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ABSTRACT

Multi-segment reconstruction (MSR) is the problem of estimat-
ing a signal given noisy partial observations. Here each observation
corresponds to a randomly located segment of the signal. While
previous works address this problem using template or moment-
matching, in this paper we address MSR from an unsupervised
adversarial learning standpoint, named MSR-GAN. We formulate
MSR as a distribution matching problem where the goal is to recover
the signal and the probability distribution of the segments such that
the distribution of the generated measurements following a known
forward model is close to the real observations. This is achieved
once a min-max optimization involving a generator-discriminator
pair is solved. MSR-GAN is mainly inspired by CryoGAN [1].
However, in MSR-GAN we no longer assume the probability dis-
tribution of the latent variables, i.e. segment locations, is given
and seek to recover it alongside the unknown signal. For this
purpose, we show that the loss at the generator side originally is
non-differentiable with respect to the segment distribution. Thus,
we propose to approximate it using Gumbel-Softmax reparametriza-
tion trick. Our proposed solution is generalizable to a wide range
of inverse problems. Our simulation results and comparison with
various baselines verify the potential of our approach in different
settings.

Index Terms— Multi-segment reconstruction, adversarial learn-
ing, unsupervised learning, Gumbel-Softmax approximation, cate-
gorical distribution.

1. INTRODUCTION

The problem of recovering a signal from a set of noisy partial ob-
servations appear in a wide range of applications including genomic
sequence assembly [2], puzzle solving[3], tomographic reconstruc-
tion [4] and cryo-electron microscopy (Cryo-EM) [5, 6], to name
a few. In this paper, we focus on multi-segment reconstruction
(MSR) [7], where the unknown is a 1D sequence and the measure-
ments are noisy randomly located partial observations (segments) of
this sequence. A schematic illustration of MSR is provided in Fig. 1.
MSR is a general form of multi-reference alignment (MRA) [&]
problem in which the measurements are noisy randomly shifted ver-
sions of the signal. While in MRA the length of each measurement
is the same as the signal, in MSR the measurements can be shorter.
Current efforts devoted to MSR is studied in two broad cat-
egories, 1) alignment-based, 2) alignment-free. In one form of
alignment-based methods, the segment location corresponding to
each observation is estimated. Then, the observations are aligned
accordingly and averaged. While these methods have low com-
putational and sample complexity, low signal-to-noise ratio (SNR)
of the observations adversely affect their performance. Examples
of alignment-based methods applied to MRA and tomographic re-
construction are found in [9, 10]. In other forms of alignment
based methods, the segment locations and the 1D sequence are
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Fig. 1. Multi-segment reconstruction (MSR) problem.
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jointly updated using alternating steps. An example would be the
maximum likelihood formulation of MSR, solved using expectation-
maximization (EM). Despite the robustness of EM to different noise
regimes, it suffers from high computational complexity. This is
due to the complexity of the E-step, requiring a whole pass through
the measurements at every iteration. This is significantly time-
consuming, especially in the presence of large number of observa-
tions.

Alignment-free solutions specifically designed for MRA side-
step the estimation of the random shifts by introducing a set of invari-
ant features. These features constitute the moments of the signal and
are estimated from the measurements. The signal is then estimated

from the features via an optimization-based framework [8, 11], ten-
sor decomposition [12, 13] using Jennrich’s algorithm [14] or spec-
tral decomposition [15, 16]. As these works are specialized for

MRA, they do not address the challenges associated with MSR, such
as observing only shorter segments of the signal. In [7], we showed
how for MSR, we can estimate the invariant features from the mea-
surements and how the recovery of the signal is tied to the segment
length. Compared to alignment-based solutions, in alignment-free
methods, we only have one pass through the measurements to es-
timate the features, thus computationally more efficient. The esti-
mated features then serve as a compact representation of the mea-
surements which are functions of the unknown signal and segment
location distribution.

In this paper, we propose an alignment-free adversarial learn-
ing based method for MSR. Our goal is to find the unknown 1D
signal and the distribution of the segment locations such that the
measurements generated from the estimated signal match the real
measurements in a distribution sense. Therefore, we train a gener-
ator discriminator pair, where the discriminator tries to distinguish
between the measurements output by the generator and the real
ones. Our approach is inspired by CryoGAN [!] in which the
goal is to reconstruct a 3D structure given 2D noisy projection
images from unknown projection views. Unlike CryoGAN, we
assume the distribution of the latent variables, i.e. the segment
locations in MSR, is unknown and we seek to recover it alongside
the signal. For this purpose, we modify the loss at the generator
side using Gumbel-Softmax approximation of categorical distri-
bution, to accommodate gradient-based updates of the segment
location distribution. Our simulation results and comparison with
several baselines confirm the feasibility of our approach in vari-
ous segment length and noise regimes. Our code is available at
https://github.com/MonazI/MSR—-GAN.
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Fig. 2. An illustration of MSR-GAN pipeline.

2. SYSTEM MODEL

We consider the following observation model,

§j:M5jm+8j7 .76{1-277]\7} O
where € R? is the underlying signal and £; € R™, m < d is
the j-th observation. We often refer to m as the segment length.
The cyclic masking operator M captures m consecutive entries of
x starting from index s. In other words, My : R — R™ and
(M) [n] = z[n+ smod d]. We also assume the segment location
s €{0,1,...,d—1} to be unknown and randomly drawn from a cat-
egorical distribution with p as its probability mass function (PMF)
where P{s = s;} = p[s;]. In addition, the randomly located seg-
ment of the signal is contaminated by additive white Gaussian noise
e, with zero mean and covariance 61, (I, denoting the identity
matrix with size m x m). Our goal here is to recover x and p given
the noisy partial observations {&; }7_;.

Note that the distribution of the observations depends on both
the signal x and the distribution of the segment locations p. Thus,
it is possible to estimate = and p by matching the distribution of the
observations generated by = and p following (1) to the real measure-
ments.

3. METHOD

‘We use an unsupervised adversarial learning approach to solve MSR.
Our method is unsupervised as it only relies on the given observa-
tions and does not use large paired datasets for training. Similar
to [1], our method aims to find = and p such that the distribution of
the partial noisy measurements generated from (1) matches the real
measurements {£7, d]} j=1. To this end, we use a generative adversar-
ial network (GAN) [17]. Unlike common GAN models, we use the
known forward model in (1) to map the signal and segment distribu-
tion to the measurements. Thus, the generator acts upon x and p and
simulates noisy measurements {¢’ }}Z,. The discriminator’s task
is then to distinguish between the real and fake measurements from
the generator. An illustration of MSR-GAN is provided in Fig. 2.
Here we use Wasserstein GAN [18] with gradient penalty (WGAN-
GP) [19], to benefit from its favorable convergence behaviour. In
WGAN, the output of the discriminator is a score, where the more
the input resembles &;cal, the higher the score. The min-max formu-
lation of the problem is:

z, arg min mgx L(p,x,p) @
z,p

L(¢,2,p) =Y Dy(&ha) — Do (Eim) — AGP(&) ()

M= T

o
Il
—

Algorithm 1 MSR-GAN
Require: oy, oz, ap: learning rates for the discriminator, the image
and projection angle distribution. A: gradient penalty weight. ngis:
the number of iterations of the discriminator (critic) per generator
iteration.
Require: Initialize  randomly and p with a uniform distribution,
ie p°[s] = 1/d.
Output: Estimates I and p given {&/ }1_ .

1: while not converged do

2: fort =0, ..., Ndgisce—1 do
3: Sample a batch from real data, {€5,}&.,
4 Sample a batch of simulated measurements using esti-

mated signal and PMF, i.e. {€%,}2_, where £, = Mz + &5,
Ep N(O, O'Im)

5: Generate interpolated samples {£2,} 2, &b, =
(1 — &) &5, with a ~ Unif(0, 1)

6: Update the discriminator using gradient ascent steps
with,

qu[«D = </) <Z D(b gl'cdl Dtb (EZm) + AGP(&&I))

7: end for
Sample a batch of {g; ; }£, using (8)
9: Update x and p using gradient descent steps with the follow-

ing gradients,
B d—1

VapLla(z,p) ( Z Z iy Do (Msz + €b)>
b=1 s=0

10: end while

b
Q Ercal +

*®

2
GP(h) = (IIVeDa(€nll ~ 1) @
where £ denotes the loss which is a function of the discriminator’s
parameters ¢, the signal and the PMF. Also, B is the batch size, Dy
denotes the discriminator parameterized by ¢ and &im = Msx + ¢,
s ~ pand e ~ N(0,0%I,,). The weight of the gradient penalty
term (GP) is A and & is a sample generated by linear interpolation
between a real and simulated measurement, i.e. &ing = & &ea + (1 —
@) &im, & ~ Unif(0, 1). To solve the min-max optimization in (2),
following common practice, we take alternating steps to update the
discriminator’s parameters ¢ and the generator, i.e. z and p, using
their gradients.

To update p, we need to take gradients of (3) with respect to
p. However, this loss function is related to p through a sampling
operator which is non-differentiable (we are sampling the segment
locations based on the p distribution). This would be problematic at
the generator update steps. Therefore, it is crucial to devise a way
to have a meaningful gradient with respect to p. First, let us take
a closer look at the loss function that is minimized at the generator
side:

B
La(z,p)==)Y Dy(Ms,z+&), s~p, e~N(0,0L,) (5)
b=1
B d—1
*—ZZ&S—Sb'DCle"‘F‘b) (6)
b=1 s=0

where 0 is the Kronecker delta and §(s — s;) denotes the one-hot
representation of a sample drawn from a categorical distribution
with PMF p. Jang et al. in [20] proposed a Gumbel-Softmax
reparametrization trick to approximate samples from a categorical
distribution with a differentiable function. We use this idea and
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Fig. 3. Comparison between MSR-GAN in different noise regimes for 1) known PMF (first column), 2) unknown PMF but fixed with uniform
distribution during training (second column), 3) unkown PMF and recovered during training (third column). The last column plots the ground
truth PMF (green dashed curve) alongside the estimated PMFs from MSR-GAN (the same experiment as the third column) in blue and red.
Each row corresponds to different signals and PMFs. The relative error of the reconstruction for SNR = oo and SNR = 1 is written in
blue (SNR = o0) and red (SNR = 1) underneath each subplot. For all experiments in this figure we are using the same architecture for the
discriminator with £ = 100 and the number of measurements is N = 5 x 10%.

replace 0(s — sp), Sp ~ p with a sample from the Gumbel-Softmax
distribution, i.e.

B d—1

La(z,p) ~ Zqu,b'an(MsCU-i-Eb) (7

b=1s

where

oy = P ((gv,s +log(p[s]))/T)

Z::O exp ((gv,: + log(plil))/7)

, gb,s ~ Gumbel(0,1). (8)

Note that (8) is a continuous approximation of the arg max func-
tion, 7 is the softmax temperature factor and gsp — d(s —
argmax, (gs,s + logp[s])) as 7 — 0. Note that drawing sam-
ples from argmaxs (gs,s + logp[s]), gbs ~ Gumbel(0,1) is
an efficient way of sampling from p distribution [20]. Further-
more, to obtain samples from the Gumbel distribution [21], it
suffices to transform samples from a uniform distribution using
g = —log(—log(u)), u ~ Unif(0, 1).

4. IMPLEMENTATION DETAILS

We present the pseudo-code for MSR-GAN in Alg. 1. In all our
experiments, we use a batch-size of B = 200 and keep the number
of real measurements as N = 3 x 10* unless otherwise mentioned.
We have three separate learning rates for the discriminator, the signal
and the PMF denoted by a4, a and vy, while in most experimental
settings we keep o, = ap. We reduce the learning rates by a factor
of 0.9, with different schedules for different learning rates. We use

SGD [22] as the optimizer for the discriminator and the signal « with
a momentum of 0.9. We also update p using gradient descent steps
after normalizing the corresponding gradients. We clip the gradients
of the discriminator to have norm 1. Similar to common practice,
we train the discriminator ngisc = 4 times per updates of = and p.
To have stabilized updates with respect to p, we choose 7 = 0.5 in
our experiments. We also use spectral normalization to stabilize the
training [23].

Our architecture of the discriminator consists of three fully con-
nected (FC) layers with ¢, £/2, and 1 output sizes, where ¢ is deter-
mined accordingly for different experiments. We use ReLU [24] for
the non-linear activations between the FC layers. We initialize the
layers with weights drawn from normal distribution with mean zero
and 0.01 standard deviation. We train MSR-GAN for 30, 000 and
50, 000 iterations for high and low SNR regimes, respectively. To
enforce p to have non-negative values while adding up to one, we set
it to be the output of a Softmax layer. Our implementation is in
PyTorch and runs on single GPU.

5. NUMERICAL RESULTS

In this section we first provide details on our evaluation metrics and
baselines. Next, we discuss our results.

Evaluation metrics and baselines: The SNR of the observations
is defined as the variance of the clean measurements divided by the
variance of the noise. As the signal and PMF are reconstructed up
to a random global shift, we align the reconstructions before com-
paring them to the ground truths. We use relative error (rel-error)
between the aligned estimated signal Z and the ground truth x as
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Fig. 4. Effect of segment length on the success rate of 1) MSR-
GAN (blue curve), 2) MSR-SIF (red curve), 3) EM (green curve).
In this experiment the signal length d = 60, the signal is generated
randomly and 0 = 0.01. The success rate is computed based on
10 random initializations for each segment length value. All three
methods are initialized with the same random x and p.

the quantitative measure of the performance, defined as rel-error =
. =12
mins Jo—Re2” \here R, shifts its input by s € {0, ...,d — 1}. To

Z02
assessHttll‘e quality of the estimated PMF, we use total variation (TV)
distance, defined as TV = 1 min ||p — R.p]|1 [25]. We also define
success rate by running MSR solutions with 10 different initializa-
tions. The ratio of the initializations that lead to a relative-error less
than a threshold 0.02 is reported as the success-rate.

We compare MSR-GAN to two baselines: 1) Estimating shift-
invariant features, i.e. moments up to the third order, from the mea-
surements and recovering x and p by solving a non-convex opti-
mization problem [7]. We use up to third order moments as the fea-
tures. We call this baseline MSR via shift-invariant features (MSR-
SIF). We use Riemannian trust-regions method [26] implemented
in Manopt [27] to solve the optimization problem. 2) Expectation
maximization (EM). In this baseline, we formulate MSR as a max-
imum marginalized likelihood estimation problem and solve it via
EM [8, 7].

Effect of knowledge of PMF on the MSR-GAN results: Figure 3
shows the results of MSR-GAN on different signals with d = 64 and
m = 24 in three different scenarios: 1) p in known (first column), 2)
p is not known but fixed with a uniform distribution during training
(second column), 3) p is not known and we recover it along side x
(third and fourth columns). Note that for all three scenarios, we are
using Alg. 1 with the same discriminator architecture and ¢ = 100.
However, for the first and the second scenarios, we do not update
p (skip step 9-update p), rather keep it fixed with the true and the
uniform distribution, respectively.

Note that when the PMF is known, the results of MSR-GAN
closely match the ground truth signal. When the PMF is unknown,
if we fix p to be a uniform distribution (see second column of Fig. 3),
we observe that although the reconstructed signal is close to the GT,
it has larger relative error compared to the scenarios where the PMF
is given (see the first column of Fig. 3) or the PMF is updated jointly
with the signal (see the third column of Fig. 3). Updating p jointly
with z (Fig. 3-third column) leads to more accurate reconstruction of
the signal. This shows the importance of recovering the distribution
of the segments.

Effect of segment length and comparison with baselines: Fig-
ure 4 illustrates the effect of segment length m on the success rate
of MSR-GAN compared to the other two baselines. For this experi-
ment, we set the network hyper-parameter £ = 300 and test the per-
formance of our algorithm on randomly generated signals of length
d = 60. As discussed in [7], solving MSR for smaller segment

0] S~ .
e
£
5 -1 |
(5]
2
8 —2} —— MSR-GAN |
& —— MSR-SIF
-3 ——EM - |
| | | | | |
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log,,SNR

Fig. 5. Comparison between MSR-GAN with different baselines
in terms of relative-error versus SNR of the observations. In this
experiment d = 60 and m = 18. All three methods have been
initialized with the same signal and PMF and the reported results are
the median across 10 different initializations and noise realizations
for the observations.

length regimes using shift invariant features is more challenging, as
the number of equations provided by the moments for smaller seg-
ment lengths can be less than the number of unknowns. Similarly,
the EM algorithm fails at shorter segments, i.e. m < 25, where
the success rate is less than 50%. EM is more likely to get stuck at
a local optimal solution when the segment length becomes smaller.
However, as MSR-GAN solves the inverse problem by matching the
distribution of real measurements and stochastic gradient descent, it
achieves higher success rates for smaller segment lengths. In partic-
ular, even at m = 15, MSR-GAN achieves a success rate close to
100%.

Effect of noise and comparison with baselines: In Fig. 5, we in-
vestigate the effect of noise on the performance of MSR-GAN com-
pared to the baselines. For this experiment d = 60, m = 18 and
for the discriminator’s architecture we set £ = 300. Note that in
different noise regimes MSR-GAN outperforms MSR-SIF and EM.
Here we have a short segment length, thus as mentioned earlier solv-
ing MSR is more challenging and both baselines get stuck in local
minima that is not close to the ground truth solution. Note that if
we increase the segment length we observe an improved reconstruc-
tion error and success rate for MSR-SIF and EM (as also observed in
Fig. 4). This suggests that MSR-GAN is a better solution compared
to the baselines in short segment length regimes.

6. CONCLUSION

In this paper, we focused on the multi-segment reconstruction
(MSR) problem, where we are given noisy randomly located seg-
ments of an unknown signal and the goal is to recover the signal
and the distribution of the segments. We proposed a novel adversar-
ial learning based approach to solve MSR. Our approach relies on
distribution matching between the real measurements and the ones
generated by the estimated signal and segment distribution. We for-
mulated our problem in a Wasserstein GAN based framework. We
showed how the generator loss term is a non-differentiable function
of the segments distribution. To facilitate updates of the distribu-
tion through its gradients, we approximate the loss function at the
generator side using Gumbel-Softmax reparametrization trick. This
allowed us to update both the signal and the segment distribution
using stochastic gradient descent. Our simulation results and com-
parisons to various baselines verified the ability of our approach
in accurately solving MSR in various noise regimes and segment
lengths.
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