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Abstract— This paper presents a novel approach for pointing
direction control of a rigid body with a body-fixed sensor,
in the presence of control constraints and pointing direction
constraints. This scheme relies on the use of artificial potentials
where an attractive artificial potential is placed at the desired
pointing direction and a repulsive artificial potential is used to
avoid an undesirable pointing direction. The proposed control
law ensures almost global asymptotic convergence of the rigid
body to its desired pointing direction, while satisfying the
control input constraints and avoiding the undesirable pointing
direction. These theoretical results are followed by numerical
simulation results that provide an illustration of the scheme for
a realistic spacecraft pointing control scenario.

I. INTRODUCTION

Active pointing control of a rigid body with a body-fixed
exteroceptive imaging sensor, has applications to unmanned
aerial, underwater, and space vehicles. In many such applica-
tions, there are constraints on the control effort and there may
be restrictions (or exclusion zones) for the pointing direction.
An example where the latter situation occurs is when an
imaging sensor should not be pointed in a direction close to
that of the sun. In this paper, we consider pointing control
of a rigid body with torque magnitude constraints as well as
a pointing direction exclusion zone.

Spacecraft attitude pointing control with sun direction
vector avoidance for large angle maneuvers using Euler
angles was carried out in [1]. Attitude control for large angle
rotations using quaternions are studied, e.g., in [2]. These
prior works use feedback of the full attitude state of the
rigid body. However, the full attitude state may not always
be available or necessary for pointing control. For pointing
(boresight) control, the problem is one of reduced attitude
control of a rigid body, where the configuration space is the
sphere S2, consisting of unit vectors in R3.

Among the prior literature related to reduced attitude
control, [3] is focused on control on S2 and stabilization
of the spacecraft about an unactuated axis of rotation. An
extensive study of control on spheres is performed in [4]. In
[5], an underactuated spacecraft is asymptotically stabilized
using state feedback law. A detailed review of rigid body
attitude control, with particular emphasis on stability and
stabilization, was provided in [6]. It describes full and re-
duced attitude control on the configuration spaces SO(3) and
S2 respectively, and almost global stability on the respective
state spaces. Boresight control and guidance is studied in
[7], which also discusses different scenarios for applications
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like pointing, tracking and searching. Other prior research
on reduced attitude (or pointing direction) control includes,
e.g., [8], [9], [10], and [11].

Constraints in attitude control is another relevant area of
research in attitude control with obvious practical applica-
tions. Unmanned vehicles and spacecraft can have differ-
ent types of constraints that limit attitude control inputs,
including limits on angular velocity and torque, besides
pointing direction constraints. Prior literature has explored
different control and state constraints in attitude and reduced
attitude control, and solutions to overcome them. Artificial
potential functions have been used for navigation of a vehicle
towards a desired set or reference, while avoiding obstacles
[1], [12], [13]. Undesirable attitude and pointing direction
avoidance was studied in [14], using geometric mechanics.
A cost function was optimized to ensure the avoidance of an
excluded direction. Logarithmic barrier potential functions
were used in [15], [16] to avoid exclusion zones in pointing
direction. The former work also had a mandatory zone
constraint and used a back-stepping controller. The latter
work used an adaptive controller to stabilize the system
in presence of an unknown disturbance. Another study of
exclusion and mandatory zones was given in [17]. Angular
velocity constraint along with dynamic pointing constraint
was considered in [18]. The velocity constraint was satisfied
by limiting the angular velocity error, leading to conservative
results. Spacecraft formation control in the presence of
attitude and position constraints was considered in [19]. They
employed rapidly-exploring random trees for path planning
along with a smoother for optimization. The control of an un-
deractuated axisymmetric spacecraft was considered in [20].
A discontinuous control law was designed for asymptotic
tracking and stabilization. Note that discontinuous control
has practical impediments for spacecraft control, where it
may excite structural vibrations in flexible space structures.

Another method to satisfy the control constraints in a
control system revolves around the use of reference gover-
nors. An approach involving Model Predictive Control was
also proposed in [21] to satisfy the control constraints. Both
thrust and exclusion zone constraints were considered. A
fast solver method for the optimization problem was also
proposed. The work in [22], considers actuator saturation
and exclusion zones. This is a two step scheme, where a
reference trajectory is generated in quaternion space in the
first step. Then a reference governor is applied to the pre-
stabilized system to satisfy the control constraints. Along the
same lines, [23] studies torque and inclusion zone constraints
on SO(3) using an explicit reference governor. However,
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these schemes often rely on online optimization, for which
significant computational power is required to implement in
real time. Additionally, these schemes also employ artificial
potential-like functions for navigation.

Our approach to pointing control in the presence of con-
trol torque and pointing direction constraints, uses smooth
artificial potentials and knowledge of maximum permissible
angular velocities (or energy level) of the rigid body. The
paper is organized as follows. Section II describes the attitude
pointing control problem and introduces required notation.
Section III describes the artificial potential functions. The
attractive potential function is centered at the desired point-
ing direction. This attracts the body-fixed sensor pointing
direction to the desired pointing direction. The repulsive po-
tential function is designed to avoid an undesirable pointing
direction. Section IV introduces the control law to achieve
the desired goal and the Lyapunov analysis that ensures the
almost global asymptotic stability of the desired pointing
direction. In Section V, control parameters are designed
such that the control input constraints are satisfied for the
given system, and the corresponding control law. Section
VI presents numerical simulation results to demonstrate the
effectiveness of this scheme. Section VII provides concluding
remarks with planned future research on this topic.

II. PROBLEM DEFINITION

A. Coordinate Frame Definition

The configuration space of rigid body attitude motion is
SO(3). The attitude is described by a rotation matrix relating
a body-fixed coordinate frame to an inertial coordinate frame.
We consider a coordinate frame B fixed to the body and
another coordinate frame I that is fixed in space and takes
the role of an inertial coordinate frame. Let R(t) ∈ SO(3)
denote the time-varying rotation matrix for the rigid body
rotating from body fixed frame B to inertial frame I, where
SO(3) denotes the group of all rotations in R3.

B. Rigid Body Reduced Attitude Description

Consider a rigid body (e.g. a space telescope) and its
attitude dynamics. Let p ∈ S2 denote the desired pointing
direction for the body fixed sensor in inertial frame. Then
Γ = RTp is the desired sensor pointing direction (reduced
attitude) resolved in body frame. Without loss of generality,
consider e1 = [1 0 0]T ∈ S2 to be the boresight (pointing
direction) vector of a sensor that is fixed in the body frame
B. Therefore, the pointing control objective is to rotate the
body such that e1 coincides with Γ.

Now denote by v ∈ S2 an undesirable pointing di-
rection for the rigid body, expressed in inertial frame I.
The corresponding undesirable pointing direction resolved
in the body frame is given by η = RTv. Therefore, the
pointing exclusion zone objective is to ensure that e1 avoids
a prescribed exclusion zone around η. This exclusion zone
is specified in terms of the angle between e1 and η, which
should be greater than a prescribed angle.

C. Attitude kinematics and Dynamics

Let Ω ∈ R3 be the angular velocity of the rigid body
expressed in body frame. The kinematics for the full attitude
of the rigid body is given by

Ṙ = RΩ×, (1)

where (·)× : R→ so(3) is the skew-symmetric cross product
operator and so(3) is the Lie algebra of SO(3), identified
with the linear space of 3×3 skew-symmetric matrices. Note
that the cross-product operator is given by:

x× =

x1

x2

x3

× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (2)

The reduced attitude kinematics equation for the desired
pointing direction can be obtained by taking a time derivative
of Γ = RTp, and substituting the full attitude kinematics
(1). Using eq. (1), the reduced attitude kinematics equation
is given by:

Γ̇ = ṘTp = (RΩ×)Tp = −Ω×Γ = Γ×Ω. (3)

Similarly, the kinematics equation for the undesirable point-
ing direction can be obtained by taking a time derivative of
both sides of the expression η = RTv, as follows:

η̇ = ṘTv = (RΩ×)Tv = −Ω×η = η×Ω. (4)

The attitude dynamics of the system is modeled by

JΩ̇ = −Ω× JΩ + τc, (5)

where J ∈ R3×3 represents the positive definite inertia
matrix of the rigid body defined in frame B, and τc is the
applied control input torque.

III. ARTIFICIAL POTENTIAL

The main purpose of the artificial potential functions is
to help the rigid body achieve its desired pointing direction
while avoiding the undesirable pointing directions. This is
enabled using the attractive and repulsive artificial potentials
on S2 designed here.

A. Attractive artificial potential function

The body fixed sensor pointing vector on the rigid body is
stabilized to the desired pointing direction using an attractive
artificial potential. Consider the following attractive artificial
potential for the desired pointing direction centered at Γ in
frame B:

Ua(Γ) = ka(1− eT
1 Γ), (6)

where ka > 0 is the control gain value for the attractive
function. From the above defining equation (6), we get the
maximum and minimum value of the attractive potential
function as:{

max{Ua(Γ)Γ∈S2} = 2ka (when Γ = −e1),

min{Ua(Γ)Γ∈S2} = 0 (when Γ = e1).
(7)
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Fig. 1: Representation of Repulsive potential Function

Thus, this function is designed to be a positive definite
function on S2 that has a maximum value when the sensor
is pointing opposite to the desired pointing direction and a
minimum value when it is pointing along the desired pointing
direction. The time derivative of the above equation (6) is
given by,

U̇a(Γ,Ω) = −kaeT
1 Γ×Ω. (8)

B. Repulsive artificial potential function

Undesirable pointing directions can occur in rigid body
pointing control applications, e.g., a star tracker sensor on a
spacecraft should not be pointed directly towards the sun. To
avoid these undesirable directions, repulsive artificial poten-
tials are designed. Consider the following smooth analytical
bump function centered at η:

Ur(η) =


0 eT

1 η ∈ [−1, cos Ψ0]

kre

−bβ(η)2

γ2(γ2 − β(η)2) eT
1 η ∈ [cos Ψ0, cos Ψ]

kr eT
1 η ∈ [cos Ψ, 1]

(9)
where

β(η) = eT
1 η − cos Ψ (10)

γ = cos Ψ− cos Ψ0,

kr > 0 is a control gain value for the repulsive function
and b determines the steepness of this function. The angle
Ψ is the minimum required angular separation between the
undesirable pointing direction and the sensor pointing direc-
tion. In the above function, angle Ψ traces an inner circular
boundary. The region inside this boundary is restricted region
for sensor pointing direction. The angle Ψ0 describes the
influence zone of this function. The representation of the
repulsive potential function is given in Fig. 1. The function
reaches a maximum value of kr when eT

1 η = cos Ψ. As eT
1 η

approaches the outer circle (i.e., eT
1 η = cos Ψ0), the function

decays to zero and remains zero outside the exclusion zone.
The particular design of the repulsive potential in eq. (9)
ensures that the function is smooth everywhere on S2.

Therefore the permissible pointing directions for the body-
fixed sensor is given by the set:

Pd = {Γ ∈ S2 | ΓTη < cos Ψ}. (11)

Note that Ur(η) as defined by eq. (9) is continuous, and
the value of Ur(η) < kr as long as the desired pointing
direction is in the permissible set Pd. As a result, the value
of this gain can be set to be the value of the initial value of
a Lyapunov function that is decreasing along the dynamics
of the feedback system.

The derivative of the above function is

U̇r(η,Ω) = krα(η)ΩTe×1 η, (12)

where α(η) is defined in a piecewise manner as

α(η) =


0 eT

1 η ∈ [−1, cos Ψ0]
−2bβ(η)

kr
(
γ2 − β(η)2

)2Ur(η) eT
1 η ∈ [cos Ψ0, cos Ψ]

0 eT
1 η ∈ [cos Ψ, 1].

(13)

IV. CONTROL LAW

In this section, the control law that guarantees the conver-
gence of the sensor pointing direction to the desired pointing
direction is obtained. The Lyapunov stability analysis that
ensures the almost global asymptotic stability of the desired
pointing direction is also presented.

Theorem 1: Consider the kinematics for the desired and
undesired pointing directions given in (3) and (4) respec-
tively, and the attitude dynamics equation given in (5).
Let L(t) be a positive definite diagonal matrix. Define the
attitude control law to be

τc = −L(t)Ω + kae
×
1 Γ− krα(η)e×1 η, (14)

where α(η) is defined in (13). Further, let the desired point-
ing direction be outside the influence zone of the repulsive
potential given by the angle Ψ0. Then the proposed control
law stabilizes the body-fixed sensor pointing direction to the
desired pointing direction in an asymptotic manner, while
avoiding the undesired direction.

Proof: Consider the following candidate Morse-
Lyapunov function,

V (Γ, η,Ω) =
1

2
ΩTJΩ + Ua(Γ) + Ur(η) (15)

The derivative of this Morse-Lyapunov function V̇ (Γ, η,Ω),
substituting the equations (8), (12) and (13), is given by,

V̇ (Γ, η,Ω) = ΩTJΩ̇− kaeT
1 Γ×Ω + krα(η)ΩTe×1 η.

Now substituting the attitude dynamics (5), this time deriva-
tive simplifies to:

V̇ (Γ, η,Ω) = ΩT
[
JΩ× Ω + τc − kae×1 Γ + krα(η)e×1 η

]

= ΩT
[
τc − kae×1 Γ + krα(η)e×1 η

]
. (16)
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Note that Ω and JΩ × Ω are orthogonal, and therefore the
term ΩT[JΩ×Ω] vanishes. After substitution of the control
law (14) into eq. (16), V̇ (Γ, η,Ω) simplifies to:

V̇ (Γ, η,Ω) = V̇ (Ω) = −ΩTL(t)Ω. (17)

Given that L(t) = diag([l1(t), l2(t), l3(t)]) where li(t) >
0 for i = 1, 2, 3, the above derivative of the Morse-Lyapunov
function is strictly non-increasing. Therefore, V̇ is negative
semi-definite. Using LaSalle’s invariance principle on TS2,
we conclude that the feedback system is asymptotically
stabilized at the desired pointing direction if this direction
is outside the zone of influence of the repulsive potential
centered at the undesirable direction (in which case α(η) =
0). Therefore, the body-fixed sensor pointing direction is
stabilized to the desired pointing direction, and the given
result follows.

V. CONTROL CONSTRAINTS

This section provides a description of control constraints
for the system that are achieved by designing certain control
parameters. The design of these parameters ensure that the
system stabilizes to the desired pointing direction, while
satisfying the control constraints and avoiding the undesired
direction.

A. Design of kr
From equation (9), it is clear that the maximum value of

the repulsive potential function is given by the control gain
constant kr. This maximum value occurs along the boundary
eT

1 η = cos(Φ). Now, consider a sub-level set of the state
space given by,

V (Γ, η,Ω) =
1

2
ΩTJΩ + Ua(Γ) + Ur(η) ≤ V max. (18)

The gain value kr can be designed in a way such that the sub-
level set given by equation (18) becomes invariant. Consider
for example the following equations

kr = V max = ka(1− eT
1 ΓI), (19)

where eT
1 ΓI gives the initial angular separation. The use of

the criteria mentioned above points to the idea that the system
will never have the required energy to violate the constraint.

Another noticeable fact is that outside of the exclusion
zone we have Ur(η) ≡ 0, which implies that only the ΩTJΩ
and Ua(Γ) terms govern the Lyapunov function (15).

B. Design of L(t)

Referring to equation (14), it can be deduced that the
second and third term are orientation dependent and are
bounded. Thus, the control constraints are satisfied by de-
signing the control gain values li(t) in the first term −L(t)Ω.
Rewriting the control torque equation (14) in the component
form we get

τ1τ2
τ3

 =

 −l1(t)Ω1

−kaΓ3 + krα(η)η3 − l2(t)Ω2

kaΓ2 − krα(η)η2 − l3(t)Ω3

 . (20)

We consider control torque constraints of the form:

− τi,min ≤ τi ≤ τi,max, (21)

where τi,min, τi,max > 0. Now consider the first component
l1(t). From equation (21), the torque constraint for τ1 can
written as

−τ1,min ≤ −l1(t)Ω1 ≤ τ1,max. (22)

If we consider Ω1 > 0, then we have l1(t)Ω1(t) ≤ τ1,min

which leads to l1(t) ≤ τ1,min

Ω1(t)
. And if Ω1 > 0 then

l1(t)|Ω1(t)| ≤ τ1,max which leads to l1(t) ≤ τ1,max

|Ω1(t)|
.

Therefore, the term l1(t) can be designed as follows

l1(t) =
τ1,m

|Ω1(t)|+ ε1
, (23)

where τ1,m = min{τ1,min, τ1,max} and ε1 > 0 is a small
positive number that can be considered a control gain pa-
rameter.
Now consider the l2(t). From (21), second component of
torque τ2 can be written as

kaΓ3 − krα(η)η3 + l2(t)Ω2 ≤ τ2,min

−kaΓ3 + krα(η)η3 − l2(t)Ω2 ≤ τ2,max.

If we consider Ω2 > 0 then we have

l2(t) ≤ τ2,min − kaΓ3 + krα(η)η3

Ω2(t)
.

Likewise for Ω2 < 0

l2(t) ≤ τ2,max + kaΓ3 − krα(η)η3

|Ω2(t)|
.

A conservative design of l2(t) therefore is of the form

l2(t) =
τ2,m − |kaΓ3 − krα(η)η3|

|Ω2(t)|+ ε2
, (24)

where τ2,m = min{τ2,min, τ2,max} and ε2 > 0 is a small
positive control gain parameter.
Similarly l3(t) is also designed. From (21), third component
of torque τ3 is of the form

−kaΓ2 + krα(η)η2 + l3(t)Ω3 ≤ τ3,min

kaΓ2 − krα(η)η2 − l3(t)Ω3 ≤ τ3,max.

The design of l3(t) is given by

l3(t) =
τ3,m − |kaΓ2 − krα(η)η2|

|Ω3(t)|+ ε3
, (25)

where τ3,m = min{τ3,min, τ3,max} and ε3 > 0 is a small
positive control gain parameter.
Thus equations (23), (24) and (25) give positive but time-
varying gains with the assumption that τi,m > 0. Since l1(t),
l2(t), and l3(t) are positive, one can conclude from equations
(24) and (25) it is evident that

τ2,m − |kaΓ3 − krα(η)η3| > 0 and
τ3,m − |kaΓ2 − krα(η)η2| > 0.

(26)
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This leads to a condition where the control parameters for
attractive and repulsive potential function in equation (6) and
(9) respectively should satisfy the relation

τi,m > ka + α(η)kr.

Using (13) the above equation can be written as

τi,m − ka >
−2bβ(η)(

γ2 − β(η)2
)2Ur(η). (27)

A value of b can be obtained that satisfies the above relation.
The following section presents numerical results obtained

by implementing the scheme proposed in this paper for
attitude pointing control and guidance of a rigid body with
a body-fixed sensor.

VI. SIMULATION RESULTS

This section presents numerical simulation results for the
scheme proposed in this paper for attitude pointing control
using artificial potential fields. These simulation results are
provided for a time period of T = 40s, and with time step
size of ∆t = 0.01s, to demonstrate the performance of the
proposed pointing control scheme.

The initial conditions and other parameters used for this
simulation are described here. The sensor pointing direction
in the body-fixed frame is e1 = [1 0 0]T. The initial
attitude and angular velocity of the rigid body is given by
R = I , and Ω0 = [0 0 0]T in the body frame, respectively.
The desired pointing direction in the inertial frame is p =
[−0.866 0 0.5]T. The initial and final pointing directions
are 150◦ apart. The undesirable pointing direction in the
inertial frame is v = [0 0.28 0.96]T. The minimum required
angular separation between the sensor pointing direction and
undesired pointing direction is Ψ = 20◦ and the influence
zone for the repulsive potential begins at Ψ0 = 30◦. The
control torque limits are set to τmax = [2 2 2]T Nm
and −τmin = [−2 − 2 − 2]T Nm. Based on eq. (27),
the value of b = 0.18 is selected as appropriate. Also, the
control gains for the angular velocity feedback are set to
ε1 = ε2 = ε3 = 0.5.

The results of the simulation are summarized in Fig. 2
and Fig. 3. The plot in Fig. 2a shows the reduced atti-
tude error as the angular separation between current sensor
pointing direction and desired pointing direction. From the
parameters considered for this simulation, the initial angular
separation between the sensor pointing direction and the
desired pointing direction is 150◦, as reflected in the plot.
This error converges to zero asymptotically, as the sensor
pointing direction converges to the desired direction. Plots of
torque components in Fig. 2b show that the torque values are
confined to the given upper and lower limits. Therefore, we
see that this design of control gain parameters maintains the
torque constraints. Except for the transients in torque values
at approximately t = 4.5 s, the absolute values are well
below the limits. The plots in Fig. 2c show the convergence
of the angular velocities of the rigid body. Based on the
theoretical development, the control gains l1, l2, and l3 are

(a) Attitude error in degrees

(b) Torque

(c) Angular Velocity

(d) Control Gain Values

Fig. 2: Simulation Results for ∆t = 0.01 and tf = 40s.

designed so that they are positive, as shown in Fig. 2d. The
transients in the results at approximately t = 4.5 s occur
when the sensor enters the influence zone of the repulsive
potential and then changes direction to move away from it.

Fig. 3 shows the time evolution of the sensor pointing
direction on S2, as it orients itself to achieve the desired
pointing direction. There is a shaded region inside the
inner circular boundary which specifies the restricted zone
for sensor pointing direction. The outer circular boundary
indicates the beginning of the repulsive potential influence
zone. The sensor pointing direction enters the repulsive
potential influence zone but eventually moves away from it.
The design of the control gain parameters will dictate how
deep the sensor pointing direction will penetrate inside this
influence zone, while the control constraints remain satisfied.
The sensor then exits the influence zone to converge to the
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Fig. 3: Trajectory traced by the sensor pointing direction as
evolution of time

desired pointing direction.

VII. CONCLUSION

This paper presents a novel scheme for attitude pointing
control and guidance of a rigid body with a body fixed
sensor. The sensor has to avoid an exclusion zone around
an undesirable pointing direction, and is subject to con-
trol torque constraints. This scheme relies on the use of
an attractive artificial potential to guide the sensor to its
desired pointing direction and a repulsive potential to avoid
the undesirable pointing direction. A Lyapunov stability
analysis for the proposed control law guarantees almost
global asymptotic stability of the sensor pointing direction
at the desired pointing direction. The control parameters are
designed so that they satisfy the control input and pointing
direction exclusion zone constraints. Numerical simulations
demonstrate the validity of this scheme. The results also
show maintenance of the input torque constraints, as a result
of the design of control gain parameters. Future research will
consider pointing direction (reduced attitude) tracking of the
body fixed sensor and techniques to make the control torque
inputs less conservative.
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