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Non-formality in PIN(2)-monopole Floer homology
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Abstract. In previous work, we introduced a natural A∞-structure on the Pin(2)-

monopole Floer chain complex of a closed, oriented three-manifold Y , and showed that

it is non-formal in the simplest case in which Y is the three-sphere S3. In this paper,

we explore further this non-formality phenomenon. Specifically, we provide explicit

descriptions of several Massey products induced on homology, and discuss applications

to the computation of the Pin(2)-monopole Floer homology of connected sums.
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Introduction

Starting with Manolescu’s disproof of the longstanding Triangulation con-

jecture [29], the study of Pin(2)-symmetry in Seiberg-Witten theory, where

Pin(2) = S1 ∪ j · S1 ⊂ H,

has spurred a lot of activity, especially in light of its applications to the

study of the homology cobordism group Θ3
H . The analogous theory of

involutive Heegaard Floer homology [14] (which heuristically corresponds

to a Z4-equivariant theory, where Z4 = 〈j〉 ⊂ Pin(2)) has also been very

successful when addressing such problems. Despite all of this, still very

little is known about Θ3
H , and among the several natural questions one

may ask, the following is particularly interesting.

Question 1. Is there a torsion element in Θ3
H with Rokhlin invariant 1?

The negative answer for 2-torsion elements was provided by Manolescu

in [29], and is equivalent to the Triangulation conjecture being false by clas-

sic results of Galewski-Stern and Matumoto (see [28] for a nice survey). In
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a related fashion, the interest in Question 1 stems from the fact that a nega-

tive answer would imply the following criterion for triangulability: a closed

orientable topological manifold M is triangulable if and only if its Kirby-

Siebenmann invariant ∆(M) ∈ H4(M ;Z/2Z) admits a lift to H4(M ;Z). A

partial negative answer to the question, when restricting the attention to

connected sums of almost rational plumbed three-manifolds, was provided

using involutive Heegaard Floer homology in [7]. On the other hand, as the

problem involves the Rokhlin invariant, one could expect the full Pin(2)-

symmetry, rather than Z4-symmetry, to play a central role in an approach

to its answer.

With Question 1 as a motivation in mind, we study in this paper the

more general problem of understanding the Pin(2)-monopole Floer homol-

ogy of connected sums. The treatment of such a problem in the analogous

setups of Pin(2)-equivariant Seiberg-Witten Floer homology and involutive

Heegaard Floer homology can be found in [34], [15] [7], [5]. Pin(2)-monopole

Floer homology was introduced in [24] as a counterpart of Manolescu’s in-

variants in the Morse-theoretic setting of Kronheimer-Mrowka’s monopole

Floer homology [18]; in particular, it can be used to provide an alterna-

tive disproof of the Triangulation conjecture. Throughout this paper we

will denote by F the field with two elements. We will be mostly interested

in the (completed) invariant ĤS•(Y, s) (pronounced HS-to) associated to a

three-manifold equipped with a self-conjugate spinc structure s = s̄. This

is a graded module over the ring

R = F[[V ]][Q]/Q3,

where V and Q have degrees respectively −4 and −1, which is (up to grad-

ing shift) identified with ĤS•(S3). It was shown in [22] that this package of

invariants carries an extremely rich algebraic structure: namely, if we de-

note by Ĉ
•(Y, s) the chain complex underlying ĤS•(Y, s), then Ĉ


•(S3) has

a natural structure of A∞-algebra, and Ĉ
•(Y, s) is naturally an A∞-module

over it. Furthermore, it was shown in [22] that the A∞-algebra Ĉ
•(S3) is

not formal (i.e. not quasi-isomorphic to its homology). The concept of non-

formality has a very long history (see for example the celebrated results in

[4] and [11]), and it has recently gained importance in understanding Floer

theoretic invariants, especially those arising in symplectic geometry (see for

example [1] and [27]).
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The goal of the present paper is to explore these non-formality phe-

nomena, and in particular their manifestation at the homology level as

Massey products. Our interest in the study of these properties (especially

towards Question 1) is that Massey products naturally appear when trying

to explicitly understand the Pin(2)-monopole Floer homology of connected

sums. Indeed, the main result of [22] described the Floer chain complex of

a connected sum in terms of the A∞-tensor product of the Floer complexes

of the summands; this naturally leads to a spectral sequence, called the

Eilenberg-Moore spectral sequence, whose E2-page is

TorR∗,∗(ĤS•(Y0, s0), ĤS•(Y1, s1))

and converges (up to grading shift) to ĤS•(Y0#Y1, s0#s1). Non-formality

comes into play when studying the successive pages of this spectral se-

quence: both the higher differentials and the extension problems relating

E∞ to the actual group are naturally described in terms of certain Massey

products of the two summands.

While the main result of [22] provides a general, yet not concretely

applicable, connected sum formula, the main goal of this paper is to

show that in many cases of interest the computations involving the A∞-

structure and the Eilenberg-Moore spectral sequence can be explicitly

performed. Towards this end, our exposition will blend general results

with concrete examples, and we will discuss how several results proved in

the literature with different methods fit in our framework. Let us point out

here two consequences of our computations. The first one involves linear

independence in the homology cobordism group; while the first result of

this kind was obtained in [10] using Yang-Mills theory, recently some Floer

theoretic proofs have appeared [34] [6]. We provide here a proof in our

setting; the notion of manifold of simple type Mn appearing in the statement

will be introduced Section 3, and should be thought of as the analogue of

the notion of manifold of projective type in [34]. For example, the Seifert

space −Σ(2, 4n− 1, 8n− 1) has simple type Mn.

Theorem 1. Consider sequences of integers 0 < n1 < n2 < . . . , and suppose

that, for each i, Yi has simple type Mni
. Then the Yi are linearly independent

in Θ3
H .

As in [34], the proof of this result only involves understanding connected

sums of manifolds of simple type Mn with the given orientation. This



4 F. Lin

is feasible in our setting as these manifolds have, as the name suggests,

the simplest possible type of non-trivial Floer homology, and this makes

the description of the Eilenberg-Moore spectral sequence feasible in this

case. More challenging is the case in which we take connected sums with

a manifold of simple type Mn with the opposite orientation. In this case

many interesting Massey products arise, and understanding these will lead

us to the following result about the Manolescu correction terms α, β, γ and

the Frøyshov invariant δ (here δ = −h in the notation of [18]). This should

be compared with the analogous one in involutive Heegaard Floer homology

from [7].

Theorem 2. Consider integers A,B,C,D such that:

• C ≤ B ≤ A and C ≤ D ≤ A;

• A,B,C have the same parity.

Then there exists a homology sphere Y with α(Y ) = A, β(Y ) = B, γ(Y ) = C

and δ(Y ) = D.

Along the way, we will discuss how the U -action in the standard

monopole Floer homology ĤM •(Y, s) is related to the A∞-structure on

ĤS•(Y, s). While it was shown in [35] that the R-module structure of

ĤS•(Y, s) does not recover the Frøyshov invariant δ, we obtain the following.

Theorem 3. Let (Y, s) be a spin rational homology sphere. Then δ(Y, s) is

determined by the A∞-structure on ĤS•(Y, s).

Let us discuss the content of the various sections. In Section 1, we

begin by providing a review of the essential aspects of Pin(2)-monopole

Floer homology needed in the rest of the paper. Given this background, we

show in Section 2 that several natural Massey (bi)products (including for

example 〈x, Q,Q2〉, when Q · x = 0 and 〈V,x, Q〉, when V · x = Q · x = 0)

can be described in terms of the Gysin exact triangle

ĤS•(Y, s) ĤS•(Y, s)

ĤM •(Y, s)

·Q

π∗ ι

relating ĤS•(Y, s) with the usual monopole Floer homology ĤM •(Y, s).

This will lead us to a proof of Theorem 3. The Gysin exact triangle can be



Non-formality in PIN(2)-monopole Floer homology 5

explicitly understood in several cases including Seifert spaces and spaces

obtained by surgery on L-space knots, as discussed in Section 3. In that

section, we also introduce manifolds of simple type Mn, and discuss con-

crete examples. Given this, we turn our attention onto the study of the

Eilenberg-Moore spectral sequence. In Section 4, we cover the relevant

background in homological algebra over our ring R needed to describe con-

cretely the E2-page of the spectral sequence. This leads up to Section 5,

where we study in detail the higher differentials and extension problems

for connected sums with manifolds of simple type Mn. We will see how

the Massey products described in Section 2 naturally arise when trying to

understand connected sums with this kind of spaces. Finally in Section 6

we discuss examples involving connected sums of several manifolds of sim-

ple typeMn with either orientation, and use them to show Theorem 1 and 2.
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Varolgunes for many illuminating conversations, and the anonymous refer-

ees for carefully reading the manuscript and providing very useful feedback.

The 2016-2017 special year at the Institute for Advanced studies Homolog-
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This work was partially funded by NSF grant DMS-1807242, the Shing-

Shen Chern Membership Fund and the IAS Fund for Math.

1. A quick review of Pin(2)-monopole Floer homology

In this section, we briefly review the fundamental aspects of Pin(2)-

monopole Floer homology which will be needed in the paper, with a par-

ticular focus on the results of [22]. We refer the reader to [20] for a more

detailed introduction to the subject, and to [24] for the details of the con-

struction.

Formal properties. To a closed, oriented three-manifold Y equipped with

a self-conjugate spinc structure s we associated in [24] chain complexes

Č•(Y, s), Ĉ•(Y, s), C̄•(Y, s) (1)

equipped with a chain involution . The homology of the chain complexes

recovers the monopole Floer homology groupŝ

HM •(Y, s), ĤM •(Y, s), HM •(Y, s)
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of [18]. On the other hand, looking at the homology of the -invariant

subcomplexes

Č
•(Y, s), Ĉ

•(Y, s), C̄
•(Y, s),

one obtains the Pin(2)-monopole Floer homology groups fitting in a long

exact sequence

̂

HS•(Y, s) ĤS•(Y, s)

HS•(Y, s)

j∗

i∗ p∗ (2)

where the maps i∗ and j∗ preserve the grading, while p∗ has degree −1.

These are Q-graded modules over R, where the action can be described as

follows: after identifying

ĤS•(S
3) = R〈−1〉,

the action is induced in homology by the multiplication map

m̂2 : Ĉ

•(Y )⊗ Ĉ


•(S

3)→ Ĉ
•(Y )

arising from the cobordism obtained by ([0, 1] × Y ) \ int(B4) by attaching

cylindrical ends. In [22], we introduced higher multiplications

m̂n : Ĉ
•(Y )⊗ Ĉ


•(S

3)⊗n−1 → Ĉ
•(Y )

obtained (in the spirit of Baldwin and Bloom’s unpublished construction of

a monopole category) by looking at an (n−2)-dimensional family of metrics

and perturbations parametrized by the associahedron Kn. It is shown in

[22] that in the simplest case in which Y is S3, these operations (which

we denote µn) define an A∞-algebra structure on Ĉ
•(S3), and for each Y

the operations m̂n on Ĉ
•(Y ) define an A∞-module structure over it (see

[22] for the relevant background on A∞-structures). For a fixed choice of

data on S3, such an A∞-module structure on Ĉ
•(Y ) is well defined up to

A∞-quasi-isomorphism. Indeed, it is shown in [22] that Ĉ
•(Y ) also admits

A∞-bimodule operations

m̂i,j : Ĉ

•(S

3)⊗i−1 ⊗ Ĉ
•(Y )⊗ Ĉ


•(S

3)⊗j−1 → Ĉ
•(Y ).

such that m̂1,n = m̂n. These will be relevant in the present paper when

computing the R-module structure on connected sums.
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Remark 1.1. There are some technical subtleties involved in the construc-

tion of [22], as one needs to impose certain transversality conditions on

the chains involved. In particular, the higher composition maps are only

partially defined. On the other hand, for the content of this paper (which

is mostly algebraic in nature), it will not be harmful to treat the structure

constructed in [22] as genuine A∞-structures.

Formality and connected sums. Recall that an A∞-algebra A is called

formal if it is quasi-isomorphic to its homology (see for example [11] for the

special case of dgas). A classical obstruction to formality is provided by

Massey products: given the homology classes [a], [b] and [c] in H∗(A) such

that [a] · [b] = [b] · [c] = 0, after choosing r, s such that ∂r = ab and ∂s = bc,

we define their triple Massey product to be the homology class

〈[a], [b], [c]〉 = [rc+ as+ µ3(a, b, c)].

The product 〈[a], [b], [c]〉 is well-defined in a suitable quotient of H∗(A).

Inductively, one can define the n-fold Massey products for n-tuples of

homology classes such that all lower Massey products vanish in a consistent

way. In the present paper, we will mostly focus on triple and four-fold

Massey products. Let us review the definition of the latter, as it will be

relevant in the sequel. Suppose we are given homology classes [ai] in H∗(A)

for i = 1, . . . , 4 such that

[a1] · [a2] = [a2] · [a3] = [a3] · [a4] = 0.

Choose bi for i = 1, 3 such that ∂bi = aiai+1. Suppose that the triple

Massey products (defined in terms of these choices of bi) vanish, so that we

have c1, c2 such that

∂c1 = b1a3 + a1b2 + µ3(a1, a2, a3), ∂c2 = b2a4 + a2b3 + µ3(a2, a3, a4).

The four-fold Massey product 〈[a1], [a2], [a3], [a4]〉 is defined to be

[a1c2+ c1a4+µ3(a1, a2, b3)+µ3(a1, b2, a4)+µ3(b1, a3, a4)+µ4(a1, a2, a3, a4)]

(3)

Again, this is well-defined in a suitable quotient of H∗(A). The analo-

gous definitions carry over when defining the Massey products for an A∞-

(bi)moduleM over A.
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It was shown in [22] the A∞-structure on Ĉ
•(S3) is not formal: while

the relevant triple Massey products are zero, we have

〈Q,Q2, Q,Q2〉 = V.

Intuitively speaking, this is a cohomological manifestation of the non-

triviality of the fiber bundle

RP 2 ↪→ BPin(2)→ HP∞.

The goal of this paper is to explore the non-formality properties of the

A∞-module Ĉ
•(Y ). This is particularly interesting in light of the the main

theorem of [22], which we now recall.

Theorem 1.2. There exists a quasi-isomorphism of A∞-bimodules

Ĉ
•(Y0, s0)⊗̃Ĉ•(S3)

(
Ĉ

•(Y1, s1)
)opp ∼= Ĉ

•(Y0#Y1, s0#s1)〈−1〉.

where opp denotes the opposite bimodule.

Here by 〈n〉 we denote grading shift downwards by n, i.e.

(M〈n〉)d =Md−n,

while ⊗̃ denotes the A∞-tensor product, whose definition we now recall.

Let N andM be (respectively a right and left) A∞-modules over A, their

A∞-tensor product is defined to be the vector space

N⊗̃M =
⊕

n≥0

N ⊗An ⊗M

equipped with the differential

∂(x|a1| · · · |an|y) =
n∑

i=0

mi+1(x|a1| · · · |ai)|ai+1| · · · |an|y

+
n∑

i=1

n−i∑

j=0

x|a1| · · · |ai−1|µj−i+1(ai| · · · |aj)|aj+1| · · · |an|y

+
n∑

i=1

x|a1| · · · |ai−1|mn−i−1(ai| · · · |an|y).

Here M,A and N denote the underlying F-vector spaces of M,A and N

and, for simplicity, we will always denote elements of tensor products with

bars | instead of ⊗s. By considering the natural filtration given by

Fk =
⊕

n≤k

N ⊗An ⊗M,
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we obtain the following.

Corollary 1.3. There is a spectral sequence whose E2-page is

TorR∗,∗(ĤS•(Y0, s0), ĤS•(Y1, s1))

and which converges to ĤS•(Y0#Y1, s0#s1)〈−1〉.

We will refer to this as the Eilenberg-Moore spectral sequence, see [22] for

its heuristic motivation. Here TorR∗,∗ is taken in the category of graded R-

modules, and is therefore a bigraded object. It can be computed by taking

a graded projective resolution of M , tensoring it with N and taking the

homology of the resulting complex. Recall, as a general fact, that given

modules M0,M1 over R, the identity

TorR0,∗(M0,M1) =M0 ⊗R M1 (4)

holds. Corollary 1.3 follows from the fact that the E1-page of the spectral

sequence associated to the filtration {FN} on N⊗̃M is naturally identified

with the tensor product of H∗(M) with the bar resolution of H∗(N ); here

the key point is that Ĉ
•(S3) is cohomologically unital. Of course, TorR∗,∗ is

independent of the choice of resolution; in Section 4, we will discuss some

convenient resolutions to compute TorR∗,∗ efficiently for our purposes.

While the computation of the E2-page only depends on the mod-

ule structure, the key observation is that the higher differentials in the

Eilenberg-Moore spectral sequence are determined by the Massey products

of the two summands. We have, for example, the following consequence of

the standard staircase argument (see for example Section 8 of [22]).

Lemma 1.4. Suppose we are given x ∈ H∗(M), r1, . . . , rn ∈ H∗(A) and

y ∈ H∗(N ) such that

xr1 = r1r2 = · · · = rn−1rn = rny = 0,

so that x|r1| . . . |rn|y defines a class in (E2
n,∗, d2). Then,

d2(x|r1| . . . |rn|y) = 〈x, r1, r2〉|r3| . . . |rn|y+ x|〈r1, r2, r3〉|r4| . . . |rn|y

+ x|r1| . . . |〈rn−2, rn−1, rn〉|y+ x|r1| . . . |〈rn−1, rn,y〉

as an element of E2
n−2,∗+1.
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In general, there are classes in E2 that cannot be described as a simple

tensor. In Section 5, we will discuss the differentials of some of these more

complicated classes in terms of certain generalized Massey products .

Manolescu correction terms. From the R-module structure of Pin(2)-

monopole Floer homology, taking as inspiration Frøyshov’s invariant [9][18],

one can extract plenty of information regarding cobordisms between man-

ifolds. For simplicitly, let (Y, s) be a rational homology sphere Y equipped

with a self-conjugate spinc structure s or, equivalently, a spin structure

(as b1 = 0). We can fix an identification, up to grading shift, of graded

R-modules

HS•(Y, s) ≡ R̃

where we set

R̃ = F[V −1, V ]][Q]/(Q3),

where F[V −1, V ]] (which we denote by V) denotes Laurent power series. We

have the direct sum of F[[V ]]-modules

R̃ = V ⊕Q · V ⊕Q2 · V .

Recall that

̂

HS•(Y, s) and ĤS•(Y, s) vanish in degrees respectively low and

high enough, so that

i∗ : HS•(Y, s) ≡ R̃ →

̂

HS•(Y, s)

p∗ : ĤS•(Y, s)→ R̃ ≡ HS•(Y, s).

are isomorphism is degrees respectively high and low enough.

Definition 1.5. Given a nonzero r ∈ R̃, we say that x ∈ ĤS•(Y, s) is based

of type r if p∗(x) = r. If p∗(x) = 0, we say that x is unbased. We will say

that x is V, Q · V or Q2 · V-based according to where p∗(x) belongs to.

We also call the images of V, Q · V and Q2 · V in

̂

HS•(Y, s) under i∗
respectively the α, β and γ-tower. The Manolescu correction terms (defined

first in the setting on Pin(2)-equivariant Seiberg-Witten Floer homology

[29]) are the numerical invariants defined as

α =
1

2
min{deg(x)|x ∈ α-tower}

β =
1

2
(min{deg(x)|x ∈ β-tower} − 1)

γ =
1

2
(min{deg(x)|x ∈ γ-tower} − 2).
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Using the long exact sequence relating the three Floer groups, these

numerical invariants can also be described in terms of based elements of

ĤS•(Y, s) as follows

α = −
1

2

(
max{deg(x)|there exists a Q2 · V-based element x}+ 4

)

β = −
1

2
(max{deg(x)|there exists a Q · V-based element x}+ 3)

γ = −
1

2
(max{deg(x)|there exists a V-based element x}+ 2) .

These invariants are rational lifts of −µ(Y, s), where µ denotes the Rokhlin

invariant, and they provide obstructions to the existence of spin cobordisms

with b+2 = 0, 1, 2, see [24][23]. As a consequence, they are invariant under

homology cobordism. These corresponding numerical invariants for −Y

(the manifold obtained from Y by orientation reversal) can be obtained as

follows:

α(−Y, s) = −γ(Y, s)

β(−Y, s) = −β(Y, s)

γ(−Y, s) = −α(Y, s).

The key point behind these identities is Poincaré duality, which is the

isomorphism of R-moduleŝ

HS•(−Y, s) ∼= ĤS−1−•(Y, s), (5)

together with the fact that

̂

HS•(−Y, s) is the dual R-module of

̂

HS•(−Y, s).

In fact, (5) holds at the level of A∞-modules. Here the A∞-structure

on

̂

HS•(−Y, s) has cohomological grading, consistent with the fact that

the cohomological action of Q and V have degrees respectively 1 and 4.

Furthermore,

̂

HS•(−Y, s) is the dual A∞-module of

̂

HS•(−Y, s). While the

latter is a general notion of duality, we will not discuss it in detail here as

in all our examples it will admit a much more concrete and computable

manifestation (see for example the proof of Lemma 2.7).

Remark 1.6. More generally, using these duality relations together with

the long exact sequence (2), we can extract information about ĤS•(−Y, s)

from ĤS•(Y, s). On the other hand, unlike the case of usual monopole

Floer homology, the R-module structure of ĤS•(Y, s) does not determine

the R-module structure of ĤS•(−Y, s). In fact, we will see in Lemma 2.7
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and in the proof of Corollary 5.4 that certain non-trivial multiplications

between elements of R and ĤS•(Y, s) correspond to the existence of non-

trivial Massey products on ĤS•(−Y, s).

Remark 1.7. Of course, one can define analogues of the correction terms

also in cases in which b1 > 0, depending on the structure of HS•(Y, s).

In fact, one can define a correction term for each F[V −1, V ]] summand

of HS•(Y, s). It is shown in [25] that the number of such summands

only depends on the triple cup product of Y , together with the Rokhlin

invariants of the 2b1(Y ) spin structures inducing s. For example, there

are two cases when b1(Y ) = 1: when the two spin structures have the

same Rokhlin invariant, one obtains six correction terms, while in the case

the two spin structures have different Rokhlin invariants one obtains four

correction terms (see [23] and also Section 3).

Definition of the Floer chain complexes. Let us now review the main

features of the Floer chain complexes introduced in [24] that will be needed

in the rest of the paper. The key input of Pin(2)-symmetry is a natural

involution on the moduli space of configurations

 : B(Y, s)→ B(Y, s),

whose fixed points are the reducible configurations [B, 0] where B is the

spin connection of one of the 2b1(Y ) spin structures inducing s. One would

like to perform the construction of the Floer chain complexes from [18]

in a way such that this symmetry is preserved. The main complication

is that one needs to work with Morse-Bott singularities. For a generic -

equivariant perturbation, the critical set in the blown-up moduli space of

configurations Bσ(Y, s) consists of:

• a finite number of pairs of irreducible solutions, acted freely by the

action of ;

• for each non spin reducible critical point, an infinite tower of critical

points as in the Morse setting. The free action of  of non-spin reducible

critical points lifts to an action of the towers;

• for each spin reducible critical point, an infinite tower of reducible

submanifolds, each a copy of S2. The involution  acts as the antipodal

map on each critical submanifold.
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The chain complexes with involution (1) arise as some version of Morse-

Bott chain complexes. The underlying vector spaces are generated over F

by suitable geometric chains with values in the critical submanifolds, i.e.

smooth maps

f : σ → C

where σ is chosen among a suitable generalization of manifolds with bound-

ary and C is a critical submanifold. The differential of such a chain σ com-

bines the singular boundary within C together with fibered products with

moduli spaces of flows M(C,C ′) from C to another critical submanifold C ′,

which we consider as singular chains with values in C ′. In our case, we

are naturally lead to deal with δ-chains and the key modification (inspired

from [26]) is that we consider chains which are non-degenerate, namely

both f(σ) and f(∂σ) are not contained in the image of smaller dimensional

chains. For our purposes, we will only need that 3-cycles in the critical

submanifolds which are copies of S2 are zero at the chain level.

Example 1.8. Consider the classes Q,Q2 ∈ R = ĤS•(S3). These are

represented respectively by generator in the one and zero dimensional

homology of C−1, the first unstable critical submanifold (where we consider

the round metric on S3, and a small perturbation). Of course, we know

Q·Q2 = 0. In fact, such a product is zero at the chain level: for dimensional

reasons, it is a 3-chain in the second unstable critical submanifold C−2, and

because it is closed, it vanishes. For a similar reason, the triple Massey

product 〈Q,Q2, Q〉 also vanishes at the chain level.

2. Description of certain Massey products

In general, the determination of the Massey products of an A∞-module over

an A∞-algebra is a rather involved process, as it requires the understanding

of higher compositions. Our goal in the present section is to show that

in the case of Pin(2)-monopole Floer homology, many natural Massey

(bi)products can be described very explicitly in terms of the relation with

the U -action in usual monopole Floer homology. While we will work in the

setting of ĤS•, all results carry over for

̂

HS• and HS•. Before stating the

main results of the section, let us recall the Gysin exact sequence
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ĤS•(Y, s) ĤS•(Y, s)

ĤM •(Y, s)

·Q

π∗ ι∗

introduced in [24]. Here the maps ι∗ and π∗ preserve the degree, while

multiplication by Q has degree −1. It is an exact triangle of R-modules

where on ĤM •(Y, s) we have that Q acts as 0 and V acts as U2. In the case

of a homology sphere of Rokhlin invariant 0, in degrees between −4k and

−4k − 3 with k � 0 the sequence looks like

· · ·

F F F

F · F

F F F

where the side columns represents ĤS• and the middle column represents

ĤM •. Let us record the following general observation.

Lemma 2.1. If x ∈ ĤS•(Y, s), then Q2 · x = π∗(U · ι∗(x)).

We will prove this result later. Let us define the following Massey

operations:

• if Q · x = V · x = 0, 〈Q,x, V 〉, which is well defined up to ImQ+ ImV ;

• if Q · x = 0, 〈x, Q,Q2〉, well defined up to ImQ2;

• if Q2 · x = 0, 〈x, Q2, Q〉, well defined up to ImQ;

• if Q · x = 0 and 〈x, Q,Q2〉 = 0, 〈x, Q,Q2, Q〉 well defined up to ImQ

(recall that 〈Q,Q2, Q〉 vanishes at the chain level, see Example 1.8).

On the other hand, using the Gysin exact sequence, we can define the

following four operations:

(1) Suppose Q · x = V · x = 0. As Q · x = 0, x = π∗(y) for some y. Then

π∗(U
2 · y) = V · π∗(y) = V · x = 0,

so that there exists z such that ι∗(z) = U2 ·y. We define Φ1(x) = z. It

is readily checked that such an element is well defined up to elements

in ImV + ImQ.
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(2) Suppose Q · x=0. Then again x = π∗(y) for some y. We then define

Φ2(x) = π∗(U · y). This is well defined up to ImQ2 in light of Lemma

2.1.

(3) Suppose Q2 · x = 0. By Lemma 2.1, π∗(U · ι∗(x)) = 0, hence

U · ι∗(x) = ι∗(y) for some y. Then we set Φ3(x) = y. This is well

defined up to ImQ.

(4) Suppose 〈x, Q,Q2〉 = 0. By the second bullet of Theorem 2.2 below,

we have Φ2(x) = 0. Then, up to choosing a different y in bullet (2)

above,

Φ2(x) = π∗(U · y) = 0,

and therefore U · y = ι∗(w) for some w. Finally, we set Φ4(x) = w.

We will show in Section 3 that these four operations Φi are explicitly

computable in many cases. Their importance for our purposes is the

following result.

Theorem 2.2. Let x be an element in ĤS•(Y, s). We have the following

identities:

(1) if Q · x = V · x = 0, 〈Q,x, V 〉 = Φ1(x);

(2) if Q · x = 0, 〈x, Q,Q2〉 = Φ2(x);

(3) if Q2 · x = 0, 〈x, Q2, Q〉 = Φ3(x);

(4) if 〈x, Q,Q2〉 = 0, 〈x, Q,Q2, Q〉 = Φ4(x).

In fact, while for simplicity we have limited our exposition to Massey

products involving only Q,Q2 and V , the result naturally generalizes to

the analogous Massey products involving QV i, Q2V j and V k+1. Let us

for example point out how to compute 〈Q,x, V k+1〉, where of course we

assume Q ·x = V k+1 ·x = 0. As Qx = 0 implies that x = π(y), and because

V k+1 · x = 0, we have that π∗(U2k+2 · y) = 0, so that U2k+2 · y = ι(z). We

have then 〈Q,x, V k+1〉 = z. Furthermore, it will be clear from the proof

that the statement holds also for Massey products for the left A∞-structure;

for example, Φ3(x) = 〈Q,Q2,x〉.

Remark 2.3. Looking at the Gysin sequence of S3, we obtain a direct

proof (i.e. without relying on an argument involving the Eilenberg-Moore

spectral sequence as in [22]) of the fact that 〈Q,Q2, Q,Q2〉 = V (here we

apply the theorem above to the left A∞-structure).
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Remark 2.4. While our main result involves specific Massey products,

one can in general exploit the natural A∞-structure in homology provided

by Kadeishvili’s homotopy transfer theorem [16][37] to obtain more in-

formation. Let us for example consider the (classical) Massey product

〈x|Q2|Q|Q2〉, where we assume x · Q = 〈x|Q2|Q〉 = 0. Recalling the van-

ishing of the triple products in R and the relation 〈Q|Q2|Q|Q2〉 = V , we

obtain after substituting the latter in the A∞-relations, the relation

x · V = 〈x|Q2|Q|Q2〉 ·Q.

In several cases, this is enough to determine 〈x|Q2|Q|Q2〉.

The proof of this result occupies the rest of the section. Recall first

from [24] that the Gysin exact sequence arises as the long exact sequence

in homology associated to the short exact sequence of chain complexes

0→ Ĉ
•(Y, s) ↪→ Ĉ•(Y, s)

1+
−→ (1 + )Ĉ•(Y, s)→ 0 (6)

where Ĉ•(Y, s) is the Floer chain complex underlying ĤM •(Y, s) and the

chain complexes Ĉ
•(Y, s) and (1+)Ĉ•(Y, s) both have homology ĤS•(Y, s).

We first review how the connecting map in the induced long exact sequence

is identified with multiplication by Q. Consider a representative x of a

class x ∈ ĤS•(Y, s). Consider its image under the map induced by the

cobordism (I × Y ) \ int(B4) with cylindrical ends attached, where we look

at the solutions converging to the first negative critical submanifold C−1

on the additional incoming S3 end, or, equivalently the element m̂2(x|C−1)

obtained from the product map

m̂2 : Ĉ•(Y, s)⊗ Ĉ•(S
3)→ Ĉ•(Y, s)

by considering the chain C−1 on the second factor. As this map induces

the identity in homology, this element is also a representative of x. Recall

that C−1 is a copy of S2 on which  acts as the antipodal map. Denote by

D2 the upper hemisphere, and by S1 = ∂D2 the equator (notice that the

latter is -invariant). We have then S2 = D2 ∪ (D2) = (1 + )D2, so that

m̂2(x|C−1) = m̂2(x|(1 + )D2) = (1 + )m̂2(x|D
2) = (1 + )(y)

where y = m̂2(x|D2) ∈ Ĉ•(Y, s). Now, as ∂x = 0, we have

∂y = ∂
(
m̂2(x|D

2)
)
= m̂2(x|∂D

2) = m̂2(x|S
1)
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which is a -invariant cycle, hence in the image of the inclusion Ĉ
•(Y, s) ↪→

Ĉ•(Y, s). By definition, its class in ĤS• represents the image of x under the

boundary map in the induced long exact sequence. On the other hand, as

S1 is a representative of Q in ĤS•(S3) = R, y also represents Q · x.

In a similar spirit, we now provide the proof of Lemma 2.1.

Proof of Lemma 2.1. Let p be a point in C−1. Then the point p is a cycle

representing U ∈ ĤM •(S3), while p ∪ p is an invariant cycle representing

Q2 ∈ ĤS•(S3). If y ∈ Ĉ•(Y, s) represents y ∈ ĤM •(Y, s), then U · y is

represented by m̂2(y|p), while if x ∈ Ĉ
•(Y, s) represents x ∈ ĤS(Y, s), then

Q2 · y is represented by m̂2(x|p ∪ p). On the other hand we have for

x ∈ Ĉ
•(Y, s) that

m̂2(x|p ∪ p) = m̂2(x|(1 + )p) = (1 + )m̂2(x|p),

and the result follows. �

With these simple computations in mind, we are ready to prove Theorem

2.2.

Proof of Theorem 2.2. Throughout the proof, let us fix a representative

x ∈ Ĉ
•(Y, s) of x. Will will prove the various statements separately (with

the warning that the proof of (4) builds on the proof of (2)).

Proof of (1). Recall that the action of V on
̂

HS• and of U2 on
̂

HM • are

both obtained by multiplication by the second negative critical submanifold

C−2 on the additional incoming S3 end. Let

y = m̂2(x|D
2) ∈ Ĉ•(Y, s)

as above, so that its image under 1 +  is a representative of x, and

∂y = m̂2(x|S1) is a -invariant chain cycle representing Q · x = 0. Hence

we have m̂2(x|S1) = ∂t for t ∈ Ĉ
•(Y, s). Consider also m̂2(x|C−2), which

represents V · x = 0 and hence is ∂s for s ∈ Ĉ
•(Y, s). Then by definition

the triple Massey product 〈Q,x, V 〉 is represented by

m̂2(t|C−2) + m̂2(S
1|s) + m̂2,2(S

1|x|C−2) ∈ Ĉ

•(Y, s).

Consider the image of this cycle in Ĉ•(Y, s). By adding to it the (non

-invariant) boundaries

∂m̂2,2(D
2|x|C−2) =

= m̂2,2(S
1|x|C−2) + m̂2(m̂2(D

2|x)|C−2) + m̂2(D
2|m̂2(x|C−2))
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and

∂m̂2(D
2|s) = m̂2(S

1|s) + m̂2(D
2|m̂2(x|C−2))

we see that ι∗(〈Q,x, V 〉) ∈ ĤM •(Y, s) is represented by

m̂2

(
t+ m̂2(D

2|x)|C−2

)
∈ Ĉ•(Y, s). (7)

As t is -invariant, t + m̌2(D2|x) is a cycle in Ĉ•(Y, s) whose image under

π∗ is a representative of x; furthermore, the chain (7) represents its image

under the action of V = U2, so that the result follows.

Proof of (2). Recall from Example 1.8 that Q2 · Q is zero at the chain

level. Consider as above the cycle m̂2(x|S2), and let t be a -invariant chain

such that ∂t = m̂2(x|S1), where again we use Q · x = 0. Then the Massey

product 〈x, Q,Q2〉 is by definition represented by

m̂2(t|p∪p)+m̂3(t|S
1|p∪p) = (1+)(m̂2(t|p)+m̂3(x|S

1|p)) ∈ (1+)Ĉ•(Y, s).

(8)

Of the two natural disks D2 and D2 whose boundary is S1, we can assume

without loss of generality that m̂2(D2|p) = 0. Adding then to the expression

above

∂[(1 + )(m̂3(x|D
2|p))] = (1 + )(m̂3(x|S

1|p) + m̂2(m̂2(x|D
2)|p))

we see that the Massey product is represented by

(1 + )[m̂2(t+ m̂2(x|D
2)|p)].

Now t+ m̂2(x|D2) ∈ Ĉ•(Y, s) is again a cycle mapping to a representative

of x, and the result follows.

Proof of (3). As Q2 · x = 0, by Lemma 2.1 we can consider z ∈ Ĉ
•(Y, s)

such that ∂z = m̂2(x|p ∪ p). Then by definition the Massey product

〈x, Q2, Q〉 is represented by

m̂2(z|S
1) + m̂3(x|p ∪ p|S

1) ∈ Ĉ
•(Y, s).

Consider its image under the inclusion in Ĉ•(Y, s). Assume m̂2(p|D2) = 0,

and set p′ = m̂2(p|D2). We can add the (non -invariant) boundary

∂m̂3(x|p ∪ p|D
2) = m̂3(x|p ∪ p|S

1) + m̂2(m̂2(x|p ∪ p)|D
2) + m̂2(x|p

′).
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We see that the image in Ĉ•(Y, s) of the triple Massey product is also

represented by

m̂2(z|S
1) + m̂2(m̂2(x|p ∪ p)|D

2) + m̂2(x|p
′) = m̂2(x|p

′) + ∂m̂2(z|D
2),

and the result follows.

Proof of (4). Suppose 〈x, Q,Q2〉 = 0. Then, in the notation of the proof

of the second bullet, we have that

(1 + )[m̂2(t+ m̂2(x|D
2)|p)] = ∂w. (9)

for some w ∈ (1+)Ĉ•(Y, s) so that for the chain representative in Equation

(8) we have

(1 + )(m̂2(t|p) + m̂3(x|S
1|p)) = ∂(w + (1 + )β) (10)

with β = m̂3(x|D2|p). As the products Q · Q2, Q2 · Q and 〈Q,Q2, Q〉 are

zero at the chain level (see Example 1.8), the formula (3) for the 4-fold

Massey product greatly simplifies. In particular, we have that 〈x, Q,Q2, Q〉

is represented by

m̂2(w + (1 + )β|S1) + m̂4(x|S
1|p ∪ p|S1) + m̂3(t|p ∪ p|S

1).

Let us point out that while in the proof of (2) we worked up to boundaries,

it is important here that we work with the actual chain representative in

Equation (8) of the Massey products. We claim that under the inclusion

into Ĉ•(Y, s) this maps to the same class as m̂2(t + m̂2(x|D2)|p), so that

the result follows. Let us choose again disks D2 such that m̂2(p|D2) =

0 = m̂2(D2|p) = 0. Here the two disks are not the same, but we will

not incorporate that in our already heavy notation as it should not create

confusions. We have

m̂4(x|S
1|p|S1) = ∂m̂4(x|S

1|p|D2) + m̂2(m̂3(x|S
1|p)|D2)+

+ m̂3(m̂2(x|S
1)|p|D2) + m̂2(x|m̂3(S

1|p|D2))

and

m̂3(t|p|S
1) = ∂m̂3(t|p|D

2) + m̂2(m̂2(t|p)|D
2) + m̂3(m̂2(x|S

1)|p|D2).

where we used in both cases m̂2(p|D2) = 0. Notice that, regarding the last

term in the first sum, m̂3(S1|p|D2) is a collection of points, so that 1 + 
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of the last term represents a multiple of Q2 · x = 0; we can ignore the last

term. Hence the image ι∗(〈x, Q,Q2, Q〉) ∈ ĤM •(Y, s) is represented by the

cycle

m̂2(w + (1 + )β|S1) + (1 + )[m̂2(m̂3(x|S
1|p)|D2) + m̂2(m̂2(t|p)|D

2)] =

m̂2(w|S
1) + (1 + )[m̂2(β|S

1) + m̂2(m̂3(x|S
1|p)|D2) + m̂2(m̂2(t|p)|D

2)].

Notice that

m̂2(w|S
1) = m̂2(w|∂D

2) =

= ∂m̂2(w|D
2) + m̂2

(
[(1 + )(m̂2(t+ m̂2(x|D

2)|p)]|D2
)
,

and, using now m̂2(D2|p) = 0,

m̂2(m̂3(x|S
1|p)|D2) = m̂2(m̂3(x|∂D

2|p)|D2) =

= m̂2(∂m̂3(x|D
2|p) + m̂2(m̂2(x|D

2)|p)|D2).

Hence ι of our cycle has the form (up to boundaries)

m̂2((1 + )α|D2) + (1 + )[m̂2(α+ ∂β|D2) + m̂2(β|S
1)]

where α = m̂2(t+ m̂2(x|D2)|p), or equivalently

m̂2(α|D
2 ∪ D2) + ∂[(1 + )m̂2(β|D

2)].

Here m̂2(α|D2 ∪ D2) represents the same class as α. Finally, relation (9)

implies that this is also the class of α itself, and the result follows. �

Let us point out some immediate consequences regarding correction

terms. There is a plethora of numerical invariants of homology cobordism

of rational homology spheres that one can in principle extract from the

R-module structure in Pin(2)-monopole Floer homology (these might go

under the name generalized correction terms). On the other hand, the

simplest correction term, namely the Froyshøv invariant δ(Y, s) arising from

usual monopole Floer homology cannot be recovered from the R-module

structure (see [35]). We briefly recall the definition of the latter (which is

−h(Y, s) in the notation of [18]). We have that, given a rational homology

sphere Y ,

HM •(Y, s) ∼= F[U−1, U ]]

and that the map i∗ : HM •(Y, s)→

̂

HM •(Y, s) is an isomorphism in degrees

high enough and vanishes in degrees low enough. We then define

δ(Y, s) =
1

2
min{deg(x)|x ∈ Im(i∗)}.
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We have the following characterization of δ(Y, s) purely in terms of the

Massey products in Pin(2)-monopole Floer homology. From this, Theorem

3 in the Introduction directly follows.

Proposition 2.5. Let x be the bottom element of the γ-tower which is not in

the image of Q. Then

δ(Y, s) =

{
1
2(deg(x)− 2) if either Q2 · x 6= 0 or 〈Q,Q2,x〉 6= 0
1
2deg(x) otherwise.

Proof. Let x be the bottom of the element in the γ-tower which is not in the

image of Q. By exactness of the Gysin sequence, ι∗(x) 6= 0. Furthermore,

by comparing with the Gysin sequence in degrees high enough, we see that

ι∗(x) is in fact an element of the U -tower of

̂

HM •(Y, s). We claim that

U2ι∗(x) = 0. In fact, we would have otherwise

0 6= U2 · ι∗(x) = V · ι∗(x) = ι∗(V x),

so that V x, which is an element in the γ-tower, is not in the image of Q,

which contradicts our choice of x. The bottom of the U -tower is therefore

given by either ι∗(x) or U · ι∗(x). In the latter case, by exactness we have

that either U · ι∗(x) is in the image of ι∗, or its image under π∗ is non-

vanishing. These two cases correspond, thanks to part (3) ofTheorem 2.2

and Lemma 2.1, to respectively 〈Q,Q2,x〉 6= 0 or Q2 · x 6= 0, and the result

follows. �

In fact, a more natural correction term to study in Pin(2)-monopole

Floer homology (introduced in [35]) is

δ′(Y, s) =
1

2
(min{deg(x)|x ∈ γ-towerx 6∈ ImQ} − 2)

which, by the discussion above, coincides with either δ(Y, s) or δ(Y, s) + 1.

Furthermore, δ′(Y, s) reduces modulo 2 to −µ(Y, s). While we have

δ(−Y, s) = −δ(Y, s),

the effect of orientation reversal on δ′(Y, s) cannot be described purely in

term of the module structure (see also Remark 1.6). On the other hand, it

can be described in terms of Massey products as follows.
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Proposition 2.6. Let x be the bottom element of the γ-tower such that either

Q2 · x 6= 0 or 〈x, Q2, Q〉 6= 0, and set

δ′′(Y, s) =
1

2
(deg(x)− 2).

Then we have δ′(−Y, s) = −δ′′(Y, s).

The key observation here is that one can use Poincaré duality and the

long exact sequence (2) to obtain relations between

̂

HS•(Y ) and

̂

HS•(−Y ).

As this will be used repeatedly in the final part of the paper, let us discuss

here in detail the simplest manifestation of these ideas, which is at the core

of the proof of Proposition 2.6.

Lemma 2.7. There is an element z 6= 0 in degree k in the γ-tower of

̂

HS•(Y )

which is in the image of Q if and only if there is an element x 6= 0 in degree

−k in the γ-tower of

̂

HS•(−Y ) for which Q2 · x = 0 and 〈x, Q2, Q〉 6= 0.

Proof. Let us show in detail the forward implication. Given y ∈

̂

HSk+1(Y )

such that Q · y is in the γ-tower, notice that its image j∗(y) in ĤSk+1(Y )

is annihilated by Q. We claim that 〈j∗(y), Q,Q2〉 is Q2 · V-based. To see

this, we notice that the exactness of the Gysin exact sequence implies that

y is not in the image of π∗, while j∗(y) is. Comparing this with the exact

triangle relating the three flavors of usual monopole Floer homology, we see

by a simple diagram chasing that j∗(y) is in the image of a non U -torsion

element w ∈ ĤM •(Y, s). For such a w, we have that π∗(U ·w) ∈ ĤSk−1(Y )

is Q2 · V-based (again by a simple diagram chasing), and the claim follows

by bullet (2) of Theorem 2.2.

Now, the Poincaré duality isomorphismŝ

HM ∗(−Y ) ∼= ĤM−1−∗(Y )̂

HS∗(−Y ) ∼= ĤS−1−∗(Y )

provide a natural identification of the two diagrams

ĤM k+1(Y ) ĤSk+1(Y )

̂

HS−k(−Y )

̂

HM−k(−Y )

ĤM k−1(Y ) ĤSk−1(Y )

̂

HS−k−2(−Y )

̂

HM−k−2(−Y )

π∗

π∗

U ·

ι∗

ι∗
U ·
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exchanging the role of π∗ and ι∗. Under this identification we see therefore

(using the natural cohomological version of Theorem 2.2) that there is

an element ι∗(y′) ∈

̂

HSk−2(−Y ) for which 〈ι∗(y′), Q,Q2〉 ∈

̂

HSk(−Y ) is

Q2 · V-based. Now, the cohomological diagram on the right is dual to the

homological diagram below.

̂

HS−k(−Y )

̂

HM−k(−Y )

̂

HS−k−2(−Y )

̂

HM−k−2(−Y )

ι∗

ι∗

U ·

We can fix an identification̂

HM−k−2(−Y ) = im(ι∗)⊕ ker(ι∗),

and observe that

ι∗(U · ker(ι∗)) = ι∗(U · im(π∗)) = Q2 · im(π∗)

does not contain Q2 · V-based elements (as there are no V-based elements

in degree k − 2). We can therefore fix a splittinĝ

HM−k−2(−Y ) = F〈y′〉 ⊕W ⊕ ker(ι∗)

with the properties that:

• ι∗(U · (W ⊕ ker(ι∗))) does not contain Q2 · V-based elements.

• ι∗(U · y′) is Q2 · V-based.

• ι∗ restricted to F〈y′〉 ⊕W is injective.

On the dual homological diagram, this implies that there exists an element

x ∈

̂

HS−k(−Y ) belonging to the γ tower such that U · ι∗(x) is in the image

of ι∗, and the result follows by Theorem 2.2. The proof of the reverse

implication is analogous. �

Proof of Proposition 2.6. Consider the element z in degree 2δ′(Y )+2 in the

γ-tower of

̂

HS•(Y ), so that it realizes the minimum in the definition of δ′.

Then we have that V z is either zero, or is in the image of Q. In either

case, we get a non-zero element x in the γ-tower of

̂

HS•(−Y ) in degree

−2δ′(Y ) + 2 which satisfies Q2 · x 6= 0 in the former case, or Q2 · x = 0 and

〈x, Q2, Q〉 6= 0 in the latter. Finally, the same arguments above show that

x indeed realize δ′′(−Y ). �
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3. Examples

In this section we discuss several classes of manifolds for which the descrip-

tion of the Massey products in terms of the Gysin exact triangle from the

previous section is very explicit.

Manifolds of simple type Mn. We introduce a special class of homology

spheres which play a central role in Pin(2)-monopole Floer homology. Let

us first discuss the relevant algebraic definitions; these are slightly different

according to whether n is even or odd.

In the case n = 2k, we define

Mn = F[[V ]]⊕ F[[V ]]〈4k − 1〉 ⊕ F[[V ]]〈4k − 2〉 ⊕ F[[V ]]/(V k−1)〈4k − 3〉,

where the action of V respects the direct sum decomposition and the action

of Q maps one column to the one on the right and has maximal possible

rank. This module can be depicted graphically as

F4k−1 F · · · · · · · F F · F0 F F · · ·

F F

k copies

where the arrows in the upper and lower rows represent respectively the ac-

tions of V andQ, and the bottom row corresponds to the F[[V ]]/(V k−1)〈4k−

3〉 summand. Let 1 be the generator of the first summand and qv−k be the

generator of the second summand. They lie in degrees respectively 0 and

4k − 1, and are V and Q · V-based.

In the case n = 2k + 1 for k ≥ 0, we define

Mn = F[[V ]]〈−2〉 ⊕ F[[V ]]〈4k + 1〉 ⊕ F[[V ]]〈4k〉 ⊕ F[[V ]]/(V k−1)〈4k − 1〉.

where again the action of V respects the direct sum decomposition and the

action of Q maps one column to the one on the right and has maximal

possible rank. More visually,

F4k+1 F · · · · · · · F F · · F F0 · F F F · · ·

F F

k copies
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We denote the generator of the first summand by v and the generator

of the second summand by qv−k. They lie in degrees −2 and 4k+1 respec-

tively, and are V and Q · V-based.

The following is the key definition of this section (an analogous concept

of manifolds of projective type was introduced in [36]).

Definition 3.1. A homology sphere Y has Pin(2)-simple type Mn if there

is a direct sum decomposition as R-modules

ĤS•(Y ) =Mn〈−1〉 ⊕ J

with p∗(J) = 0 and no non-trivial Massey products between the two

summands.

From the Gysin exact sequence it readily follows that the part of

ĤM •(Y ) interacting with Mn〈−1〉 has the form

F[[U ]]〈−1〉 ⊕ F[[U ]]/Un〈2n− 2〉

This implies that if Y has simple type Mn, δ(Y ) = 0 and α(Y ) = β(Y ) = n,

γ(Y ) =

{
0 if n is even

1 otherwise,

and that the Rokhlin invariant of Y is simply the parity of n.

Surgery on L-space knots. There are several examples of manifolds with

simple type Mn obtained by surgery on a knot in S3 (this should be

compared, in the Heegaard Floer setting, to the results in [13]). In what

follows, we prefer to work for notational reasons with the to homologieŝ

HS•. Let us introduce a notation for the standard U and V -towers

U+ = F[U−1, U ]]/F[[U ]]

V+ = F[V −1, V ]]/F[[V ]],

where the bottom element lies in degree zero. Recall that a knot K ⊂ S3

is called an L-space knot if for large enough r > 0, the manifold S3
r (K) is

an L-space (i.e. it has vanishing reduced monopole Floer homology HM •).

Given an L-space knot, we havê

HM •(S
3
0(K), s0) = U

+〈−1〉 ⊕ U+〈−2n〉 (11)



26 F. Lin

for some n ≥ 0. Here s0 denotes the unique torsion spinc structure. We

say in this case that K has type n. The analogous fact in Heegaard Floer

homology is well-known [32], and implies our claim via the isomorphism

with monopole Floer homology (see [17], [2], and subsequent papers). Our

key source of examples is the following.

Proposition 3.2. Let K be an L-space knot of type n. Then the manifold

−S3
−1(K) has simple type Mn, where −Y denotes Y with the orientation

reversed.

Example 3.3. Recall that all positive torus knots have a positive lens space,

hence L-space, surgery. More concretely, the torus knot T (2, 4n − 1) is an

L-space knot of type n, and furthermore S3
−1(T (2, 4n − 1)) is the Seifert

space Σ(2, 4n− 1, 8n− 1). Therefore, −Σ(2, 4n− 1, 8n− 1) has simple type

Mn.

Remark 3.4. In fact, in the setting of the statement above, the same proof

will show that −S3
−1/2k+1(K) has simple type Mn for k ≥ 0.

Notice that the Arf invariant of an L-space knot K is the same as the

parity of its type n. The proof of Proposition 3.2 is simpler in the case

of Arf = 1, and essentially follows from the computations involving the

surgery exact triangle in [23]. The proof of the Arf = 0 case is more

subtle, and follows from the content of the unpublished note [21]. We here

discuss the main ideas involved for both cases. We denote by Š1/q the group̂

HS•(S3
1/q(K)). For each q, the main result of [23] implies that there is an

exact triangle

Š1/q Š0

Š1/(q+1)

Ǎq

B̌q+1

where the maps Ǎs
q and B̌s

q are those induced by the (spin) cobordisms

given by handle attachments. The key observation is the following.

Lemma 3.5. The composite

B̌q ◦ Ǎq : Š1/q → Š1/q (12)

is given by multiplication by Q.
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repeated in both directions four-periodically. Here the three columns

denote S̄s
∞, S̄

s
0 and S̄s

1 respectively. Lemma 3.5 implies that for q = −1

(or, in general, q odd) the triangle looks like

F · F F

F F F F

F F F F

· F ·

repeated in both directions four-periodically.

The final observation is that the isomorphism (11) implies via the Gysin

exact sequence that, setting

R+ =

̂

HS•(S
3) = V+ ⊕Q · V+ ⊕Q2 · V+,

we have ̂

HS•(S
3
0(K)) = R+〈−1〉 ⊕ R+〈−2n〉.

With this in hand, the proof of Proposition 3.2 in the Arf zero case follows

as in the next example.

Example 3.6. Consider the case of the torus knot K = T (2, 7), which is

an L-space knot of type 2. We have then the identification of the triangle

with q = −1 with

F · F F

F F F F

F F F F

· F F ·

F F

F F

F

where for simplicity we have only depicted Ǎ0, and we have omitted

summands in

̂

HS•(S3
−1(K)) arising from the non-torsion spinc structures on

S3
0(K), as they do not have interesting Massey products due to naturality.

Here the dotted arrow denotes a Q action, and the horizontal dotted line

represents grading zero. The result then follows from Poincaré duality.
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The case in which K has Arf invariant one is significantly simpler.

Indeed, in this case we have

HS•(S
3
0(K)) = (V ⊗ F[Q]/Q2)⊕ (V ⊗ F[Q]/Q2)〈−2〉.

so that the maps on HS• in the exact triangle are uniquely determined, see

[23] for the details.

Remark 3.7. In fact, we see that HS•(S3
0(K)), where K has Arf invariant

1, has many interesting Massey products itself. The Gysin exact triangle

looks in this case like

F · F F

F F · F

F · F F

F F · F

where the solid arrows depict the maps ι∗ and π∗, while the dotted arrows

denote the actions of Q and U . In light of Theorem 2.2, we see that there

are many non-trivial Massey products of the form 〈·, Q,Q2〉 and 〈·, Q2, Q〉.

Manifolds of simple type −Mn. Of course, from the view point of the

Massey products discussed in Section 2, manifolds of simple type Mn are

not particularly interesting. On the other hand, the manifolds obtained by

orientation reversal, to which we refer as manifold with simple type −Mn,

have a richer structure. For simplicity we will focus on the case in which n

is even. Let us start from n = 2. The R-module structure for a manifold

of type −M2 is given by

F[[V ]]〈−4〉 ⊕ F[[V ]]〈−5〉 ⊕ F[[V ]]〈−2〉 ⊕ F0

where the action of Q is injective from the first tower to the second, and

from the second to the third. Graphically,

F0 · F−2 · F F F · · ·

As a notation, we will denote the generator in degree zero by z, while

the generators in degree −2 and −4 by q2 and v respectively. For a
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general manifold Y of simple type −M2, we will have a decomposition

HS•(Y ) = −M2 ⊕ C as R-modules, where furthermore there are no non-

trivial Massey-products between the summands. The key observation is

the following.

Lemma 3.8. We have the triple Massey products 〈z, Q,Q2〉 = q2 and

〈V, z, Q〉 = v.

Proof. We use the Gysin sequence characterization of the triple Massey

product, Theorem 2.2. The corresponding component in ĤM • is given by

F[[U ]]⊕ F[[U ]]/U2. In degrees ≥ −6, the Gysin sequence looks like

F F F F

· · · ·

F F F F

· · · ·

F F F

F · F

F F F

where the dotted arrows represent the U action. Consider the element

1 ∈ F[[U ]]. Then comparing with the Gysin triangle in HS•, we see that

π∗(1) = z. Furthermore V ι∗(q2) = ι∗(q2v) = 0, hence U is not in the image

of ι∗ and π∗(U) = q2. The second statement follows in the same way. �

In the case of general even n = 2k, we have that the module structure

is given by the R-module

(F[V ]〈−4k〉 ⊕ F[V ]〈−4k − 1〉)⊕ F[V ]〈−2〉 ⊕ F0[V ]/V
n

where the action of Q is injective from the first tower to the second, and

from the second to the third. We will denote the direct sum of the first

three terms by N2k. Graphically, in the case n = 4, Mn is given by

F0 · F−2 · F · F · F F F · · ·
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Denote the generators of the summands by q2, vn, qvn and z. We then

have for example the relations

〈z, Q,Q2〉 = q2 〈V n, z, Q〉 = vn.

This follows in the same way as Lemma 3.8, using the fact that the

corresponding component in ĤM • is given by F[U ]⊕ F[U ]/U2k.

Seifert spaces. Another large class of manifolds for which the Massey

products described in Theorem 2.2 can be understood explicitly is given

by Seifert spaces. The main observation here is that we can assume that

all irreducible solutions have odd degree for a suitable choice of orientation

(see [31], and also [3] for a discussion of the more general case of plumbed

manifolds).

Example 3.9. Rather than describing a general theory (which would be

analogous to parts of the content of [7]), let us focus on an interesting

example (due to Duncan McCoy) that involves three or more F[[U ]]-

summands. Consider the Seifert space Y = Σ(13, 21, 34). Then, up to

grading shifts, we have that

ĤM •(Y ) = F[[U ]]0 ⊕ (F[[U ]]/U6)11 ⊕ (F[[U ]]/U5)11 ⊕ (F[[U ]]/U4)9 ⊕ J
⊕2

where the involution action exchanges the two copies of J⊕2. As for this

orientation there are only irreducible critical points of odd degree, it is

straightforward to reconstruct the underlying chain complex Ĉ•(Y ) (where

we forget about the J⊕2 summand as it is irrelevant for our purposes):

F F F F F F0 · F

F2
x

F2 F2 F2 F2 F2

F2
y

F2 F2 F2

Here the first row represents the tower corresponding to the reducible

solution, while the second and third rows correspond to the irreducible

solutions; the dotted arrows depict the action of U , while the dashed ones

represent the differential (where each dashed arrow sends the generator of

F to the sum of the generators of F2). The natural involution  fixes the

first row and exchanges the summands in each copy of F2. Also, we labeled

the irreducible generators as F[[U ]]-modules by x, y and their conjugates

via . The invariant chain complex Ĉ
•(Y ) is therefore
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F F F F F F F F F0 · F

F F F F F F

F F F F

where the two underlined summands are generated by respectively (1+)Ux

and (1 + )y.

The Pin(2)-monopole Floer homology ĤS•(Y ) is then

· F F8 · F F · F F0 · F

F F F

F F F F

where the solid arrows denote the Q and V actions. From this description,

and the fact that the Gysin exact sequence is the long exact sequence

induced by the short exact sequence of chain complexes (6), one can

determine the non-trivial Massey products. Let us spell out a specific

example. Denote the underlined class in ĤS•(Y ) by z. It is represented by

either (1+ )Ux or (1+ )y. The Massey product 〈z, Q2, Q〉 is by Theorem

2.2 a class mapping via ι∗ to the class in ĤM •(Y ) of either (1 + )U2x

or (1 + )Uy. Each of these generates one of the F summands in degree

7. Of course, once we quotient by the image of Q, they are identified, as

their sum is the image of the class in degree 8. Even though involving a

different definition, the Massey product 〈z, Q,Q2〉 also consists of the same

two classes, which are again identified under the image of Q2. Finally, we

leave to the reader to identify the dotted arrow with a Massey product of

the form 〈·, Q,Q2〉.

4. Some homological algebra over R

In this section, we discuss some homological algebra relevant in the descrip-

tion of the E2-page of our spectral sequence

TorR∗,∗(M,N)

for a pair of graded R-modulesM and N . Recall from Section 1 that TorR∗,∗
arises in our setting naturally as the homology of the tensor product of M
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with the bar resolution of N . While the latter object has nice formal prop-

erties, it is quite unmanageable for actual explicit computations. As the

computation of TorR∗,∗ is independent of the choice of projective resolution,

we first discuss how to compute a particularly nice projective resolution

of N , called minimal free resolution. As the name suggests, this will be

very efficient in terms of size. On the other hand, when discussing higher

differentials we will need to represent classes in E2 as elements of the bar

complex, and the second part of the section will be devoted to translating

back in this language the construction using minimal resolutions.

While there is in general no satisfactory classification of finitely gener-

ated modules over R, the theory of their resolutions is quite well under-

stood, see for example [8] and [33] for a more general and detailed treat-

ment. The ring R is local with maximal ideal m generated by Q and V .

Given a graded module L, we will denote by L̄ the F-vector space L/mL.

We say that a graded R-module homomorphism u : L→ L′ is minimal if

• u is surjective;

• ker(u) ⊂ mL.

This is equivalent (by Nakayama’s lemma) to requiring that the induced

map ū : L̄ → L̄′ is an isomorphism. A graded minimal free resolution of a

graded R-module N is a graded resolution of the form

N
d0←− Rn1

d1←− Rn2
d2←− Rn3 ←− · · ·

where di : Rni → ker(di−i) ⊂ Rni−1 is minimal for each i. Here we omit

from the notation the grading shift of each R component. The main result

from [8] is the following.

Theorem 4.1. Every finitely generated R-module N admits a graded mini-

mal free resolution. Any two minimal free resolutions are (non-canonically)

isomorphic. Furthermore, minimal free resolutions are two-periodic for i ≥ 3

(up to grading shift), and we have therefore we have the isomorphism

TorRi+2,k−3(M,N) ∼= TorRi,k(M,N)

for i ≥ 2.

For our purposes, the existence statement is the most important, and

we now quickly review the explicit construction. Notice first that for any
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module finitely generated moduleM , there is a minimal map u : Rn → M .

This can be constructed by choosing a basis {ēi}, i = 1, . . . , n of M̄ over F.

Lifting these elements to ei ∈M provides a minimal

u : Rn →M.

Given now an R-module N , choose a minimal map d0 : Rn0 → N .

Inductively, we can choose a minimal map di : Rni → ker(di−1), and these

form a minimal resolution.

Let us comment about the rest of the statement. The two-periodicity of

the minimal free resolution is a general consequence of the fact that we are

considering the coordinate ring of a hypersurface, namely the zero set of the

polynomial (Q3) ⊂ F[[Q, V ]], see [8] (notice that while several results in the

paper do not hold for finite fields, the results about two-periodic resolutions

in Section 5 and 6 hold). Furthermore, the dimension ni is independent of

i ≥ 3. Therefore, to each module N we can associate a matrix factorization

F[[Q, V ]]n
A−�==�−
B

F[[Q, V ]]n

where A and B are the n × n matrices corresponding to d2i and d2i+1 for

i� 0, respectively. These have the property that AB = BA = Q3 · I.

Given this general discussion, let us provide some concrete examples in

which we describe the minimal free resolution.

Example 4.2. The trivial R-module F (thought of in degree zero) has a

projective resolution

F
d0←− R

d1←− R⊕R
d2←− R⊕R

d3←− R⊕R
d4←− · · ·

where, in matrix notation, d1 = [V Q], and for i ≥ 0 we have

di =





[
Q 0

V Q2

]
if i is even

[
Q2 0

V Q

]
if i is odd.

This is clearly two-periodic for i ≥ 2.

Example 4.3. Consider the graded R-module
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F · · F F · F F F · · ·

F

This has the minimal free resolution

N
d0←− R3 d1←− R4 d2←− R4 d3←− R4 ←− · · ·

where

d1 =



Q 0 0 0

V Q2 Q 0

0 0 V Q2




and for i ≥ 1 we have

d2i =




Q2 0 0 0

V Q 0 0

0 0 Q2 0

0 0 V Q


 d2i+1 =




Q 0 0 0

V Q2 0 0

0 0 Q 0

0 0 V Q2


 .

Example 4.4. Consider the graded R-module

F · F F F · · ·

F

This has the minimal free resolution

N
d0←− R2 d1←− R2 d2←− R2 d3←− R2 ←− · · ·

where

d1 =

[
Q2 0

V Q2

]

and for i ≥ 1

d2i =

[
Q2 0

V Q

]
d2i+1 =

[
Q 0

V Q2

]
.

Example 4.5. Consider the module

F F · · F

This has the minimal free resolution

N
d0←− R

d1←− R3 d2←− R3 d3←− R3 ←− · · ·
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where

d1 =
[
V 2 QV Q2

]

and for i ≥ 1 we have

d2i =



Q 0 0

V Q 0

0 V Q


 d2i+1 =



Q2 0 0

QV Q2 0

V 2 QV Q2


 .

We now discuss how to represent classes in TorR∗,∗(M,N) in terms of the

bar resolution. Let us start with the simplest case of TorR∗,∗(F,F), which is

well-studied in light of the classical Eilenberg-Moore spectral sequence in

algebraic topology (see for example [30]). In this case, recall that for graded

algebras A and B over F there is an isomorphism of graded bimodules

TorA⊗B
∗,∗ (F,F) = TorA∗,∗(F,F)⊗TorB∗,∗(F,F)

which is indeed also an isomorphism of coalgebras. Denoting the bar

resolution by B̂, this is induced by the map

B̂(A)⊗ B̂(B)
EZ
−→ B̂(A⊗B).

The map EZ is the shuffle map appearing in the proof of the Eilenberg-

Zilber theorem, namely

EZ
(
(a1|· · · |ap)⊗ (b1|· · · |bq)

)
=

∑

(p,q)−shuffle σ

cσ(1)|· · · |cσ(p+q)

where

cσ(i) =

{
aσ(i) ⊗ 1 if 1 ≤ σ(i) ≤ p

1⊗ bσ(i)−p if p+ 1 ≤ σ(i) ≤ p+ q,

and a (p, q)-shuffle is a permutation σ of {1, . . . , p+ q} such that

σ(1) < σ(2) < · · · < σ(p− 1) < σ(p)

σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q − 1) < σ(p+ q).

The computation in our case is quite simple:

TorR∗,∗(F,F) = TorF[[V ]]
∗,∗ (F,F)⊗TorF[Q]/Q3

∗,∗ (F,F).

The group TorF[[V ]](F,F) is non zero only in bidegrees (0, 0) and (1,−4)

(generated by the empty product [] and V respectively), while TorF[Q]/Q3

(F,F)
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is non zero in degrees (2i,−3i) and (2i+ 1,−3i− 1) for i ≥ 0. If we define

the n-tuple

Qn =

{
(Q,Q2, Q, · · · , Q,Q2, Q) if n is odd,

(Q2, Q,Q2, · · · , Q,Q2, Q) if n is even,

then the generator of TorF[Q]/Q3

∗,∗ (F,F) in homological degree n is represented

by Qn. Putting these pieces together, we see that TorR∗,∗(F,F) is a copy of

F in the cases in which (i, j) is

• (0, 0);

• (2n,−3n) and (2n,−3n− 2) for n ≥ 0;

• (2n+ 1,−3n− 1) and (2n+ 1,−3n− 4) for n ≥ 0.

The generators of TorR∗,∗(F,F) can then be described explicitly in terms of

the shuffle map. Given an ordered n-tuple (a1, . . . , an) and an element b in

R, we define their shuffle as

sh((a1, . . . , an), b) =
n∑

i=0

a1|· · · |ai|b|ai+1|· · · |an ∈ R
⊗(n+1).

The representatives of the classes described above are given respectively by

• [];

• Q2n and sh(Q2n−1, V );

• Q2n+1 and sh(Q2n, V ).

The following picture represents the groups for i ≤ 7, where the top left

element has bigrading (0, 0). It should make apparent the two-periodicity

of the TorR∗,∗(F,F).
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F ·

· F

·

· F

F · F

F ·

· F

F · F

F ·

· F

F ·

F

For general TorR∗,∗(M,N), we can adapt this approach involving shuffle

maps by taking into account a minimal resolution of one of the two modules.

Consider the minimal free resolution

N
d0←− Rn1

d1←− Rn2
d2←− Rn3

d3←− Rn4 ←− · · · ,

so that TorR∗,∗(M,N) is the homology of the chain complex

Mn1
1M⊗d1←− Mn2

1M⊗d2←− Mn3
1M⊗d3←− Mn4 ←− · · ·

obtained by tensoring over R with M . Our goal is to define a canonical

quasi-isomorphism {ϕi} between the minimal free resolution

Rn1
d1←− Rn2

d2←− Rn3
d3←− Rn4 ←− · · ·

and the bar resolution

R⊗N
δ1←− R⊗R⊗N

δ2←− R⊗R⊗R⊗N
δ3←− · · ·

Of course, the map

ϕ1 : R
n1 → R⊗N

is given by

x 7→ 1⊗ d0(x).

Suppose now inductively that we are given

ϕi : R
ni → Ri ⊗N.
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We have di+1(ej) =
∑
rjke

′
k where ej and e′k are the standard bases of

Rni+1 and Rni respectively. We then define

ϕi+1 : R
ni+1 → Ri+1 ⊗N

ej 7→
∑

1⊗ (rjk · ϕi(e
′
k)).

This is readily checked to be a chain map, and as the complexes are acyclic

in degrees ≥ 1 it is a quasi-isomorphism. Using this quasi-isomorphism,

one can describe elements in TorR∗,∗ in terms of a minimal free resolution

of N . Indeed, if m = (mj) ∈ Mnk is in the kernel of 1M ⊗ dk−1, then it

corresponds to the cycle

∑
mj ⊗ ϕk(ej) ∈M ⊗R R

k ⊗N =M ⊗Rk−1 ⊗N.

Let us discuss this rather abstract construction in a very concrete example.

Example 4.6. Let us generalize the description of TorR∗,∗(F,F) in terms of

shuffles to TorR∗,∗(M,F), for any R-module M . We computed above that

the minimal free resolution of F is given by

F
d0←− R

d1←− R2 d2←− R2 d3←− R2 d4←− · · · ,

and using the description above one can write explicit representatives for

all the cycles in TorR∗,∗(M,F) as follows. Let us denote by z the generator

of F. For n ≥ 1, every element of TorRn,∗(M,F) has a representative of the

form

x|sh(Qn−1, V )|z+ y|Qn|z

where dn−1(x,y) = 0. For example:

• every element in TorR1,∗(M,F) has a representative of the form

x|V |z+ y|Q|z

with V x+Qy = 0, and such an element is zero if and only if x = Qa

and y = V a+Q2b for some a,b;

• every element in TorR2,∗(M,F) is represented by

a|Q|V |z+ a|V |Q|z+ a|Q2|Q|z

where Qa = 0 and V a+ Q2b = 0, and such an element is zero if and

only if a = Q2x and b = V x+Qy for some x,y;
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• every element in TorR3,∗(M,F) is represented by

x|Q2|Q|V |z+ x|Q2|V |Q|z+ x|V |Q2|Q|z+ y|Q|Q2|Q|z,

with Q2x = V x + Qy = 0, and such an element is zero if and only if

x = Qa and y = V a+Q2b for some a,b.

The description then can be generalized to n ≥ 4 in a two-periodic fashion.

5. Connected sums with manifolds of simple type

In this section we study the effect on Floer homology of the connected sum

with a manifold of simple type Mn or its opposite −Mn, see Definition

3.1. Of course, if we are interested only in the information related to

homology cobordism contained in ĤS•, we do not need to consider the

additional summand J in Definition 3.1. We know from the previous

section the general recipe to compute the E2 page of the Eilenberg-Moore

spectral sequence, and the goal of this section is to understand higher

differentials and extensions. There are several different cases to discuss, and

our treatment will combine general results with explicit examples. Before

dwelling in our main cases of interest, let us discuss a warm up example.

Example 5.1. Suppose we have an R-module decomposition ĤS•(Y ) =

M ⊕F without non-trivial Massey products among the two summands. We

want to understand the contribution to ĤS•(Y#Y ) of TorR∗,∗(F,F). The

latter was described in detail in Section 4. As d2 has bidegree (−2, 1), we

see that the only possible non-trivial d2 differentials are from an F summand

in bidegree (2n,−3n) to a F summand in bidegree (2n−2,−3n+1) for n ≥ 2.

On the other hand, the former is generated by

Q2n = Q2|Q| · · · |Q2|Q,

and we have that d2(Q2n) = 0. This is a direct consequence of the

description of d2 in Lemma 1.4 and the fact that

〈Q,Q2, Q〉 = 〈Q2, Q,Q2〉 = 0,

which follows from Theorem 2.2 (see also Example 1.8). Regarding d3,

the natural generalization of Lemma 1.4 describes it in terms of four-fold
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Massey products; and the products 〈Q,Q2, Q,Q2〉 = 〈Q2, Q,Q2, Q〉 = V

implies that we have the differentials

d3(Qi) = sh(Qi−4, V )

for i ≥ 5. Graphically, we see the differentials

F ·

· F

·

· F

F · F

F ·

· F

F · F

F ·

· F

F · F

F

repeating in a two-periodic fashion. This implies that the spectral sequence

collapses at the E4 page, and (as there is no space for extensions), the

final R-module is a copy of F2 in degrees 0 and −1, corresponding to the

underlined F-summands.

Connected sum with M2k. We observe that the R-moduleM2k has a very

nice 2-step graded minimal free resolution

M2k
d0←− R〈4k − 1〉 ⊕ R

d1←− R〈−1〉

where d0 sends, in the notation introduced in Section 3,

(1, 0) 7→ qv−k

(0, 1) 7→ 1

and d1 is given in matrix notation by the matrix

d1 =

[
V k

Q

]
.
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In particular, the E2-page of the Eilenberg-Moore spectral sequence for the

connected sum Y#M2k is supported on the first two columns; this implies

that there are no higher differentials, so that E∞ ∼= E2, and all we need to

understand is the extension problem. Recall furthermore that

TorR0,∗(ĤS•(Y ),M2k) = ĤS•(Y )⊗R M2k,

and, by the discussion in the previous section, TorR1,∗(ĤS•(Y ),Mk) is in

bijection with elements x ∈ ker(d1) = kerV k ∩ kerQ via the assignment

x→ x|V k|qv−k + x|Q|1.

Hence, we need to understand the action of R on such an element. We

have the following.

Proposition 5.2. In the setup above, we have the identity

Q · (x|V k|qv−k + x|Q|1) = 〈Q,x, V k〉|qv−k ∈ E∞
0,∗.

If V x 6= 0, we have

V · (x|V k|qv−k + x|Q|1) = V x|V k|qv−k + V x|Q|1 ∈ E∞
1,∗.

while if V x = 0 we have

V · (x|V k|qv−k + x|Q|1) = 〈V,x, Q〉|1 ∈ E∞
0,∗.

This implies that the R-module structure of Y#M2k is determined

entirely by the triple Massey products of the form 〈Q,x, V k〉, which we

have described in Theorem 2.2 in terms of the Gysin exact triangle. Let us

discuss a simple example (see also Section 6 for more examples).

Example 5.3. Let us compute the homology of −M2#M4, using the result

above. The E2 page is computed to be, graphically,

F F · · F1 F · F F F · · ·

F · F · · · F

F F

F
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Above the line, we have depicted TorR0,∗(−M2,M4) = (−M2) ⊗R M4. The

first row, which is generated over R by v|qv−2 and v|1, consists of based

elements. The first two elements in the second row are z|qv−2 and q2|qv−2;

we have depicted with a dotted arrow the Massey product relating them

(whose existence follows from Lemma 3.8). The solid arrows represent the

non obvious R-actions. Under the line, we represented TorR1,∗(−M2,M4),

which, by the lemma above, corresponds to kerV k ∩ kerQ = {z}. It is

represented by the element z|V 2|qv−2 + z|Q|1, and its image under the

action of Q is

Q · (z|V 2|qv−2 + z|Q|1) = 〈Q, z, V 2〉|qv−2 = v2|qv−2 = v|qv−1,

as depicted by the dashed arrow. To sum up, the final result is

F F · F0 F F · F F F · · ·

F · F · · · F ⊕

F F

and in particular α = β = 2, γ = 0.

In fact, we have the following more general observation.

Corollary 5.4. The Manolescu correction terms of Y#Mk are determined

the R-module structure of ĤS•(−Y ).

In fact, the proof of the corollary implies that one can in principle write a

(not particularly illuminating) formula for the correction terms of Y#Mk in

terms of the R-module structure of ĤS•(−Y ). This is again a manifestation

of the fact that one can use Poincaré duality and the long exact sequence

(2) to relate ĤS•(Y ) and ĤS•(−Y ), see Lemma 2.7.

Proof. We need to interpret the statement:

(a) there exists x ∈ ĤSm(Y ) for which y = 〈Q,x, V k〉 6= 0 is based

purely in terms of the R-module structure of ĤS•(−Y ). Let us point out

first that, as y is defined up to the image of Q and V k, this implies that

there are no based element such that its image under Q or V k is in the

same grading as y. Now of course p∗(x) = 0, so we have x = j∗(x′) for

x′ ∈

̂

HS•(Y ). If both Qx′ = V kx′ = 0, then we would have by naturality

of Massey products

y = 〈Q,x, V k〉 = 〈Q, j∗(x
′), V k〉 = j∗(〈Q,x

′, V k〉),
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so y would not be based. This implies that one of the two products is non-

zero, and in fact by exactness of the Gysin sequence it a non-zero element

in a tower. In fact, up to adding to x′ the element in the tower in its same

degree, we have shown that (a) implies the following

(b) there exists x′ in

̂

HSm(Y ) such that V kx′ = 0 and Qx′ belongs to the

tower.

In fact, it is easy to show that the reverse implication also holds. As this

condition might seem slightly obscure, let us point out a simple instance of

it. Suppose ĤS•(Y ) contains x with y = 〈Q,x, V 〉 6= 0 is Q · V-based. We

represent this schematically as

F Fx′ Fx

F ·

F ·

· ·

F F
y

· F

Here, the left part of the diagram represents

̂

HS•(Y ), the right part

of the diagram represents ĤS•(Y ), and the dashed arrow is the map

j∗. The underlined elements represent respectively the tower and the

based elements, and the dashed arrow represents the Massey product

y = 〈Q,x, V 〉. From the picture it should be clear that the fact that V x′ = 0

but Qx′ is a non-zero element in the tower is a non-trivial constraint on

the R-module structure of

̂

HS•(Y ); this is because element in the tower in

the same degree is acted on non-trivially by V .

Finally, using that

̂

HS•(Y ) = ĤS−1−•(−Y ) is the dual R-module of̂

HS•(Y ), condition (b) can be rephrased purely in terms of the R-module

structure of ĤS•(−Y ). For example, in the concrete example above

this corresponds to the following: there exists an Q2V-based element in

ĤS−1−m(−Y ) which is in the image of V but not in the image of Q. �

The key computations behind Proposition 5.2 are the following two

general lemmas.

Lemma 5.5. Suppose xr = xs = tx = 0 and ry + sz = 0, and consider the

element x|r|y + x|s|z ∈ TorR1,∗. If it survives in the E∞-page, multiplication

by t sends it to 〈t,x, r〉|y+ 〈r,x, s〉|z.
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Proof. Suppose we have fixed cycles representing the homology classes

x,y, z, r, s, which we denote with the same letter. Choose chains a, b, c

such that

∂a = xr, ∂b = xs, ∂c = ry+ sz, ∂d = tx.

Then

x|r|y+ x|s|z+ a|y+ b|z+ x|c

is a cycle in the A∞-tensor product whose image in the E2-page is the class

x|r|y+ x|s|z. By definition, the action of t on it is given by the cycle

tx|r|y+ tx|s|z+ ta|y+ tb|z+ tx|c+ m̂3(t|x|r)|y+ m̂3(t|x|s)|z.

Now, we have the identities

∂(d|r|y+ d|s|z) = tx|r|y+ tx|s|z+ dr|y+ d|ry+ ds|z+ d|sz

∂(d|c) = tx|c+ d|ry+ d|sz

so that summing all the three equations we see that a representative of the

action by t is

(ta+ dr + m̂3(t|x|r))|y+ (tb+ ds+ m̂3(t|x|s))|z,

hence the result. �

The second lemma is the following.

Lemma 5.6. Suppose that rx = 0. Then 〈r,x, r〉 = 0.

The proof of this lemma is a special case of a more general result

involving generalized Massey products that arise when studying higher

differentials of elements which are not represented by simple tensors (see

Lemma 1.4 and the following discussion). The simplest case is the following.

Consider classes x and r, s with xr = xs = 0, where we do not assume

rs = 0. Choose chains a, b, c such that

∂a = xr, ∂b = xs, ∂c = rs+ sr.

Then the following expression

as+ br + xc+ m̂3(x|s|r) + m̂3(x|r|s) (14)

is a cycle, and we define its homology class to be the generalized Massey

product 〈x|r, s〉. We then have the following.
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Lemma 5.7. Given classes x, r and s as above, we have 〈x|r, s〉 = 〈r,x, s〉.

For example, for −M2 the identity

〈z|Q, V 〉 = 〈Q, z, V 〉 = q2

holds, see Lemma 3.8.

Proof. Let us first spell out some details implicit in the construction of the

A∞-bimodule structure in [22]. Suppose the family of metrics and pertur-

bations has been chosen so that the A∞-module structure {m̂n} is defined

(this takes as input an embedded ball in Y ). The A∞-bimodule structure

takes as input a second embedded ball, disjoint from the first. Then, by

suitably pulling back via a family of isotopies (as in the construction of [22])

the metric used to define {m̂n} for our new data (defined by the second em-

bedded ball), we see that we can assume that our multiplication safisfies

m̂2,1(d|y) = m̂1,2(y|d) for all choices of d ∈ Ĉ

•(S3) and y ∈ Ĉ

•(Y ). Notice

that this does not imply that the multiplication µ2 on Ĉ
•(S3) is commuta-

tive at the chain level (rather than just commutative up to homotopy), as

the data on S3 has been fixed a priori. The implication for our purposes is

that, once this choice of data is made, we have that 〈r,x, s〉 is represented

by

as+ rb+ m̂3(r|x|s),

where we are using the notation introduced above. To show that this cycle

is cobordant to the one in Equation (14), let us consider a family of metrics

and perturbations on the manifold with cylindrical ends

(
I × Y \ (intD4 q intD4)

)∗

parametrized by a hexagon as in Figure 2, and consider the chain obtained

by taking fibered products on the incoming end with x, r and s. We

provide a sketchy description of the metrics and perturbations involved

- the details of the construction are very similar to those in [22]. The

thick edges of the hexagon H correspond to stretching along the three pairs

of hypersurfaces on the right of the figure, and taking fibered products

one obtains the chains m̂3(x|r|s), m̂3(x|s|r) and m̂2,2(r|x|s) respectively.

The top thin edge corresponds to a metric in which the top hypersurface

is streched to infinity, and we perform a chain homotopy realizing the

commutativity of µ2 on Ĉ
•(S3); the corresponding chain is c. The bottom

thin lines correspond to a chain homotopy between m̂2,1 and m̂1,2 with one





48 F. Lin

are determined entirely by the module structure of ĤS•(Y ). We will explain

this fact by a direct inspection of the Eilenberg-Moore spectral sequence.

For simplicity, we will start with the case k = 1, in which case −M2 =

F ⊕ N2 as R-modules. A convenient projective resolution for the trivial

module F was defined in Section 4. The module N also admits a simple

two-periodic projective resolution

N2
d0←− R⊕R

d1←− R⊕R
d2←− R⊕R

d3←− R⊕R
d4←− · · ·

where, in matrix notation, for i ≥ 0 we have

di =





[
Q 0

V Q2

]
if i is even

[
Q2 0

V Q

]
if i is odd.

Here d0 sends (1, 0) to v and (0, 1) to q2.

As usual TorR0,∗(M,N2) = M ⊗R N2. Then the general description of

generators of TorRi,∗, as given in Section 4, specializes to our case as follows.

Define

Q̃n =

{
(Q2, Q, · · · , Q,Q2) if n is odd

(Q,Q2, · · · , Q,Q2) if n is even.

Lemma 5.8. Let n ≥ 1. Then every element of TorRn,∗(M,N2) has a

representative of the form

x|Q̃n|v + x|sh(Qn−1, V )|q
2 + y|Qn|q

2

where dn(x,y) = 0.

The elements in TorR∗,∗(M,F) were described in detail in Example 4.6.

Consider first an element in TorR2,∗, which has the form

α = a|Q|V |z+ a|V |Q|z+ b|Q2|Q|z

where Qa = 0 and V a + Q2b = 0. Such an element is zero if and only

if a = Q2x and b = V x + Qy. Given elements a,b satisfying Qa = 0

and V a + Q2b = 0, we can define their generalized triple Massey product

φ(a,b) in the same way as Equation (14). More explicitly, suppose we have



Non-formality in PIN(2)-monopole Floer homology 49

chosen chain representatives, and choose chains r, s such that ∂r = Qa and

∂s = V a+Q2b. Then φ(a,b) is the class of

V r +Qs+ m̂3(Q|V |a) + m̂3(V |Q|a) + m̂3(Q|Q
2|b).

To see that this is a cycle, recall that the product of Q and Q2 is zero at

the chain level. Then the differential on the E2-page is identified with

d2(α) = φ(a,b)|z+ a|(〈Q, V |z〉) + b|〈Q2, Q, z〉

= φ(a,b)|z+ a|v + b|q2.

where in the last row we used Lemmas 3.8 and 5.7. This easily generalizes

to the case of elements in TorRn,∗ with n even. Specializing the discussion

of Section 4, a general element is of the form

α = a|sh(Qn−1, V )|z+ b|Qn|z

where Qa = 0 and V a+Q2b = 0, and such an element is zero if and only

if a = Q2x and b = V x+Qy. Its differential is then given by

d2(α) = 〈a, Q,Q
2〉|sh(Qn−3, V )|z+ φ(a,b)|Qn−2|z+

+ a|Q̃n−2|v + a|sh(Qn−3, V )|q
2 + b|Qn−2|q

2 (15)

The key observation to have in mind is that this differential naturally de-

composes in two parts: the one in the first row, which defines an element

in TorRn−2,∗(M,F), and the one in the second row in TorRn−2,∗(M,N2). In

fact, the latter is the element corresponding to the pair (a,b) from Lemma

5.8.

An analogous description holds to the odd case too (provided of course

that n ≥ 3). For the sake of clarity, we first write down explicitly the case

of TorR3,∗(M,F). An element in this group has the form

β = x|Q2|Q|V |z+ x|Q2|V |Q|z+ x|V |Q2|Q|z+ y|Q|Q2|Q|z

where Q2x = 0 and V x + Qy = 0. Such an element is zero if and only

if x = Qa and y = V a + Q2b. To a pair x,y like this we can assign

a generalized triple Massey product as in Equation (14). We then have

(using again the computation in Lemma 3.8)

d2(β) = 〈x, Q
2, Q〉|V |z+ ψ(x,y)|Q|z+ x|Q2|v + x|V |q2 + y|Q|q2.
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In the general case for n odd, we have that the general element of

TorRn,∗(M,F) is

β = x|sh(Qn−1, V )|z+ y|Qn|z,

where x and y are as above. We then have

d2(β) = 〈x, Q
2, Q〉|sh(Qn−3, V )|z+ ψ(x,y)|Qn−2|z+

+ x|Q̃n−2|v + x|sh(Qn−3, V )|q
2 + y|Qn−2|q

2. (16)

Again, the first row is an element in TorRn−2,∗(M,F), and the second row is

the element in TorRn−2,∗(M,N2) corresponding to the pair (x,y).

With this discussion in hand, we are ready to prove the following.

Proposition 5.9. The Eilenberg-Moore spectral sequence for the connected

sum with −M2 collapses at the E3-page. Furthermore, E∞
i,∗ = 0 for i ≥ 2, and

all elements in E∞
1,∗ have the form x|V |z+y|Q|z for pairs x,y of elements in

M such that V x+Qy = 0. The action of V and Q on such an element are

given respectively by x|v and y|q2.

From this, it is clear as mentioned in the introduction that the correction

terms of Y#−M2 are determined entirely by the module structure of Y .

Proof. Set M = ĤS•(Y ). Let us consider first the part in degree 2n of the

E2-page, i.e.

TorR2n,∗(M,−M2) = TorR2n,∗(M,N2)⊕TorR2n,∗(M,F).

For n ≥ 1, both summands can be identified with

W = ker

[
Q2 0

V Q

]
/im

[
Q 0

V Q2

]

where we think the matrices as acting on M2. Because of two periodicity,

the part in even grading of the (E2, d2) page can be rewritten as the complex

· · ·
d2−→W ⊕W

d2−→W ⊕W
d2−→W ⊕W

d2−→ · · ·
d2−→W ⊕W

d2−→W ⊕W.

When thought of as a 2-by-2 matrix, d2 is upper triangular, and by (15)

above we see that it has to be of the form

d2 =

[
A IdW

0 B

]
.
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Imposing d22 = 0 we also obtain A2 = 0 and A = B, so that

d2 =

[
A IdW

0 A

]
.

We want to show that d2 is exact. Suppose d2(x,y) = 0. Hence, Ax = y

and Ay = 0. Then

d2(0,x) =

[
A IdW

0 A

] [
0

x

]
=

[
x

y

]

and the result follows.

The analogous argument holds for the odd part, as for each n ≥ 1

TorR2n+1,∗(M,−M2) = TorR2n+1,∗(M,N2)⊕TorR2n+1,∗(F,F).

each of the summands on the right can be identified with

W ′ = ker

[
Q 0

V Q2

]
/im

[
Q2 0

V Q

]

and d2 has an analogous shape, see equation (16). Finally, the R-module

structure can be easily computed using Lemma 3.8 and 5.5. �

The general case of M2k can be derived with few modifications, so

that the analogue of Proposition 5.9 also holds. Let us discuss the key

modifications involved. Recall that as R-modules, M2k = N2k ⊕ F[V ]/V k.

The module F[V ]/V k has minimal free resolution

F[V ]/V k d0←− R
d1←− R⊕R

d2←− R⊕R
d3←− R⊕R

d4←− · · ·

where in matrix notation

d1 =
[
V k Q

]
,

and for i ≥ 2 we have

di =





[
Q 0

V k Q2

]
if i is even

[
Q2 0

V k Q

]
if i is odd,

while N2k has minimal projective resolution

N2k
d0←− R⊕R

d1←− R⊕R
d2←− R⊕R

d3←− R⊕R
d4←− · · ·
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where for i ≥ 1 we have

di =





[
Q 0

V k Q2

]
if i is even

[
Q2 0

V k Q

]
if i is odd.

Here d0 sends (1, 0) to vn and (0, 1) to q2. The result then follows from the

identities from Section 3, 〈V n, z, Q〉 = vn and 〈z, Q,Q2〉 = q2, in the same

way as for −M2.

The odd case. We have seen in the previous section that connected sums

with manifolds of type ±M2k are rather simple to understand. We will

discuss the case in which n = 2k + 1 is odd. Let us first discuss a suitable

minimal projective resolution.

M2k+1
d0←− R⊕R

d1←− R⊕R
d2←− R⊕R

d3←− R⊕R
d4←− · · ·

where

di =





[
Q 0

V k+1 Q2V k

]
if i = 1

[
Q 0

V Q2

]
if i is odd ≥ 3

[
Q2 0

V Q

]
if i is even

and d0 maps (1, 0) to v and (0, 1) to qv−k. The computation of the E2

page, from the general description of Section 4, is the following.

Lemma 5.10. Let m be odd. generators of TorRm,∗(M,M1) have representa-

tives of the form

x|Qm|v + xsh(Q̃m−1, V )|q + y|Q̃m|q.

where Qx = V x + Q2y = 0. Let m be even. Then the generators of

Torm,∗(M,N1) have representatives of the form

x|Q̃m|v + x|sh(Qm−1, V )|q + y|Qm|q

where Q2x = V x+Qy = 0. The description of TorR∗,∗(M,M2k+1) in the case

k ≥ 1 is analogous.
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The description of the E∞ page is not as straightforward as in the even

case. While the differential on E2 can be described as in the even case in

terms of certain generalized Massey products, the spectral sequence does

not collapse at the E3-page in general. On the other hand, because the

relation

〈QV i, Q2V j , QV k, Q2V l〉 = V 1+i+j+k+l

holds, it can be shown that the spectral sequence collapses at the E4 page

(see also Example 5.1). Rather than discussing the quite involved general

theory, let us work out in detail a specific example that enlightens the key

aspects of the computation.

Example 5.11. Let us revisit the example of the connected sum M1#M1

discussed in [22] from our new perspective. The E2 page of the Eilenberg-

Moore spectral sequence is depicted below. Here, starting from the left

the ith column represents TorRi,∗, with the element on the top left having

bidegree (0, 2). The picture repeats two-periodically to the right as in

Example 5.1.

F

· F

· F

F ⊕F ·

F · F

· F · F

F F ·

F · F

F F · F

· F

The first column in TorR0,∗ is generated by the based elements

q|q, q|v, v|v,

while the additional summand ⊕F is generated by q|v + v|q. The elements

of the higher TorRi,∗ groups can be described thanks to Lemma 5.10. In

particular, the generators of the top summand of each of the first three

columns are given by

q|Q2|q, Qq|Q|Q2|q, q|Q2|Q|Q2|q.
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The differential d2 (described in Lemma 1.4) vanishes thanks to our de-

scription of the Massey products 〈·, Q2, Q〉 and 〈·, Q,Q2〉 in Theorem 2.2.

On the other hand, the differential d3 is non-trivial. In the picture, the top

dotted arrows represents

d3(q|Q
2|Q|Q2|q) = 〈q,Q2, Q,Q2〉|q + q|〈Q2, Q,Q2, q〉 = v|q + q|v

where the Massey product 〈q,Q2, Q,Q2〉 = v is computed as in Remark 2.4.

Similarly, the other two dotted arrows represent

d3(Qq|Q|Q
2|Q|Q2|q) = v|Q2|q +Qq|V |q +Qq|Q|v

d3(q|Q
2|Q|Q2|Q|Q2|q) = v|Q|Q2|q + q|V |Q2|q + q|Q2|V |q + q|Q2|Q|v,

and in general the whole two-periodic tail cancels out in this fashion as

in Example 5.1. This implies that of the TorRi,∗ for i ≥ 1 only the two

underlined summands survive to the E∞ page. There is only one non

trivial extension, namely

Q · (Qq|Q|Q2|q) = v|q,

which can be again computed thanks to Theorem 2.2. The final result is

therefore graphically depicted as

F · F F F · · ·

F

F

so that α = 2 and β = γ = 0.

Example 5.12. Consider the connected sum of two manifolds of simple

type M3. The computation of the E2 page is showed below. The group

TorR0,∗ is as usual the tensor product M3 ⊗R M3; the first column consists

of based elements and is generated over R by

qv−1|qv−1, qv−1|v, v|v

lying in degrees respectively −10, −3 and 4, while the summands ⊕F are

unbased and are represented by qv−1|v + v|qv−1 and its image under V



Non-formality in PIN(2)-monopole Floer homology 55

respectively. Again there is a two-periodic infinite tail as in the case of

TorR∗,∗(F,F); its top generator in each of the first three columns is given

respectively by

q|Q2V |qv−1, Qq|Q|Q2V |qv−1, q|Q2|Q|Q2V |qv−1.

The main difference in this case is the presence of the extra summand F ,

which is represented by qv−1|Q2V |qv−1, and corresponds to

(0, qv−1) ∈ ker

[
Q 0

V 2 Q2V

]
.

F

· F

· F

·

F

· F

· F

F ⊕F

F

· F

· F

F ⊕F

F F

· F F

F F

F F

F F F

· F

From this description, we readily recover the E∞-page as in Example

5.11. In particular E∞
i,∗ vanishes for i ≥ 3, and of TorRi,∗, i ≥ 1, only the

underlined summands survive. The only non-trivial extension is given as
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in Example 5.11 by

Q · (Qq|Q|Q2V |qv−1) = v2|qv−1 = v|q

The Floer homology of M3#M3 then looks like the following:

F · · · F · · F F · F0 F F · · ·

F F F F

F F F

Therefore, α = 6, β = 2 and γ = 0.

Remark 5.13. Recall that for the usual monopole Floer homology we have

that

ĤM •(Y0#Y1, s0#s1) = TorF[U ]
∗,∗ (ĤM •(Y0, s0), ĤM •(Y1, s1))〈1〉,

see [22]. Hence the usual monopole Floer homology of M3#M3 is given by

(
F[U ]⊕ F[U ]/U3〈5〉 ⊕ F[U ]/U3〈10〉

)
⊕ (F[U ]/U3〈5〉)⊕2.

The first summand is related via the Gysin exact triangle to the first two

rows of our final result, while the second summand to the third row. This

last computation implies the existence of some Massey products relating

the three F summands in the third row of ĤS•.

6. Connected sums with more summands

In this final section we discuss the proof of Theorems 1 and 2; the key point

behind them is to understand connected sums involving multiple manifolds

of simple type (possibly with both orientations). Let us begin by discussing

the correction terms of connected sums with a given orientation.

Proposition 6.1. Consider for n1 ≥ n2 ≥ nk ≥ 1 a connected sum of the

form

Y = Y1 + Y2 · · ·+ Yk
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where Yi has simple type Mni
. Then, if

∑
ni is even, we have γ(Y ) = 0 and

(α(Y ), β(Y )) =





(n1 + n2, n1), if n1, n2 are both even

(n1 + n2 − 1, n1 − 1) if n1 is odd and n2 is even

(n1 + n2 − 1, n1) if n1 is even and n2 is odd

(n1 + n2, n1 − 1) if n1, n2 are both odd

In other words, α and β are the largest even numbers smaller or equal than

n1 and n1 + n2 respectively. Similarly, if
∑
ni is odd, we have γ(Y ) = 1 and

α and β are the largest odd numbers smaller than n1+n2 and n1 respectively.

Proof. This can be computed inductively in the number of summands, using

the description of connected sums with manifolds of simple type discussed

in Section 5. Let us start by considering the Floer homology of a connected

sum M2k1
#M2k2

for k1 ≥ k2. Recall that we have the identification

TorR0,∗(M
∗
2k1
,M∗

2k2
) =M∗

2k1
⊗R M∗

2k2
.

The latter can be written as a direct sum of two R-modules, one of which

is

F[V ]⊕ F[V ]〈4k1 − 1〉 ⊕ F[[V ]]〈4(k1 + k2)− 2〉

⊕ F[V ]/V k1+k2〈4(k1 + k2)− 3〉 ⊕ F[V ]/V k2〈4(k1 + k2)− 4〉 (17)

where the action of Q is not trivial from one summand to the one next to

it on the right when there are two F summands that differ in degree by

one, and the other is F[V ]/V k2〈4k2 − 1〉. The group TorR1,∗ is isomorphic

to F[V ]/V k2〈4k2 − 4〉. In the case where k1 = 2 and k2 = 1, TorR∗,∗ can be

graphically described as follows:

F · · F F · · F F · F0 F F · · ·

F F F F

F

F

Here the first three rows represent TorR0,∗ (the first two rows being the

summand in equation (17)) while the forth row represents TorR1,∗. For

clarity, we have only depicted the R-actions between elements of different

rows. There are no trivial R-extensions, so that

α(Yk1
#Yk2

) = 2k1 + 2k2, β(Yk1
#Yk2

) = 2k1, γ(Yk1
#Yk2

) = 0,



58 F. Lin

The general case of a connected sum with all even summands now follows

from this basic computation inductively by taking sums in decreasing order.

Notice that there are no non-trivial Massey products of the form 〈V k3 ,x, Q〉

in the Floer homology of the connected sum. This implies that when taking

a connected sum with Y2k3
, again only TorR0,∗ has to be taken account

when computing correction terms. From here, a simple computation of

the effect of tensoring with M2k3
implies the claim; in particular, under the

assumption k1 ≥ k2 ≥ k3, the correction terms of the result are not affected.

Finally, the general case in which also odd summands are involved, the

strategy is the same and the only complication is that one should also keep

track of some non-trivial extensions as in Example 5.12. �

With this computation in mind, we can now prove Theorem 1.

Proof of Theorem 1. As in the proof of the analogous result in [34], we

need to show that a unique factorization property holds. Suppose we have

a relation in the homology cobordism group of the form

[Yn1
] + . . . [Ynk

] = [Ym1
] + . . . [Yml

]

where n1 ≥ · · · ≥ nk and m1 ≥ · · · ≥ ml where [Yni
] and [Ymj

] have simple

type Mni
and Mmj

respectively. Then we also have a relation of the form

[Yn1
] + . . . [Ynk

] + [Y1] = [Ym1
] + . . . [Yml

] + [Y1]

where Yi has simple type M1, and the sum of the indices has changed

parity. Comparing this with the computation of the correction terms in

Proposition 6.1, we conclude that n1 = m1, and the conclusion follows by

induction. �

Before proving Theorem 2, let us discuss some examples of connected

sums where manifolds with both orientations appear.

Example 6.2. Consider M = M1#M1, whose relevant part of the homol-

ogy was computed in Example 5.11 to be

F · F F F · · ·

F

Let us consider the dual −(M1#M1), which has Floer homology depicted

as
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· F−1 F · F F F · · ·

F0

Here the dotted line represents the triple Massey product 〈·, Q,Q2〉, which

is determined by inspecting the Gysin exact sequence as in Proposition

2.5. Consider now M ′ = −(M1#M1)#M2. Using the description for

connected sums with M2 of Section 5, we see that the relevant part of

its Floer homology is given by

F1 · F F F · · ·

F F0

where the element in degree 2 is the tensor product of the element of degree

zero in the homology of −(M1#M1) and qv−1. In particular, it comes with

a non trivial Massey product onto the generator in degree 0, as depicted

by the dotted arrow. M and M ′ can be distinguished up to homology

cobordism just by looking at Massey products. Of course, in this case we

already know that they cannot be homology cobordant becauseM1 andM2

are linearly independent.

Example 6.3. Let us discuss a slightly more involved example, namely

M4#−M3#−M3. To compute this we will regroup it asM4#−(M3#M3).

The relevant part of M3#M3 was described in Example 5.12, so that by

Poincaré duality (as in the proof of Corollary 5.4) the relevant part of

−(M3#M3) is

F · · F F · · F F · F F F · · ·

F0 · · · F · · F F

Here the elements in the top row are based, while the elements in the bottom

row are not. Denote by x the element in degree zero in the bottow row. We

have highlighted with a dotted line the Massey product 〈Q, V 2x, V 〉 = v3,

which will be needed later. As in the proof of Corollary 5.4, this corresponds

to the non-trivial Q-action into the tower in the HS-to Floer homology

of M3#M3. When connecting sum with M4, TorR1,∗ corresponds to the

elements in kerV 2∩kerQ, i.e. V x and V 2x. Therefore, they give rise to the



60 F. Lin

two elements

V x|V 2|qv−2 + V x|Q|1, V 2x|V 2|qv−2 + V 2x|Q|1. (18)

The action of V sends the first element to the second, and by Proposition

5.2 the second element is mapped via the action of Q to v3|qv−2 ∈ TorR0,∗.

The computation of the module structure of the connected sum is then

readily obtained from that of TorR0,∗, i.e. the tensor product. The relevant

part of the final result is

F · F0 · F · F F F · F F F

F · F · F · F

where the underlined F summands correspond to the classes (18) from

TorR1,∗. We have in this case

α = 2, δ = 0, β = γ = −2.

Again, the relevant Massey products can be inferred from both the tensor

product formula or the Gysin exact triangle with

F[[U ]]⊕ (F[[U ]]/U4)7 ⊕ (F[[U ]]/U3)7 ⊕ (F[[U ]]/U3)2

see also Example 3.9.

Going one step forward, we have the following computation.

Proposition 6.4. Consider integers a ≥ b ≥ c ≥ d ≥ 1, and assume that the

inequality a ≤ b+c+d holds. Then the manifold Y = −M2b−M2c−M2d+M2a

has

α(Y ) = 2a− 2b

β(Y ) = 2a− 2b− 2c

γ(Y ) = 2a− 2b− 2c− 2d,

and of course δ(Y ) = 0.

Proof. Following the examples above, we start by computing the Floer

homology of M2b +M2c +M2d, whose relevant part is
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F · · · · · F · · F F · · · F F · F0 F F

F F F · · · F F F · F F F F F F

d copies c copies b copies

Here the first row corresponds to the based elements, the second row is

generated as an R-module by the leftmost element, and we have only

depicted the non-trivial Q-actions from the first row to the second row.

As in the examples above, the relevant part of −M2b −M2c −M2d consists

then of the based part

· · Fq2 · · · F · · Fqvb F · · · F F · Fvb+c F F · · · F F F

b copies c copies

together with an R-summand (which we will denote by L) of the form

F0 · · · F · · F F · · · F F · F F F · · · F F F

b copies c copies d copies

corresponding to the dual of the bottom row of the picture for M2b+M2c+

M2d. Furthermore, if x is one of the underlined elements, the Massey

product 〈Q,x, V k〉 is a V-based element provided k is large enough so that

V kx = 0 (this again follows as in the proof of Corollary 5.4, and corresponds

via the dualities to the arrows in the picture for M2b +M2c +M2d). More

precisely, if y is the rightmost underlined summand 〈Q,y, V k〉 = vb+c+k−1

provided k ≥ d+ 1.

We now need to compute the connected sum of this with M2a. The

based elements in TorR0,∗ are given by vb+c|1 (which is V-based), qvb|1 and

vb+c|qv−a (which are Q · V-based) and q2|1 and qvb|qv−a (which are Q · V-

based). As in the previous examples, the extensions on the E∞-page can

only introduce new V-based elements, so we obtain right away the claimed

computations of α and β. Recall that an element in TorR1,∗ has the form

x|V a|qv−a + x|Q|1

where V ax = Qx = 0. Furthermore, V a maps it to 〈V a|x|Q〉|1. Now,

exactly the rightmost a − d ≥ 0 underlined summands of L satisfy V ax =
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Qx = 0. Denoting by z the one with highest degree (i.e. the (a − d)-th

from the right), we have

V a · (z|V a|qv−a + z|Q|1) = vb+c+d|1,

where we use that a ≤ b+c+d. From this, the computation of γ follows. �

Proof of Theorem 2. The construction in the previous proposition provides

us with examples with α, β and γ even and δ = 0 where α ≥ 0 ≥ γ and

α− β ≥ β − γ,

the last inequality corresponding to the assumption c ≥ d. Given the

formula provided there, it is straightforward to check that for any choice

of α, β and γ satisfying thes constraints, one can find a, b, c, d such −M2b−

M2c − M2d + M2a has the desired correction terms. The case in which

the reverse inequality α − β ≤ β − γ holds is obtained by considering the

manifolds with opposite orientation M2b + M2c + M2d − M2a. The case

in which δ = 0 and α, β and γ are odd is treated in the same spirit by

taking sums −Me−Mf −Mg+M2h with some of the indices e, f, g odd; the

details of the computation are analogous to the even case (and the various

examples in this section) and are left to the reader. Finally, the case of

general δ is obtained by taking further connected sums with the Poincaré

homology sphere Σ(2, 3, 5): as ĤS•(Σ(2, 3, 5)) ∼= R〈−3〉 (see [23]), we have

ĤS•(Σ(2, 3, 5)#Y ) = ĤS•(Y )〈−2〉,

so that all four correction terms are shifted down by −1. �

References

[1] Mohammed Abouzaid and Ivan Smith. The symplectic arc algebra is

formal. Duke Math. J., 165(6):985–1060, 2016.

[2] Vincent Colin, Paolo Ghiggini, and Ko Honda. The equivalence of Hee-

gaard Floer homology and embedded contact homology via open book

decompositions I. preprint, arXiv:math/1208.1074, 2012.

[3] Irving Dai. On the Pin(2)-equivariant monopole Floer homology of

plumbed 3-manifolds. Michigan Math. J., 67(2):423–447, 2018.



Non-formality in PIN(2)-monopole Floer homology 63

[4] Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan. Real

homotopy theory of Kähler manifolds. Invent. Math., 29(3):245–274, 1975.

[5] Irving Dai, Jennifer Hom, Matthew Stoffregen, and Linh Truong. An

infinite-rank summand of the homology cobordism group. preprint, 2018.

[6] Irving Dai and Ciprian Manolescu. Involutive Heegaard Floer homology

and plumbed three-manifolds. J. Inst. Math. Jussieu, 18(6):1115–1155,

2019.

[7] Irving Dai and Matthew Stoffregen. On homology cobordism and local

equivalence between plumbed manifolds. Geom. Topol., 23(2):865–924,

2019.

[8] David Eisenbud. Homological algebra on a complete intersection, with an

application to group representations. Trans. Amer. Math. Soc., 260(1):35–

64, 1980.

[9] Kim A. Frøyshov. Monopole Floer homology for rational homology 3-

spheres. Duke Math. J., 155(3):519–576, 2010.

[10] Mikio Furuta. Homology cobordism group of homology 3-spheres. Invent.

Math., 100(2):339–355, 1990.

[11] Phillip Griffiths and John Morgan. Rational homotopy theory and differ-

ential forms, volume 16 of Progress in Mathematics. Springer, New York,

second edition, 2013.

[12] Robert E. Gompf and András I. Stipsicz. 4-manifolds and Kirby calculus,

volume 20 of Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, 1999.

[13] Kristen Hendricks, Jennifer Hom, and Tye Lidman. Applications of invo-

lutive Heegaard Floer homology. preprint, 2018.

[14] Kristen Hendricks and Ciprian Manolescu. Involutive Heegaard Floer

homology. Duke Math. J., 166(7):1211–1299, 2017.

[15] Kristen Hendricks, Ciprian Manolescu, and Ian Zemke. A connected sum

formula for involutive Heegaard Floer homology. Selecta Math. (N.S.),

24(2):1183–1245, 2018.

[16] T. V. Kadeisvili. On the theory of homology of fiber spaces. Uspekhi

Mat. Nauk, 35(3(213)):183–188, 1980. International Topology Conference

(Moscow State Univ., Moscow, 1979).

[17] Cagatay Kutluhan, Yi-Jen Lee, and Clifford Taubes. HF=HM I : Hee-

gaard Floer homology and Seiberg–Witten Floer homology. preprint,

arXiv:math/1007.1979, 2011.

[18] Peter Kronheimer and Tomasz Mrowka. Monopoles and three-manifolds,

volume 10 of New Mathematical Monographs. Cambridge University Press,

Cambridge, 2007.



64 F. Lin

[19] P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó. Monopoles and lens
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