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ABSTRACT
Flattened axisymmetric galactic potentials are known to host minor orbit families surrounding orbits with commensurable
frequencies. The behaviour of orbits that belong to these orbit families is fundamentally different than that of typical orbits
with non-commensurable frequencies. We investigate the evolution of stellar streams on orbits near the boundaries between
orbit families (separatrices) in a flattened axisymmetric potential. We demonstrate that the separatrix divides these streams into
two groups of stars that belong to two different orbit families, and that as a result, these streams diffuse more rapidly than
streams that evolve elsewhere in the potential. We utilize Hamiltonian perturbation theory to estimate both the time-scale of this
effect and the likelihood of a stream evolving close enough to a separatrix to be affected by it. We analyse two prior reports of
stream-fanning in simulations with triaxial potentials, and conclude that at least one of them is caused by separatrix divergence.
These results lay the foundation for a method of mapping the orbit families of galactic potentials using the morphology of stellar
streams. Comparing these predictions with the currently known distribution of streams in the Milky Way presents a new way of
constraining the shape of our Galaxy’s potential and distribution of dark matter.

Key words: chaos – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure – galaxies: star clusters: general – dark
matter.

1 IN T RO D U C T I O N

In the standard �-cold dark matter picture of the Universe, galaxies
form at the centres of dark matter haloes. The emerging picture from
simulations of disc galaxies like the Milky Way suggests that the outer
regions of dark matter haloes exhibit triaxial configurations, while
the baryonic components cause the inner parts of the haloes to take
on more spherical or axisymmetric (prolate/oblate) configurations
(Dubinski 1994; Debattista et al. 2008; Prada et al. 2019). In the
context of these simulations, an observational diagnostic that could
assist in characterizing the shape of the Milky Way’s halo at different
radii would be of high value.

One distinguishing factor between haloes of different shapes is the
orbit families that they support. A spherical NFW halo, for example,
supports only one family of orbits – the loop orbit family. A triaxial
Stäckel potential, on the other hand, supports three separate tube orbit
families, as well as the box orbit family. Other non-axisymmetric
configurations can support any number of additional minor orbit
families around closed orbits defined by a commensurability (also
referred to as resonant orbits). Finally, most potentials are also
expected to host a subset of irregular or chaotic orbits, though the
significance of this subset varies widely from potential to potential.
Observational evidence indicating whether and to what extent each
of these orbit families is populated in our Galaxy would have direct
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implications on our understanding of the shape of the dark matter
halo (Valluri et al. 2012; Rojas-Niño et al. 2012). Such observational
evidence has unfortunately remained elusive, and the application of
orbit family classification has yet to yield meaningful constraints on
the shape of our Galactic halo.

A more common approach for constraining the shape of our
Galaxy’s dark matter halo relies on the morphology of tidally
disrupted Galactic satellites (Johnston et al. 1999). The tidal debris
from these satellites is expected to populate the halo of our Galaxy
with streams of stars that approximately trace the orbital path of the
stream’s progenitor (Johnston 1998; Helmi & White 1999; Hendel
& Johnston 2015; Erkal, Sanders & Belokurov 2016). The orbits
traced by streams in the Milky Way have been used to estimate
both the Galaxy’s mass and its shape (see e.g. Law & Majewski
2010; Vera-Ciro & Helmi 2013; Gibbons, Belokurov & Evans
2014). However, there are known complications with this orbit-fitting
technique (Sanders & Binney 2013) and applying it to a single stream
leads to a variety of uncertainties and biases (Bonaca et al. 2014).
The resulting fits of the Milky Way’s potential tend to vary widely,
and degeneracies between the halo’s shape and its density profile
have led to difficulties in obtaining conclusive constraints (see, e.g.
Ibata et al. 2013). One promising approach that may negate many of
these issues involves combining information from multiple streams
(Bonaca et al. 2014; Reino et al. 2020).

Recently, it has been shown that the morphology of stellar streams
in certain regions of triaxial haloes can deviate greatly from the
expected dynamically cold 1D morphology within just a few orbital
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times (Pearson et al. 2015; Fardal, Huang & Weinberg 2015; Price-
Whelan et al. 2016; Mestre, Llinares & Carpintero 2020). On the
one hand, a fanned-out stream such as the ones described in these
works cannot be used very effectively in the orbit fitting techniques
cited above. On the other hand, the mere possibility of producing
such effects in certain potentials can be used to effectively rule
out certain halo geometries (Pearson et al. 2015). Understanding
the mechanism (or mechanisms) for stream-fanning, the types of
potentials that cause stream-fanning, and the locations and time-
scales of stream-fanning in those potentials may therefore unlock a
new avenue for constraining the shape of the Galaxy’s dark matter
halo.

Under certain circumstances, stream-fanning can arise when the
progenitor is on a strongly chaotic orbit, as shown in Fardal et al.
(2015), Mestre et al. (2020), and for one of the cases discussed in
Price-Whelan et al. (2016). Yet if chaos is the main mechanism for
inducing stream-fanning, one may question the feasibility of relying
on it in order to constrain the shape of our Galaxy, given that only a
very small subset of galactic orbits are expected to exhibit detectable
effects of chaos on time-scales shorter than the age of the Universe
(Goodman & Schwarzschild 1981; Maffione et al. 2018).

Pearson et al. (2015) and Price-Whelan et al. (2016) both found that
stream-fanning can sometimes happen sooner than the onset of chaos
(as predicted by the Lyapunov times of the progenitor orbits). This
brings into question whether chaos is responsible for the fanning-out
of the streams in these cases, while at the same time reviving the
idea that stream-fanning may prove useful in constraining the shape
of the Galaxy after all.

In what follows, we describe a different mechanism that can cause
stellar streams to fan-out after only a few tens of orbital periods (i.e.
well within the age of the Universe). We refer to this mechanism as
separatrix divergence, and argue that it can cause stream-fanning in
any potential that hosts multiple orbit families, when the progenitor’s
orbit is close to the boundary between two orbit families. This
includes a much broader subset of galactic potentials, including many
axisymmetric potentials in addition to triaxial ones. The separatrices
that define these boundaries represent a discontinuity in the orbital
structure of the potential, and the fundamental properties of orbits
on either side of the separatrix can differ significantly. When the
progenitor orbit of a stellar stream is close enough to a separatrix
between two orbit families, the ensemble of particles that the stream
consists of ‘straddles’ the separatrix, leading to the rapid divergence
of the stream in phase space.

The separatrices between orbit families are also the locations
where stochasticity arises in some potentials, and these effects are
indeed directly linked. However, we demonstrate in what follows that
separatrix divergence is a more general phenomenon that does not
require the existence of a band of chaotic orbits to cause significant
disruptions to the morphological evolution of a stellar stream.

This paper is organized as follows: we begin in Section 2 with a
review of key theoretical concepts including fundamental properties
of orbit families and Hamiltonian perturbation theory. Section 3
describes our approach for modelling stellar streams as ensembles
of unbound test particles. In Section 4, we demonstrate the effects
of separatrix divergence in an axisymmetric potential and compare
the theoretically derived quantities from Section 2 to the results from
test particle simulations. Section 5 is devoted to determining whether
the fanned-out stream morphologies investigated in Price-Whelan
et al. (2016) and Pearson et al. (2015) are the result of separatrix
divergence. We discuss the limitations and future prospects of using
separatrix divergence to constrain galactic potentials in Section 6,
and present our main conclusions in Section 7.

Throughout Sections 2 and 4, we use galactocentric polar coordi-
nates (R, z, φ) to investigate separatrix divergence in an axisymmetric
Miyamoto–Nagai potential (Miyamoto & Nagai 1975):

� = − GM√
R2 + (a + √

z2 + b2)2

. (1)

For simplicity, we choose to work with dimensionless units (GM =
a = 1), and we set b/a = 0.45.

In Section 5, we turn our attention to separatrix divergence in
the two triaxial potentials considered in Price-Whelan et al. (2016)
and Pearson et al. (2015): a triaxial Lee–Suto (Lee & Suto 2003)
potential with b/a = 0.77 and c/a = 0.55, and the multicomponent
(Law & Majewski 2010) fit to the Milky Way’s potential that includes
a triaxial halo.

2 R E V I E W O F T E R M I N O L O G Y A N D P H Y S I C A L
I N T U I T I O N

In this section, we outline several foundational concepts in orbital
dynamics upon which we rely throughout the rest of this work. We
begin in Section 2.1 with a brief discussion of galactic orbits and
the fundamental quantities used to describe them. In Section 2.2,
we review the orbit families that arise in galactic potentials and the
characteristics that can be used to differentiate between them. Lastly,
we devote Section 2.3 to deriving several quantities of interest from
Hamiltonian perturbation theory that will be used to estimate the
relevant time- and mass-scales for separatrix divergence.

2.1 Fundamental properties of orbits and canonical coordinates

Systems of regular orbits are often described in terms of action-angle
variables ( J, θ ), the natural set of canonical coordinates that result
from separating the Hamilton–Jacobi equation. By construction,
Hamilton’s equations then reduce to linear increasing angle values
(θ = θ0 + �t , where � = ∂H/∂ J). While the general orbit fills
the orbital torus, a measure zero set with rational frequency ratios
describe closed orbits (i.e. n · � = 0 for a set of finite integers n �= 0).
It is customary to refer to an orbit with fundamental frequencies
related by �1: �2 = m: n for finite integers m and n as the m:n
commensurable orbit.

Some N-dimensional potentials also support irregular or chaotic
orbits that do not conserve N integrals of motion. These orbits cannot
be described accurately by action-angle coordinates, though in some
mildly chaotic cases it is possible to approximate long segments of
the orbit with fixed actions.

There are a variety of numerical methods for converting the phase-
space coordinates of an orbit to action-angle coordinates. In what
follows, we mainly rely on the Sanders & Binney (2014) method,
using the publicly available GALA package (Price-Whelan 2017). In
some instances, we use spectral analysis to evaluate the fundamental
frequencies instead of performing the full transformation to action-
angle coordinates. This is particularly convenient for rapidly detect-
ing orbits with commensurable fundamental frequencies. For this
purpos,e we utilize SUPERFREQ (Price-Whelan 2015), which follows
the Numerical Approximation of Fundamental Frequencies method
introduced in Laskar (1993). For more information, see appendix B
in Price-Whelan et al. (2016).

Finally, it is also necessary to perform the reverse conversion
from action-angle coordinates to phase space coordinates in order
to understand the resonant trapping of orbits through Hamiltonian
perturbation theory. For this, we follow the approach outlined in
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Mcgill & Binney (1990), Binney & Kumar (1993), and Kaasalainen
& Binney (1994), which is also conveniently available in the
TORUSMAPPER package (Binney & McMillan 2016) through GALPY

(Bovy 2015) or AGAMA (Vasiliev 2019). Binney (2016) discusses
specifically how the code has been extended to model resonant
trapping, and demonstrates its use for the same potential we focus
on throughout much of what follows.

2.2 Orbit families

Regular galactic orbits can be classified into a set of orbit families.
Each orbit family shares certain characteristics, and is parented by
a closed orbit. A convenient approach to classifying orbits into orbit
families relies on the spectral analysis of orbits (Binney & Spergel
1982). In what follows, we adopt much of the language of the spectral
classification methodology laid out in Carpintero & Aguilar (1998).

Most commonly used 2D potentials have two orbit families: the
box orbit family and the loop orbit family. The box orbit family
is parented by an axial orbit that moves along the long axis of the
potential. The loop orbit family is parented by a closed loop orbit, and
orbits belonging to this orbit family maintain their sense of revolution
around the centre of the potential and conserve angular momentum.

Some 2D potentials also support minor orbit families that are
embedded within the major orbit families. The parent orbits of
these minor orbit families are closed orbits that are defined by
commensurable fundamental frequencies. All non-parent members
of the various minor orbit families will have an additional fun-
damental frequency that defines the libration of the orbit around
the parent orbit. The orbits belonging to these minor orbit fam-
ilies are sometimes referred to as orbits that are ‘trapped’ by a
resonance.

In 3D potentials, the situation is mostly analogous to the 2D cases
described above. For non-axisymmetric (triaxial) galactic potentials,
the loop orbit family from the 2D case splits into three tube orbit
families: the short-axis tube orbit family and two separate long-
axis tube orbit families, known as the inner- and the outer long
axis tube orbit families (Binney & Tremaine 2008). In addition to
these three tube orbit families and the box orbit family, boxlets
and looplets defined by commensurable frequencies can also parent
minor orbit families in 3D (for a more complete treatment of orbit
family classification in 3D, see Carpintero & Aguilar 1998).

In what follows, we focus our attention to the 3D flattened
axisymmetric potential specified in equation (1). This is a convenient
choice for a couple of reasons: first, due to its axisymmetric nature, it
is possible to easily visualize orbits in this potential using a surface of
section, as shown in the upper panel of Fig. 1. Second, this potential
hosts a prominent minor orbit family defined by commensurable
radial and vertical frequencies (i.e. �R: �z = 1:1). This minor orbit
family, informally known as the ‘banana’ or ‘saucer’ orbit family
due to the characteristic shape of its orbits, appears as an island of
contours near the top of the surface of section. The border between
the major and the minor orbit families represents a sharp frequency
discontinuity (or, equivalently, a discontinuity in the mapping from
physical to action space). Aside from the appearance of an island in
the surface of section, this discontinuity is also readily identifiable
through the spectral analysis of adjacent orbits at the transition
between the orbit families, as shown in the lower panel of Fig. 1.

The behaviour of orbits in and near minor orbit families such
as this one has been studied extensively through the application of
perturbation theory. We devote the next section to a review of the
derivations that enable us to accurately describe the orbits belonging
to this minor orbit family.

Figure 1. Upper panel: a surface of section for the Miyamoto–Nagai
potential described in equation (1). The contours are obtained by initializing
a series of orbits with E = −0.39 and Lz = √

0.075, integrating them, and
logging the values of R and vR every time the orbit crosses the z = 0 plane
with positive vz. The majority of contours describe typical tube orbits, while
the minor orbit family defined by the �R: �z = 1: 1 commensurability can
be seen near the top of the figure. Three orbits of interest are marked in the
figure: orbit A is very close to the parent orbit of the minor orbit family, orbit
B is still a member of the minor orbit family but is adjacent to the separatrix,
and orbit C is a tube orbit on the other side of the separatrix. Lower panel: the
ratio �R/�z for a series of orbits around the 1:1 commensurability (specified
by the initial value of vR for each orbit, while R0 = 1.2 and z0 = 0 for
all of the orbits). The discontinuity in frequency space near the boundary
between the orbit families can be seen clearly in this plot. The five points in
the middle represent members of the minor orbit family for which the ratio
of the frequencies is 1. The frequency ratios of the three labelled orbits in the
upper panel are also indicated in the lower panel.

2.3 Secular perturbation theory

As discussed in Lichtenberg & Lieberman (1992) and shown in detail
for the Miyamoto–Nagai potential in Binney & Kumar (1993), the
behaviour of orbits in the vicinity of an orbit with commensurable
frequencies can be analysed through Hamiltonian perturbation the-
ory. This necessitates a canonical coordinate transformation into a
new set of actions and angles ( J ′, θ ′) that describe the libration of
an orbit around the parent orbit of that family. This motion can be
described using a Hamiltonian of the form:

H ( J ′, θ ′) = H0( J ′) + δH ( J ′, θ ′), (2)

where H is the original Hamiltonian (now defined by the new actions
and angles), H0 is an integrable Hamiltonian that is only a function
of the new actions J ′, and δH is a small perturbation compared to
H0 that is periodic with respect to the new angles θ ′.

For the parent orbit of the minor orbit family, n · � = 0, so in the
vicinity of this orbit, the linear combination of the angle variables
θs = n · θ will evolve slowly. We are interested in transforming to the
new set of actions and angles that include the slow angle θ s and its
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conjugate action coordinate Js (the other action and angle variables
in this new coordinate system will be referred to as the fast actions
and angles, with the subscript f). This requires a generating function
W ( J ′, θ , t) that satisfies:

θ ′ = ∂W

∂ J ′ and J = ∂W

∂θ
. (3)

The first of these suggests the following form of W:

W = θ1Jf 1 + θ2Jf 2 + (n · θ )Js, (4)

which yields θ f1 = θ1, θ f2 = θ2, and θs = n · θ . The second equation
in (3) specifies:

J1 = ∂W

∂θ1
= Jf 1 + N1Js ; J2 = Jf 2 + N2Js ; J3 = N3Js. (5)

We can use the new angle variables to take the Fourier expansion
of the Hamiltonian perturbation in equation (2):

δH =
∑
n �=0

Hn( J ′) exp(in · θ ′). (6)

The rapid evolution of the fast angles compared to θ s in the vicinity
of the commensurable orbit allows us to treat Jf1 and Jf2 as adiabatic
invariants and average the equation above over θ f1 and θ f2 to obtain:

Ĥ (θs, J ′) = H0(Js) +
∑
m �=0

Hm(Js) exp(imθs)

= H0(Js) + 2
∑
m �=0

Hm(Js) cos(mθs), (7)

in which we have also phase-shifted θ s to simplify the equation. Due
to the symmetry of our chosen potential with respect to z = 0, the
Fourier coefficients Hm vanish for all odd m. Furthermore, the higher
order coefficients decrease rapidly, leaving m = 2 as the dominant
term (Binney & Kumar 1993). Taking these approximations into
account and expanding H0 to second order in δJs = Js − Js0 (where
Js0 is the slow action of the parent orbit) yields the pendulum equation
(Chirikov 1979)1:


Ĥ = 1

2
G × (δJs)

2 − F cos(mθs), (8)

with:

G ≡ ∂2H0

∂J 2
s

∣∣∣∣
Js0

and F ≡ −2H2(Js0). (9)

Orbits with 
Ĥ < 0 are the librating orbits that make up the minor
orbit family, whereas orbits with 
Ĥ > 0 are circulating orbits that
do not belong to the minor orbit family. The extent of the minor orbit
family in action space can thus be estimated through the half-width
δJs for the separatrix orbit [i.e. when 
Ĥ in equation (8) is set to
zero]:

δJs,max �
√

2F

G
. (10)

The libration frequency near the parent orbit can be obtained by
applying Hamilton’s equations to equation (7) and differentiating θ̇s

with respect to time:

ωl �
√

GF. (11)

1Kaasalainen (1994) demonstrated how a modified pendulum equation that
retains higher order terms can describe the motion near the commensurable
orbit to a higher level of accuracy, but in this work we find that the approximate
treatment of resonances shown above is sufficient to capture the key elements
of the behaviour of streams in the vicinity of separatrices.

Just like a pendulum, the libration frequency is not the same for every
orbit in the minor orbit family and it shrinks to zero at the separatrix.
None the less, the libration period (Tl = 2π /ωl) still provides a useful
time-scale for understanding the behaviour of orbits that belong to
the minor orbit family.

Applying these equations to the �R: �z = 1: 1 commensurability
in the potential in equation (1) yields δJs, max = 0.015 and Tl ∼ 36
orbital periods.

3 MODELLI NG STELLAR STREAMS AS
UNBOUND STELLAR ENSEMBLES

The ultimate aim of this work is to apply the insights about individual
orbits near separatrices from the previous section to the morphology
and evolution of stellar streams. We therefore turn our attention in
this chapter to a few general properties of stellar streams that will
allow us to relate the quantities and time-scales from the previous
section to the expected morphology of a stream evolving near a
separatrix.

The observed debris structures with stream-like morphologies that
orbit our Galaxy are thought to form from the tidal disruption of
bound stellar ensembles (such as globular clusters of dwarf galaxies).
While the conditions for a particle to become unbound from its
progenitor are non-trivial, once the debris has been unbound and
stripped from its progenitor, it is well modelled by a collection of
non-gravitating test particles with a small spread in initial conditions,
energy, and angular momentum (Johnston 1998; Helmi & White
1999; Küpper, Lane & Heggie 2012; Fardal et al. 2015). The spread in
these quantities is centred around the energy and angular momentum
of the progenitor orbit – the orbit of the progenitor object from which
the unbound ensemble originated.

The spread of an unbound ensemble’s initial conditions in 6D
phase space is related to the tidal scale (m/M)1/3 (e.g. Johnston
1998), where m is the total mass of the disrupted object and M
is the mass of the disrupting object enclosed within the orbit of the
disrupted object. To model stellar ensembles in a galactic potential
without resorting to computationally expensive N-body codes, we
assume that debris structures are well approximated by ensembles
of massless test particles whose initial conditions follow a normal
distribution centred around the initial conditions of the progenitor
orbit [as specified in equations (13)–(16) in Price-Whelan et al. 2016,
among others].

The scale of this spread can also be related directly to the spread
of the particles’ orbits in action space:


Ji

Ji

∼
(

m

M

)1/3

, (12)

and since the actions and the fundamental frequencies are directly
related to each other, we can also relate this scale to the spread in
frequencies through 
J:


�i =
3∑

j=1


Jj

∂2H

∂Ji∂Jj

, (13)

where the last term is the Hessian of the Hamiltonian (Tremaine
1999; Sanders & Binney 2013). In most cases, the local Hessian is
dominated by a single eigenvalue, and consequentially equation (13)
requires that the distribution of fundamental frequencies be close to
1D.

The 1D spread in frequency space translates into the 1D evolution
of the particles. The dominant eigenvalue leads to a characteristic
frequency width that describes the time required for leading particles
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to overtake trailing particles:

Tpm ∼ 2π


�
. (14)

For a typical globular cluster (m ≈ 104–105 M
) orbiting the Milky
Way, the spread in fundamental frequencies around the progenitor
orbit is typically around 0.1 per cent–1 per cent, and since this
scale is inversely related to the phase-mixing time-scale, it can take a
stream like this hundreds of orbital periods to fully phase mix. As the
stream phase mixes, its density decreases gradually. Helmi & White
(1999) found that the density of streams in axisymmetric potentials
decreases as t−3 in axisymmetric potentials (or as t−2 in spherical
potentials).

4 R ESULTS: EXPLORATION O F SEPARATRIX
DIVERGENCE IN AXISYMMETRIC POTENTI ALS

We now turn to applying the machinery from Sections 2 and 3 to
investigate the evolution of streams whose progenitor orbit is close
to a separatrix.

If the progenitor is close enough to the separatrix relative to the
stream’s intrinsic spread of initial conditions, some particles will fall
on the other side of the separatrix and evolve on orbits belonging
to a different orbit family. These particles’ orbits should therefore
diverge from the progenitor orbit – and the orbits of the rest of the
stream’s particles – after no more than Tl/2 � 18 orbital periods.
If this occurs before the typical time it takes for the ensemble to
become phase-mixed, we argue that the stream evolving close to the
separatrix should become considerably more diffuse and less stream-
like than other ensembles evolving in the same potential on orbits
that do not bring them near a separatrix.

To test this hypothesis, we model test-particle streams following
the prescription in Section 3 whose progenitors are placed on the
orbits marked A, B, and C in Fig. 1. For each orbit, we initiate three
unbound test particle ensembles whose initial distribution is governed
by mass ratios ranging between m/M = 10−8 and 10−6 (for galactic
masses this is roughly equivalent to globular clusters with masses
between 104 and 106 M
). In each case, ensemble A is embedded
deep within the minor orbit family shown in Fig. 1 such that all
of the ensemble’s particles are on commensurable orbits. Ensemble
C is likewise so far outside the minor orbit family that none of its
particles are on orbits that belong to the minor orbit family. Ensemble
B, however, is initiated very close to the separatrix, and its particles
end up divided between the two orbit families.

The morphology of ensembles A, B, and C for the middle mass
ratio (m/M = 10−7) is shown at two different times in the top two rows
of Fig. 2. Over the first Tl/4 (≈9 orbital periods) all three streams
maintain a relatively thin and stream-like morphology, whereas just
five orbital periods later stream B has become significantly more
diffuse and fanned-out compared to the other two.

The bottom row of Fig. 2 captures the same three streams in
frequency space. The fundamental frequencies of all of the particles
that belong to ensemble A are tightly clustered around the �R:
�z = 1: 1 line, indicating clearly that they all belong to the
minor orbit family defined by the commensurability. Likewise, the
particles that make up ensemble C all belong to the major tube orbit
family and appear as a cohesive (albeit slightly less thin) cluster in
frequency space. Contrary to the other two ensembles, ensemble B
‘straddles’ the separatrix between the two orbit families, and as a
result, some of its particles belong to the minor orbit family and
exhibit the commensurability, while others belong to the major orbit
family.

As mentioned above, our expectation is that the group of particles
on librating orbits will diverge from the rest of the particles after
no more than Tl/2. Given the initial phase of the progenitor, the
divergence actually occurs after only Tl/4 � 9 orbital periods. This
is in good agreement with the two snapshots shown in Fig. 2. For
comparison, equation (14) yields the rough time-scale of ∼60 orbital
periods for m/M = 10−7, after which the ensemble particles will
overlap for the first time in phase space, ruling out that regular phase-
mixing is to blame for the fanned-out morphology of ensemble B. We
therefore conclude that the ensemble’s proximity to the separatrix is
the primary driver of its fanned-out morphology, and refer to the
resulting behaviour as separatrix divergence.

Our findings are further reinforced in Fig. 3, in which the morpho-
logical evolution of the ensembles over time is displayed using both
the mean distance of particles from the progenitor orbit (upper panels)
and the mean density of the ensembles (lower panels). The middle
column corresponds to the evolution of the three ensembles depicted
in Fig. 2. Due to the expected stream-orbit misalignment (Sanders &
Binney 2013), the quantity in the upper panels should typically grow
linearly with time, as it appears to do for both ensembles A and C, but
not ensemble B. The oscillatory nature of the separatix ensembles in
all three of these panels is a direct consequence of the pendulum-like
motion near the separatrix: after the initial divergence, the librating
and circulating orbits come back together when they next pass by the
hyperbolic fixed point.

This oscillatory behaviour can also be seen in the density evolution
shown in the lower panels, as the separatrix ensemble alternates
between periods of t−3 diffusion (like the other two ensembles) and
short periods of exponential diffusion. The exponential diffusion is
in some ways reminiscent of the diffusion of ensembles that evolve
along strongly chaotic orbits, except that for separatrix divergence
this only appears to occur over short, periodic bursts.

In that context, it is worth noting that in potentials that host
stochastic (chaotic) orbits, the stochastic regions typically appear
as layers that surround separatrices. However, our potential was
specifically chosen to be one with little stochasticity, in order to easily
differentiate between separatrix divergence and stream-fanning due
to chaos. Just to be sure, we calculate the Lyapunov times for a
representative subset of 64 particles in ensemble B, and find that
they are all greater than 200 orbital periods (tlyap = 1/λmax, where
λmax is the maximum Lyapunov exponent of the orbit).

As noted in Section 3, the initial spread in the actions of the
ensemble of particles that represents the disrupted cluster is governed
by the ratio of the progenitor’s mass and that of the host galaxy (
J
in equation 12). This spread can be directly compared to the width of
the minor orbit family in action space (δJs, max in equation 10). For
ensembles with 
J < δJs, max, separatrix divergence should cause
a noticeable drop in density after the expected time-scale, whereas
when 
J � δJs, max, the initial spread in action space will be large
enough to compete with the morphological effects of separatrix
divergence.

For the commensurability discussed here, δJs, max � 0.015. For
the separatrix ensembles (initiated on orbit B) when m/M = 10−8

and 10−7, 
JR ∼ 0.002 and ∼0.005, respectively, placing them
safely in the regime in which separatrix divergence should cause
noticeable morphological effects to the stream. This appears to be
the case based on Fig. 3. However, for the m/M = 10−6 ensemble,

JR ∼ 0.01 ∼ δJs, max, and indeed the morphological effects of
separatrix divergence for this mass scale are less pronounced in
Fig. 3. Further increasing the progenitor mass would render the
effects of separatrix divergence near this minor orbit family largely
inconsequential.
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1796 T. D. Yavetz et al.

Figure 2. Upper rows: the morphology of three streams with m/M = 10−7 [modelled as unbound ensembles following equation (12) around the three orbits
indicated in Fig. 1] in two different snapshots. After a period in which the three streams seem to evolve similarly, ensemble B abruptly becomes more diffuse
and fanned-out. Lower row: the radial and vertical fundamental frequencies of the particles in the upper panels. The 1:1 commensurability is marked by a
dotted line. Ensembles A and C form cohesive groups in frequency space, while ensemble B is split into two distinct groupings, one of which is trapped at the
commensurability.

Having shown the effect on a few representative orbits, we now
turn to a preliminary exploration of mapping the potential. Fig. 4
is based on the surface of section shown in Fig. 1. Each pixel in
these plots represents the initial conditions of the progenitor orbit
of an unbound ensemble of test particles. The shade of each pixel
in the upper panel plots is determined by the percentage of particles
on orbits belonging to a second orbit family. For comparison, in
the bottom panel, each pixel is shaded by the mean density of the
ensemble after ∼15 orbital periods (calculated using the same kernel
density estimation method used for the lower panels of Fig. 3). The
three columns correspond to the same three mass scales shown in the
columns of Fig. 3.

As the mass of the progenitor grows with respect to the mass of the
host potential, the footprint of the ensemble in initial condition space
grows, too, increasing the region in which the ensemble’s particles
will fall into two unique orbit families (i.e. the shaded band around the
separatrix in the upper panels grows as the mass ratio is increased
from m/M = 10−8 to 10−6). At the same time, the morphological
effects of separatrix divergence become less noticeable once the
initial spread in actions competes with δJs, max, as seen in the reduced

contrast between the ensembles affected by the separatrix and those
not affected in the bottom right panel of Fig. 4.

The similarities between the upper and lower panels of Fig. 4 serve
to highlight two key points:

(i) Separatrix divergence is the most significant cause of stream-
fanning over the time-scale shown for a smooth potential such as
this one, and its effects can be clearly distinguished from the gradual
diffusion of a typical stream as it becomes phase-mixed, provided
that the mass ratio of the progenitor and the host galaxy is below a
certain threshold.

(ii) Fig. 4 can be used to map a potential in terms of initial
conditions of progenitors that may experience separatrix divergence.
In particular, the importance of the effect will peak for certain
progenitors – those whose mass is large enough to cause their
members to extend beyond a separatrix for a large subset of initial
conditions, and for which separatrix divergence causes a larger
spread in actions than the original tidal disruption of the cluster.

Only a small subset of initial conditions in the potential analysed
above would lead to a globular cluster experiencing separatrix
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Separatrix divergence 1797

Figure 3. The dependence of separatrix divergence on the mass of the progenitor. Each column depicts the morphological evolution of three ensembles whose
progenitors are initialized on orbits A, B, and C from Fig. 1. The mass scale of the progenitors in each column is specified at the top. Upper row: the mean distance
of the ensemble’s particles from the progenitor’s orbit (smoothed over a few orbital periods to remove short-term oscillations between peri- and apocentre).
Unlike ensembles A and C, which exhibit linear growth in these plots, ensemble B displays an unmistakable long-term oscillatory behaviour in addition to
the linear growth of the other ensembles. The period of this oscillation matches the predicted libration period from secular perturbation theory. Lower row:
the mean density of each ensemble over time divided by the ensemble’s initial density. The ensemble density is calculated by implementing a kernel density
estimation routine with an adaptive Epanechnikov kernel, and smoothed over a few orbital periods to remove short-term density fluctuations between peri- and
apocentre. The densities of ensembles A and C roughly follow the expected t−3 power law (plotted for reference as a black dotted line). The density of ensemble
B follows the same power law for most of its evolution, but undergoes periods of accelerated diffusion corresponding to when the progenitor orbit approaches
the hyperbolic fixed points (at the same times at which the blue lines in the upper panels diverge from the other ensembles). The significance of the effect
diminishes as the progenitor size grows: the m/M = 10−8 ensemble becomes more diffuse than the nearby ensembles by over an order of magnitude within
15 orbital periods, whereas for the m/M = 10−7 ensemble the difference is closer to a factor of ∼5, and for the m/M = 10−6 ensemble the effect is no longer
strong enough to cause any noticeable differences compared to nearby streams that do not experience separatrix divergence. This, too, is in agreement with the
predictions from the comparison of equations (10) and (12).

divergence. However, the example discussed in this chapter is merely
meant to prove the existence of this effect and to demonstrate
how it can be analysed and studied. More complex potentials with
additional components and fewer degrees of symmetry may host
many additional minor orbit families, each forming another region
in which stellar streams may experience separatrix divergence. A
full determination of the significance and detectability of separatrix
divergence within realistic models of the Milky Way is beyond the
scope of this paper, but will be addressed in future work.

5 D I S C U S S I O N O F P R I O R WO R K

In the previous section, we developed an intuition and a methodology
for analysing the effects of separatrix divergence, and we now turn to
examining whether separatrix divergence may be the effect causing
stream-fanning in previously studied simulations. We focus on two
cases in this section: in Section 5.1, we review one of the ensembles
investigated in Price-Whelan et al. (2016), which was simulated in
a Lee & Suto (2003) triaxial potential. Then, in Section 5.2, we
examine a disrupted ensemble meant to reproduce the stellar stream
Palomar 5 (Pal 5) in the Law & Majewski (2010) potential, which
was shown to fan-out in simulations produced by Pearson et al.
(2015).

Before describing these two cases in detail, we note several
complications that make studying separatrix divergence in triaxial
potentials considerably more challenging:

(i) The orbital structures of triaxial potentials are harder to
visualize, as it is no longer possible to produce surface of section
plots, making it more difficult to identify orbit families and the
boundaries between them (but see Schwarzschild 1993; Carpintero
& Aguilar 1998 for examples of how this can still be accomplished).

(ii) From a computational standpoint, applying the perturbation
theory calculations from Section 2.3 to obtain analytical estimates
of the libration time and the width of minor orbit families requires
the more sophisticated approach described in Kaasalainen & Binney
(1994) and Kaasalainen (1994) which is not available as of the writing
of this paper in any of the astrophysical codes mentioned in Section 2.

(iii) Resonance overlap can occur frequently in many triaxial
potentials, possibly causing a larger subset of orbits to behave
stochastically. Since stochasticity and separatrix divergence both
occur near separatrices and both can lead to stream-fanning, we
must take additional care to distinguish between the two effects.

5.1 An ensemble near a commensurability in the Lee & Suto
(2003) triaxial potential

We begin with separatrix divergence in the Lee & Suto (2003) triaxial
potential. Price-Whelan et al. (2016) compared four ensembles
initialized and simulated using both the test particle assumptions
described in Section 3 and N-body simulations, obtaining similar
results in both cases. Two of the ensembles diffused considerably
faster than the other two: one was on a ‘strongly chaotic’ orbit with a
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1798 T. D. Yavetz et al.

Figure 4. Upper row: the percentage of ensemble particles that belong to a second orbit family for the same three mass scales analysed in Fig. 3. Ensembles
of 256 particles each are generated on a dense grid of progenitor orbits at each mass scale, and the fundamental frequencies of each particle are analyzed over
∼100 orbital periods (the exact same procedure used to produce the lower panels of Fig. 2). Each particle with |�R/�z − 1| < 0.005 was classified as belonging
to the commensurable orbit family. The colour bar is truncated at 30 per cent to more clearly emphasize the width of the band that may experience separatrix
divergence. As the mass of the progenitor is increased, the width of the band around the separatrix grows. Lower row: the simulated density of ensembles after
∼15 orbital periods on the same grid of initial conditions and the same three mass scales as the upper row (the grid extends between the orbits with (x0, vx0) =
(1.2, 0.35) and (1.2, 0.48), and no comparable features appear in density space outside of this range). The affected band around the separatrix grows as in the
upper panels, but as the progenitor mass increases, the difference in the density of streams affected by separatrix divergence and those not affected shrinks. The
overall significance of the effect appears to peak around m/M = 10−7. Note also that the affected region around the separatrix in the lower panels is slightly
wider than that predicted by the upper panels. This is another result of the pendulum-like behaviour of orbits near the separatrix – even if all of the particles
belong to the same orbit family, some may be close enough to the separatrix such that their libration (or circulation) phase will evolve very slowly near the
hyperbolic fixed point, causing the ensemble to spread out in angle space much more rapidly than normal.

Figure 5. The value of n · � for n = (1, 2, −4) in a zoomed-in portion of the
grid of initial conditions used in Price-Whelan et al. (2016). The white band
in the top half of the figure represents a minor orbit family surrounding the
commensurability (the structure in frequency space shown here is equivalent
to that shown in the bottom panel of Fig. 1 for the Miyamoto–Nagai potential
discussed earlier).

Lyapunov time of ∼8 orbital periods. The other fanned-out ensemble
was initialized on an orbit described as ‘weakly chaotic’ with a
Lyapunov time >700 orbital periods. This final ensemble (labelled
by the letter C in Price-Whelan et al. 2016) is the focus of our analysis
in this section.

Fig. 5 shows a zoomed-in portion of the grid of orbits plotted in
Price-Whelan et al. (2016) (compare to figs 3–5 in that paper). The
zoomed-in map in Fig. 5 is centred on the (1, 2, -4) commensurability,
and the shading of each pixel represents the value of n · �. A large

minor orbit family can be seen surrounding the commensurability
(just as shown for the Miyamoto–Nagai potential in the lower panel
of Fig. 1). The three points shown correspond to the initial conditions
of the same types of orbits discussed in the previous sections, with
A representing a commensurable orbit, B representing an orbit very
close to the separatrix, and C representing an orbit that belongs to
the major orbit family that envelopes the minor orbit family shown
(in this case – the long-axis tube orbit family). These three orbits
are also three of the four orbits that were analysed in Price-Whelan
et al. (2016, note that we have flipped the labels of orbits B and C
from Price-Whelan et al. 2016 to match the orbits discussed in the
previous sections of this work).

As shown in Price-Whelan et al. (2016), an ensemble initiated
on orbit B forms a considerably more diffuse stream than those
on orbits A or C. Given the proximity of the progenitor orbit to a
separatrix, we consider the possibility that an ensemble initialized
on this orbit may straddle the separatrix and therefore experience
separatrix divergence.

We begin by simulating three ensembles initialized on the orbits
marked in Fig. 5 following the initial conditions described in Price-
Whelan et al. (2016). The spread in the fundamental frequencies of
ensemble B is shown in the top panel of Fig. 6, and demonstrates that
the ensemble’s particles fall neatly into two different groups, just like
the frequency space plot shown for the separatrix ensemble in Fig. 2
(the other two ensembles form one cohesive cluster in frequency
space).

Following the same steps as the previous section, we proceed
by analysing the mean distance of the ensemble particles from the
progenitor orbit and the density evolution of the ensemble, shown
in the middle and bottom panels of Fig. 6. The similarities between
this figure and Fig. 3 serve to further strengthen the notion that the
reason for this ensemble’s rapid diffusion in simulations is separatrix
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Separatrix divergence 1799

Figure 6. Upper panel: frequency–frequency distribution of the ensemble
whose progenitor is initialized on orbit B from Fig. 5. The (1, 2, -4)
commensurability is shown with the dashed line. One subset of particles
is trapped at this commensurability while the rest of the particles form a more
diffuse yet distinct cluster far away from it. Compare this to the structure seen
the lower middle panel of Fig. 2. Middle and lower panels: the mean distance
of particles from the progenitor orbit and the mean density of the ensemble
for each of the three orbits shown in Fig. 5. The expected t−3 trend is plotted
with a dashed line in the bottom panel.

divergence. In particular, the oscillatory behaviour shown in the
middle panel alongside the abrupt drop in density after ∼30 orbital
periods shown in the bottom panel would be hard to explain under
any other known mechanism for stream diffusion.

As in the last section, we compute the Lyapunov times for
a representative subset of 64 particles. While seven of the 64
orbits returned Lyapunov times shorter than 500 orbital periods, the
minimum Lyapunov time calculated for any of the orbits was ∼300
orbital periods – still more than an order of magnitude longer than
the time-scale after which ensemble B appears to fan-out. Moreover,
the vast majority of orbits do not appear to be even mildly chaotic;
the mildly chaotic behaviour of ∼10 per cent of the particles in this
ensemble is insufficient to explain the rapid drop in density seen in
the bottom panel of Fig. 6, nor does it justify the oscillatory behaviour
seen in the middle panel of the same figure. The lower panels of Fig. 6
also serve to provide a rough estimate for the libration time-scale of
the commensurable orbit family (Tl ∼ 100 orbital periods).

The similarities between this case and the axisymmetric case
discussed in Section 4 lead us to conclude that separatrix divergence
is very likely to be the main cause of this instance of stream-fanning.

5.2 Stream-fanning in the Law & Majewski (2010) model for
the Milky Way

We next turn to investigating the stream-fanning result in the Law
& Majewski (2010) potential from Pearson et al. (2015). The key
finding from that paper was that a thin stream with the same
characteristics as Pal 5 could not be reproduced with the correct
position, velocity, and morphology in the Law & Majewski (2010)
triaxial potential (whereas it could be reproduced to very high
accuracy in a spherical potential). This led the authors to point out
that stream morphology may be used as a method for ruling out
certain shapes of the Galactic potential. The cause of the stream’s
rapid diffusion was left as an open question, though chaos was cited
as a possible explanation.

Following Pearson et al. (2015), we take the current position and
velocity of Pal 5’s progenitor orbit to be: x = (8.16, 0.24, 16.96)
kpc and v = (56.43, 101.23, 3.84) km s−1. We integrate this orbit
backward in the Law & Majewski (2010) potential for 6 Gyr as
a rough approximation of when Pal 5 began experiencing tidal
stripping from the Milky Way.2

In order to model the evolution of Pal 5, Pearson et al. (2015)
follow the Streakline method described in Küpper et al. (2012),
whereas we continue to model the stream as an unbound ensemble
of particles (using the same initial mass as Pearson et al. 2015:
M = 6 × 104 M
). Like Pearson et al. (2015), we find that an
ensemble with Pal 5’s initial conditions in the Law & Majewski
(2010) potential no longer resembles a thin stellar stream after 6 Gyr.
However, two ensembles initiated on nearby initial conditions (offset
by ±1 kpc along the x-axis) exhibit similar stream-fanning effects
and do not remain considerably more stream-like than the ensemble
with Pal 5’s initial conditions. Unlike the previous two cases studied
here, the frequency-frequency plot for the ensemble with Pal 5’s
initial conditions shown in the upper panel of Fig. 7 does not show
a clear tendency of the Pal 5 ensemble to split into two distinct
groups.

2Price-Whelan et al. (2019) showed that the previously measured distance to
Pal 5 used by Pearson et al. (2015) was overestimated. Furthermore, there
is still much uncertainty around the time at which Pal 5 began experiencing
tidal disruption, and a variety of integration times have been used in the recent
literature to model Pal 5, ranging from under 3 Gyr (Dehnen et al. 2004) to
10 Gyr (Bovy et al. 2016). However, since the objective here is to explain
the stream-fanning effect in the Pearson et al. (2015) simulations, we adopt
their initial conditions and integration time of 6 Gyr for a direct comparison
to their results.
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1800 T. D. Yavetz et al.

Figure 7. Upper panel: frequency–frequency distribution of the ensemble
whose progenitor is initialized on Pal 5’s initial conditions based on Pearson
et al. (2015). Unlike the ensembles near the separatrices in the Miyamoto–
Nagai potential in Section 4 or in the triaxial potential Section 5.1, here the
particles do not fall neatly into two separate groupings. Middle and lower
panels: the mean distance of particles from the progenitor orbit and the mean
density of the Pal 5 ensemble and two other ensembles initialized on nearby
orbits.

The middle panel of Fig. 7 shows that neither the Pal 5 ensemble
nor the two ensembles we initialize near Pal 5’s initial conditions
display any hint of the oscillatory behaviour induced by separatrix
divergence (such as the behaviour shown in Figs 3 and 6). The mean
density evolution shown in the bottom panel of the same figure also
reveals no clear tendency of the Pal 5 ensemble to diffuse faster or
in a different manner than the nearby ensembles.

Unlike any of the other cases considered so far in this work, the
Law & Majewski (2010) potential contains several components (a
spherical bulge, an axisymmetric disc, and a triaxial halo that is
misaligned with respect to the disc). The increased complexity of
the potential gives rise to a more intricate web of commensurabil-
ities that significantly complicate the analysis of the fundamental
frequencies, and make it difficult to ascertain whether there is a
single commensurability in close proximity to the progenitor orbit
that dominates the evolution of the ensemble. Instead, the emerging
picture from all three panels of Fig. 7 is one in which several
nearby commensurabilities each exert a varying influence on the
orbit. While this could still be consistent with separatrix divergence,
it aligns more naturally with chaotic evolution of the stream, in
which particles diffuse stochastically under the influence of multiple
commensurabilities.

To test this hypothesis, we proceed by computing the Lyapunov
times for a representative subset of 64 particles. In this case, we
find that while the progenitor orbit has a Lyapunov time of ∼20 Gyr
(as also reported in Pearson et al. 2015), many of the particles have
even shorter Lyapunov times, and a few have Lyapunov times below
5 Gyr. We therefore conclude that the cause for the stream-fanning
of the Pal 5 ensemble in the Law & Majewski (2010) potential is
more likely to be chaotic diffusion than separatrix divergence.

6 L I M I TAT I O N S A N D F U T U R E WO R K

The main goal of this paper has been to describe a mechanism for
stream-fanning that we label separatrix divergence. We have focused
on predicting when and where this mechanism will cause streams
to fan-out through a combination of test particle simulations, orbit
family analysis, and the application of secular perturbation theory.
We have made a series of simplifying assumptions in order to present
our results, including working with smooth, static potentials and
considering only the secular evolution of idealized streams made
of unbound test particles. The gap between these conditions and
the environment in which streams form around our Galaxy is wide,
and includes many complicating factors that may either enhance
or diminish the importance of separatrix divergence, or change the
morphological appearance of streams that have been affected by
separatrix divergence.

In the next few paragraphs, we discuss some of these shortcomings
in greater depth, alongside some promising avenues for how this
analysis might be extended to overcome these drawbacks and provide
meaningful constraints on the shape of our Galaxy’s dark halo.

6.1 Accurate modelling of stellar streams

The findings above rest on the assumption that stellar streams are well
modelled by an unbound ensemble of massless particles whose initial
conditions are spread in an orderly fashion around the progenitor
orbit. In reality, a stream forms gradually as the progenitor orbits and
its stars are tidally stripped by the host Galaxy. Since the progenitor
is not, in fact, massless, it will continue to affect the orbits of nearby
stars even after they have been tidally stripped. Furthermore, the
progenitor’s gravitational influence may also distort the local orbital
structure of the potential. Such distortions could make it less likely
for stars to be deposited in a different orbit family than that of the
progenitor’s orbit.

Even assuming the previous point is relatively unimportant, the
gradual nature of the stripping process leads to a qualitatively
different picture of separatrix divergence than the one described
throughout this work. Instead of the entire ensemble fanning out
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Separatrix divergence 1801

upon reaching the unstable (hyperbolic) fixed point for the first time,
only the stars that have been tidally stripped at that point should
exhibit this diffusion. Stars that are stripped subsequent to the first
passage of the hyperbolic fixed point will evolve as a thin stream,
and will only fan-out after the second passage of the fixed point. As
a result, one may expect the stream to appear at any given time as a
thin stream that is truncated at a certain point, beyond which all of
the particles are fanned-out.

6.2 Observability of separatrix divergence

A key drawback of separatrix divergence and using it to understand
our Galaxy’s potential rests in that it predicts more diffuse stream
morphologies that would therefore be harder to detect. However,
outside of the possibility of detecting direct evidence of separatrix
divergence despite the lower surface brightness of the fanned-out
morphologies, we posit two characteristics of separatrix divergence
that may be exploited to identify a stream in the vicinity of a
separatrix:

(i) Throughout this work, we have described the outcome of
separatrix divergence as stream-fanning, in which all of the stream’s
stars end up forming a more diffuse structure. In practice, several
more intriguing morphologies are also theoretically possible. In
particular, the formation of two distinct groupings in frequency
space (see Figs 2 and 6) raises the possibility that this may lead
to a detectable feature like a bifurcation.

(ii) The qualitative picture described in Section 6.1 offers another
promising solution: one may hope to detect separatrix divergence by
locating a tidally disrupted globular cluster with truncated streams. If
a diffuse collection of stars at the edge of the stream can be associated
with the rest of the stream stars through either their orbital properties
of their chemistry, it may be possible to associate this truncation with
separatrix divergence.

6.3 Potential mapping and constraining the Milky Way’s shape

Throughout this work, we have focused on describing the theoretical
basis for separatrix divergence and its morphological effects on
stellar streams. Further progress necessitates an ability to map the
orbital structure of a potential and predict locations where separatrix
divergence may occur.

A preliminary step toward potential mapping that incorporates
the effects of separatrix divergence is shown in Fig. 5 for the
Miyamoto–Nagai axisymmetric potential. Yet in practice one is likely
to need a map that covers more than one fixed set of values for E
and Lz, not to mention the fact that relying on surfaces of section
automatically rules out the ability to extend this specific map to a 3D
non-axisymmetric potential.

The ability to produce potential maps that specify the location
and likelihood of separatrix divergence would enable two new
approaches for constraining a potential. First, the detection of an in-
dividual stream whose morphology indicates that it has been affected
by separatrix divergence could provide a very strong constraint by
pinpointing the precise location of a boundary between two orbit
families. Aside from indicating that the potential is able to support
multiple orbit families, the exact location of a commensurability
should provide significant constraining power. Of course, one would
first have to rule out other mechanisms that could have caused the
observed stream morphology.

Alternatively, one could approach this question from a statistical
perspective. Even if separatrix divergence renders streams com-

pletely undetectable, there may still be information contained in
the number and distribution of observable thin streams, in the sense
that one can rule out configurations that would cause the streams
to fan-out. One might extend this to ask questions like: what is the
probability that the potential has a certain shape given the number
of thin streams detected? Are there certain areas in phase space that
have a suspicious deficiency in thin streams, possibly indicating that
all of the streams in that neighbourhood have become too diffuse to
detect due to separatrix divergence?

7 SU M M A RY A N D C O N C L U S I O N

In this work, we have described a mechanism for the fanning of
stellar ensembles in galactic potentials that support multiple orbit
families. The separatrices between those orbit families represent
discontinuities in the orbital structure of the potential, and the
characteristics of orbits on either side of a separatrix can differ
greatly. The tidal disruption of a globular cluster whose orbit is
close to a separatrix may deposit stars on both sides of the separatrix,
leading us to describe this ensemble as ‘straddling’ the separatrix.

By comparing test particle simulations with analytically derived
quantities from perturbation theory, we have shown that a stream
born in this configuration is susceptible to rapid diffusion (which we
name separatrix divergence) within a time that can be much shorter
than the stream’s typical phase-mixing time-scale. We describe two
diagnostics that can be used to relate between the stream’s initial
conditions and its likelihood of experiencing separatrix divergence:

(i) The time-scale after which an ensemble will fan-out due to
separatrix divergence is directly related to the libration frequency of
the commensurable orbit family, which can be calculated analytically
using Hamiltonian perturbation theory (see equation 11). If this
time-scale is shorter than the typical phase-mixing time-scale of
the stream (obtained from equation 13), separatrix divergence will
have a significant effect on the stream’s morphological evolution.

(ii) The strength of the effect can be estimated by comparing
the extent of the discontinuity in action space at the separatrix (see
equation 10) with the initial spread of the stream in action space
(equation 12). If the former is greater than the latter, separatrix
divergence will cause a stream to become considerably more diffuse
than similar streams that do not encounter a separatrix.

We utilized test particle simulations to demonstrate these effects
for an axisymmetric potential. Next, we analysed two reports from
previous literature of stream-fanning in simulations of triaxial poten-
tials, concluding that at least one of them is likely to have been the
result of separatrix divergence.

Our results suggest that the morphology of stellar ensembles may
be able to constrain the shape of a galaxy’s gravitational potential.
We are optimistic that the findings of this work can be used to map
out a potential in terms of regions that will or will not support the
formation of thin streams. Used alongside observations of stellar
streams, this technique offers a new tool for validating or ruling out
models for the gravitational potential of our Galaxy.
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