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Fig. 3. Comparison between MSR-GAN in different noise regimes for 1) known PMF (first column), 2) unknown PMF but fixed with uniform

distribution during training (second column), 3) unkown PMF and recovered during training (third column). The last column plots the ground

truth PMF (green dashed curve) alongside the estimated PMFs from MSR-GAN (the same experiment as the third column) in blue and red.

Each row corresponds to different signals and PMFs. The relative error of the reconstruction for SNR = ∞ and SNR = 1 is written in

blue (SNR = ∞) and red (SNR = 1) underneath each subplot. For all experiments in this figure we are using the same architecture for the

discriminator with ℓ = 100 and the number of measurements is N = 5× 104.

replace δ(s− sb), sb ∼ p with a sample from the Gumbel-Softmax

distribution, i.e.

LG(x, p) ≈
B∑

b=1

d−1∑

s=0

qs,b Dφ(Msx+ εb) (7)

where

qs,b =
exp ((gb,s + log(p[s]))/τ)

d−1∑
i=0

exp ((gb,i + log(p[i]))/τ)

, gb,s ∼ Gumbel(0, 1). (8)

Note that (8) is a continuous approximation of the argmax func-

tion, τ is the softmax temperature factor and qs,b → δ(s −
argmaxs (gb,s + log p[s])) as τ → 0. Note that drawing sam-

ples from argmaxs (gb,s + log p[s]), gb,s ∼ Gumbel(0, 1) is

an efficient way of sampling from p distribution [20]. Further-

more, to obtain samples from the Gumbel distribution [21], it

suffices to transform samples from a uniform distribution using

g = − log(− log(u)), u ∼ Unif(0, 1).

4. IMPLEMENTATION DETAILS

We present the pseudo-code for MSR-GAN in Alg. 1. In all our

experiments, we use a batch-size of B = 200 and keep the number

of real measurements as N = 3× 104 unless otherwise mentioned.

We have three separate learning rates for the discriminator, the signal

and the PMF denoted by αφ, αx and αp, while in most experimental

settings we keep αx =αp. We reduce the learning rates by a factor

of 0.9, with different schedules for different learning rates. We use

SGD [22] as the optimizer for the discriminator and the signal x with

a momentum of 0.9. We also update p using gradient descent steps

after normalizing the corresponding gradients. We clip the gradients

of the discriminator to have norm 1. Similar to common practice,

we train the discriminator ndisc = 4 times per updates of x and p.

To have stabilized updates with respect to p, we choose τ = 0.5 in

our experiments. We also use spectral normalization to stabilize the

training [23].

Our architecture of the discriminator consists of three fully con-

nected (FC) layers with ℓ, ℓ/2, and 1 output sizes, where ℓ is deter-

mined accordingly for different experiments. We use ReLU [24] for

the non-linear activations between the FC layers. We initialize the

layers with weights drawn from normal distribution with mean zero

and 0.01 standard deviation. We train MSR-GAN for 30, 000 and

50, 000 iterations for high and low SNR regimes, respectively. To

enforce p to have non-negative values while adding up to one, we set

it to be the output of a Softmax layer. Our implementation is in

PyTorch and runs on single GPU.

5. NUMERICAL RESULTS

In this section we first provide details on our evaluation metrics and

baselines. Next, we discuss our results.

Evaluation metrics and baselines: The SNR of the observations

is defined as the variance of the clean measurements divided by the

variance of the noise. As the signal and PMF are reconstructed up

to a random global shift, we align the reconstructions before com-

paring them to the ground truths. We use relative error (rel-error)

between the aligned estimated signal x̂ and the ground truth x as
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Fig. 4. Effect of segment length on the success rate of 1) MSR-

GAN (blue curve), 2) MSR-SIF (red curve), 3) EM (green curve).

In this experiment the signal length d = 60, the signal is generated

randomly and σ = 0.01. The success rate is computed based on

10 random initializations for each segment length value. All three

methods are initialized with the same random x and p.

the quantitative measure of the performance, defined as rel-error =
mins ‖x−Rsx̂‖

2

‖x‖2
, where Rs shifts its input by s ∈ {0, ..., d− 1}. To

assess the quality of the estimated PMF, we use total variation (TV)

distance, defined as TV = 1

2
mins ‖p−Rsp̂‖1 [25]. We also define

success rate by running MSR solutions with 10 different initializa-

tions. The ratio of the initializations that lead to a relative-error less

than a threshold 0.02 is reported as the success-rate.

We compare MSR-GAN to two baselines: 1) Estimating shift-

invariant features, i.e. moments up to the third order, from the mea-

surements and recovering x and p by solving a non-convex opti-

mization problem [7]. We use up to third order moments as the fea-

tures. We call this baseline MSR via shift-invariant features (MSR-

SIF). We use Riemannian trust-regions method [26] implemented

in Manopt [27] to solve the optimization problem. 2) Expectation

maximization (EM). In this baseline, we formulate MSR as a max-

imum marginalized likelihood estimation problem and solve it via

EM [8, 7].

Effect of knowledge of PMF on the MSR-GAN results: Figure 3

shows the results of MSR-GAN on different signals with d = 64 and

m = 24 in three different scenarios: 1) p in known (first column), 2)

p is not known but fixed with a uniform distribution during training

(second column), 3) p is not known and we recover it along side x
(third and fourth columns). Note that for all three scenarios, we are

using Alg. 1 with the same discriminator architecture and ℓ = 100.

However, for the first and the second scenarios, we do not update

p (skip step 9-update p), rather keep it fixed with the true and the

uniform distribution, respectively.

Note that when the PMF is known, the results of MSR-GAN

closely match the ground truth signal. When the PMF is unknown,

if we fix p to be a uniform distribution (see second column of Fig. 3),

we observe that although the reconstructed signal is close to the GT,

it has larger relative error compared to the scenarios where the PMF

is given (see the first column of Fig. 3) or the PMF is updated jointly

with the signal (see the third column of Fig. 3). Updating p jointly

with x (Fig. 3-third column) leads to more accurate reconstruction of

the signal. This shows the importance of recovering the distribution

of the segments.

Effect of segment length and comparison with baselines: Fig-

ure 4 illustrates the effect of segment length m on the success rate

of MSR-GAN compared to the other two baselines. For this experi-

ment, we set the network hyper-parameter ℓ=300 and test the per-

formance of our algorithm on randomly generated signals of length

d = 60. As discussed in [7], solving MSR for smaller segment
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Fig. 5. Comparison between MSR-GAN with different baselines

in terms of relative-error versus SNR of the observations. In this

experiment d = 60 and m = 18. All three methods have been

initialized with the same signal and PMF and the reported results are

the median across 10 different initializations and noise realizations

for the observations.

length regimes using shift invariant features is more challenging, as

the number of equations provided by the moments for smaller seg-

ment lengths can be less than the number of unknowns. Similarly,

the EM algorithm fails at shorter segments, i.e. m ≤ 25, where

the success rate is less than 50%. EM is more likely to get stuck at

a local optimal solution when the segment length becomes smaller.

However, as MSR-GAN solves the inverse problem by matching the

distribution of real measurements and stochastic gradient descent, it

achieves higher success rates for smaller segment lengths. In partic-

ular, even at m = 15, MSR-GAN achieves a success rate close to

100%.

Effect of noise and comparison with baselines: In Fig. 5, we in-

vestigate the effect of noise on the performance of MSR-GAN com-

pared to the baselines. For this experiment d = 60, m = 18 and

for the discriminator’s architecture we set ℓ = 300. Note that in

different noise regimes MSR-GAN outperforms MSR-SIF and EM.

Here we have a short segment length, thus as mentioned earlier solv-

ing MSR is more challenging and both baselines get stuck in local

minima that is not close to the ground truth solution. Note that if

we increase the segment length we observe an improved reconstruc-

tion error and success rate for MSR-SIF and EM (as also observed in

Fig. 4). This suggests that MSR-GAN is a better solution compared

to the baselines in short segment length regimes.

6. CONCLUSION

In this paper, we focused on the multi-segment reconstruction

(MSR) problem, where we are given noisy randomly located seg-

ments of an unknown signal and the goal is to recover the signal

and the distribution of the segments. We proposed a novel adversar-

ial learning based approach to solve MSR. Our approach relies on

distribution matching between the real measurements and the ones

generated by the estimated signal and segment distribution. We for-

mulated our problem in a Wasserstein GAN based framework. We

showed how the generator loss term is a non-differentiable function

of the segments distribution. To facilitate updates of the distribu-

tion through its gradients, we approximate the loss function at the

generator side using Gumbel-Softmax reparametrization trick. This

allowed us to update both the signal and the segment distribution

using stochastic gradient descent. Our simulation results and com-

parisons to various baselines verified the ability of our approach

in accurately solving MSR in various noise regimes and segment

lengths.
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