logp(κ) < 0 . (4)

Proof. Let G(β) = Fα (β) − α logp(κ). Then since qκ (0) = p(κ)
and H (0) = 0, we have G(0) = 0. As observed in [5], G ′(0) = −∞

and so for some ε > 0, G(x) < 0 for x ∈ (0, ε). Moreover, since

α < αc , G(1/2) > 0, and so by continuity there exists β ∈ (0, 1/2)

with G(β) = 0. By Assumption 1 this β is unique. In addition,

Assumption 1 implies that G(β) is first strictly decreasing and then

strictly increasing on β ∈ (0, 1/2). This gives (4). □

The following result says the planted solution is completely

frozen with high probability in the planted model.

Lemma 6. Under Assumption 1, for any α ∈ (0,αc ) and any δ ∈

(0, βc ), there exists a constant cδ > 0 such that

P
pl

(
{σ ∈ S : dist(σ ,σ ∗) ≤ (βc − δ )N } , {σ ∗}

)
≤ exp

{
−cδ

√
N

}
.

Before proving Lemma 6 we introduce some notation. Let q(m) =

P(σ ,σ ′ ∈ Hκ (X )), where σ ,σ ′ ∈ ΣN are two arbitrary vectors with

⟨σ ,σ ′⟩ = m and X is a standard N -dimensional Gaussian vector.

Then

q(m) = qκ
(
1

2

+
m

2N

)
, (5)

where qκ is defined in (1).

Lemma 6 will follow from the following results.

Lemma 7. There exists a constant ϵ > 0 sufficiently small such
that for allm ≤ ϵN ,

logE
pl
[|{σ ∈ S : |⟨σ ,σ ∗⟩| = N −m}|] ≤ −c

√
mN .

Proof. Let σ0 be an vector in ΣN . Note that

E
pl
[|{σ ∈ S : ⟨σ ,σ ∗⟩ = N −m}|] =

∑
σ :⟨σ ,σ0 ⟩=N−m

P(σ ∈ S | σ0 ∈ S)

=

(
N
m
2

) (q(m)

p(κ)

)αN
.

(6)

We claim that uniformly over all |m | ≤ ϵN with sufficiently small

ϵ ,

q(N −m) ≤ p(κ) − c
√
m/N (7)

Provided with (7), we have

(6) ≤ exp

{
m log(2N /m)/2 − c

√
mN

}
≤ exp

{
− c

√
mN

}
.

Hence Lemma 7 follows. Now it remains to prove (7). To this end,

let 1 be the all 1’s vector of length N and 1m be an N -dimensional

vector with the first (N −m) coordinates +1 and the remainingm
coordinates −1. We write

p(κ) − q(N −m) = P( | ⟨1, X ⟩ | ≤ κ
√
N , | ⟨1m

2

, X ⟩ | > κ
√
N )

≥ P
©­­«
N−

m
2∑

i=1
Xi ∈ (κ

√
N , κ

√
N +

√
m),

N∑
i=N−

m
2
+1

Xi ∈ (−3
√
m, −2

√
m)

ª®®¬
= P

(
Z1 ∈

(
κ

√
N

N − m
2

, κ

√
N

N − m
2

+

√
m

N − m
2

)
, Z2 ∈ (−3

√
2, −2

√
2)

)
≥ c

√
m/N

where Z1,Z2 are two independent standard Gaussian random vari-

ables. This proves (7). □

Lemma 8. For any ϵ > 0, uniformly in |m | ≤ N − ϵN ,

lim

N→∞

��� 1
N

logE
pl

[��{σ ∈ S : ⟨σ , σ ∗ ⟩ =m }
��] − [

F
(
1

2

+
m
2N

)
− α logp(κ)

] ���
(8)

= 0 .

Proof. Note that

E
pl

[��{σ ∈ S : ⟨σ ,σ ∗⟩ =m}
��] = (

N
N+m
2

)
·

(
q(m)

p(κ)

)αN
(9)

and that for any ϵ > 0, uniformly in ϵN ≤ k ≤ N − ϵN ,

1

N log

(N
k
)

H (k/N )
→ 1 as N → ∞.

Combining these with (5) yields (8). □

Proof of Lemma 6. Let δ ∈ (0, βc ). It suffices to show that

E
pl
|{σ ∈ S : 0 < dist(σ ,σ ∗) ≤ (βc − δ )N }| ≤ exp

{
−cδ

√
N

}
.

This bound follows from Lemmas 7 and 8 and (4). □
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3 CONCENTRATION OF THE NUMBER OF
SOLUTIONS

Fixing N , consider the symmetric perceptron as a discrete-time

stochastic process with one constraint vector added at each time

step. The solution space at time t ∈ N is defined as

St :=
t⋂
i=1

Hκ (Xi )

which is the intersection of t random rectangles.

The following strengthening of Theorem 2 is the main result of

this section.

Theorem 9. Under Assumption 1, for every ϵ > 0 there exists
M = M(ϵ) such that for any α < αc ,

lim sup

N→∞

sup

0≤t ≤αN
P

(��� log (
|St |

E[|St |]

)��� ≥ M logN

)
≤ ϵ . (10)

Theorem 2 follows immediately since
1

N logE|St | = log 2 +
t
n logp(κ).
Theorem 9 says that the cardinality of the solution space will

only deviate from its expectation slightly after adding αN random

constraints. To prove this theorem, we will look at the change in

this deviation at each time when a new constraint is added. Write

Qt := log

(
|St |

E[|St |]

)
=

t∑
i=1

log

(
|Si |/|Si−1 |

E[|Si |]/E[|Si−1 |]

)
.

Note that E[|Si |]/E[|Si−1 |] = p(κ). Let

Yt :=
1

p(κ)

(
|St |

|St−1 |
− p(κ)

)
,

so that

Qt =

t∑
i=1

log(1 + Yi ) . (11)

Since 0 ≤ |St | ≤ |St−1 |, we have that −1 ≤ Yt ≤ (1 − p(κ))/p(κ);
however, we expect that the Yt ’s are very close to zero with high

probability. Hence by a Taylor expansion, as N → ∞,

Qt =

t∑
i=1

Yi −
Y 2

i
2

+ o(1) .

In fact, we will prove in Lemma 11 thatYt is roughly of order N
−1/2

provided that St−1 is “regular” (see Definition 10). Thus if the St ’s

are all regular, we expect the second term

∑αN
i=1 Y

2

i be of orderO(1).

In addition, notice that (
∑t
i=0 Yi )t ≥0 is a martingale with respect

to the filtration

Ft = σ (S1, S2, ..., St ), t ≥ 1 .

Hence if the St ’s are all regular, we also expect the first term
∑αN
i=1 Yi

to be of order O(1), and hence Qt = O(1).

Definition 10. For each t ≥ 0, we let (σ (t )
i )i≥1 be independent

uniform random samples in St and denote Pt (·) := P(· | Ft ), Et [·] :=
E[· | Ft ]. We say St is regular if

Pt

(
|⟨σ (t )

1
,σ (t )

2
⟩| ≤ C2

√
N

√
|Qt | + logN

)
≥ 1 − N−10 .

Roughly speaking, St is regular if two random samples from St
are almost orthogonal with high probability. Define the stopping

time

τS := inf {t ≥ 0 : St is not regular} .

The following lemma says that for regular St , Yt+1 is roughly of

order N−1/2
.

Lemma 11. There exists a constant C > 0 such that for all t ≥ 0,

1τS>tPt

(
|Yt+1 | ≥ C

√
|Qt | + logN

N
x

)
≤ C exp(−x) .

By (11), Lemma 11 provides an upper bound on Yt+1, which can

be used to control the increment of |Qt |. This will be one of the key

ingredients in proving Lemma 12, which gives an upper bound on

|Qt | for time t before a stopping time defined below.

With C3 > 0 a constant to be determined later in Lemma 18, we

define

τY := inf

{
t ≥ 1 : |Yt | ≥ C3

√
|Qt−1 | + logN

N
logN

}
,

τQ := inf

{
t ≥ 0 : |Qt | ≥ (logN )2

}
,

(12)

and

τ = τS ∧ τY ∧ τQ . (13)

Lemma 12. There exists a constant C > 0 such that for all t ≥ 1,

E[|Qt∧τ−1 |] ≤ exp(Ct/N ) logN . (14)

Lemma 13 says that the stopping time τ will occur later than time

αN with high probability. Theorem 9 will be a direct consequence

of Lemmas 12 and 13.

Lemma 13. Under Assumption 1, for any α < αc ,

lim

N→∞
P(τ < αN ) = 0 .

Proof of Theorem 9. By Lemmas 12 and 13, the probability

bound (10) follows from Markov’s inequality. □

3.1 Proof of Lemma 11
In this section, we consider an arbitrary subset A ⊂ ΣN and define

the the probability measure PA under which (σi )i≥1 are indepen-
dent uniformly random vectors in A.

Lemma 11 follows from the following lemma.

Lemma 14. There exists constantC, c > 0 depending only onκ such
that for all N sufficiently large, all A ⊂ ΣN , and φN ∈ R satisfying

δA := PA(|⟨σ1,σ2⟩| > φN
√
N ) ≤ φ−2N N−2 , (15)

we have

P

(��� |Hκ (X ) ∩A|

|A|
− p(κ)

��� > φN x
√
N

)
≤ C exp(−cx) ,

where X is a standard N -dimensional Gaussian vector.

The rest of this section is devoted to prove Lemma 14.

Lemma 15. For all N sufficiently large and every B ⊂ A ⊂ ΣN , if
we denote

δA = PA(|⟨σ1,σ2⟩| > φN
√
N ) and q = PA(σ1 < B) ,
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then for all 1 ≤ k ≤
q2

4δA

PA
(
Ek (B)

)
≥

(
q −

2kδA
q

)k
,

where

Ek (B) (16)

:=
{
σi < B,∀1 ≤ i ≤ k

}
∩

{
|⟨σi ,σj ⟩| ≤ φN

√
N ∀1 ≤ i, j ≤ k, i , j

}
.

Proof. We will prove the following by induction

PA(Et+1 | Et ) ≥ q −
2tδA
q

for 1 ≤ t ≤
q2

4δA
. (17)

First, since PA(E1) = PA(σ1 < B) = 1 − q, we see that (17) holds
for t = 1.

Next, we suppose (17) is true for t = k with k ≤
q2

4δA
− 1. Since

σk+1 is independent of Ek , we have

PA(Ek+1 | Ek )

≥ PA(σk+1 < B | Ek ) −
k∑
i=1
PA(|⟨σi ,σk+1⟩| > φN

√
N | Ek )

= q − kPA(|⟨σk ,σk+1⟩| > φN
√
N | Ek ) .

Also, since (σk+1,σk ) is independent of Ek−1 and Ek−1 ⊃ Ek ,

PA(|⟨σk ,σk+1⟩| > φN
√
N | Ek )

≤
PA({|⟨σk ,σk+1⟩| > φN

√
N } ∩ Ek−1)

PA(Ek )

= PA(|⟨σ1,σk+1⟩| > φN
√
N ) ·
P(Ek−1)

P(Ek )
.

By the induction hypothesis

P(Ek−1)

P(Ek )
=

1

P(Ek | Ek−1)
≤

q

2

,

where we used the assumption k ≤
q2

4δA
− 1. Combining with the

previous two inequalities, we get

PA(Ek+1 | Ek ) ≥ q −
2kδA
q
.

Hence (17) holds. □

Lemma 16. For any κ > 0 and m ∈ N, there exists constants
cκ ,C > 0 such that if we let (Xi )i≥1 be a Gaussian vector with

E[Xi ] = 0, E[X 2

i ] = 1, |E[XiX j ]| ≤ cκm
−1 ,

then

P( min

1≤i≤m
|Xi | > κ) ≤ CP

(
|X1 | > κ

)m
,

P( max

1≤i≤m
|Xi | ≤ κ) ≤ CP

(
|X1 | ≤ κ

)m
.

We omit the proof of Lemma 16 in this extended abstract, and

proceed to prove Lemma 14.

Proof of Lemma 14. We will prove that

P

(
|Hκ (X ) ∩A|

|A|
< p(κ) −

φN x
√
N

)
≤ C exp(−cx) . (18)

The other direction can be proved similarly.

Recall Ek (·) as in (16) and denote

A⊥
k := {(σi )

k
i=1 ∈ Ak : |⟨σi ,σj ⟩| ≤ φN

√
N ∀1 ≤ i, j ≤ k, i , j} .

Then

E
[
PA(Ek (Hκ (X )))

]
=

∑
(σi )ki=1∈A

⊥
k

|A|−kP(σi < Hκ (X ),∀1 ≤ i ≤ k) .

By Lemma 16, we have that for k = ⌊cκφ
−1
N
√
N ⌋ and all (σi )

k
i=1 ∈

A⊥
k ,

P(σi < Hκ (X ),∀1 ≤ i ≤ k) ≤ CP(|Z | > κ)k .

Hence

E
[
PA(Ek (Hκ (X )))

]
≤ CP(|Z | > κ)k . (19)

On the other hand, we set

∆ =
φN x
√
N
.

Then (15) implies ∆ ≥
4kδA
q . Therefore, it follows from Lemma 15

that on the event

{
PA

(
σ1 < Hκ (X ) | Hκ (X )

)
≥ P(|Z | > κ) + ∆

}
,

we have

PA
(
Ek [Hκ (X )] | Hκ (X )

)
≥

(
PA(σ1 < Hκ (X ) | Hκ (X )) − ∆/2

)k
≥ P(|Z | > κ)kek∆/2 .

Combined with (19), this yields (18). □

3.2 Proof of Lemma 12
By the definitions (12) and (13), we see that for all 0 ≤ i ≤ τ − 1,

|Yi | ≤ C

√
|Qt−1 | + logN

N
≤ C

√
(logN )2 + logN

N
.

Hence it follows from | log(1 + x) − x | ≤ x2 for all x ≥ −3/5 that��� t∧τ−1∑
i=1

log(1+Yi )
��� ≤ ��� t∧τ−1∑

i=1
Yi

���+t∧τ−1∑
i=1

Y 2

i ≤

��� t∧τ∑
i=1

Yi

���+t∧τ∑
i=1

Y 2

i +|Yt∧τ | .

Since τ ≤ τS , Lemma 11 implies

E[Y 2

i 1τ ≥i ] = E[Ei−1[Y
2

i ]1τ >i−1] ≤ C ′E[|Qi−1 |1τ >i−1] + logN
N

.

Therefore, since (
∑t∧τ
i=1 Yi )t ≥1 is a martingale and t ∧ τ ≤ τ ≤ τS ,

we have

E
��� t∧τ−1∑

i=1
log(1 + Yi )

��� ≤ √√√
E
t∧τ∑
i=1

Y 2

i + E
t∧τ∑
i=1

Y 2

i + E|Yt∧τ |

≤ 2E
t∑
i=1

Y 2

i 1τ ≥i + 1 + E|Yt∧τ |

≤ 2C ′ ·
t logN +

∑t
i=1 E[|Qi∧τ−1 |]

N
+

2

p(κ)
,

where C ′
is a constant. Hence

E[|Qt∧τ−1 |] ≤ 3C ′
( t logN +∑t−1

i=1 E[|Qi∧τ−1 |]

N
+

1

p(κ)

)

1585



STOC ’21, June 21–25, 2021, Virtual, Italy Will Perkins and Changji Xu

We claim that this yields (14). To prove this, we defineb1 := E[|Q1∧τ−1 |]

and for t ≥ 2 define

bt := 3C ′
( t logN +∑t−1

i=1 bi

N
+

1

p(κ)

)
. (20)

Then a straightforward induction argument shows that

bt ≥ E[|Qt∧τ−1 |] for t ≥ 1 . (21)

On the other hand, (20) implies

bt = 3C ′
(
logN + bt−1

N
+
(t − 1) logN +

∑t−2
i=1 bi

N
+

1

p(κ)

)
= 3C ′

(
logN + bt−1

N
+
bt−1
3C ′

)
.

This implies

bt + logN =
(
1+

3C ′

N

)
(bt−1 + logN ) =

(
1+

3C ′

N

)t−1
(b1 + logN ) .

(22)

Note that S0 = {−1, 1}N , Q0 = 0 and P(τ ≥ 1) = 1. We get b1 = 0.

Hence Lemma (14) follows from (21) and (22). We complete the

proof of Lemma 12.

3.3 Proof of Lemma 13
Lemma 17. Under Assumption 1, there exists a constant C2 such

that for every 1 ≤ t ≤ αN ,

P
(
Pt

(
|⟨σ (t )

1
,σ (t )

2
⟩| ≥ C2

√
N

√
Qt + logN

)
≥ N−10

)
≤ N−10 .

As a result,
P(τS ≤ αN ) ≤ N−10 . (23)

Proof. It follows from (9), Assumption 1, and F ′′( 1
2
) < 0 (see

[5]) that there exists a constant c > 0 such that for any λ > 0 and

t ≥ 0,

E[|{(σ1,σ2) ∈ St : |⟨σ1,σ2⟩| ≥ λ
√
N }|] ≤ exp(−cλ2)E[|St |

2] .

Under Assumption 1, we have E[|St |
2] ≤ CE[|St |]

2
(see [5]). Hence

we have that

E

[
Pt (|⟨σ

(t )
1
,σ (t )

2
⟩| ≥ λ

√
N )

|St |
2

E[|St |]2

]
≤ C exp(−cλ2) ,

Therefore,

E

[
exp

(
c

2

⟨σ (t )
1
,σ (t )

2
⟩2

N
+ 2Qt

)]
= E

[∫ ∞

0

cλe
cλ2
2 Pt

( ⟨σ (t )
1
,σ (t )

2
⟩2

N
≥ λ

)
dλ ·

|St |
2

E[|St |]2

]
≤ C

∫ ∞

0

cλe
−cλ2

2 dλ

≤ C .

Hence, there exists a constant C such that

P(|⟨σ (t )
1
,σ (t )

2
⟩| ≥ C

√
N

√
Qt + logN ) ≤ N−100 ,

which yields the desired result. □

Lemma 18. There exists a constant C3 > 0 such that

P(τY ≤ τS , τY ≤ αN ) ≤ N−8

P(|QτQ−1 | ≤ (logN )2/2, τQ ≤ τS , τQ ≤ αN ) ≤ N−8
(24)

Proof. (11) follows from Lemma 11 and a union bound. Lemma

11 gives

P(|QτQ−1 | ≤ (logN )2/2, τQ ≤ τS , τQ = t + 1)

= E
[
Pt (|Qt + log(1 + Yt+1)| ≥ (logN )2)1 |Qt | ≤(logN )2/2,τS ≥t+1

]
≤ E

[
Pt (Yt ≤ −1/2)1 |Qt | ≤(logN )2/2,τS ≥t+1

]
≤ N−10 .

This yields (24). □

Proof of Lemma 13. Write

P(τ ≥ t) ≤ P(τS ≤ αN ) + P(τY ≤ τS , τY ≤ αN )

+ P(τQ ≤ t, τQ = τ , |QτQ−1 | ≤ (logN )2/2)

+ P(τQ ≤ t, τQ = τ , |QτQ−1 | ≥ (logN )2/2) .

Lemma 18 and (23) give upper bounds on the first three probability

on the right hand. In addition, Lemma 12 and the Markov inequality

yield

P(τQ ≤ t , τQ = τ , |QτQ−1 | ≥ (logN )2/2)

≤ ((logN )2/2)−1E[Qt∧τ−1; τQ ≤ t , τQ = τ , |QτQ−1 | ≥ (logN )2/2]

≤ ((logN )2/2)−1E[ |Qt∧τ−1 |]

≤ (logN )−1/2 .

Combining these bounds yields P(τ ≥ t) ≤ 2(logN )−1/2. □

4 FROM THE PLANTED MODEL TO THE
RANDOMMODEL

Theorem 1 will follow from Lemma 6 and the following lemma on

the planted model.

Lemma 19. Suppose A ⊆ {(σ ,U ) : σ ∈ U ⊆ ΣN }, and suppose
α < αc . If Ppl((σ ∗, S(X)) ∈ A) ≤ N−mN for somemN → ∞, then

Pr((σ
∗, S(X)) ∈ A) → 0 as N → ∞ .

We start by characterizing the planted distribution.

Lemma 20. For any N ,m ≥ 1, with A ⊆ {(σ ,U ) : σ ∈ U ⊆ ΣN },

P
pl
((σ ∗, S(X)) ∈ A) = Er

[
1(σN ,S (X))∈A ·

|S(X)|
E|S(X)|

]
·P(S(X) , ∅) .

We omit the Proof of Lemma 20 in this extended abstract.

Proof of Lemma 19. Theorem 2 implies the event

G =

{
|S |

E|S |
≥ exp{−mN logN }

}
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has probability 1 − o(1). Therefore, as N → ∞,

Pr((σ
∗, S) ∈ A) ≤ Pr

(
{(σ ∗, S) ∈ A} ∩G

)
+ P(G)/P(S , ∅)

≤ exp{mN logN }E

[
1(σ ∗,S )∈A ·

|S |

E|S |

]
+ o(1)

= exp{mN logN }P
pl
((σ ∗, S) ∈ A)/P(S , ∅) + o(1)

= o(1) .

wherewe used Lemma 20 and Theorem 2. This yields Lemma 19. □

Finally we prove Theorem 1.

Proof of Theorem 1. Let

A = {(τ ,U ) : {σ ∈ U : ⟨σ , τ ⟩ ≥ (dc + δ )N } , {τ }} .

Then Lemma 6 implies that

P
pl
((σ ∗, S(X)) ∈ A) ≤ exp

{
−c

√
N

}
Combined with Lemma 19, this yields

Pr((σ
∗, S(X)) ∈ A) = o(1) ,

and thus Theorem 1. □
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