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ABSTRACT

We develop a neural network model capable of predicting the margin to the boiling crisis (i.e., the departure from nucleate boiling ratio,
DNBR) from high-resolution infrared measurements of the bubble dynamics on surfaces with different morphologies and wettability
(or wickability). We use a feature ranking algorithm, i.e., minimum redundancy maximum relevance, to elucidate the importance of funda-
mental boiling parameters, i.e., nucleation site density, bubble departure frequency, growth time, and footprint radius, in predicting the
boiling crisis. We conclude that these parameters are all necessary and equally important. This result has profound implications, as it under-
mines the general validity of many observations and mechanistic models that attempt to predict the critical heat flux (CHF) by describing
how a single boiling parameter changes with the heat flux or from one surface to another. Notably, the neural network model can predict the
DNBR on CHF-enhancing surfaces of different wickability without using any input information related to the surface properties. This result
suggests that, at least on the considered surfaces, surface wickability enhances the CHF by modifying the bubble dynamics, i.e., the aforesaid

boiling parameters, rather than acting as an additional heat removal mechanism.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048391

Boiling heat transfer is an exceptionally effective heat removal
process used for thermal management in many engineering systems,
as diverse as nuclear reactors and computer processing units.
However, a boiling crisis occurs if the heat flux to remove is too high.
When the heat flux exceeds the so-called critical heat flux (CHF), the
temperature of the heating surface may rapidly rise above the system
design limit, burn out the heat transfer surface, and damage the system
irreparably. This runaway temperature escalation is due to the forma-
tion of a stable vapor layer with poor heat transfer properties, which
isolates the heating surface from the liquid.

The mechanism that triggers the formation of this stable vapor
layer, ie., the boiling crisis, is rather controversial. There is a long-
standing debate on whether the boiling crisis is the consequence of
far-field hydrodynamic instabilities' or a near-wall phenomenon.”
Also, while it is widely recognized that surface properties affect the
CHEF limit, the debate on the mechanisms that lead to the enhance-
ment of CHF on wicking surfaces, i.e., porous and hydrophilic surfaces
that wick liquids, is particularly vibrant.

Some authors have attributed CHF enhancements to the increase
in roughness and, consequently, surface wettability.” This idea lever-
ages Kandlikar’s CHF model," which was one of the first to consider
the effect of wettability on CHF. Other scientists have correlated the
CHF enhancements with how fast these surfaces wick liquids.
Precisely, some authors have suggested that the CHF enhancement is
enabled by an additional heat removal mechanism, i.e., the evapora-
tion of the wicked liquid at the bubble base.”” Instead, Dhillon et al.
have proposed that the wicking of liquid at the bubble base increases
CHF by decreasing the bubble growth time (i.e., by facilitating the
departure of bubbles) and consequently decreasing the rise of surface
temperature at the bubble base during its growth.” Interestingly, Zou
and Maroo have reported that even non-wicking micro-structures
(e.g., ridges) can increase CHF by decreasing the bubble growth time
and increasing the bubble departure frequency.” Here, the decrease in
growth time was attributed to the rapid evaporation of the liquid
trapped within the structures and the increase in CHF to the larger
amount of energy transferred through the bubble life cycle per unit
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time. A similar idea was explored by Raghupathi and Kandlikar, who
discussed how to enhance CHF by increasing the contact line
density.'”

Machine learning offers the possibility to investigate this phe-
nomenon, which does not have, to date, a clear, definitive mathemati-
cal description, with a fresh, hypothesis-free approach. However, the
use of these techniques to analyze boiling experiments is still in its
infancy, and so far, has been limited to diagnostic and prognostic
purposes.] b

In this work, we use machine learning algorithms to explore the
connection between fundamental boiling parameters (e.g., nucleation
site density, bubble departure frequency, growth time, and footprint
radius) and the boiling crisis by analyzing high-resolution infrared
measurements of the boiling process. Precisely, we combine high-
resolution infrared measurements and neural networks to predict the
departure from nucleate boiling ratio, DNBR, defined as

qII
DNBR = =¢HE (1)

1

without knowing the imposed heat flux, q”, or the actual critical heat
flux, q¢ye. Also, we use feature ranking algorithms to elucidate the
importance of the aforementioned boiling parameters in making accu-
rate predictions.

We perform pool boiling investigations featuring high-speed
infrared (IR) thermometry with water at ambient pressure on surfaces
with different morphologies and intrinsic wettability. The heaters
consist of an IR-transparent sapphire substrate coated with a thin elec-
trically conductive layer, e.g., indium tin oxide (ITO), as sketched in
Fig. 1. This layer is in contact with water. It has negligible thermal
resistance and heat capacity, and it is perfectly IR opaque. Its surface
can be modified to induce changes in intrinsic wettability and wick-
ability. In this paper, we cover the boiling surface with copper oxide
(CuO) nanoleaves, zinc oxide (ZnO) nanowires, and layers of silicon
dioxide (SiO,) nanoparticles. These three coatings make the surface
super-hydrophilic and enhance the CHF compared to the uncoated
surface. Details about the characterization of these surfaces and their
CHEF values can be found in the supplementary material. In a typical
experiment, we control the power released by the thin, IR opaque,
electrically conductive layer and measure the time- and space-
dependent radiation that it emits through the sapphire. Bubble growth
and departure induce spatial and temporal changes in the surface tem-
perature and, accordingly, in the IR radiation. Practically, this IR radia-
tion (captured with a temporal resolution of 0.4 ms and a pixel size of
115 um, in this paper) can be post-processed to measure the time-
dependent temperature and heat flux distributions on the boiling sur-
face.'” Based on these distributions, we can identify the position and
the number of the nucleation sites and measure the bubble growth
time, wait time, and footprint area.'®

We develop an artificial neural network (ANN) model that can
evaluate the DNBR directly from the IR radiation (expressed in
counts) emitted by the boiling surface. Precisely, the list of ANN input
features includes the nucleation site density, N”, and the statistical
moments of the infrared radiation at the nucleation sites, through
which we seek to capture the effect of other boiling parameters on the
boiling crisis. We consider mean, standard deviation, skewness, and
kurtosis of IR counts, their first derivative in space and time, and their
second derivative in space. This neural network is trained using
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FIG. 1. Synopsis of the methodology including saturated pool boiling experiments
with water at ambient pressure on surfaces with different morphologies and wetta-
bility and featuring high-resolution infrared diagnostics.

experimental data points from only three surfaces (plain ITO, copper
oxide nanoleaves, and zinc oxide nanowires). 15% of the total data
points from these three surfaces are reserved for testing. Training and
validation of the network are carried out using the remaining data
points. We use 10-fold cross validation with the standard method of
data partitioning. Once network training is complete, we test the net-
work performance on the reserved 15% of the data points from the
three surfaces, and all the data for the fourth surface (i.e., the porous
layer made of silicon dioxide nanoparticles), which is not used for the
training. Details about the preparation of the input features and the
neural network architectures, their training and testing, and additional
training checks, e.g., to exclude the possibility of memorization or
overfitting, can be found in the supplementary material.

The predictions of the trained neural network on both the train-
ing and testing data are presented in Fig. 2 (top). We observe that pre-
dictions are consistent with the experimentally determined DNBR. No
matter the surface, the trained neural network model can determine
the DNBR with a mean absolute percentage error complement (i.e.,
100-MAPE) of ~96% even though no direct information on the heat
flux or the surface properties, or the physical mechanisms was
included in the input features. This result suggests that the ANN is
able to map the triggering mechanism of the boiling crisis directly
from the data it was trained on. However, while the selected input fea-
tures are sufficient to determine the DNBR with little error, they may
not be all necessary. We use a feature ranking algorithm, i.e., mini-
mum redundancy and maximum relevance'’ (MRMR), to identify the
most important ones. The MRMR algorithm consists of determining
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FIG. 2. Comparison between predicted and measured DNBR for the complete set
of features (top), MRMR analysis (aggregating training and testing data) on the
input features used to predict DNBR with the complete set of features (middle) and
100-MAPE (aggregating training and testing data) of the DNBR prediction with
reduced sets of features (bottom).

the correlation within the input variables and between input and out-
put variables. The former is a measure of the redundancy of a feature
set, whereas the latter quantifies the relevance of a feature set with
respect to the output variable. The correlation is mapped through the
mutual information, I. Qualitatively, I characterizes how much uncer-
tainty of one variable can be reduced by knowing the other variable
and vice versa (see the supplementary material for the mathematical
details). Thus, the redundancy, D, of a feature, F;, with respect to the n
features in the input set is given by
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D(F) = I(F;, Fy). @)

t=1:n

B

Instead, the relevance, V, of this feature with respect to the output vari-
able, T, e.g., the DNBR, is given by

The ratio of relevance to redundancy gives the mutual information
quotient, MIQ(F;), the magnitude of which is used to rank the
features

V(E)
D(F;)

MIQ(F;) = @)
A high MIQ value indicates an important feature. Conversely, a null
or low value indicates an irrelevant or redundant feature.

The results of the MRMR analysis are shown in Fig. 2 (middle).
Briefly, the nucleation site density, N”, has the maximum MIQ
score with the other spatiotemporal parameters also contributing sig-
nificantly to the prediction. However, the higher-order moments
(skewness and kurtosis) have a much lower score and are expected to
contribute very little. We corroborate this analysis by developing neu-
ral network models with reduced sets of input parameters. Figure 2
(bottom) shows how the performance of the ANN approach changes
after eliminating selected input parameters. As shown, eliminating the
higher-order moments, i.e., using the set of features S1 and S2, does
not affect the prediction. However, eliminating the lower order
moments or the nucleation site density (sets S3-S8) degrades the pre-
diction significantly. In summary, all the input features except the
higher-order moments (i.e., the set S2) are required to predict the boil-
ing crisis, i.e,, DNBR = 1.

To explore the causal relationships between the DNBR and the
fundamental bubble parameters (i.e., bubble departure frequency,
growth time, and footprint radius), we conduct a similar analysis. We
start by developing neural networks to predict, from the set of features
Q0 =957 (i.e, all the DNBR features except the nucleation site density),
the bubble footprint radius, R, and the product of bubble growth time
and frequency, f ty, which expresses the probability to have a bubble
growing at a given nucleation site. The results in Fig. 3 (top, left and
right) show that this set of parameters allows predicting these boiling
parameters quite well (note that these plots aggregate training and test-
ing data) and motivate the following questions: are all these parame-
ters necessary? and, are ft, and R mutually dependent, i.e., do they
share the same minimum set of input features?

To answer these questions, we use the same approach as for the
DNBR, ie., we evaluate the capability to capture these fundamental
parameters with reduced sets of input features. Interestingly, the
results in Fig. 3 (bottom) reveal that removing the gradient in time
from the complete set QO, i.e., using the feature set Q1, does not deteri-
orate the f t; predictions. Instead, the error increases if we remove any
of the spatial parameters. Similarly, a slightly different set, Q2, is neces-
sary and sufficient to predict the average bubble footprint radius with
an acceptable error. We see that Q1 is different from Q2, ie., it is
unlikely that f t; and the bubble footprint radius are mutually depen-
dent. However, the union of Q1 and Q2 yields Q0. Q0 along with the
nucleation site density yields S2, i.e., the minimum set of features to
predict DNBR. This observation suggests that we could predict the
DNBR directly from N”, f tg, and R.
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To explore this hypothesis, we develop ANN models to predict
the DNBR using these three boiling parameters as inputs and conduct
an MRMR analysis. Figure 4 shows the results of this analysis. All the
parameters have non-zero and comparable MIQ, i.e., they are all rele-
vant to predict the DNBR. When one of them is removed from the
input features set, the DNBR predictions degrade considerably. These
results are also confirmed by a simple low-order regression of the data
and, importantly, while the analysis presented in Fig. 4 aggregates all
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FIG. 4. MRMR analysis of the boiling parameters (f tg, N”, and R) used to predict
DNBR and 100-MAPE of the predictions for several combinations of these parame-
ters (secondary y axis).
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the surfaces, we found equivalent results when analyzing each surface
separately (see the supplementary material). These observations sug-
gest that it is unlikely to have a generalizable boiling crisis model by
using mechanistic descriptions that seek to predict the boiling crisis as
the outcome of a single effect, e.g,, an increase in nucleation site den-
sity or a decrease in bubble growth time. Instead, it is essential to com-
bine these three parameters and describe their mutual interaction.
Such conclusion seems to corroborate approaches picturing the boiling
crisis as a limit of the wall heat flux partitioning,* or a recent theory
from our group, suggesting that the boiling crisis is due to an instabil-
ity of the bubble interaction process on the boiling surface, described
as a continuum percolation phenomenon.'”*’

It is noteworthy that, while we have tested the boiling perfor-
mance of surfaces with different morphologies, wickability, and critical
heat flux, our set of input features does not contain any information
about these quantities, e.g., we do not use the Wicking number, which
is usually considered a first-order indicator of the critical heat flux
enhancement on porous and hydrophilic surfaces.” Our work suggests
that, while wickability certainly enhances CHF, the mechanism may
not be related to the evaporation of the wicked liquid but to how these
surfaces change bubble departure frequency, growth time, footprint
radius, and nucleation site density. Also, note that all this analysis
implicitly assumes and corroborates the hypothesis that the boiling cri-
sis is a near-wall phenomenon, as we only used information related to
the dynamic of bubbles at the heating surface, provided by the infrared
thermometry measurements.

In conclusion, we have developed a data-driven methodology to
predict the boiling crisis. This methodology consists of artificial neural
networks and MRMR feature ranking algorithms and uses the unpro-
cessed time-dependent infrared radiation distributions emitted by the
boiling surface as inputs. Based on our analyses, we conclude that gen-
eralizable predictions of the DNBR, and consequently the boiling cri-
sis, cannot be obtained by considering a single boiling parameter, but
they are possible when based on nucleation site density, bubble foot-
print radius, and product of bubble frequency and growth time
together. This conclusion is supported by the comparison with experi-
mental results obtained on surfaces with different surface properties,
e.g., wickability and CHF limits. Finally, based on un-processed, time-
depended infrared radiation distributions, the methodology we devel-
oped opens the possibility to monitor the DNBR and estimate the
CHF online and in quasi-real-time when conducting boiling experi-
ments using infrared thermometry, which is key toward the imple-
mentation of smart, autonomous experiments.

See the supplementary material for the details on the experiment,
the implementation of the ANN models, their training and additional
checks, the MRMR analysis, the low-order regression model, addi-
tional feature ranking analyses conducted using other techniques, and
additional results.
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