

Hyperbolic four-manifolds with vanishing Seiberg-Witten invariants

Ian Agol and Francesco Lin

ABSTRACT. We show the existence of hyperbolic 4-manifolds with vanishing Seiberg-Witten invariants, addressing a conjecture of Claude LeBrun. This is achieved by showing, using results in geometric and arithmetic group theory, that certain hyperbolic 4-manifolds contain L -spaces as hypersurfaces.

Introduction

In [9, Conjecture 1.1], Claude LeBrun asked whether the Seiberg-Witten invariants of hyperbolic 4-manifolds vanish. This question stems from his result that for a hyperbolic 4-manifold, Seiberg-Witten basic classes satisfy much stronger constraints than one would expect; furthermore, it turns out to be related to several problems in low-dimensional topology [18, §4]. Here, we show that there exist certain hyperbolic 4-manifolds with vanishing Seiberg-Witten invariants.

THEOREM 0.1. *There exist closed arithmetic hyperbolic 4-manifolds with vanishing Seiberg-Witten invariants.*

In the statement, we consider all possible Seiberg-Witten invariants coming from evaluating elements of the cohomology ring $\Lambda^*H^1(X; \mathbb{Z}) \otimes \mathbb{Z}[U]$ of the space of configurations. Theorem 0.1 is proved by exhibiting hyperbolic 4-manifolds admitting separating L -spaces, using the main result of [6]; under mild additional conditions, this implies that such manifolds admit finite covers with vanishing Seiberg-Witten invariants. Our construction will show in fact that there are infinitely many commensurability classes of arithmetic hyperbolic 4-manifolds containing representatives with vanishing Seiberg-Witten invariants. Furthermore, by interbreeding as in [4], one can also obtain non-arithmetic examples.

1. A vanishing criterion for the Seiberg-Witten invariants

We discuss a vanishing result for the Seiberg-Witten invariants of four-manifolds containing a separating hypersurface. This is well-known to experts, but the exact form we will need is only implicitly stated in [7], so we will point it out for the reader's convenience. Most of our discussion is based on formal properties of the invariants, and we will follow closely follow the exposition of [7, Chapter 3].

2010 *Mathematics Subject Classification.* Primary 57K41, 57N16, 22E40.

Key words and phrases. Hyperbolic geometry, Seiberg-Witten invariants, arithmetic groups.

©2020 American Mathematical Society

Consider a spin^c structure \mathfrak{s}_X on a closed oriented 4-manifold X . For a cohomology class $u \in \Lambda^* H^1(Y; \mathbb{Z}) \otimes \mathbb{Z}[U]$, we define the Seiberg-Witten invariant $\mathfrak{m}(u|X, \mathfrak{s}_X)$ to be the evaluation of u on the moduli space of solutions to the Seiberg-Witten equations. This is a topological invariant provided that $b_2^+ \geq 2$. The latter is not a particularly restrictive assumption in our case; hyperbolic 4-manifolds have signature zero by [2, Theorem 3] and the Hirzebruch signature formula. Hence

$$\chi(X) = 2(1 - b_1(X) + b_2^+(X)).$$

If $b_2^+(X) \leq 1$, we would have $\chi(X) \leq 4$; on the other hand, in all known examples of closed orientable hyperbolic 4-manifolds $\chi \geq 16$ [11, 14] (recall that by Chern-Gauss-Bonnet, volume and Euler characteristic are proportional).

We discuss a vanishing criterion for $\mathfrak{m}(u|X, \mathfrak{s}_X)$. Let Y be a closed, oriented three-manifold. To this, in [7, Section 3.1] it is defined for each spin^c structure \mathfrak{s} on Y the monopole Floer homology groups fitting in the exact triangle of graded $\mathbb{Z}[U]$ -modules

$$(1.1) \quad \cdots \longrightarrow \overline{HM}_*(Y, \mathfrak{s}) \xrightarrow{i_*} \widetilde{HM}_*(Y, \mathfrak{s}) \xrightarrow{j_*} \widehat{HM}_*(Y, \mathfrak{s}) \xrightarrow{p_*} \overline{HM}_*(Y, \mathfrak{s}) \longrightarrow \cdots$$

where U has degree -2 (notice that this convention differs from the one in the four-dimensional literature; this is because we identify U with the corresponding capping operation in homology). The reduced Floer group $HM_*(Y, \mathfrak{s})$ is defined to be the image of j_* in $\widehat{HM}_*(Y, \mathfrak{s})$ [7, Definition 3.6.3]. We will be particularly interested in the case in which Y is a rational homology sphere. In this case we have an identification of $\mathbb{Z}[U]$ -modules (up to grading shift) with Laurent series [7, Proposition 35.3.1]

$$\overline{HM}_*(Y, \mathfrak{s}) \cong \mathbb{Z}[U^{-1}, U].$$

DEFINITION 1.1 ([8]). We say that a rational homology sphere Y is an *L-space* if, up to grading shift, $\widehat{HM}_*(Y, \mathfrak{s}) \cong \mathbb{Z}[U]$ as $\mathbb{Z}[U]$ -modules for all spin^c structures \mathfrak{s} .

As the map p_* in equation (1.1) is an isomorphism in degrees low enough [7, Section 22.2], for an *L-space* $HM_*(Y, \mathfrak{s}) = 0$ for all spin^c structures \mathfrak{s} .

PROPOSITION 1.2. *Let X be a four-manifold given as $X = X_1 \cup_Y X_2$. Suppose that the separating hypersurface Y is an *L-space* (so that in particular $b_1(Y) = 0$), and that $b_2^+(X_i) \geq 1$. Then all the Seiberg-Witten invariants of X vanish.*

REMARK 1.3. A simpler vanishing criterion is the following: if $b_1(X) = 0$ and $b_2^+(X)$ is even, then all Seiberg-Witten invariants are zero. In fact, under this assumption all Seiberg-Witten moduli spaces are odd dimensional [7, Theorem 1.4.4], while all classes in our cohomology ring are even dimensional. On the other hand, we are not aware of examples of hyperbolic 4-manifolds satisfying these conditions.

PROOF OF PROPOSITION 1.2. All we need to do is to discuss the results of [7, Chapter 3] while keeping track of the specific spin^c structures. First of all, notice that as $b_1(Y) = 0$, a spin^c structure \mathfrak{s}_X on X is determined by the restrictions $\mathfrak{s}_i = \mathfrak{s}_X|_{X_i}$. This follows from the injectivity of the map $H^2(X; \mathbb{Z}) \rightarrow H^2(X_1; \mathbb{Z}) \oplus H^2(X_2; \mathbb{Z})$ in the Mayer-Vietoris sequence, and the fact that these groups classify spin^c structures. Let $\mathfrak{s} = \mathfrak{s}_X|_Y$. It is sufficient to show that $\mathfrak{m}(u|X, \mathfrak{s}_X) = 0$ for classes $u = u_1 u_2$ where u_i is a cohomology class in the configuration space of X_i . Recall from [7, Section 3.4] that a cobordism W from Y_0 to Y_1 induces a map

in homology fitting with the exact triangle; furthermore, if $b_2^+(W) \geq 1$, we have that $\overline{HM}_*(u|W, \mathfrak{s}) = 0$ [7, Proposition 3.5.2]. Given data as above, we can define the relative invariant $\psi_{(u_1|X_1, \mathfrak{s}_1)} \in \widehat{HM}_*(Y, \mathfrak{s})$ obtained as follows: let W_1 be the cobordism obtained from X_1 by removing a ball, and consider the induced map

$$\widehat{HM}_*(u_1|W_1, \mathfrak{s}_1) : \widehat{HM}_*(S^3) \cong \mathbb{Z}[U] \rightarrow \widehat{HM}_*(Y, \mathfrak{s}).$$

Then $\psi_{(u_1|X_1, \mathfrak{s}_1)} = \widehat{HM}_*(u_1|W_1, \mathfrak{s}_1)(1)$. On the other hand, we have the commutative diagram

$$\begin{array}{ccc} \widehat{HM}_*(S^3) & \xrightarrow{p_*} & \overline{HM}_*(S^3) \\ \widehat{HM}_*(u_1|W_1, \mathfrak{s}_1) \downarrow & & \downarrow \overline{HM}_*(u_1|W_1, \mathfrak{s}_1) \\ \widehat{HM}_*(Y, \mathfrak{s}) & \xrightarrow{p_*} & \overline{HM}_*(Y, \mathfrak{s}) \end{array}$$

and as $b_2^+(W_1) \geq 1$, the vertical map on the right vanishes; in turn, this implies that $\psi_{(u_1|X_1, \mathfrak{s}_1)} \in \ker(p_*) \cong HM_*(Y, \mathfrak{s})$. Similarly, using the map induced in cohomology by W_2 , we obtain an element $\psi_{(u_2|X_2, \mathfrak{s}_2)} \in HM_*(-Y, \mathfrak{s})$; this last group is by Poincaré duality identified with $HM^*(Y, \mathfrak{s})$. The general gluing theorem in [7, Equation 3.22], when keeping track of the spin^c structures, is then

$$\mathbf{m}(u|X, \mathfrak{s}_X) = \langle \psi_{(u_1|X_1, \mathfrak{s}_1)}, \psi_{(u_2|X_2, \mathfrak{s}_2)} \rangle,$$

where the angular brackets denote the natural pairing

$$HM_*(Y, \mathfrak{s}) \times HM^*(Y, \mathfrak{s}) \rightarrow \mathbb{Z}.$$

Under our assumptions, the group $HM_*(Y, \mathfrak{s})$ vanishes, so this pairing is zero, and the result follows. \square

REMARK 1.4. In fact, for our purposes of understanding the gluing formula for Seiberg-Witten invariants, it suffices to consider the reduced invariants with rational coefficients, $HM_*(Y, \mathfrak{s}; \mathbb{Q})$. In particular, the previous discussion only relies on the vanishing of this group. Furthermore, via the universal coefficients theorem, this is implied by the vanishing of $HM_*(Y, \mathfrak{s}; \mathbb{Z}/2\mathbb{Z})$, so that our main result actually applies for the reduced Floer homology group with $\mathbb{Z}/2\mathbb{Z}$ -coefficients.

Our examples will be based on the following.

COROLLARY 1.5. *Suppose X is a 4-manifold with $b_2^+ \geq 1$ which admits an embedded non-separating L -space Y . Then X admits infinitely many covers which have all vanishing Seiberg-Witten invariants.*

PROOF. Consider the double cover \tilde{X} of X formed by gluing together two copies W_1 and W_2 of the cobordism from Y to Y obtained by cutting X along Y , see Figure 1. Consider a properly embedded path $\gamma \subset W_1$ between the two copies of Y , and denote by T its tubular neighborhood. We then have the decomposition $X = (W_1 \setminus T) \cup (W_2 \cup T)$, where the two manifolds are glued along a copy of $Y \# \overline{Y}$; here \overline{Y} denotes Y with the opposite orientation. The latter is an L -space [10, Section 4], and both $W_1 \setminus T$ and $W_2 \setminus T$ have $b_2^+ \geq 1$, so the conclusion follows. Finally, to obtain infinitely many examples, for any $N \geq 3$ we cyclically glue together copies W_i for $i = 1, \dots, N$ of the cobordism from Y to Y obtained by

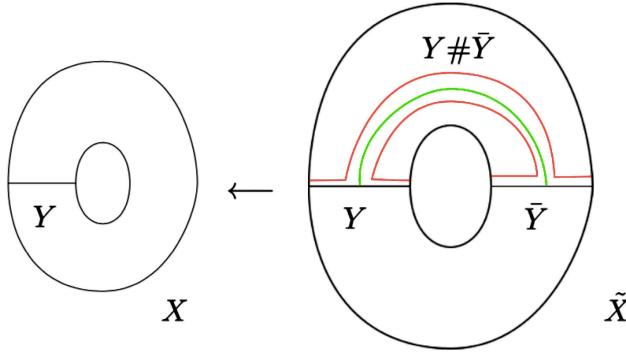


FIGURE 1. A double cover of X contains a separating L -space.

cutting X along Y ; this again contains a separating hypersurface diffeomorphic to $Y \# \bar{Y}$ with the required properties. \square

2. Geodesic hypersurfaces in arithmetic hyperbolic 4-manifolds

In this section, we will discuss various properties of arithmetic hyperbolic lattices. For the general case of arithmetic lattices, see [20], and for the 3-dimensional case, consult [13]. We first review the definitions and construction of arithmetic manifolds of simplest type.

DEFINITION 2.1. Let G be a group, $H_1, H_2 \leq G$ be subgroups. We say that H_1 is *commensurable* in G with H_2 if $[H_1 : H_1 \cap H_2] < \infty$, $[H_2 : H_1 \cap H_2] < \infty$.

DEFINITION 2.2. Consider a non-degenerate quadratic form $q : k^{n+1} \rightarrow k$ for a totally real number field $k \subset \mathbb{R}$ with ring of integers \mathcal{O}_k . Assume that q is Lorentzian, i.e. has signature $(n, 1)$ over \mathbb{R} . Moreover, for each non-trivial embedding $\sigma : k \rightarrow \mathbb{R}$, assume that $\sigma \circ q$ is positive definite. Let $O(q; k)$ denote the group of matrices preserving q , i.e. linear transforms $A : k^{n+1} \rightarrow k^{n+1}$ such that $q \circ A = q$. Then the subgroup $O(q; \mathcal{O}_k) \subset O(q; k) \subset O(q; \mathbb{R})$ is a lattice, and acts discretely on the hyperboloid of two sheets $\mathcal{H} = \{x \in \mathbb{R}^{n+1} | q(x) = -1\}$. Up to isometry, the group $O(q; \mathbb{R}) \cong O(n, 1; \mathbb{R})$, the orthogonal group associated to the quadratic form $-x_0^2 + x_1^2 + \cdots + x_n^2$. Projectivizing, $PO(q; \mathcal{O}_k)$ acts discretely on hyperbolic space \mathbb{H}^n , which is the quotient of the hyperboloid \mathcal{H} by the antipodal map. A hyperbolic orbifold \mathbb{H}^n/Γ is said to be of *simplest type* if Γ is commensurable (up to conjugacy) with $PO(q; \mathcal{O}_k)$ for some such q .

Example: Let $q_n : k^{n+1} \rightarrow k$ be defined by $q_n(x_0, x_1, \dots, x_n) = -\sqrt{2}x_0^2 + x_1^2 + \cdots + x_n^2$ over the field $k = \mathbb{Q}(\sqrt{2})$. Let $\sigma : k \rightarrow k$ be the Galois automorphism induced by $\sigma(\sqrt{2}) = -\sqrt{2}$. Then $\sigma \circ q_n(x_0, \dots, x_n) = \sqrt{2}x_0^2 + x_1^2 + \cdots + x_n^2$ is positive definite. Hence $PO(q_n; \mathbb{Z}[\sqrt{2}])$ is a discrete arithmetic lattice acting on \mathbb{H}^n . See [20, §6.4].

DEFINITION 2.3. Let G be a group. Then $G^{(2)} = \langle g^2 | g \in G \rangle$.

If G is finitely generated, then $G^{(2)}$ is finite-index in G , and $G/G^{(2)}$ is an elementary abelian 2-group.

THEOREM 2.4. *Let M^3 be an orientable hyperbolic arithmetic 3-manifold of simplest type with $H_1(M; \mathbb{Z}/2) = 0$ and not defined over \mathbb{Q} . Then M embeds as a totally geodesic non-separating submanifold in a compact arithmetic hyperbolic 4-manifold.*

PROOF. Let $\Gamma = \pi_1(M) \leq \text{Isom}^+(\mathbb{H}^3)$. Since M is a $\mathbb{Z}/2\mathbb{Z}$ -homology sphere, $\Gamma^{(2)} = \Gamma$. By [6, Theorem 1.1 (2)], $\mathbb{H}^n/\Gamma^{(2)} \cong M$ embeds as a totally geodesic submanifold of a closed orientable hyperbolic 4-manifold W (the fact that M is not defined over \mathbb{Q} implies that W is compact). Briefly, this is proved by showing that $\Gamma^{(2)} \leq \text{PO}(q; k)$ so that it is commensurable with $\text{PO}(q; \mathcal{O}_k)$ for some Lorentzian quadratic form $q : k^4 \rightarrow k$. Taking the quadratic form $Q_d = dy^2 + q, d \in \mathbb{N}$, we get an embedding of $\text{PO}(q; \mathcal{O}_k) < \text{PO}(Q_d; \mathcal{O}_k) < \text{PO}(Q_d; \mathbb{R}) \cong \text{PO}(4, 1; \mathbb{R})$. Then a subgroup separability result allows one to embed Γ in a torsion-free lattice $\Lambda < \text{PO}(Q_d; k)$ so that $W = \mathbb{H}^4/\Lambda$. By [1, Theorem 2], there exists a further finite-sheeted cover $\tilde{W} \rightarrow W$, and a lift $M \rightarrow \tilde{W}$ such that the lift of M is non-separating in \tilde{W} . This is achieved again by a subgroup separability result. \square

3. Examples

The *Fibonacci manifold* M_n is the cyclic branched n -fold cover over the figure-eight knot. For $n = 2$ we obtain a lens space, for $n = 3$ the Hantzsche-Wendt manifold, while for $n \geq 4$ it is hyperbolic.

For every n the Fibonacci manifold M_n is an L -space. To see this, recall from [19] that M_n is the branched double cover over the closure of the 3-braid $(\sigma_1\sigma_2^{-1})^n$ (see Figure 2), which is alternating. Using the surgery exact triangle [8], these can be shown to be L -spaces as in the context of Heegaard Floer homology [15], with the caveat that in our setting the computation only holds with coefficients in $\mathbb{Z}/2\mathbb{Z}$; on the other hand this is enough for our purposes, see Remark 1.4. Notice also that for $n \neq 0$ modulo 3, the closure is a knot, so that M_n is a $\mathbb{Z}/2\mathbb{Z}$ -homology sphere.

By [5], M_n is arithmetic when $n = 4, 5, 6, 8, 12$. Of these examples, $n = 4, 5, 8$ are $\mathbb{Z}/2\mathbb{Z}$ homology spheres. The only one of these three which is simplest type and not defined over \mathbb{Q} is M_5 . This is example [13, 13.7.4(a)(iii)], which has invariant trace field a quartic field. As they point out, this is commensurable with a tetrahedral group [13, 13.7.4(a)(i)] which is simplest type and not defined over \mathbb{Q} by [12, Theorem 1]. It is defined over a quadratic form over the field $\mathbb{Q}(\sqrt{5})$.

Thus, by Theorem 2.4, M_5 has a non-separating embedding into a closed orientable hyperbolic 4-manifold W . We may assume that $\chi(W) > 2$ (by passing to a 2-fold cover if needed), and hence $b_2^+(W) > 1$. Thus by Corollary 1.5, these embed into a hyperbolic 4-manifold with vanishing Seiberg-Witten invariants. This completes the proof of Theorem 0.1.

REMARK 3.1. One may also get other examples by cutting and doubling or using the interbreeding technique of Gromov-Piatetskii-Shapiro to get non-arithmetic examples. One can isometrically embed this L -space M_5 in infinitely many incommensurable hyperbolic 4-manifolds via the method of [6] by taking the forms Q_1 and Q_d in the proof of Theorem 2.4 so that d is square-free in $k = \mathbb{Q}(\sqrt{5})$, and then cut and cross-glue to give a closed non-arithmetic manifold containing M_n as a non-separating hypersurface [4, §2.9].

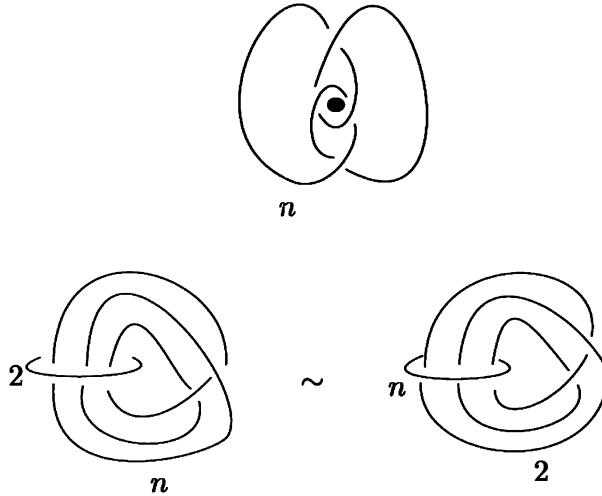


FIGURE 2. In this picture, the numbers indicate the branching. The top picture has an obvious order 2 rotational symmetry along the axis depicted by the big dot. The quotient is the link in S^3 depicted on the bottom left. This is isotopic to the link on the right (which is topologically the same, but with different branchings). Now, the curve with branching 2 is the 3-braid $\sigma_1\sigma_2^{-1}$, so that taking the n -fold branched cover along the other component we see that M_n is the branched double cover over $(\sigma_1\sigma_2^{-1})^n$.

4. Conclusion

We conclude by pointing out some natural questions related to our method.

- (1) Can one find an explicit hyperbolic example (such as the Davis manifold or the manifolds described in [11]) that satisfies the properties of Proposition 1.2? Recall that the Davis manifold has $b_1 = 24$ and $b_2^+ = 36$ [16], so that all moduli spaces have odd dimension.
- (2) Can one embed any orientable hyperbolic 3-manifold of simple type as a geodesic hypersurface in an orientable hyperbolic 4-manifold? More generally, can one show that orientable hyperbolic 3-manifolds have quasiconvex embeddings into orientable hyperbolic 4-manifolds?
- (3) Can one use bordered Floer theory to compute the Seiberg-Witten invariants of Haken hyperbolic 4-manifolds (in the sense of [3])?
- (4) Which commensurability classes of compact hyperbolic 3-manifolds of the simplest type contain L -spaces? Note that it is not even known if there are infinitely many commensurability classes of arithmetic rational homology 3-spheres.

Acknowledgments

The first author was funded by a Simons Investigator award. The second author was partially funded by NSF grant DMS-1807242. We thank Alan Reid for comments on an earlier draft.

References

- [1] N. Bergeron, *Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques* (French, with English summary), Enseign. Math. (2) **46** (2000), no. 1-2, 109–137. MR1769939
- [2] S.-s. Chern, *On curvature and characteristic classes of a Riemann manifold*, Abh. Math. Sem. Univ. Hamburg **20** (1955), 117–126, DOI 10.1007/BF02960745. MR75647
- [3] B. Foozwell and H. Rubinstein, *Introduction to the theory of Haken n -manifolds*, Topology and geometry in dimension three, Contemp. Math., vol. 560, Amer. Math. Soc., Providence, RI, 2011, pp. 71–84, DOI 10.1090/conm/560/11092. MR2866924
- [4] M. Gromov and I. Piatetski-Shapiro, *Nonarithmetic groups in Lobachevsky spaces*, Inst. Hautes Études Sci. Publ. Math. **66** (1988), 93–103. MR932135
- [5] H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia, *The arithmeticity of the figure eight knot orbifolds*, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 169–183. MR1184409
- [6] A. Kolpakov, A. W. Reid, and L. Slavich, *Embedding arithmetic hyperbolic manifolds*, Math. Res. Lett. **25** (2018), no. 4, 1305–1328, DOI 10.4310/MRL.2018.v25.n4.a12. MR3882165
- [7] P. Kronheimer and T. Mrowka, *Monopoles and three-manifolds*, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. MR2388043
- [8] P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó, *Monopoles and lens space surgeries*, Ann. of Math. (2) **165** (2007), no. 2, 457–546, DOI 10.4007/annals.2007.165.457. MR2299739
- [9] C. LeBrun, *Hyperbolic manifolds, harmonic forms, and Seiberg-Witten invariants*, Proceedings of the Euroconference on Partial Differential Equations and their Applications to Geometry and Physics (Castelvecchio Pascoli, 2000), Geom. Dedicata **91** (2002), 137–154, DOI 10.1023/A:1016222709901. MR1919897
- [10] F. Lin, *Pin(2)-monopole Floer homology, higher compositions and connected sums*, J. Topol. **10** (2017), no. 4, 921–969, DOI 10.1112/topo.12027. MR3705144
- [11] C. Long, *Small volume closed hyperbolic 4-manifolds*, Bull. Lond. Math. Soc. **40** (2008), no. 5, 913–916, DOI 10.1112/blms/bdm077. MR2439657
- [12] C. Maclachlan and A. W. Reid, *The arithmetic structure of tetrahedral groups of hyperbolic isometries*, Mathematika **36** (1989), no. 2, 221–240 (1990), DOI 10.1112/S0025579300013097. MR1045784
- [13] C. Maclachlan and A. W. Reid, *The arithmetic of hyperbolic 3-manifolds*, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR1937957
- [14] M. Conder and C. Maclachlan, *Compact hyperbolic 4-manifolds of small volume*, Proc. Amer. Math. Soc. **133** (2005), no. 8, 2469–2476, DOI 10.1090/S0002-9939-05-07634-3. MR2138890
- [15] P. Ozsváth and Z. Szabó, *On the Heegaard Floer homology of branched double-covers*, Adv. Math. **194** (2005), no. 1, 1–33, DOI 10.1016/j.aim.2004.05.008. MR2141852
- [16] J. G. Ratcliffe and S. T. Tschantz, *On the Davis hyperbolic 4-manifold*, Topology Appl. **111** (2001), no. 3, 327–342, DOI 10.1016/S0166-8641(99)00221-7. MR1814232
- [17] Alan W. Reid, *Arithmetic kleinian groups and their fuchsian subgroups*, Ph.D. thesis, Aberdeen, 1987.
- [18] A. W. Reid, *Surface subgroups of mapping class groups*, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 257–268, DOI 10.1090/pspum/074/2264545. MR2264545
- [19] A. Yu. Vesnin and A. D. Mednykh, *Fibonacci manifolds as two-sheeted coverings over a three-dimensional sphere, and the Meyerhoff-Neumann conjecture* (Russian, with Russian summary), Sibirsk. Mat. Zh. **37** (1996), no. 3, 534–542, ii, DOI 10.1007/BF02104848; English transl., Siberian Math. J. **37** (1996), no. 3, 461–467. MR1434698
- [20] D. W. Morris, *Introduction to arithmetic groups*, Deductive Press, [place of publication not identified], 2015. MR3307755

UNIVERSITY OF CALIFORNIA, BERKELEY, 970 EVANS HALL #3840, BERKELEY, CALIFORNIA
94720-3840

Email address: `ianagol@math.berkeley.edu`

COLUMBIA UNIVERSITY, DEPARTMENT OF MATHEMATICS, 2990 BROADWAY, NEW YORK, NEW
YORK 10027

Email address: `flin@math.columbia.edu`