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Hyperbolic four-manifolds with vanishing
Seiberg-Witten invariants

Tan Agol and Francesco Lin

ABSTRACT. We show the existence of hyperbolic 4-manifolds with vanishing
Seiberg-Witten invariants, addressing a conjecture of Claude LeBrun. This is
achieved by showing, using results in geometric and arithmetic group theory,
that certain hyperbolic 4-manifolds contain L-spaces as hypersurfaces.

Introduction

In [9, Conjecture 1.1], Claude LeBrun asked whether the Seiberg-Witten in-
variants of hyperbolic 4-manifolds vanish. This question stems from his result that
for a hyperbolic 4-manifold, Seiberg-Witten basic classes satisfy much stronger con-
straints than one would expect; furthermore, it turns out to be related to several
problems in low-dimensional topology [18, §4]. Here, we show that there exist
certain hyperbolic 4-manifolds with vanishing Seiberg-Witten invariants.

THEOREM 0.1. There exist closed arithmetic hyperbolic 4-manifolds with van-
ishing Seiberg- Witten invariants.

In the statement, we consider all possible Seiberg-Witten invariants coming
from evaluating elements of the cohomology ring A*H'(X;Z) ® Z[U] of the space
of configurations. Theorem 0.1 is proved by exhibiting hyperbolic 4-manifolds ad-
mitting separating L-spaces, using the main result of [6]; under mild additional con-
ditions, this implies that such manifolds admit finite covers with vanishing Seiberg-
Witten invariants. Our construction will show in fact that there are infinitely many
commensurability classes of arithmetic hyperbolic 4-manifolds containing represen-
tatives with vanishing Seiberg-Witten invariants. Furthermore, by interbreeding as
in [4], one can also obtain non-arithmetic examples.

1. A vanishing criterion for the Seiberg-Witten invariants

We discuss a vanishing result for the Seiberg-Witten invariants of four-manifolds
containing a separating hypersurface. This is well-known to experts, but the exact
form we will need is only implicitly stated in [7], so we will point it out for the
reader’s convenience. Most of our discussion is based on formal properties of the
invariants, and we will follow closely follow the exposition of [7, Chapter 3].
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Consider a spin® structure sx on a closed oriented 4-manifold X. For a co-
homology class u € A*HY(Y;Z) ® Z[U], we define the Seiberg-Witten invariant
m(u|X, 5x) to be the evaluation of u on the moduli space of solutions to the Seiberg-
Witten equations. This is a topological invariant provided that b;r > 2. The latter
is not a particularly restrictive assumption in our case; hyperbolic 4-manifolds have
signature zero by [2, Theorem 3] and the Hirzebruch signature formula. Hence

X(X) = 2(1 = b1 (X) + b3 (X)).

If b5 (X) < 1, we would have x(X) < 4; on the other hand, in all known examples
of closed orientable hyperbolic 4-manifolds x > 16 [11,14] (recall that by Chern-
Gauss-Bonnet, volume and Euler characteristic are proportional).

We discuss a vanishing criterion for m(u|X,sx). Let Y be a closed, oriented
three-manifold. To this, in [7, Section 3.1] it is defined for each spin® structure s
on Y the monopole Floer homology groups fitting in the exact triangle of graded
Z[U]-modules

(1.1) -+ — HM.(Y,s) = HM,(Y,s) 2 HM,(Y,s) 2 HM(V,s) —> ---

where U has degree —2 (notice that this convention differs from the one in the
four-dimensional literature; this is because we identify U with the corresponding
capping operation in homology). The reduced Floer group HM ,(Y,s) is defined
to be the image of j, in @*(K s) [7, Definition 3.6.3]. We will be particularly
interested in the case in which Y is a rational homology sphere. In this case we
have an identification of Z[U]-modules (up to grading shift) with Laurent series
[7, Proposition 35.3.1]
HM,(Y,s) = Z[U U

DEFINITION 1.1 ([8]). We say that a rational homology sphere Y is an L-space
if, up to grading shift, HM,(Y,s) = Z|U] as Z[U]-modules for all spin® structures
5.

As the map p, in equation (1.1) is an isomorphism in degrees low enough
[7, Section 22.2], for an L-space HM .(Y,s) = 0 for all spin® structures s

PROPOSITION 1.2. Let X be a four-manifold given as X = X1 Uy Xs. Suppose
that the separating hypersurface Y is an L-space (so that in particular b1(Y) =0),
and that b3 (X;) > 1. Then all the Seiberg- Witten invariants of X vanish.

REMARK 1.3. A simpler vanishing criterion is the following: if b1 (X) = 0 and
by (X) is even, then all Seiberg-Witten invariants are zero. In fact, under this as-
sumption all Seiberg-Witten moduli spaces are odd dimensional [7, Theorem 1.4.4],
while all classes in our cohomology ring are even dimensional. On the other hand,
we are not aware of examples of hyperbolic 4-manifolds satisfying these conditions.

PrROOF OF PROPOSITION 1.2. All we need to do is to discuss the results of
[7, Chapter 3] while keeping track of the specific spin® structures. First of all,
notice that as b1 (Y') = 0, a spin® structure s x on X is determined by the restrictions
s; = sx|x,. This follows from the injectivity of the map H?(X;Z) — H?*(X1;Z) ®
H?(X5;7Z) in the Mayer-Vietoris sequence, and the fact the these groups classify
spin® structures. Let s = sx|y. It is sufficient to show that m(u|X,sx) = 0 for
classes u = wjus where u; is a cohomology class in the configuration space of X;.
Recall from [7, Section 3.4] that a cobordism W from Y; to Y; induces a map

Licensed to Columbia Univ. Prepared on Mon Aug 16 15:13:59 EDT 2021for download from IP 209.2.222.212.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



SEIBERG-WITTEN AND HYPERBOLIC FOUR-MANIFOLDS 3

in homology fitting with the exact triangle; furthermore, if b3 (W) > 1, we have
that HM , (u|W,s) = 0 [7, Proposition 3.5.2]. Given data as above, we can define
the relative invariant ¥y, |x, s,) € H]\W*(Y,ﬁ) obtained as follows: let Wj be the
cobordism obtained from X; by removing a ball, and consider the induced map

HM , (u1|Wh,s1) : HM,(S?) = Z[U] — HM,(Y,s).

Then ¥y, |x,,51) = I;U\\i*(uﬂWl,sl)(l). On the other hand, we have the commuta-
tive diagram

— D«
HM . (S?) —— HM.(

[/{:]\M*(uﬂwl,ﬁl)l JHM U1|W1,51)

— Px —
HM,(Y,s) — HM,(Y,s

and as b;(Wl) > 1, the vertical map on the right vanishes; in turn, this implies
that ¥y, |x,,s,) € ker(p«) = HM.(Y,s). Similarly, using the map induced in co-
homology by W, we obtain an element (y,|x,,s,) € HM (=Y, 5); this last group
is by Poincaré duality identified with HM*(Y,s). The general gluing theorem in
[7, Equation 3.22], when keeping track of the spin® structures, is then

m(u|X,5x) = (Vs X1,61) Y(uz| Xa,82))
where the angular brackets denote the natural pairing
HM .(Y,s) x HM*(Y,s) — Z.

Under our assumptions, the group HM . (Y, s) vanishes, so this pairing is zero, and
the result follows. |

REMARK 1.4. In fact, for our purposes of understanding the gluing formula for
Seiberg-Witten invariants, it suffices to consider the reduced invariants with rational
coefficients, HM . (Y, s; Q). In particular, the previous discussion only relies on the
vanishing of this group. Furthermore, via the universal coefficients theorem, this
is implied by the vanishing of HM .(Y,s;Z/27Z), so that our main result actually
applies for the reduced Floer homology group with Z/2Z-coefficients.

Our examples will be based on the following.

COROLLARY 1.5. Suppose X is a 4-manifold with by > 1 which admits an
embedded non-separating L-space Y. Then X admits infinitely many covers which
have all vanishing Seiberg- Witten invariants.

PrOOF. Consider the double cover X of X formed by gluing together two
copies W7 and W5 of the cobordism from Y to Y obtained by cutting X along Y,
see Figure 1. Consider a properly embedded path v C W; between the two copies
of Y, and denote by T its tubular neighborhood. We then have the decomposition
X = (W \T)U (WoUT), where the two manifolds are glued along a copy of
Y#Y; here Y denotes Y with the opposite orientation. The latter is an L-space
[10, Section 4], and both W; \ T and W5 \ T have bj > 1, so the conclusion
follows. Finally, to obtain infinitely many examples, for any N > 3 we cyclically
glue together copies W, for i = 1,..., N of the cobordism from Y to Y obtained by
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FicURE 1. A double cover of X contains a separating L-space.

cutting X along Y’; this again contains a separating hypersurface diffeomorphic to
Y #Y with the required properties. ([l

2. Geodesic hypersurfaces in arithmetic hyperbolic 4-manifolds

In this section, we will discuss various properties of arithmetic hyperbolic lat-
tices. For the general case of arithmetic lattices, see [20], and for the 3-dimensional
case, consult [13]. We first review the definitions and construction of arithmetic
manifolds of simplest type.

DEFINITION 2.1. Let G be a group, Hy, Hy < G be subgroups. We say that
H, is commensurable in G with Hy if [Hy : Hy N Hy] < oo, [Hy : Hy N Ha] < 0.

DEFINITION 2.2. Consider a non-degenerate quadratic form ¢ : k"t! — k
for a totally real number field ¥ C R with ring of integers Of. Assume that
¢ is Lorentzian, i.e. has signature (n,1) over R. Moreover, for each non-trivial
embedding o : kK — R, assume that o o ¢ is positive definite. Let O(q; k) denote the
group of matrices preserving ¢, i.e. linear transforms A : k"T1 — k"1 such that
qo A = q. Then the subgroup O(g; Ox) C O(q; k) C O(¢;R) is a lattice, and acts
discretely on the hyperboloid of two sheets H = {z € R"*!|g(x) = —1}. Up to
isometry, the group O(q;R) = O(n, 1;R), the orthogonal group associated to the
quadratic form —x% + 2% + -+ + 22. Projectivizing, PO(q; O) acts discretely on
hyperbolic space H"™, which is the quotient of the hyperboloid H by the antipodal
map. A hyperbolic orbifold H" /T is said to be of simplest type if T" is commensurable
(up to conjugacy) with PO(q; Oy) for some such gq.

Example: Let g, : k"1 — k be defined by ¢, (zo,21,...,7,) = —\/ix% + a2+
-+ 22 over the field k = Q(v/2). Let o : k — k be the Galois automorphism
induced by o(v2) = —v2. Then o o ¢, (20, ..., 2n) = V222 + 22 + - + 22 is
positive definite. Hence PO(q,;Z[v2]) is a discrete arithmetic lattice acting on
H". See [20, §6.4].

DEFINITION 2.3. Let G be a group. Then G? = (¢?|g € G).

If G is finitely generated, then G® is finite-index in G, and G/G®? is an
elementary abelian 2-group.
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THEOREM 2.4. Let M? be an orientable hyperbolic arithmetic 3-manifold of
simplest type with H1(M;Z/2) = 0 and not defined over Q. Then M embeds as
a totally geodesic non-separating submanifold in a compact arithmetic hyperbolic
4-manifold.

PROOF. Let I' = (M) < Isom™(H3). Since M is a Z/2Z-homology sphere,
I'® =T. By [6, Theorem 1.1 (2)], H"/T® = M embeds as a totally geodesic
submanifold of a closed orientable hyperbolic 4-manifold W (the fact that M is not
defined over Q implies that W is compact). Briefly, this is proved by showing that
I'® < PO(q; k) so that it is commensurable with PO(q; O},) for some Lorentzian
quadratic form ¢ : k* — k. Taking the quadratic form Qg = dy?> + ¢,d € N,
we get an embedding of PO(q;Ok) < PO(Qq;Or) < PO(Qq4;R) =2 PO(4,1;R).
Then a subgroup separability result allows one to embed I in a torsion-free lattice
A < PO(Qq; k) so that W = H*/A. By [1, Theorem 2], there exists a further finite-
sheeted cover W — W, and a lift M — W such that the lift of M is non-separating
in . This is achieved again by a subgroup separability result. (I

3. Examples

The Fibonacci manifold M, is the cyclic branched n-fold cover over the figure-
eight knot. For n = 2 we obtain a lens space, for n = 3 the Hantzche-Wendt
manifold, while for n > 4 it is hyperbolic.

For every n the Fibonacci manifold M, is an L-space. To see this, recall from
[19] that M, is the branched double cover over the closure of the 3-braid (oy05 )"
(see Figure 2), which is alternating. Using the surgery exact triangle [8], these can
be shown to be L-spaces as in the context of Heegaard Floer homology [15], with
the caveat that in our setting the computation only holds with coefficients in Z/2Z;
on the other hand this is enough for our purposes, see Remark 1.4. Notice also that
for n # 0 modulo 3, the closure is a knot, so that M, is a Z/2Z-homology sphere.

By [5], M, is arithmetic when n = 4,5,6,8,12. Of these examples, n = 4,5, 8
are Z/27 homology spheres. The only one of these three which is simplest type
and not defined over Q is Ms. This is example [13, 13.7.4(a)(iil)], which has
invariant trace field a quartic field. As they point out, this is commensurable with
a tetrahedral group [13, 13.7.4(a)(i)] which is simplest type and not defined over
Q by [12, Theorem 1]. It is defined over a quadratic form over the field Q(v/5).

Thus, by Theorem 2.4, My has a non-separating embedding into a closed ori-
entable hyperbolic 4-manifold W. We may assume that x(W) > 2 (by passing
to a 2-fold cover if needed), and hence b3 (W) > 1. Thus by Corollary 1.5, these
embed into a hyperbolic 4-manifold with vanishing Seiberg-Witten invariants. This
completes the proof of Theorem 0.1.

REMARK 3.1. One may also get other examples by cutting and doubling or us-
ing the interbreeding technique of Gromov-Piatetskii-Shapiro to get non-arithmetic
examples. One can isometrically embed this L-space M;5 in infinitely many incom-
mensurable hyperbolic 4-manifolds via the method of [6] by taking the forms @
and Qg in the proof of Theorem 2.4 so that d is square-free in k = Q(v/5), and
then cut and cross-glue to give a closed non-arithmetic manifold containing M,, as
a non-separating hypersurface [4, §2.9].
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FIGURE 2. In this picture, the numbers indicate the branching.
The top picture has an obvious order 2 rotational symmetry along
the axis depicted by the big dot. The quotient is the link in S3
depicted on the bottom left. This is isotopic to the link on the right
(which is topologically the same, but with different branchings).
Now, the curve with branching 2 is the 3-braid oi05 1 so that
taking the n-fold branched cover along the other component we
see that M,, is the branched double cover over (oy0, )™,

4. Conclusion

We conclude by pointing out some natural questions related to our method.

(1) Can one find an explicit hyperbolic example (such as the Davis manifold or
the manifolds described in [11]) that satisfies the properties of Proposition
1.2? Recall that the Davis manifold has b; = 24 and b = 36 [16], so that
all moduli spaces have odd dimension.

(2) Can one embed any orientable hyperbolic 3-manifold of simple type as
a geodesic hypersurface in an orientable hyperbolic 4-manifold? More
generally, can one show that orientable hyperbolic 3-manifolds have qua-
siconvex embeddings into orientable hyperbolic 4-manifolds?

(3) Can one use bordered Floer theory to compute the Seiberg-Witten invari-
ants of Haken hyperbolic 4-manifolds (in the sense of [3])?

(4) Which commensurability classes of compact hyperbolic 3-manifold of the
simplest type contain L-spaces? Note that it is not even known if there are
infinitely many commensurability classes of arithmetic rational homology
3-spheres.
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