
Hear “No Evil”, See “Kenansville”*: Efficient and
Transferable Black-Box Attacks on Speech

Recognition and Voice Identification Systems
Hadi Abdullah, Muhammad Sajidur Rahman, Washington Garcia, Kevin Warren, Anurag Swarnim Yadav,

Tom Shrimpton, Patrick Traynor

University of Florida

Abstract—Automatic speech recognition and voice identifica-
tion systems are being deployed in a wide array of applications,
from providing control mechanisms to devices lacking traditional
interfaces, to the automatic transcription of conversations and
authentication of users. Many of these applications have signif-
icant security and privacy considerations. We develop attacks
that force mistranscription and misidentification in state of the
art systems, with minimal impact on human comprehension.
Processing pipelines for modern systems are comprised of signal
preprocessing and feature extraction steps, whose output is fed to
a machine-learned model. Prior work has focused on the models,
using white-box knowledge to tailor model-specific attacks. We
focus on the pipeline stages before the models, which (unlike the
models) are quite similar across systems. As such, our attacks
are black-box, transferable, can be tuned to require zero queries
to the target, and demonstrably achieve mistranscription and
misidentification rates as high as 100% by modifying only a few
frames of audio. We perform a study via Amazon Mechanical
Turk demonstrating that there is no statistically significant
difference between human perception of regular and perturbed
audio. Our findings suggest that models may learn aspects of
speech that are generally not perceived by human subjects, but
that are crucial for model accuracy.

I. INTRODUCTION

Automatic Speech Recognition (ASR) systems and Auto-
matic Voice Identification (AVI) systems hold great potential
to improve the ways in which humans and machines inter-
act. Whether providing an intuitive means of communicating
with systems that lack traditional interfaces, such as the
Internet of Things (IoT) family of devices, or improving
operator efficiency in complex environments, including air
traffic control [1], ASR and AVI systems are increasingly
being deployed in a diverse array of computing environments.
Driving the widespread adoption of such systems are the recent
breakthroughs in machine learning and its efficient application
to speech processing.

There are several attacks against ASR and AVI systems that
exist in the current literature. However, these suffer from one
or more of the following: are not near-real-time, require white-
box knowledge of ASR and AVI systems [2], [3], [4], [5], [6],
can not succeed over the telephony network, require thousands

*The title of our paper plays on “Hear No Evil, See No Evil” and we use
the attacks described in our paper to generate the above title. Thus, when a
model is fed “No Evil”, it mistranscribes it as “Kenansville”, a town located
in Central Florida - text completely unrelated to the audio input.

of queries [7], [8], are not transferable [9], or produce poor
quality audio [10], [11].

In this paper, we present the first zero query black-box at-
tack, which neither requires query access to nor knowledge of
the target system. This is in contrast to black-box attacks still
do require query access to the model (even though knowledge
of target is not required). Our attack introduces perturbations to
input audio that induce ASR systems to mistranscribe speech,
and AVI systems to misidentifying voices, without impacting
human comprehension of the speech audio samples.

Additionally, our attack transfers across multiple systems.
We do so by focusing on the processing that turns captured
audio into model features. In particular, we exploit the fact
that ASR and AVI systems employ a common set of signal
processing techniques to produce model feature vectors. The
findings of our work are:
• Our zero-query attack can circumvent any state of the

art ASR and AVI system in a near real-time, black-
box, transferable manner: A key contribution of this
work is the ability to generate audio samples that will
induce errors in any ASR and AVI systems where the
adversary neither has knowledge nor query access to the
target model. Additionally, we show that the resulting
adversarial audio samples will still be transferable (i.e.,
evade unknown models). By leveraging transferability our
attack can succeed with zero to any unknown models.

• Our attack does not significantly impact human-
perceived quality or comprehension and works in real
audio environments: Our attack ensures that the result-
ing perturbations will be imperceptible.We substantiate
this claim by conducting an Amazon Turk user study.
Similarly, we test our attack over the cellular network,
which introduces significant audio quality degradation
due to transcoding, jitter and packet loss. We show that
even after undergoing such serious degradation, our attack
audio can still trick the target ASR and AVI systems. To
our knowledge, our work is the first to generate attack
audio that is robust to the cellular network.

• Our attack is robust to existing adversarial detec-
tion and defense mechanisms: Finally, we evaluate
our attack against existing techniques, which detect or
defend against adversarial samples. For the former, we

Model Original Transcription Attack Transcription

Google (Normal) The emperor had a mean Temper syempre Hanuman Temple
then the chOreographer must arbitrate Democrat ographer must arbitrate

Wit she had your dark suit in Greasy wash water all year nope
masquerade parties tax one’S imagination stop

TABLE I: By only perturbing a single phoneme (bold faced and underlined), our attack forces ASR systems to completely
mistranscribe the resulting audio.

Preprocessing
 (a)

Low-Pass
Filter

Noise Filter

Decoding
 (c)

Feature
Extraction (b)

"Hello,
how're you?"

Text

Accoustic
Models

Fig. 1: Modern ASR systems take several steps to convert
speech into text. (a) Preprocessing removes high frequencies
and noise from the audio waveform, (b) feature extraction
extracts the most important features of the audio sample, and
(c) decoding converts the features into text.

test the attack against the temporal-based method, which
has shown excellent results against traditional adversarial
attacks [12]. We show that this method has limited
effectiveness against our attack: It is no better than ran-
domly choosing whether an attack is in progress or not.
Regarding defenses, we test our attack against adversarial
training, which has shown promise as a defense in the
adversarial image space [13]. We observe that this method
slightly improves model robustness, but at the cost of a
significant decrease in model accuracy.

The remainder of this paper is organized as follows: Sec-
tion II provides background information on topics ranging
from signal processing to phonemes; Section III details our
methodology, including our assumptions and hypothesis; Sec-
tion IV presents our experimental setup and parameterization;
Section V shows our results; Section VI offers further dis-
cussion; Section VII discusses related work; and Section VIII
provides concluding remarks.

II. BACKGROUND

A. Automatic Speech Recognition (ASR) Systems:

An ASR system converts a sample of speech into text using
the steps seen in Figure 1.

(a) Preprocessing Preprocessing in ASR systems attempts
to remove noise and interference, yielding a “clean” signal.
Generally, this consists of noise filters and low pass filters.
Noise filters remove unwanted frequency components from
the signal that are not directly related to the speech. The
exact process by which the noise is identified and removed
varies among different ASR systems. Additionally, since the
bulk of frequencies in human speech fall between 300 Hz and
3000Hz [14], discarding higher frequencies with a low pass
filter helps remove unnecessary information from the audio.
(b) Feature Extraction Next, the signal is converted into
overlapping segments, or frames, each of which is then passed
through a feature extraction algorithm. This algorithm retains

only the salient information about the frame. A variety of
signal processing techniques are used for feature extraction,
including Discrete Fourier Transforms (DFT), Mel Frequency
Cepstral Coefficients (MFCC), Linear Predictive Coding, and
the Perceptual Linear Prediction method [15]. The most com-
mon of these is the MFCC method, which is comprised of
several steps. First, a magnitude DFT of an audio sample is
taken to extract the frequency information. Next, the Mel filter
is applied to the magnitude DFT, as it is designed to mimic the
human ear. This is followed by taking the logarithm of powers,
as the human ear perceives loudness on a logarithmic scale.
Lastly, this output is given to the Discrete Cosine Transform
(DCT) function that returns the MFCC coefficients.

Some modern ASR systems use data-driven learning tech-
niques to establish which features to extract. Specifically, a
machine learning layer (or a completely new model) is trained
to learn which features to extract from an audio sample in
order to properly transcribe the speech [16].

(c) Decoding During the last phase, the extracted features
are passed to a decoding function, often implemented in the
form of a machine learning model. This model has been
trained to correctly decode a sequence of extracted features
into a sequence of characters, phonemes, or words, to form
the output transcription. ASR systems employ a variety of sta-
tistical models for the decoding step, including Convolutional
Neural Networks (CNNs) [17], [18], [19], Recurrent Neural
Networks (RNNs) [20], [21], [22], [23], Hidden Markov
Models (HMMs) [24], [23], and Gaussian Mixture Models
(GMMs) [25], [23]. Each model type provides a unique set of
properties and therefore the type of model selected directly
affects the ASR system quality. Depending on the model,
the extracted features may be re-encoded into a different,
learnable feature space before proceeding to the decoding
stage. A recent innovation is the paradigm known as end-
to-end learning, which combines the entire feature extraction
and decoding phase into one model, and greatly simplifies
the training process. The most sophisticated methods will
leverage many machine learning models during the decoding
process. For example, one may employ a dedicated language
model, in addition to the decoding function, to improve the
ASR’s performance on high-level grammar and rhetorical
concepts [26]. Our attacks are agnostic to how the target ASR
system is implemented, making our attack completely black-
box. To our knowledge, we are the first paper to introduce
black-box attacks in a limited query environment.

2

Fig. 2: (a) Original audio “about” [27]; (b) the corresponding
DFT and (c) SSA decompositions. In both, low magnitude
components (frequencies or eigenvectors, respectively) con-
tribute little to the original audio.
B. Automatic Voice Identification (AVI) Systems:

AVI systems are trained to recognize the speaker of a voice
sample. The modern AVI pipeline is mostly similar to the
one used in the ASR systems, shown in Figure 1. While
both systems use the preprocessing and feature extraction
steps, the difference lies in the decoding step. Even though
the underlying statistical model (i.e., CNNs, RNNs, HMMs
or GMMs) at the decoding stage remains the same for both
systems, what each model outputs is different. In the case
of ASR systems, the decoding step converts the extracted
features into a sequence of characters, phonemes, or words,
to form the output transcription. In contrast, the decoding step
for AVI models outputs a single label which corresponds to an
individual. AVI systems are commonly used in security critical
domains as an authentication mechanism to verify the identity
of a user. In our paper, we present attacks to prevent the AVI
models from correctly identifying speakers. To our knowledge,
we are the first to do so in a limited query, black-box setting.

C. Data-Transforms

In this paper, we use standard signal processing trans-
formations to change the representation of audio samples.
The transforms can be classified into two categories: data-
independent and data-dependent.

1) Data-Independent Transforms: These represent input
signals in terms of fixed basis functions (e.g., complex expo-
nential functions, cosine functions, wavelets). Different basis
functions extract different information about the signal being
transformed. For our attack, we focus on the DFT, which
exposes frequency information. We do so because the DFT
is well understood and commonly used in speech processing,
both as a stand-alone tool, and as part of the MFCC method,
as discussed in Section II-A.

The DFT, shown in Figure 2(b), represents a discrete-time
series x0, x1, . . . , xN−1 via its frequency spectrum — a se-
quence of complex values f0, f1, . . . , fN−1 that are computed
as fk =

∑N−1
n=0 xn exp

(
(−j2π) kN n

)
where j =

√
−1, for

k = 0, 1, . . . , N − 1. One can view fk as the projection
of the time series onto the k-th basis function, a (discrete-
time) complex sinusoid with frequency k/N (i.e., a sinusoid
that completes k cycles over a sequence of N evenly spaced
samples). Intuitively, the complex-valued fk describes “how
much” of the time series x0, x1, . . . , xN−1 is due to a sinu-
soidal waveform with frequency k/N . It compactly encodes
both the magnitude of the k-th sinusoid’s contribution, as
well as phase information, which determines how the k-th
sinusoid needs to be shifted in time. The DFT is invertible,
meaning that a time-domain signal is uniquely determined by
a given sequence of coefficients. Filtering operations (e.g. low-
pass/high-pass filters) allow one to accentuate or downplay the
contribution of specific frequency components; in the extreme,
setting a non-zero fk to zero ensures that the resulting time-
domain signal will not contain that frequency.

2) Data-Dependent Transforms: Unlike the DFT, data-
dependent transforms do not use predefined basis functions.
Instead, the input signal itself determines the effective basis
functions: a set of linearly independent vectors which can be
used to reconstruct the original input. Abstractly, an input
sequence x with |x| = n can be thought of as a vector in the
space Rn, and the data-driven transform finds the bases for
the input x. Singular Spectrum Analysis (SSA) is a spectral
estimation method that decomposes an arbitrary time series
into components called eigenvectors, shown in Figure 2(c).
These eigenvectors represent the various trends and noise
that make up the original series. Intuitively, eigenvectors
corresponding to eigenvalues with smaller magnitudes convey
relatively less information about the signal, while those with
larger eigenvalues capture important structural information, as
long-term “shape” trends, and dominant signal variation from
these long-term trends. Similar to the DFT, the SSA is also
linear and invertible. Inverting an SSA decomposition after
discarding eigenvectors with small eigenvalues is a means to
remove noise from the original series.

D. Cosine Similarity

Cosine Similarity is a metric used to measure the similarity
of two vectors. This metric is often used to measure how
similar two samples of text are to one another (e.g., as part
of the TF-IDF measure [28]). In order to calculate this, the
sample texts are converted into a dictionary of vectors. Each
index of the vector corresponds to a unique word, and the
index value is the number of times the word occurs in the
text. The cosine similarity is calculated using the equation
cos(x, y) = x·y

||x||·||y|| , where x and y are the sentence samples.
Cosine values close to one mean that the two vectors, or in
this case sentences, have high similarity.

3

E. Phonemes
Human speech is made up of various component sounds

known as phonemes. The set of possible phonemes is fixed
due to the anatomy that is used to create them. The number
of phonemes that make up a given language varies. English,
for example, is made up of 44 phonemes. Phonemes can be
divided into several categories depending on how the sound
is created. These categories include vowels, fricatives, stops,
affricates, nasal, and glides. In this paper, we mostly deal with
fricatives and vowels; however, for completeness, will briefly
discuss the other categories here.

Vowels are created by positioning the tongue and jaw such
that two resonance chambers are created within the vocal tract.
These resonance chambers create certain frequencies, known
as formants, with much greater amplitudes than others. The
relationship between the formants determines which vowel is
heard. Examples of vowels include iy, ey, and oy in the words
beet, bait, and boy, respectively.

Fricatives are generated by creating a constriction in the air-
way that causes turbulent flow to occur. Acoustically, fricatives
create a wide range of higher frequencies, generally above
1 kHz, that are all similar in intensity. Common fricatives
include the s and th sounds found in words like sea and thin.

Stops are created by briefly halting air flow in the vocal
tract before releasing it. Common stops in English include b,
g, and t found in the words bee, gap, and tea. Stops generally
create a short section of silence in the waveform before a rapid
increase in amplitude over a wide range of frequencies.

Affricates are created by concatenating a stop with a frica-
tive. This results in a spectral signature that is similar to a
fricative. English only contains two affricates, jh and ch which
can be heard in the words joke and chase, respectively.

Nasal phonemes are created by forcing air through the
nasal cavity. Generally, nasals have less amplitude than other
phonemes and consist of lower frequencies. English nasals
include n and m as in the words noon and mom.

Glides are unlike other phonemes, since they are not
grouped by their means of production, but instead by their
roll in speech. Glides are acoustically similar to vowels but
are instead used like consonants, acting as transitions between
different phonemes. Examples of glides include the l and y
sounds in lay and yes.

III. METHODOLOGY

A. Hypothesis and Threat Model
Hypothesis: Our central hypothesis is that ASR and AVI

systems rely on components of speech that are non-essential
for human comprehension. Removal of these components can
dramatically reduce the accuracy of ASR system transcriptions
and AVI system identifications without significant loss of
audio clarity. Our methods and experiments are designed to
test this hypothesis.

Threat Model and Assumptions: For the purposes of this
paper, we define the attacker or adversary as a person who is
aiming to trick an ASR or AVI system via audio perturbations.
We define the defender as the owner of the target system.

Signal
Decomposition

(a)

Reconstruction
(c)

Measurement
(e)

Thresholding
(b)

ASR
(d)

“the meeting is
now Charmed”

W1, W2, W3, ...
<latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit><latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit><latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit><latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit>

W1, W2, 0, ...
<latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit><latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit><latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit><latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit>

Component
Weights

Modified Voice Signal

Threshold Update

Components

Digitized Voice
Signal

Transcription

“I'm eating a
sandwich arms”

Fig. 3: The figure shows the steps involved in generating
an attack audio sample. First, the target audio sample is
passed through a signal decomposition function (a) which
breaks the input signal into components. Next, subject to some
constraints, a subset of the components are discarded during
thresholding (b). A perturbed audio sample is reconstructed
(c) using the remaining weights from (a) and (b) . The
audio sample is then passed to the ASR/AVI system (d) for
transcription. The difference between the transcription of the
perturbed audio and the original audio is measured (e). The
thresholding constraints are updated accordingly (c) and the
entire process is repeated.

We assume the attacker has no knowledge of the type,
weights, architecture, or layers of the target ASR or AVI
system. Thus, we treat each system as a black-box to which
we make requests and receive responses. We also assume the
attacker can only make a limited number of queries to the
target (in the best case) and no queries at all (in the worst
case). In the extreme case, we assume that the attacker might
not be able to make any queries to the model.

We assume the defender has the ability to train an ASR or
AVI system. Additionally, they may use any type of machine
learning model, feature extraction, or preprocessing to create
their ASR or AVI system. Finally, the defender is able to
monitor incoming queries to their system and prevent attackers
from performing large numbers of queries.

B. Attack Steps

Readers might incorrectly assume that certain trivial attacks
can achieve the goals of the attacker (i.e., evade the model
while maintaining high audio quality). One such trivial attack
includes adding white-noise to the speech samples, expecting a
mistranscription by the model. However, an attack such as this
will fail. We discuss in detail how we test this trivial attack
and the corresponding results in Appendix B. Similarly we
introduce a simple impulse perturbation technique that exposes
the sensitivity of ASR systems, discussed in Appendix D1.
Realizing the limitations of this approach, we leave its details
to Appendix D1 to D4. We continue our study to develop a
more robust attack algorithm in the following sections.

The attack should meet certain constraints. First, it should
introduce artificial noise to the audio sample that exploits
the ASR/AVI system and forces an incorrect model output.
Second, the attack perturbations should have little to no impact
on the intelligibility for the human listener.

4

The attack steps are outlined in Figure 3. During decompo-
sition, shown in Figure 3(a), we pass the audio sample to the
selected algorithm (DFT or SSA). The algorithm decomposes
the audio into individual components and their corresponding
intensities. Next, we threshold these components, as shown in
Figure 3(b). During thresholding, we remove the components
whose intensity falls below a certain threshold. The intuition
for doing so is that the lower intensity components are less
perceptible to the human ear and will likely not affect a user’s
ability to understand the audio. We discuss how the algorithm
calculates the correct threshold in the next paragraph. We then
construct a new audio sample from the remaining components
using the appropriate inverse transform, shown in Figure 3(c).
Next, the audio is passed on to the model for inference,
Figure 3(d). If the system being attacked is an ASR, then
the model outputs a transcription. On the other hand if the
target system is an AVI, the model outputs a speaker label.
The model output is compared with that of the original during
the measurement step, Figure 3(e).

The goal of the algorithm is to calculate the optimum thresh-
old, which discards the least number of components whilst still
forcing the model to misinterpret the audio sample. Discarding
components degrades the quality of the reconstructed audio
sample. If the discard threshold is too high, neither the human
listener nor the model will be able to correctly interpret the
reconstructed audio. On the other hand, by setting it too
low, both the human listener and the model will correctly
understand the reconstructed audio.

To compensate for these competing tensions, the attack
algorithm executes the following steps. If the model output
matches the original label, during the measurement step, the
algorithm will increase the threshold value. It will then pass
the audio sample and the updated threshold back to the
thresholding step for an additional round of optimization.
However, if the model outputs an incorrect interpretation of
the audio sample, the algorithm reduces the degradation by
reducing the discard threshold, before returning the audio to
the thresholding step. This loop will repeat until the algorithm
has calculated the optimum discard threshold.

C. Performance

In order to find the optimal threshold, we incrementally
remove more components until the model fails to properly
transcribe the audio file. This process takes O(n) queries to the
model, where n is the number of decomposition components.
We can reduce the time complexity from linear to logarithmic
time such that an attack audio is produced in O(log n) queries.
To achieve this, we model the distortion search as a binary
search (BS) problem where values represent the number of
coefficients to use during reconstruction.

If the reconstruction is misclassified, we move to the left
BS search-space and attempt to improve the audio quality by
removing less coefficients. If the audio is correctly transcribed,
we move to the right. This search continues until an upper
bound on the search depth is reached. This result was sufficient

for the scope of this paper, and we leave a more rigorous
analysis of distortion search complexity for future work.

D. Transferability

In order to improve performance, we can leverage trans-
ferability to reduce the number of queries to the model to
zero. One measure of an attack’s strength is the ability to
generate adversarial examples that are transferable to other
models (i.e., a single audio sample that tricks multiple models).
An attacker will not know the precise model he is trying to
fool. In such a scenario, the attacker will generate examples for
a known model, and hope that the samples will work against
a completely different model.

Attacks have been shown to generalize between models in
the image domain [29]. In contrast, attack audio transferability
has only seen limited success. Additionally, audio generated
with previous approaches ([11], [4]) are sensitive to naturally
occurring external noise and fail to exploit targets in real-world
settings. This is in line with previous results of physical attacks
in the image domain [30]. Instead we focus on the evasion
style of attack, where the attack is considered successful if
the ASR system transcribes the attack audio incorrectly or the
AVI misidentifies the speaker of the attack audio. We propose
a completely black-box approach that does not consider model
specifics as a means of bypassing these limitations.

E. Detection and Defense

We evaluate our attack against the adversarial audio detec-
tion mechanism which is based on temporal dependencies [12].
This is the only method designed specifically to detect adver-
sarial audio samples. This method has demonstrated excellent
results: it is light-weight, simple and highly effective at
detecting tradition adversarial attacks. The mechanism takes
as input an audio sample. This can either be adversarial or
benign. Next, the audio sample is partitioned into two. Only
the partition corresponding to the first half is retained. Next,
the entire original audio sample and the first partition are
passed to the model and the transcriptions are recorded. If the
transcriptions are similar, then the audio sample is considered
benign. However, if the transcriptions are differing, the audio
sample is adversarial. This is because adversarial attack algo-
rithms against audio samples distort the temporal dependence
within the original sequences. The temporal dependency-based
detection is designed to capture this information and use it for
attack audio detection.

Additionally, we evaluate our attack against adversarial
training based defense. However, we have placed the steps,
the methodology, and the results in the Appendix E.

IV. SETUP

Our experimental setup involved two datasets, four attack
scenarios, two test environments, seven target models, and a
user study. We will discuss the relevant details here.

5

A. TIMIT Data Set

The TIMIT corpus is a standard dataset for speech pro-
cessing systems. It consists of 10 English sentences that are
phonetically diverse being spoken by 630 male and female
speakers [31]. Additionally, there is metadata of each speaker
that includes the speaker’s dialect. In our tests, we randomly
sampled six speakers, three male and three female, from each
of four regions (New England, Northern, North Midland, and
South Midland). We then perturbed all 10 sentences spoken by
our speakers using our technique, and also extracted phonemes
for our phoneme-level experiments. In total, we attacked 240
recordings with 7600 phonemes.

B. Word Audio Data Set

Testing the word-level robustness of an ML model poses
challenges in terms of experimental design. Although there
exist well-researched datasets of spoken phrases for speech
transcription [32], [33], partitioning the phrases into individual
words based on noise threshold is not ideal. In this case,
the only way to control the distribution of candidate phrases
would be to pass them to a strong transcription model, while
discarding audio samples which are mistranscribed. Doing so
may bias the candidate attack samples towards clean, easy to
understand samples. Instead, we build a word-level candidate
dataset using a public repository of the 1,000 most common
English words [27]. We then download audio for each of the
1,000 words using the Shotooka spoken-word service [34].

C. Attack Scenarios

In order to test our technique in a variety of different ways,
we performed four attacks: word level, phoneme level, ASR
Poisoning, and AVI poisoning. We also tested the transferabil-
ity of the attack audio samples across models.

1) Word Level Perturbations: Using the 1,000 most com-
mon words, we performed our attack as described in
Section III-B. We optimized our threshold using the technique
outlined in Section III-D, stopping either after the threshold
value had converged or after a maximum of 15 queries.

2) Phoneme Level Perturbations: Next, we ran perturba-
tions on individual phonemes rather than entire words. The
goal of this attack was to cause mistranscription of an entire
word by only perturbing a single phoneme. We tested this
attack on audio files from the TIMIT corpus and replaced
the regular phoneme with its perturbed version in the audio
file. The audio sample was then passed to the ASR system
for transcription. We repeated this process for every phoneme
using the binary search technique outlined in Section III-D.

3) ASR Poisoning: ASR systems often use the previously
transcribed words to infer the transcription of the next [35],
[36], [37]. Perturbing a single word’s phonemes not only
affects the model’s ability to transcribe that word, but also
the words that come after it. We wanted to measure the effect
of perturbing a single phoneme on the transcription of the
remaining words in a sentence. To do this, we generated
adversarial audio sample by perturbing a single phoneme while
keeping the remaining audio intact for the sentences of the

TIMIT dataset. We repeated this for every phoneme in the
dataset and passed the attack audio samples to the ASR. The
cosine similarity metric was used to measure the transcription
similarity between the attack and original audio samples.

When perturbing phonemes, we do not use the attack
optimization described in Section III-D. Since the average
length of a phoneme in our dataset was only 31ms, a single
perturbed phoneme in a sentence does not significantly impact
audio comprehension. Therefore, we simply discard half of all
decomposition coefficients in a single 31 ms window during
the thresholding step. This maintains the quality of the adver-
sarial audio, while still forcing the model to mistranscribe.

4) AVI Poisoning: We also evaluate our attacks’ perfor-
mance against AVI system. To do so, we first trained an Azure
Speaker Identification model [38] to recognize 20 speakers.
We selected 10 male and 10 female speakers from the TIMIT
dataset to service as our subjects. For each speaker, seven
sentences were used for training, while the remaining three
sentences were used for attack evaluation. We only perturbed a
single phoneme while the rest of the sentence is left unaltered.
We passed both the benign and adversarial audio samples to
the model. The attack was considered a success if the AVI
model output different labels for each sample. This attack
setup is similar to the one for ASR poisoning, except that
here we target an AVI system.

D. Models

We choose a set of seven models that are representative of
the state-of-the-art in ASR and AVI technology, given their
high accuracy [39], [40], [41], [42]. These include a mixture
of both proprietary and open-source models to expose the
utility of our attack. However, all are treated as black-box. We
evaluate our attack against 7 models, which include Google
(Normal), Google (Phone), Facebook Wit, Deep Speech-1,
Deep Speech-2, CMU Sphinx, and Microsoft Azure. We
provide details about these models in Appendix A.

Although the landscape of audio models is ever-changing,
we believe our selection represents an accurate approximation
of both traditional and state-of-the-art methods. Intuitively, fu-
ture models will derive from the existing ones in terms of data
and implementation. We also compare against open-source and
proprietary models, to show our approach generalizes to any
model regardless of a lack in apriori knowledge.

E. Transferability

We measure the transferability of our proposed attack by
finding the probability that the attack samples for one model
will successfully exploit another. This is done by creating
a set of successful word-level attack audio samples X∗m for
a model m, then averaging their calculated Mean Squared
Error (MSE) distortion, MSEm. Intuitively, this average MSE
will be higher for stronger models, and lower for weaker
models. This acts as a ‘hardness score’ for a given model
and is used to compare between the attack audio sets of
two models. Now consider a baseline model f , comparison
model g, the successful attack transfer event Sf→g , and

6

the number of audio samples in each model’s attack audio
set n = |X∗f | = |X∗g |. We can calculate attack transfer
probability from f to g as the probability of sampling attack
audio from X∗f whose distortion meets or surpasses the score
MSEg . We denote this probability P (Sf→g) and the set of
potentially transferable audio samples as Vf→g . We calculate
the probability using the equation P (Sf→g) =

|Vf→g|
n , where

we build the set of transferable attack samples such that
Vf→g = {x∗f,i ∈ X∗f :MSE(x∗f,i) ≥MSEg}.

Thus, we approximate the probability of sampling a piece
of audio which meets the ‘hardness’ of model g from the set
which was successful over model f . This value is calculated
across each combination of models in our experiments for SSA
and DFT transforms, with n set to 1,000 as a result of using
our Word Audio data set.

F. Detection

Our experimental method was designed to be as close to
that of the authors [12]. We assume that the attacker is not
aware of the existence of the defense mechanism or the size
of the partition. Therefore, we perturbed the entire audio
sample using our attack, to maximally distort the temporal
dependencies. Next, we partitioned the audio sample into
two halves. We passed both the entire audio sample and the
first half to the Google Speech API for transcription. We
conducted this experiment with 266 adversarial audio samples
generated using the DFT perturbation method at a factor of
0.07. Our set of benign audio samples consisted of 534 benign
audio samples. The audio samples for both the benign and
adversarial sets were taken from the TIMIT dataset. Similar
to the authors, we use Word Error Rate (WER) as a measure
of transcription similarity and calculate and report the Area
Under Curve (AUC) value. AUC values lie between 0.5 and
1. A perfect detector will return an AUC of 1, while a detector
that randomly guesses returns an AUC of 0.5.

G. Over-Cellular

The Over-Cellular environment simulates a more realistic
scenario where an adversary’s attack samples have to travel
through a noisy and lossy channel before reaching the target
system. Additionally, this environment accurately models one
of the most common mediums used for transporting human
voice – the telephony network. In our case, we did this by
sending the audio through AT&T’s LTE network and the
Internet via Twilio [43] to an iPhone 6. The attacker’s audio
is likely to be distorted while passing through the cellular
network due to jitter, packet loss, and the various codecs
used within the network. The intuition for testing in this
environment is to ensure that our attacks are robust against
these kinds of distortions.

H. MTurk Study Design

In order to measure comprehension of perturbed phone
call audio, we conducted an IRB approved online study. We
ran our study using Amazon’s Mechanical Turk (MTurk)
crowdsourcing platform. All participants were between the

0

20

40

60

80

100

Su
cc

es
sf

ul
 T

ra
ns

cr
ip

tio
ns

(%
) DFT Attack

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Mean Squared Error Between Original and Attack Audio

0

20

40

60

80

100

Su
cc

es
sf

ul
 T

ra
ns

cr
ip

tio
ns

(%
) SSA Attack

Sphinx
DeepSpeech-1
Wit
Google (Normal)
Google (Phone)

Fig. 4: Success transcriptions against our word-level attack
plotted against increasing distortion, calculated using Mean
Square Error (MSE). The SSA-based word-level attack sees
a faster, sharper decrease in the successful transcriptions than
the DFT-based word-level attack, noted by its ability to reach
50% attack success (solid black line) across all models within
a smaller span of distortion. This means 50% of the words
in the dataset were mistrascribed by the target ASR. In every
case, the test set accuracy falls considerably before reaching
the GSM baseline distortion (dashed red line).
ages of 18 and 55 years old, located in the United States,
and had an approval rating for task completion of more than
95%. During our study, each participant was asked to listen to
audio samples over the phone. Parts of the audio sample had
been perturbed, while others had been left unaltered1. The
audio samples were delivered via an automated phone call
to each of our participants. The participants were asked to
transcribe the audio of a pre-recorded conversation that was
approximately one minute long. After the phone call was done,
participants answered several demographic questions which
concluded the study. We paid participants $2.00 for completing
the task. Participants were not primed about the perturbation of
the pre-recorded audio, which prevented introducing any bias
during transcription. In order to make our study statistically
sound, we ran a sample size calculation under the assumption
of following parameter values: an effect size of 0.05, type-I
error rate of 0.01, and statistical power of 0.8. Under these
given values, our sample size was calculated to be 51 and we
ended up recruiting 89 participants in MTurk. Among these
89, 23 participants started but did not complete the study
and 5 participants had taken the study twice. After discarding
duplicate and incomplete data, our final sample size consists

1We invite the readers to listen to the perturbed audio samples for
themselves: https://sites.google.com/view/transcript-evasion

7

of 61 participants.

V. RESULTS

As outlined previously in Section IV-C, we evaluated our
attack in various different configurations in order to highlight
certain properties of the attack. To begin, we will evaluate our
attack against the speech to text capabilities of multiple ASR
systems in several different setups.

A. Attacks Against ASR systems

1) Word Level Perturbations: We study the effect of our
word-level attack against each model. We measure attack
success against distortion and compare the DFT and the SSA
attacks, (Figure 4). In this subsection, we discuss five target
models: Google (Normal), Google (Phone), Wit, DeepSpeech-
1 and Sphinx. Distortion is calculated using the MSE between
every normal audio sample and its adversarial counterpart.

We use the GSM audio codec’s average MSE as a baseline
for audio comprehension, as it is used by 2G cellular networks
(the most common globally). We denote this baseline with the
red, vertical dashed line (Figure 4). Thus, we consider any
audio with higher MSE than the baseline as incomprehensible
to humans. It is important to note that this assumption is
extremely conservative, since normal comprehensible phone
call audio often has larger MSE than our baseline.

As the distortion is iteratively increased using the word-
level attack, test set accuracy begins to diminish across all
models and all transforms (Figure 4). Models which decrease
slower, such as Google (Phone), indicate a higher robustness to
our attack. In contrast, weaker models, such as Deep Speech-
1, exhibit a sharper decline. For all transforms, the Google
(Phone) model outperforms the Google (Normal) model. This
indicates that training the Google (Phone) model on noisy
audio data exhibits a rudimentary form of adversarial training.
However, all attacks are eventually successful to at least 85%
while retaining audio intelligibility.

Despite implementing more traditional machine learn-
ing techniques, Sphinx exhibits more robustness than Deep
Speech-1 across both attacks. This indicates that Deep Speech-
1 may be overfitting across certain words or phrases, and its
existing architecture is not appropriate for publicly available
training data. Due to the black-box nature of Wit and the
Google models, it is difficult to compare them directly to
their white-box counterparts. Overall, Sphinx is able to match
Wit’s performance, which is also more robust than the Google
(Normal) model in the DFT attack.

Surprisingly, for the SSA attack Sphinx is able to outper-
form all models as distortion approaches the human percep-
tibility baseline. This may be a byproduct of the handcrafted
features and models built into Sphinx. Overall, the SSA-based
attack manages to induce less distortion, allowing all models
to fail with 50% (represented by the horizontal black line) or
less test set accuracy before 0.0100 calculated MSE. Manual
listening tests showed that there was no perceivable drop in
audio quality at this MSE.

2) Phoneme Perturbations: Our evaluation of the phoneme
level attacks exposed several trends (Figures 5 and 11). For
brevity, only Google (Normal) and Wit.

Figure 5 shows the relationship between phonemes and
attack success. Lower bars correspond to a greater percentage
of attack examples that were incorrectly transcribed by the
model. According to the figure, vowels are more sensitive to
perturbations than other phonemes. This pattern was consis-
tently present across all the models we evaluated. There are
a few possible explanations for this behavior. Vowels are the
most common phonemes in the English language and their
formant frequencies are highly structured. It is possible these
two aspects in tandem force the ASR system to over-fit to the
specific formant pattern during learning. This would explain
why vowel perturbations cause the model to mistranscribe.

Similarly, Figure 11 shows the distortion thresholds needed
for each phoneme to cause a phrase mistranscription. The
longer the bar, the greater the required threshold. For the DFT-
based attack experiment, shown in Figure 11(a), we observe
that the vowels require a lower threshold compared to the
other phonemes. This means that less distortion is required
for a vowel to trick the ASR system. In contrast, the SSA-
based attack experiments(Figure 11(b)), reveal that all of the
phonemes are equally vulnerable. In general, the SSA attacks
required a higher threshold than our previous DFT attack.
However, the MSE of the audio file after being perturbed when
compared to the original audio is still small. The average MSE
during these tests was 0.0067, which is an order of magnitude
less than the MSE of audio being sent over LTE (0.0181).

Our SSA attacks did not appear to expose any systemic
vulnerability in our models as the DFTs did. There exist two
likely causes for this: DFT’s use in ASR feature extraction and
SSA’s data dependence. ASR systems often use DFTs as part
of their feature extraction mechanisms, and thus the models
are likely learning some characteristics that are dependent on
the DFT. When our attack alters the DFT, we are directly
altering acoustic characteristics that will affect which features
the model is extracting and learning.

Additionally, when SSA is used in our attack, we are
removing eigenvectors rather than specific frequencies like we
do with a DFT. These eigenvectors are made up of multiple
frequencies that are not unique to any one eigenvector. Thus,
the removal of an eigenvector does not guarantee the complete
removal of a given frequency from the original audio sample.
We believe the combination of these two factors results in our
SSA-based attack being equally effective against all phonemes.

Both Figures 5 and 11 provide information for an attacker to
maximize their attack success probability. Perturbing vowels at
a 0.5 threshold while using a DFT-based attack will provide the
highest probability for success because vowels are vulnerable
across all models. Even though the discard threshold applied
to vowels might vary from one model to another, choosing a
threshold value of 0.5 can guarantee both stealth and a high
likelihood of a successful mistranscription.

3) ASR Poisoning: As described in Section IV-C2, per-
turbing a single phoneme not only causes a mistranscription

8

en
g ow aw ae ey uw ux sh ao aa uh ay er em en ih oy ah eh ax
r iy ch w

ax
-h ax ng
r ix hh m y z s jh t l v n g th k hv
f el p d dx dh b nx zh

Phonemes

0

20

40

60

80

100
At

ta
ck

 S
uc

ce
ss

 (%
) Google (Normal)

b ch zh ng em en en
g hh hv ih ae aa aw ay ah ow uh uw ux er ax
r

ax
-h n iy eh ao g sh v t z m l
ax w ey p ix r el s k nx y dx

f
oy jh d dh th

Phonemes

At
ta

ck
 S

uc
ce

ss
 (%

) Wit
Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

Fig. 5: A comparison of attack success of our DFT-based phoneme-level attack against two ASR models. There is a clear
relationship between the which phoneme is attacked and the attack’s success. It is clear across all models that we evaluated
that vowels are more vulnerable to this attack than other phonemes.Model Original Transcription Attack Transcription

Google (Normal) The emperor had a mean Temper syempre Hanuman Temple
then the chOreographer must arbitrate Democrat ographer must arbitrate

Wit she had your dark suit in Greasy wash water all year nope
masquerade parties tax one’S imagination stop

TABLE II: By only perturbing a single phoneme (bold faced and underlined), our attack forces ASR systems to completely
mistranscribe the resulting audio.

Fig. 6: Cosine similarity between the transcriptions of the
original and the perturbed audio file. At a value of 0.5
(horizontal line) half of the sentence is incorrect. Attack audio
samples were generated by perturbing a single phoneme.
of the given word but also of the following words as well.
Results of this phenomena can be seen in Table II. We
further, characterize this numerically across each model for the
DFT-based attack in Figure 6, where higher values of cosine
similarity translate to lower attack mistranscription.

We observe a relationship between the model type and the
cosine similarity score. Of all the models tested, Wit is the
most vulnerable, given low average cosine similarity of 0.36.
In contrast, the Google (Normal) model seems to be least
vulnerable with the highest cosine similarity of 0.78. To better
characterize the phenomenon, we use the cosine similarity
value to estimate the number of words that the attack effects.
We do so by assuming a sentence comprised of 10 words each.
Perturbing a single phoneme can force Wit to mistranscribe the
next seven words. However, only two of the next 10 words
will be mistranscribed by the Google (Normal) model. This
robustness of the Google (Normal) model might be due to its
recurrent layers being less weighted towards the previously
transcribed content. It is also interesting to note that, despite
their common internal structure, Deep Speech-1 and Deep

To (g)

P (Sf→g)
Google
(Phone)

Google
(Normal) Wit Sphinx Deep-Speech 1

Google
(Phone) 100% 78% 83% 42% 87%

Google
(Normal) 13% 100% 65% 22% 70%

From
(f) Wit 6% 10% 100% 14% 52%

Sphinx 21% 74% 81% 100% 80%

Deep-Speech 1 3% 7% 31% 12% 100%

TABLE III: The probability of transferability P (Sf→g) calcu-
lated for each combination of the tested models. Only ‘harder’
models tend to transfer well to weaker models. The elements in
bold show the highest transferability successes. Model names
in the columns have been arranged in descending order of their
strength from harder to weaker.

Speech-2 are significantly different in their vulnerability to this
effect. Deep Speech-1 and 2 have a cosine similarity score of
0.4 and 0.7, respectively. This difference could potentially be
attributed to different feature extraction mechanisms. While
Deep Speech-1 uses MFCCs, its counterpart uses a CNN
feature extraction. This is because feature extraction using
MFCCs and CNNs produces varying results and might capture
divergent information about the signal.
B. Attacks Against AVI systems

Next, we observe our attacks’ effectiveness inducing errors
an AVI system. Figure 7 shows the attack success rate per
vowel for both SSA and DFT attacks. Similar to our attack
results against ASR models, attacks against the AVI system
exhibited higher success rate when attacking vowels. This
means an adversary wishing to maximize attack success should
focus on perturbing vowels.

Figure 10 shows the relative amount of perturbation neces-
sary in order to force an AVI misclassification. The SSA attack
requires a relatively high perturbation for every phoneme. In

9

t d w iy ow jh aw hh ng uw uh ay m k p oy hv ix ey th ux sh eh
l

dx ae g n z ax r ah s ih ax
r v er y b aa dh

ax
-h ao el nx en em

f zh ch

Phonemes

0

10

20

30

At
ta

ck
 S

uc
ce

ss
 (%

) Azure DFT Attack

oy ng
t ae iy er ey ux ow ay eh ix w sh jh k l

aw aa d
ax

r r
uw uh m n dx el p en th s g z ax ih ah y ao hv dh v b

ax
-h hh nx em

f zh ch

Phonemes

Azure SSA Attack
Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

Fig. 7: Success rate of our attack against a Automatic Voice Identification (AVI) system. When perturbing a single phoneme
in the entire audio sample, an adversary has a greater chance of succeeding with an SSA attack rather than a DFT attack.
Additionally, similar to the observation in Figure 5 vowels are more vulnerable than other phonemes.
contrast, the DFT attack requires a smaller degree of pertur-
bation (except for some vowels). This implies that the DFT
attack can be conducted stealthily by intelligently selecting
certain phonemes. The less perturbation required, the more
stealthy the attack. However, because the SSA attack requires
larger degree of perturbations for most phonemes, the level of
stealth is lower. ¡¡¡¡¡¡¿¿¿¿¿¿

C. Transferability

Table III shows results of the transferability experiments
using the SSA-based attack. Overall, the attack has the highest
transfer probability when a ‘harder’ model is used to generate
attack audio samples. The Google (Phone) model had the
highest average threshold across samples which, as discussed
in Section IV-E, translated to the highest transfer probability.
In contrast, a weaker model will have a lower threshold and
thus be less likely to transfer. This can be seen when treating
Sphinx as the baseline model in Table III. The table shows
that in the worst case attack audio generated for the Google
(Phone) the model will also be effective against any other
model at least 42% of the time. This ensures a high probability
of success even in the extreme case when the adversary does
not know which model the victim will be employing. By
generating attack samples on a stronger model, an adversary
can expect an attack to transfer well as long as the victim
model is weaker. Finding a weaker model is trivial. As long
as the adversary has sufficient queries, they can compare
transcription rates for a candidate audio sample between the
two models.

D. Detection

For the detection experiments, we created set of 266 adver-
sarial samples, perturbed using the DFT technique, while the
benign set consisted of 534 unperturbed audio samples. Of the
adversarial samples provided to the Google Speech API, 20%
did not produce any transcription. This was true both the entire
audio samples and their corresponding partition. This means
that the WER for these samples was 0, which introduced a
bias to our results. Though this is perfect for the attacker, but
it introduces bias in our results. Specifically, because there
are two benign cases in which the WER will be zero, benign
audio or very noisy audio. We discarded these audio samples
from our adversarial set to remove this bias in our results. In
the real world, an attacker can merely reduce the attack factor

Fig. 8: The attack audio was sent over the cellular network
and recorded on a mobile end-point. The figure above shows
the percentage of the attack audio that was still mistranscribed
even after being passed over the cellular network.
to prevent the model from producing no transcription. Next,
we calculated the AUC scores for the samples. In our case,
the AUC value was 0.527, which is far lower than the AUC
value of 0.936 reported by the authors for the attacks they
tested. This means even though the temporal based detection
can do an excellent job of detecting other attacks, it is highly
inaccurate for detecting our attack samples.

E. Over-Cellular

Next, we test our attacks for use over a cellular network.
We run previously successful attack audio samples over the
cellular network before passing them again to the target
models. The rate of success for this experiment is shown in
Figure 8 plotted against the DFT and SSA-based attacks for
each model. If our attack were to be used over a cellular
connection, having near real-time performance is important.
There are two sources of the potential delay. The first source
is our attack calculating the DFT of the original audio sample.
While we do not conduct our own time evaluation, Danielsson
et al. showed that calculating a DFT on a commodity Android
platform took approximately 0.5 ms for a block size of
4096 [42]. The second source of delay involves searching
for the word/phoneme that the attacker wants to apply the
perturbation. To do so, the attacker will first need to search for
the specific word or phoneme. Fortunately, real-time phoneme
and word localization is a well-studied research area, which
offers potential for optimization of the attack in future work.

10

We refer interested readers to the work by Arik et al. [44],
and Ito and Donaldson [45].

The DFT-based attack managed to be more successful
across the mobile network than the SSA-based attack and
was only consistently filtered by the Deep Speech and Wit
models. Overall, the models react differently based on the
transformation. Wit performs best under DFT transforms and
worst under SSA transforms, while the opposite is true for
Deep Speech 1 and Google (Normal) model. Sphinx is equally
vulnerable to both transformation methods.

An intuition for these results can be formed by considering
the task each transformation is performing. When transforming
with the DFT, the attack audio sample forms around pieces of
weighted cross-correlations from the original audio sample. In
contrast, the SSA is built as a sum of interpretable principal
components. Although SSA may be able to produce fine-
grained perturbations to the signal, the granularity of per-
turbations is lost during the mobile network’s compression.
This effect is expected to be amplified for higher amounts
of compression, although such a scenario also limits the
perceptibility of benign audio.

F. Amazon Turk Listening Tests

In order to evaluate the transcription done by MTurk work-
ers, we initially manually classified the transcriptions as either
correct or incorrect. Table IV shows a side by side comparison
of original and attack transcription of the perturbed portion of
the audio sample. Transcriptions which had either a missing
word, a missing sentence, or an additional word not present
in the audio were marked as incorrect. At the end of this
classification task, the inter-rater agreement value, Cohen’s
kappa was found to be 0.901, which is generally considered
to be ‘very good’ agreement among individual raters. Our
manual evaluation found only 11% of the transcriptions to
be incorrect. More specifically, we found that incorrect tran-
scriptions mostly had missing sentences from the beginning
of the played audio sample, but the transcriptions did not
contain any misinterpreted words. Our subjective evaluation
did not consider wrong transcription of perturbed vs. non-
perturbed portion of the audio, rather we only evaluated human
comprehension of the audio sample.

In addition to subjective evaluation, we ran a phoneme-level
edit distance test on transcriptions to compare the level of
transcription accuracy between perturbed and non-perturbed
audio samples. We used this formula for phoneme edit dis-
tance, φ: φ = δ

L , where δ is the Levenshtein edit distance
between phonemes of two transcriptions (original transcription
and MTurk worker’s transcription) for a word and L is
the phoneme length of non-perturbed, normal audio for the
word [11]. We defined accuracy as 1 when φ = 0, indicating
exact match between two transcriptions. For any other value
φ > 0, we defined it as ‘in-accuracy’ and assigned a value of 0.
In Table V, we present transcription accuracy results between
perturbed and non-perturbed audio across our final sample size
of 61. We also ran a paired sample t-test, using the individual
accuracy score for perturbed and benign audio transcriptions,

Original Transcription Attack Transcription
How are you?
How’s work going?

How are you
posmothdro?

I am really sorry
to hear that.

I am relief for you
to hear that.

TABLE IV: Example of the attacked audio which was played
to MTurk Workers and the corresponding transcriptions.

Accuracy (Perturbed) Accuracy (Benign)
Male Female Male Female

91.8%
(56/61)

100%
(61/61)

98.36%
(60/61)

98.36%
(60/61)

TABLE V: Transcription accuracy results of MTurk workers
for benign and perturbed audios between Male and Female
speakers.

with the null hypothesis that participants’ accuracy levels were
similar for both cases of transcriptions. Our results showed
participants had better accuracy transcribing non-perturbed
audio samples (mean = 0.98, SD = 0.13) than for perturbed
audio (mean = 0.90, SD = 0.30). At a significance level of
p < 0.01, our repeated-measures t-test found this difference
not to be significant, t(60) = −2.315, p = 0.024. Recall that
our chosen significance level (p < 0.01) was not arbitrary,
rather it was chosen during our sample size calculation for
this study. Together, this suggests that our word level audio
perturbation create no obstacle for human comprehension in
telecommunication tasks, thus supporting our null hypothesis.

VI. DISCUSSION

A. Phoneme vs. Word Level Perturbation

Our attack aims to force a mistranscription while still
being indistinguishable from the original audio to a human
listener. Our results indicate that at both the phoneme-level
and the word-level, the attack is able to fool black-box models
while keeping audio quality intact. However, the choice of
performing word-level or phoneme-level attacks is dependent
on factors such as attack success guarantee, audible distortion,
and speed. The adversary can achieve guaranteed attack suc-
cess for any word in the dictionary if word-level perturbations
are used. However, this is not always true for a phoneme-
level perturbation, particularly for phonemes which are pho-
netically silent. An ASR system may still properly transcribe
the entire word even if the chosen phoneme is maximally
perturbed. Phoneme-level perturbations may introduce less
human-audible distortion to the entire word, as the human
brain is well suited to interpolate speech and can compensate
for a single perturbed phoneme. In terms of speed, creating
word-level perturbations is significantly slower than creating
phoneme-level perturbations. This is because a phoneme-level
attack requires perturbing only a fraction of the audio samples
needed when attacking an entire word.

B. Steps to Maximize Attack Success

An adversary wishing to launch an attack robust Over-
Cellular against an ASR system would be best off using the
DFT-based phoneme-level attack on vowels, as it guarantees
a high level of attack success. Our transferability results show

11

that an attacker can generate samples for a known ‘hard’
model such as Google (Phone) using 15 iterations of the
attack that can transfer to any unknown ASR model with
high confidence. From our ASR poisoning results, we observe
that an adversary does not have to perturb every word to earn
100% mistranscription of the utterance. Instead, the attacker
can perturb a vowel of every other word in the worst case, and
every fifth word in the best case. The ASR poisoning effect will
ensure that the non-perturbed words are also mistranscribed.
surviving the compression of a cellular network, which will
enable the success of our attack over lossy and noisy mediums.

Contrary to an ASR system attack, an adversary looking to
execute an evasion attack on an AVI system should use the
SSA-based phoneme-level attack. Similar to ASR poisoning,
we observe that an adversary does not have to perturb the
entire sentence to cause a misidentification, but rather just
a single phoneme of a word in the sentence. Based on our
results, the attacker would need to perturb on average one
phoneme every 8 words (33 phoneme) to ensure a high
likelihood of attack success. The attack audio samples are
generated in an identical manner for both the ASR and AVI
system attacks, thus the AVI attack audio should also be robust
against lossy and noisy mediums (e.g., a cellular network).

C. Zero Query Case

Using the above information, an attacker can tune the attack
ensure success without having query access to the model (i.e.,
the attack can succeed with zero queries to the target). Our
experimental setup required at most 15 queries. The algorithm
would stop if a successful audio sample was generated without
completing the full 15 queries. As a result, an attacker can run
the our algorithm locally for 15 iterations to produce samples
that can exploit any model with high confidence.

D. Why the Attack Works

Our attacks exploit the fundamental difference in how the
human brain and ASR/AVI process speech. Specifically, our
attack discards low intensity components of an audio sample
which the human brain is primed to ignore. The remaining
components are enough for a human listener to correctly
interpret the perturbed audio sample. On the other hand, the
ASR or AVI systems have unintentionally learned to depend
on these low intensity components for inference. This explains
why removing such insignificant parts of speech confuses
the model and causes a mistranscription or misidentification.
Additionally, this may also explain some portion of the ASR
and AVI error on regular testing data sets. Future work may
use these revelations in order to build more robust models and
be able to explain and reduce ASR and AVI system error.

E. Controlling transcriptions for the Untargeted Attack

Although our attack guarantees mistranscription for the
perturbed word, it is still untargeted (i.e., the mistranscription
can be anything). Fortunately, an attacker has some control
over the transcription the ASR outputs. So far, our experiments
focused on determining the least amount of perturbation that

needs to be applied to successfully fool the model. At times,
the transcriptions of the adversarial audio and its benign
counterpart were phonetically similar (Table II). However,
increasing the distortion can decrease the phonetic similarity
of the transcriptions. While running experiments for the DFT
and SSA perturbation methods, we noticed the ASRs would
often mistranscribe the input to nothing. Specifically, the
perturbations would confuse the ASRs into assuming that the
input was simply noise. Furthermore, manual listening tests by
the authors revealed that audio samples were still intelligible.
An attacker attempting to completely evade the ASR could
apply additional distortion to the audio. This can force the
ASR to either output a phonetically dissimilar transcription,
or in the best case, none at all.

F. Audio CAPTCHAs

Additionally, our attack has other applications as well.
Specifically, in the domain of audio CAPTCHAs. These are
often used by web services to validate the presence of a human.
CAPTCHAs relies on humans being able to transcribe audio
better than machines, an assumption that modern ASR systems
call into question [46], [47], [48], [49], [50]. Our attack could
potentially be used to intelligently distort audio CAPTCHAs
as a countermeasure to modern ASR systems.

VII. RELATED WORK

Machine Learning (ML) models, and in particular deep
learning models, have shown great performance advancements
in previously complex tasks, such as image classification [51],
[52], [53] and speech recognition [54], [26], [24]. However,
previous work has shown that ML models are inherently
vulnerable to attacks known as Adversarial ML (AML) [55].

Early AML techniques focused on visually imperceptible
changes to an image that cause the model to incorrectly clas-
sify the image. Such attacks target either specific pixels [56],
[57], [58], [59], [60], [61], or entire patches of pixels [62],
[63], [64], [65]. In some cases, the attack generates entirely
new images that the model would classify to an adversary’s
chosen target [66], [67].

However, the success of these attacks are a result of two
restrictive assumptions. First, the attacks assume that the
underlying target model is a form of a neural network. Second,
they assume the model can be influenced by changes at the
pixel level [64], [66]. These assumptions prevent image attacks
from being used against ASR models. ASR systems have
found success across a variety of ML architectures, from
Hidden Markov Models (HMMs) to Deep Neural Networks
(DNNs). Further, since audio data is normally preprocessed
for feature extraction before entering the statistical model, the
models initially operate at a higher level than the ‘pixel level’
of their image counterparts.

To overcome these limitations, previous works have pro-
posed several new attacks that exploit behaviors of particular
models. These attacks can be categorized into three broad
techniques that generate audio that include: a) inaudible to
the human ear but will be detected by the speech recognition

12

model [68], b) noisy such that it might sound like noise to
the human, but will be correctly deciphered by the automatic
speech recognition [69], [11], [10], and c) pristine audio
such that the audio sounds normal to the human but will
be deciphered to a different, chosen phrase [3], [70], [71],
[72], [7], [6], [2], [5], [73]. Although they may seem the most
useful, attacks in the third category are limited in their success,
as they often require white-box access to the model.

Attacks against image recognition models are well studied,
giving attackers the ability to execute targeted attacks even
in black-box settings. This has not yet been possible against
speech models [74], even for untargeted attacks in a query
efficient manner. That is, both targeted and untargeted attacks
require knowledge of the model internals (such as architecture
and parameterization) and large number of queries to the
model. In contrast, we propose a query efficient black-box
attack that is able to generate an attack audio sample that
will be reliably mistranscribed by the model, regardless of
architecture or parameterization. Our attack can generate an
attack audio sample in logarithmic time, while leaving the
audio quality mostly unaffected.

VIII. CONCLUSION

ASR and AVI systems are playing an increasingly important
role in security decisions. As such, the robustness of these
systems (and the foundations upon which they are built) must
be rigorously evaluated. We perform such an evaluation in
this paper. By exhibiting black-box attacks against of multiple
models, we demonstrate that such systems rely on audio
features which are not critical to human comprehension and
are therefore vulnerable to mistranscription attacks when such
features are removed. We then show that such attacks can
be efficiently conducted as perturbations to certain phonemes
(e.g., vowels) that cause significantly greater misclassification
to the words that follow them. Finally, we not only demonstrate
that our attacks can work across models, but also show that
the audio generated has no impact on human intelligibility.
This detail is critical, as attacks that simply obscure audio
and make it useless to everyone are not particularly useful
to the adversaries. While adversarial training may help in
partial mitigations, we believe that more substantial defenses
are ultimately required to defend against these attacks.

IX. ACKNOWLEDGMENT

We would like to thank our reviewers for their insightful
comments and suggestions. This work was supported in part
by the National Science Foundation under grant number CNS-
1933208. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the above listed
agencies.

REFERENCES

[1] D. Williamson, M. Draper, G. Calhoun, and T. Barry, “Commercial
Speech Recognition Technology in the Military Domain: Results of Two
Recent Research Efforts,” vol. 8, no. 1, pp. 9–16, 2005.

[2] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep
structured prediction models,” arXiv preprint arXiv:1707.05373, 2017.

[3] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang,
H. Huang, X. Wang, and C. A. Gunter, “Commandersong: A systematic
approach for practical adversarial voice recognition,” in Proceedings of
the USENIX Security Symposium, 2018.

[4] N. Carlini and D. Wagner, “Audio Adversarial Examples: Targeted
Attacks on Speech-to-Text,” ArXiv e-prints, p. arXiv:1801.01944, Jan.
2018.

[5] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Adversarial
attacks against automatic speech recognition systems via psychoacoustic
hiding,” arXiv preprint arXiv:1808.05665, 2018.

[6] F. Kreuk, Y. Adi, M. Cisse, and J. Keshet, “Fooling end-to-end speaker
verification by adversarial examples,” arXiv preprint arXiv:1801.03339,
2018.

[7] M. Alzantot, B. Balaji, and M. Srivastava, “Did you hear that? adver-
sarial examples against automatic speech recognition,” arXiv preprint
arXiv:1801.00554, 2018.

[8] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversarial ex-
amples for black box audio systems,” arXiv preprint arXiv:1805.07820,
2018.

[9] H. Abdullah, K. Warren, V. Bindschaedler, N. Papernot, and P. Traynor,
“SoK: The Faults in our ASRs: An Overview of Attacks against
Automatic Speech Recognition and Speaker Identification Systems,” In
Submission, 2020.

[10] H. Abdullah, W. Garcia, C. Peeters, P. Traynor, K. Butler, and J. Wilson,
“Practical hidden voice attacks against speech and speaker recognition
systems,” Proceedings of the 2019 Network and Distributed System
Security Symposium (NDSS), 2019.

[11] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands.” in USENIX
Security Symposium, 2016, pp. 513–530.

[12] Z. Yang, B. Li, P.-Y. Chen, and D. Song, “Characterizing au-
dio adversarial examples using temporal dependency,” arXiv preprint
arXiv:1809.10875, 2018.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[14] S. A. Gelfand, Hearing: An Introduction to Psychological and Physio-
logical Acoustics, 5th ed. Informa Healthcare, 2009.

[15] L. R. Rabiner and R. W. Schafer, Digital processing of speech signals.
Prentice Hall, 1978.

[16] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and
K. Saenko, “Translating videos to natural language using deep recurrent
neural networks,” arXiv preprint arXiv:1412.4729, 2014.

[17] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2015, pp. 4580–4584.

[18] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition,” pp. 4277–4280, 05 2012.

[19] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for lvcsr,” pp. 8614–8618, 05 2013.

[20] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing - Proceedings, vol. 38,
03 2013.

[21] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling,”
Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, pp. 338–342, 01 2014.

[22] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga,
and M. Mao, “Sequence discriminative distributed training of long short-
term memory recurrent neural networks,” Proceedings of the Annual
Conference of the International Speech Communication Association,
INTERSPEECH, pp. 1209–1213, 01 2014.

[23] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recognition,”
CoRR, vol. abs/1507.06947, 2015. [Online]. Available: http://arxiv.org/
abs/1507.06947

[24] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in International Conference on Machine
Learning, 2014, pp. 1764–1772.

13

[25] P. Lamere, P. Kwok, W. Walker, E. Gouvêa, R. Singh, B. Raj, and
P. Wolf, “Design of the cmu sphinx-4 decoder,” in Eighth European
Conference on Speech Communication and Technology, 2003.

[26] D. Amodei et al., “Deep speech 2 : End-to-end speech recognition
in english and mandarin,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New
York, New York, USA: PMLR, 20–22 Jun 2016, pp. 173–182. [Online].
Available: http://proceedings.mlr.press/v48/amodei16.html

[27] “1,000 Most Common US English Words,” Last accessed in 2019,
available at https://www.ef.edu/english-resources/english-vocabulary/
top-1000-words/.

[28] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 484–493, 2010.

[29] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical Black-box Attacks Against Machine Learning,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 506–519.

[30] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “NO Need to Worry about
Adversarial Examples in Object Detection in Autonomous Vehicles,”
ArXiv e-prints, 2017.

[31] J. S. Garofolo et al., “Getting started with the darpa timit cd-rom:
An acoustic phonetic continuous speech database,” National Institute of
Standards and Technology (NIST), Gaithersburgh, MD, vol. 107, p. 16,
1988.

[32] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
asr corpus based on public domain audio books,” in Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference
on. IEEE, 2015, pp. 5206–5210.

[33] “The CMU Audio Database (also known as AN4 database),” Last
accessed in 2019, available at http://www.speech.cs.cmu.edu/databases/
an4/.

[34] “Project SHTOOKA - A Multilingual Database of Audio Recordings of
Words and Sentences,” Last accessed in 2019, available at http://shtooka.
net/.

[35] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in neural
information processing systems, 2015, pp. 577–585.

[36] L. R. Rabiner and B.-H. Juang, Fundamentals of speech recognition.
PTR Prentice Hall Englewood Cliffs, 1993, vol. 14.

[37] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-
to-end attention-based large vocabulary speech recognition,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on. IEEE, 2016, pp. 4945–4949.

[38] “Azure speaker identification api,” Last accessed in 2019, available
at https://azure.microsoft.com/en-us/services/cognitive-servic/
speaker-recognition/.

[39] “Who’s Smartest: Alexa, Siri, and or Google Now?” Last accessed in
2019, available at https://bit.ly/2ScTpX7.

[40] “Wer are we - an attempt at tracking states of the art(s) and recent re-
sults on speech recognition,” https://github.com/syhw/wer are we, Last
accessed in 2019.

[41] “Googles Speech Recognition Technology Now Has a 4.9% Word Error
Rate,” Last accessed in 2019, available at https://bit.ly/2rGRtUQ.

[42] A. Danielsson, “Comparing android runtime with native: Fast
fourier transform on android,” 2017, mS thesis. [Online]. Available:
”https://bit.ly/2MQpUV1”

[43] “Twilio - Communication APIs for SMS, Voice, Video and Authentica-
tion,” Last accessed in 2019, available at https://www.twilio.com/.

[44] S. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang,
X. Li, J. Miller, A. Ng, J. Raiman et al., “Deep voice: Real-time neural
text-to-speech,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70, 2017.

[45] M. Ito and R. Donaldson, “Zero-crossing measurements for analysis
and recognition of speech sounds,” IEEE Transactions on Audio and
Electroacoustics, vol. 19, no. 3, pp. 235–242, 1971.

[46] E. Bursztein, R. Beauxis, H. Paskov, D. Perito, C. Fabry, and J. Mitchell,
“The failure of noise-based non-continuous audio captchas,” in Security
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 19–31.

[47] J. Tam, J. Simsa, S. Hyde, and L. V. Ahn, “Breaking audio captchas,” in
Advances in Neural Information Processing Systems, 2009, pp. 1625–
1632.

[48] S. Sano, T. Otsuka, and H. G. Okuno, “Solving google’s continuous
audio captcha with hmm-based automatic speech recognition,” in Inter-
national Workshop on Security. Springer, 2013, pp. 36–52.

[49] S. Solanki, G. Krishnan, V. Sampath, and J. Polakis, “In (cyber) space
bots can hear you speak: Breaking audio captchas using ots speech
recognition,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. ACM, 2017, pp. 69–80.

[50] K. Bock, D. Patel, G. Hughey, and D. Levin, “uncaptcha: a low-resource
defeat of recaptcha’s audio challenge,” in Proceedings of the 11th
USENIX Conference on Offensive Technologies. USENIX Association,
2017, pp. 7–7.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information Process-
ing Systems, vol. 25, 01 2012.

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 1–9.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[54] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz, J. Silovský, G. Stem-
mer, and K. Veselý, “The kaldi speech recognition toolkit,” in IEEE 2011
Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society, 2011, iEEE Catalog No.: CFP11SRW-USB.

[55] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th
ACM Workshop on Security and Artificial Intelligence, ser. AISec ’11.
New York, NY, USA: ACM, 2011, pp. 43–58. [Online]. Available:
http://doi.acm.org/10.1145/2046684.2046692

[56] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[57] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[58] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[59] S. Baluja and I. Fischer, “Adversarial transformation networks: Learning
to generate adversarial examples,” arXiv preprint arXiv:1703.09387,
2017.

[60] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep
neural networks,” arXiv preprint arXiv:1710.08864, 2017.

[61] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), no. EPFL-CONF-218057, 2016.

[62] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” arXiv preprint arXiv:1712.09665, 2017.

[63] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1528–1540.

[64] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372–387.

[65] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 39–57.

[66] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 427–436.

[67] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” Proceedings of the 2017 Network
and Distributed System Security Symposium (NDSS), 2017.

[68] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphinattack:
Inaudible voice commands,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 103–117.

[69] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine noodles:
exploiting the gap between human and machine speech recognition,”
WOOT, vol. 15, pp. 10–11, 2015.

14

[70] W. Cai, A. Doshi, and R. Valle, “Attacking speaker recognition with
deep generative models,” arXiv preprint arXiv:1801.02384, 2018.

[71] Y. Gong and C. Poellabauer, “Crafting adversarial examples for speech
paralinguistics applications,” arXiv preprint arXiv:1711.03280, 2017.

[72] C. Kereliuk, B. L. Sturm, and J. Larsen, “Deep learning and music
adversaries,” IEEE Transactions on Multimedia, vol. 17, no. 11, pp.
2059–2071, 2015.

[73] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason, A. Bates,
and M. Bailey, “Skill squatting attacks on amazon alexa,” in 27th
USENIX Security Symposium (USENIX Security 18). USENIX As-
sociation, 2018.

[74] M. K. Bispham, I. Agrafiotis, and M. Goldsmith, “A Taxonomy of
Attacks via the Speech Interface,” 2018.

[75] “Google Cloud Speech-to-Text API,” Last accessed in 2019, available
at https://cloud.google.com/speech-to-text/.

[76] “Transcribing Phone Audio with Enhanced Models,” Last accessed
in 2019, available at https://cloud.google.com/speech-to-text/docs/
phone-model.

[77] “Wit.ai Natural Language for Developers,” Last accessed in 2019,
available at https://wit.ai/.

[78] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[79] “Mozilla project deepspeech,” Last accessed in 2019, available
at https://azure.microsoft.com/en-us/services/cognitive-servic/
speaker-recognition/.

[80] S. Naren, “Speech recognition using deepspeech-2,” Last accessed in
2019, available at https://github.com/SeanNaren/deepspeech.pytorch.

[81] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (pesq)-a new method for speech quality as-
sessment of telephone networks and codecs,” in 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No. 01CH37221), vol. 2. IEEE, 2001, pp. 749–752.

[82] “Simple Audio Recognition,” Last accessed in 2019, available at https:
//www.tensorflow.org/tutorials/sequences/audio recognition.

[83] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” arXiv preprint
arXiv:1805.12152, vol. 1, 2018.

[84] E. Dohmatob, “Limitations of adversarial robustness: strong no free
lunch theorem,” arXiv preprint arXiv:1810.04065, 2018.

[85] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” in Advances in
Neural Information Processing Systems, 2019, pp. 125–136.

APPENDIX

We provide additional discussion and results considered
insightful, yet tangential to the main contributions of the
proposed attack.

A. Models

Google (Normal): To demonstrate our attack in a truly
black-box scenario, we target the speech transcription APIs
provided by Google. The ‘Normal’ model is provided by
Google for ‘clean’ use cases, such as in home assistants, where
the speech is not expected to traverse a cellular network [75].

Google (Phone): To demonstrate our attack against model
trained for noisy audio, we test the attack against the ‘Phone’
model. Google provides this model for cellular use cases
and trained it on call audio that will be representative of
cellular network compression [76]. We also assume that the
Google ‘Phone’ model will be robust against the noise, jitter,
loss and compression introduced to audio samples that have
traveled through the telephony network. Facebook Wit: To

ensure better coverage across the space of proprietary speech
transcription services, we also target Facebook Wit, which

provides access to a ‘clean’ speech transcription model [77].
As before, no information is known about this model due to
its proprietary nature.
Deep Speech-1: The goal of Deep Speech 1 was to eliminate
hand-crafted feature pipelines by leveraging a paradigm known
as end-to-end learning [24], [78]. This results in robust speech
transcription despite noisy environments, if sufficient training
data is provided. For our experiments, we use an open-source
implementation and checkpoint provided by Mozilla with
MFCC features [79].
Deep Speech-2: Deep Speech-2 introduced architecture op-
timizations for very large training sets. It is trained to map
raw audio spectrograms to their correct transcriptions, and
demonstrates the current state-of-the-art in noisy, end-to-
end audio transcription [26]. We use an open-source imple-
mentation2 trained on LibriSpeech provided by GitHub user
SeanNaren [32], [80]. The primary difference in our two tested
versions is feature preprocessing: the tested version of Deep
Speech-1 uses MFCC features, while the tested version of
Deep Speech-2 uses raw audio spectrograms.
CMU Sphinx: The CMU Sphinx project is an open-source
speech transcription repository representing over twenty years
of research in this task [25]. Sphinx does not heavily rely
on deep learning techniques, and instead implements a com-
bination of statistical methods to model speech transcription
and high-level language concepts. We use the PocketSphinx
implementation and checkpoints provided by the CMU Sphinx
repository [25].
Microsoft Azure: To demonstrate our attack against AVI
systems in a black-box environment, we attack the Speaker
Identification API provided by Microsoft Azure [38]. This
system is proprietary, and hence, completely black-box. There
is no publicly available information about the internals of the
system.

B. Trivial White-Noise Attack

1) Motivation: Readers might be tempted to use trivial
attacks to subvert ASR and AVI models. This includes adding
white-noise to benign audio samples. However, in the follow-
ing subsection, we show that any such trivial techniques will
fail to achieve the attacker goals: fool the model whilst not
impacting human interpretability of the audio sample.

2) Methodology and Setup: We tested this white-noise
method by attacking a random set of 100 audio files that
contained speakers uttering a single word. We added white-
noise to these samples to generate adversarial audio samples.
Next, we passed both the original audio and the white-noise
infused audio samples to the Google Speech API. We recorded
the number of samples that were incorrectly transcribed by the
API.

Next, to measure the impact on human interpretability, we
used the Perceptual Evaluation of Speech Quality (PESQ)
standard [81]. This is a global standard used for measuring the

2At the time of running our experiments, the implementation did not include
a language model to aid in the beam-search decoding.

15

Frame Size (ms)
R

em
ov

ed
(%

) 20 25 30 35
20 26, 2.6 26, 2.5 30, 2.4 33, 2.2
25 33, 2.3 39, 2.2 43, 2.0 49, 2.0
30 34, 2.3 48, 2.0 52, 2.0 57, 1.9
35 55, 1.9 58, 1.9 67, 1.7 71, 1.7

TABLE VI: The table shows the results of the frame dropping
experiment. The columns contain the size of the frame that
was removed. The rows contain the percentage of the frames
that were removed. Within each index, there are two values:
the percentage of samples that were incorrectly transcribed
and the corresponding PESQ score (underlined). For example,
row 0 and col 1 corresponds to frame size 20 and the
removed percentage 25. At these values, only 33% of content
was mistranscribed while the PESQ score was 2.3. One can
observe that dropping the frame does not result in 100%
mistranscription even though the PESQ score grow close to
1 (bad quality).

audio quality of telephony systems. PESQ measures features
such as jitter, packet loss, noise and returns a quality score
between 1 (bad quality) and 5 (high quality). By using PESQ,
supplants the need for user studies to measure audio quality.
In our case, the PESQ score can reveal how white-noise will
impact audio quality. We calculate the PESQ scores for each
of the white-noise infused audio samples and calculated the
average.

3) Results: Of the total audio samples we attacked, only
35% of the samples were successfully evaded. Furthermore,
average PESQ score for the samples was 1.06, which implies
very low audio quality. This proves that any trivial attack will
have very low attack success against models, and will have
a strong negative impact on human audio interpretability. In
contrast, the attack proposed in this paper has little to no
impact on the human interpretability (as shown using our
Amazon Turk experiments), and achieve 100% success rate
against any speech-based models.

C. Trivial Frame Deletion Attack

1) Motivation: Similarly, readers might assume that delet-
ing random frames from an audio sample will trick the ASR
and AVI into an incorrect transcription. We demonstrate in the
following subsection that this simple attack fails to fool the
model while maintaining human interpretability.

2) Methodology and Setup: This trivial attack involves
deleting random frames from the audio sample. The attacker
can tune both the percent of frames deleted, and their size.
We ran the attack over several different values of these two
variables. We removed 20%, 25%, 30% and 35% of frames,
against frame sizes of 20 ms, 25 ms, 30 ms, and 35 ms
(Table VI). We ran the attack across 100 audio files that
contained a single word. The perturbed files were then passed
to the Google Speech API and we recorded the percent
of audio samples that were mistranscribed. Similar to the
previous trivial white noise experiment, we used the PESQ
score to measure human interpretability.

3) Results: Table VI shows the results of the experiments.
As expected, increasing the size and percentage of frames
to delete increases the mistranscription percentage, but also
reduces the PESQ score (underlined). However, this trivial
attack achieves the maximum mistranscription rate of 71%
at the PESQ score of 1.7. This is a very low PESQ score
and means that the audio quality is poor. These results are
similar to that of the trivial white-noise attack. Contrary to
this, our attack can achieve 100% mistranscription rate while
maintaining audio quality.

D. Impulse Perturbation Attack

1) Methodology: ASR systems are trained to learn patterns
using features from the training set. It is important that training
and test sets belong to the same distribution. Otherwise, the
model will have difficulty identifying patterns in the test
set. Intuitively, we may construct a simple perturbation by
sampling outside of the ASR system’s training distribution,
then applying it to an input to trick the ASR system.

We extend our study of ASR system’s sensitivity with
this extremely simple attack. This involves increasing the
amplitude of time-samples within a single phoneme to the
maximum amplitude observed in the entire time series. This
perturbation will create a minor spike in the audio sample,
known as an impulse. If the impulse perturbation succeeds at
confusing the model, it will highlight the high sensitivity of
the model to artificial perturbations. This will motivate further
investigation of other possible attack vectors. These can be
designed to confuse the model even further, with limited to no
impact on human understandability of the attack audio sample.

The impulse perturbation described above might be able
to confuse the model. However, there are a few drawbacks
to this approach. First, most popular ASR systems are often
trained on both clean and degraded audio quality. This is done
to ensure that the ASR systems perform well in noisy envi-
ronments. Secondly, ASR system’s architecture is designed to
ensure that even with a limited training set, the model is able
to generalize well. A better generalized model should not be
confused by such a simple perturbation. Any simple attack
method will only have limited success against ASR systems.
Therefore, a further investigation of other attack methods is
necessary.

2) Setup: We test our simple attack on the TIMIT corpus.
The TIMIT corpus contains the timestamps of each phoneme
in the audio file. First, we iteratively selected each phoneme
in a word to perturb. Then, each time sample of the target
phoneme is replaced with the largest amplitude value in the
audio file. Each of the attack audio samples is passed Over-
Line to the ASR system for transcription. We then repeat this
process, but only perturb one percent of the phoneme. This
allows us to identify the relationship between the number of
perturbed samples in the phoneme and the mistranscription
rate. For brevity, we tested the simple perturbation method
against a single model.

3) Results: The simple baseline attack above is exe-
cuted against the Google (Normal) model. We observe that

16

Original Model
Discard threshold,

% of max. DFT coeff.
2% 4% 8% 16% 32%

Benign Test Set
Accuracy (%) 85 78.6 70.2 57.2 47.4 37.8

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Mean Squared Error Between Original and Attacked Audio

0

20

40

60

80

100

Su
cc

es
sf

ul
 T

ra
ns

cr
ip

tio
ns

 (%
)

Efficacy of adversarial training as a defense

Original Model
2% Discard Threshold
4% Discard Threshold
8% Discard Threshold
16% Discard Threshold
32% Discard Threshold

Fig. 9: Top: The relationship between the adversarial training
and the accuracy of the corresponding model on the benign
(unmodified) test set. Bottom: Transcription performance of
our (small dictionary) keyword model when trained on audio
modified to discard frequencies below various thresholds. The
trained models are tested on attack audio with a range of
MSE (relative to the corresponding original audio), and the
percentage of successful transcriptions are plotted.
phonemes with one percent of their samples perturbed only
had a 10% attack success rate against the model. This number
increases to 43% when the entire phoneme is perturbed by
the impulse value. Although the attack has limited success in
this scenario, the impulses would likely fail to have an effect
against an adversarially-trained model.

4) Simple Defense: During our initial simple perturbation
experiments, we observed that applying impulses to individual
phonemes was easily distinguishable during manual listening
tests. Not only was the attack success rate low, but such
impulses were reminiscent of call audio distortions and jitters
that are commonly heard over telephony networks. Using this
naı̈ve perturbation scheme is not ideal since a machine learn-
ing model will likely perform equally well in distinguishing
impulses as humans. Overall, adversarial training schemes
to defend against this style of attack would be trivial to
implement, and do not give an adversary sufficient probability
of success under our threat model.

E. Adversarial Training as a Defense:

One technique that has shown promise in defending com-
puter vision models is adversarial training [13]. However, this
approach has not seen much success in defending speech and
voice identification models [10]. To test this technique against
our attack, we trained six keyword recognition models [82].
For each model, we generated adversarial data using the
method described Section IV-C1. The threshold was deter-
mined as a percentage of the maximum spectral magnitude
(i.e., maxk |fk|); in particular, we considered 2%, 4%, 8%,
16%, and 32% for each of our models, shown in Figure 9. For

example, if the threshold is 4%, we only retain the fk whose
magnitude is greater than 4% of the maximum magnitude.
Each of the models was trained to detect 10 keywords.

Next, we evaluated each model by randomly selecting 20
samples per keyword. Figure 9 displays the results of our
experimentation. Figure 9 (Top) shows the accuracy of each
model on the benign data set, while Figure 9 (Bottom) shows
the transcription success at various levels of acoustic distortion
(relative to the original audio) introduced by our attack. The
red dotted line represents the limit of human comprehension
as defined earlier in Section V-A1.

There are a few important trends to note. First, models
trained with higher threshold values have lower accuracy on
normal audio samples, shown in Figure 9 (Top). This result
is expected, as lower accuracy is an artifact of adversarial
training [83], [84], [56]. Second, as MSE increases, the tran-
scription success rate decreases, shown in Figure 9 (Bottom).
The more samples that have lower MSE behind the red dotted
GSM line, the more sensitive the model is to our attack. Lastly,
adversarial training does decrease model sensitivity to our
attack, relative to the baseline model. Intuitively, this implies
a relationship between the amount of adversarial training and
the minimum amount of distortion caused by our attack.

We caution against taking Figure 9 as strong evidence that
adversarial training is a defense against our attack. First, model
sensitivity is measured in the number of samples on the left
the red GSM line in Figure 9. We used the GSM line as
the dividing point between what is and is not comprehensible
by human listeners, as discussed in Section V-A. Hence we
consider attack audio with MSE values to the right of this line
to be failed attack samples. Yet the GSM line should be viewed
as a conservative minimum for human comprehension. This is
important because, for a given model, our attack may produce
many audio samples whose MSE is to the right of the GSM
line. Yet, this does not imply that the model is necessarily
“robust” against our attack. In particular, some high MSE
attack samples may still be understandable by humans while
inducing errors in the model. Second, our experimental setup
was designed only to support a preliminary investigation of
adversarial training as a defense. It would be incorrect to
extrapolate any trends from such a simple experiment. A
broader and more comprehensive examination should consider
(in detail) the effects of different model’s hyper-parameters,
and employ a much larger number of audio samples. We leave
such a study for future work.

F. Comparison with the Image Domain:

Our attack is possible because ASRs/AVIs weigh features
differently from the human ear. This discrepancy between
human perception of features versus that of the model has
been observed in the image space, specifically the work by
Ilyas et al. [85]. Image models excel at learning patterns which
maximize accuracy, and allows models to extract features that
generalize well. However, these features often do not align
with human perception. Adversarial training, as proposed by
Ilyas et al., can encourage the model to learn features which

17

0.0 0.5 1.0
Threshold

th
dh

k
z
v
b

dx
s
y

ng
ax
eh
oy
ux
uh
uw
ih
er
m
ae
ah
g
d
t

jh
n
p
r
l

hv
hh
w
iy
ix
sh

axr
ey
ay
ow
aw
aa

Pho
nem

es

Azure DFT Attack

0.0 0.5 1.0
Threshold

en
aw
hv
el
er
ey

axr
aa
ay
oy
ao
jh
ix
r

ae
sh
g
n

dh
ow

l
p
ih
y

ux
dx
eh
ng

k
m
w
iy
t
s
b
d
z

th
v

ah
uh
uw
ax

Azure SSA Attack

Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

Fig. 10: The graph above shows the attacks against a voice
identification model. It shows the minimum threshold value re-
quired, when perturbing only a single phoneme, to successfully
force the model to mis-classify the speaker. We can observe
that in general, SSA attacks require much higher thresholds to
successfully fool the model, in comparison to the DFT attack.
align closer to human perception. Contrary to their results, we
showed that adversarial training of the ASR system ultimately
reduced its utility. This can be explained by the different
properties of ASR systems. First, the ASR system pipeline
is significantly different from the image recognition pipeline.
This is due to the presence of the pre-processing layer, feature
extraction layer and a Decoding layer in the ASR system.
Second, we used the training parameters that were provided by
the Tensorflow team. These parameters might not be suitable
for training data that has been perturbed using our attack.
Third, audio features do not follow the same pattern as image
features. In images, low-level features are generally correlated
with each other. For example, the pixels for an eye exist
within a certain proximity of other eye pixels. In contrast,
ASR features consist of spectral information, which forms
harmonics that may not be correlated to each other. A complete
explanation of this phenomena is for future work.

G. Fingerprinting the attack

It is worth discussing the avenues a defender can take to
detect attempts to detect our attack such as finger printing.
This would involve finding unique spectral patterns in audio
generated by our attack. However, this becomes difficult over
when attempting to detect our attack audio over the telephony
network. This medium is lossy due to packet loss, jitter, and
other factors. In addition, the induced loss is not consistent, as
it is subject to the call’s path through the telephone network,
the transmission hardware, and codecs. As a result, spectral
patterns could be lost in the network. Although fingerprinting
methods might prove harder in this domain, we cannot rule
them out completely. This question is beyond the scope of this
paper, thus we leave it for future work.

18

0.0 0.5 1.0
Threshold

eng
ax-h

oy
jh

ow
er
ux
uh
el
ch
aa
ao
sh

em
aw
ae
ay
ey
en
hh
uw

f
ih
ax
iy

axr
ah

v
l
r
k
s

ix
w
t

eh
ng
n

dh
y
g
z

m
p

hv
d

dx
b

th
nx

Ph
on

em
es

Google (Normal)

Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

0.0 0.5 1.0
Threshold

eng
zh
aw
ow
sh
ux
ey
ae
uw
ao
ay
er
ih
aa

ax-h
hh
en
ah

em
iy
ch

axr
eh

y
oy
ax

s
ng
n

uh
w
ix
r
z

m
p

th
k

dh
t
f
g
l

el
dx
b

hv
v

jh
nx
d

Wit

(a) DFT Attack Results.

0.0 0.5 1.0
Threshold

eng
y

uh
ao

axr
er
r

uw
aw
ah
el
iy
w

aa
ux
ow
ih
ix

ae
ng

l
eh
n

ey
ay

em
hv
m
ax
nx
hh

k
d

oy
en
ch

s
v

dx
p

sh
z
t
b

dh
jh
g

th
f

zh
ax-h

Ph
on

em
es

Google (Normal)

0.0 0.5 1.0
Threshold

zh
uh
oy
y

ae
w
k
n
l

ah
dx

r
aa
ow
ux
uw
ay
ix
ih

em
v

m
iy
g

er
el
f

ey
hv
jh
s

sh
p

en
dh
aw
nx

axr
ao
ax

z
eh

t
d
b

ch
hh
ng
th

ax-h
eng

Wit

(b) SSA Attack Results

Fig. 11: Phoneme vulnerability for a selected models, Wit and Google (Normal), using our phoneme-level attacks. Lower
threshold corresponds to lower distortion required for an attack success. The DFT attack exhibits a pattern of targeting the
vowels (Brown) more effectively than other phonemes. In contrast, the SSA attack does not display any such consistent behavior.

19

