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Non-formality in PIN(2)-monopole Floer homology

Francesco Lin

Abstract. In previous work, we introduced a natural A..-structure on the Pin(2)-
monopole Floer chain complex of a closed, oriented three-manifold Y, and showed that
it is non-formal in the simplest case in which Y is the three-sphere S®. In this paper,
we explore further this non-formality phenomenon. Specifically, we provide explicit
descriptions of several Massey products induced on homology, and discuss applications
to the computation of the Pin(2)-monopole Floer homology of connected sums.
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Introduction

Starting with Manolescu’s disproof of the longstanding Triangulation con-
jecture [29], the study of Pin(2)-symmetry in Seiberg-Witten theory, where

Pin(2) = S'uj-S' C H,

has spurred a lot of activity, especially in light of its applications to the
study of the homology cobordism group ©3%;. The analogous theory of
involutive Heegaard Floer homology [14] (which heuristically corresponds
to a Zs-equivariant theory, where Zs = (j) C Pin(2)) has also been very
successful when addressing such problems. Despite all of this, still very
little is known about ©%, and among the several natural questions one
may ask, the following is particularly interesting.

uestion 1. Is there a torsion element in ©3, with Rokhlin invariant 19
H

The negative answer for 2-torsion elements was provided by Manolescu
in [29], and is equivalent to the Triangulation conjecture being false by clas-
sic results of Galewski-Stern and Matumoto (see [28] for a nice survey). In
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a related fashion, the interest in Question 1 stems from the fact that a nega-
tive answer would imply the following criterion for triangulability: a closed
orientable topological manifold M is triangulable if and only if its Kirby-
Siebenmann invariant A(M) € H*(M;Z/2Z) admits a lift to H*(M;Z). A
partial negative answer to the question, when restricting the attention to
connected sums of almost rational plumbed three-manifolds, was provided
using involutive Heegaard Floer homology in [7]. On the other hand, as the
problem involves the Rokhlin invariant, one could expect the full Pin(2)-
symmetry, rather than Z,-symmetry, to play a central role in an approach
to its answer.

With Question 1 as a motivation in mind, we study in this paper the
more general problem of understanding the Pin(2)-monopole Floer homol-
ogy of connected sums. The treatment of such a problem in the analogous
setups of Pin(2)-equivariant Seiberg-Witten Floer homology and involutive
Heegaard Floer homology can be found in [34], [15] [7], [5]. Pin(2)-monopole
Floer homology was introduced in [24] as a counterpart of Manolescu’s in-
variants in the Morse-theoretic setting of Kronheimer-Mrowka’s monopole
Floer homology [18]; in particular, it can be used to provide an alterna-
tive disproof of the Triangulation conjecture. Throughout this paper we
will denote by F the field with two elements. We will be mostly interested
in the (completed) invariant HS,(Y,s) (pronounced HS-to) associated to a
three-manifold equipped with a self-conjugate spin® structure s = 5. This
is a graded module over the ring

R =F[[V]][Ql/Q°,

where V and @ have degrees respectively —4 and —1, which is (up to grad-
ing shift) identified with HS,(5%). It was shown in [22] that this package of
invariants carries an extremely rich algebraic structure: namely, if we de-
note by C4(Y,s) the chain complex underlying HS,(Y,s), then C3(S3) has
a natural structure of A.-algebra, and CJ(Y,s) is naturally an A..-module
over it. Furthermore, it was shown in [22] that the A..-algebra C(S3) is
not formal (i.e. not quasi-isomorphic to its homology). The concept of non-
formality has a very long history (see for example the celebrated results in
[4] and [11]), and it has recently gained importance in understanding Floer
theoretic invariants, especially those arising in symplectic geometry (see for
example [1] and [27]).
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The goal of the present paper is to explore these non-formality phe-
nomena, and in particular their manifestation at the homology level as
Massey products. Our interest in the study of these properties (especially
towards Question 1) is that Massey products naturally appear when trying
to explicitly understand the Pin(2)-monopole Floer homology of connected
sums. Indeed, the main result of [22] described the Floer chain complex of
a connected sum in terms of the A..-tensor product of the Floer complexes
of the summands; this naturally leads to a spectral sequence, called the
FEilenberg-Moore spectral sequence, whose E?-page is

TOI‘,S*(EB’.(Y(),E()), ﬁ*\gO(Ybﬁl))

and converges (up to grading shift) to s o (Yo#Y1,50#s51). Non-formality
comes into play when studying the successive pages of this spectral se-
quence: both the higher differentials and the extension problems relating
E*° to the actual group are naturally described in terms of certain Massey
products of the two summands.

While the main result of [22] provides a general, yet not concretely
applicable, connected sum formula, the main goal of this paper is to
show that in many cases of interest the computations involving the A..-
structure and the Eilenberg-Moore spectral sequence can be explicitly
performed. Towards this end, our exposition will blend general results
with concrete examples, and we will discuss how several results proved in
the literature with different methods fit in our framework. Let us point out
here two consequences of our computations. The first one involves linear
independence in the homology cobordism group; while the first result of
this kind was obtained in [10] using Yang-Mills theory, recently some Floer
theoretic proofs have appeared [34] [6]. We provide here a proof in our
setting; the notion of manifold of simple type M, appearing in the statement
will be introduced Section 3, and should be thought of as the analogue of
the notion of manifold of projective type in [34]. For example, the Seifert
space —X(2,4n — 1,8n — 1) has simple type M,,.

Theorem 1. Consider sequences of integers 0 < ny < no < ..., and suppose
that, for each i, Y; has simple type M,,,. Then theY; are linearly independent
in ©3%.

As in [34], the proof of this result only involves understanding connected
sums of manifolds of simple type M, with the given orientation. This
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is feasible in our setting as these manifolds have, as the name suggests,
the simplest possible type of non-trivial Floer homology, and this makes
the description of the Eilenberg-Moore spectral sequence feasible in this
case. More challenging is the case in which we take connected sums with
a manifold of simple type M, with the opposite orientation. In this case
many interesting Massey products arise, and understanding these will lead
us to the following result about the Manolescu correction terms «, 8,~ and
the Frgyshov invariant 6 (here 6 = —h in the notation of [18]). This should
be compared with the analogous one in involutive Heegaard Floer homology
from [7].

Theorem 2. Consider integers A, B,C, D such that:
e C<B<AandC<D<A;
e A, B,C have the same parity.

Then there exists a homology sphere Y with a(Y) = A, B(Y) =B, v(Y) =C
and 6(Y) = D.

Along the way, we will discuss how the U-action in the standard
monopole Floer homology HM «(Y,s) is related to the A..-structure on
HS,.(Y,s). While it was shown in [35] that the R-module structure of
HS.(Y, s) does not recover the Frgyshov invariant §, we obtain the following.

Theorem 3. Let (Y,s) be a spin rational homology sphere. Then §(Y,s) is
determined by the A -structure on HS(Y,s).

Let us discuss the content of the various sections. In Section 1, we
begin by providing a review of the essential aspects of Pin(2)-monopole
Floer homology needed in the rest of the paper. Given this background, we
show in Section 2 that several natural Massey (bi)products (including for
example (x,Q,Q?), when Q -x = 0 and (V,x,Q), when V-x = Q -x = 0)
can be described in terms of the Gysin exact triangle

o~ o~

HS.(Y,s) HS.(Y,s)

relating I?TS’.(Y,s) with the usual monopole Floer homology HM,(Y,s).
This will lead us to a proof of Theorem 3. The Gysin exact triangle can be
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explicitly understood in several cases including Seifert spaces and spaces
obtained by surgery on L-space knots, as discussed in Section 3. In that
section, we also introduce manifolds of simple type M,,, and discuss con-
crete examples. Given this, we turn our attention onto the study of the
FEilenberg-Moore spectral sequence. In Section 4, we cover the relevant
background in homological algebra over our ring R needed to describe con-
cretely the E2-page of the spectral sequence. This leads up to Section 5,
where we study in detail the higher differentials and extension problems
for connected sums with manifolds of simple type M,. We will see how
the Massey products described in Section 2 naturally arise when trying to
understand connected sums with this kind of spaces. Finally in Section 6
we discuss examples involving connected sums of several manifolds of sim-
ple type M,, with either orientation, and use them to show Theorem 1 and 2.

Acknowledgements. 1 would like to thank Matt Stoffregen and Umut
Varolgunes for many illuminating conversations, and the anonymous refer-
ees for carefully reading the manuscript and providing very useful feedback.
The 2016-2017 special year at the Institute for Advanced studies Homolog-
ical Mirror Symmetry was very influential for several aspects of the paper.
This work was partially funded by NSF grant DMS-1807242, the Shing-
Shen Chern Membership Fund and the IAS Fund for Math.

1. A quick review of Pin(2)-monopole Floer homology

In this section, we briefly review the fundamental aspects of Pin(2)-
monopole Floer homology which will be needed in the paper, with a par-
ticular focus on the results of [22]. We refer the reader to [20] for a more
detailed introduction to the subject, and to [24] for the details of the con-
struction.

Formal properties. To a closed, oriented three-manifold Y equipped with
a self-conjugate spin® structure s we associated in [24] chain complexes

Co(Y,5), Cu(Yys), Cu(Y,s) (1)

equipped with a chain involution 5. The homology of the chain complexes
recovers the monopole Floer homology groups

HM.(Y.s), HM.(Y,s), HM.(Y,s)
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of [18]. On the other hand, looking at the homology of the j-invariant
subcomplexes
Ci(v,s), Ci(Y,s), Ci(Y,s),

one obtains the Pin(2)-monopole Floer homology groups fitting in a long
exact sequence

HS.(Y,s) J- HS.(Y,5)
™ el @)
HS.(Y,s)

where the maps i, and j, preserve the grading, while p, has degree —1.
These are Q-graded modules over R, where the action can be described as
follows: after identifying

HS.(5%) = R(-1),
the action is induced in homology by the multiplication map
g 1 CL(Y) @ CL(S®) — CI(Y)

arising from the cobordism obtained by ([0,1] x Y) \ int(B*) by attaching
cylindrical ends. In [22], we introduced higher multiplications

T 2 CLUY) @ C1(S83)®" =1 = CI(Y)

obtained (in the spirit of Baldwin and Bloom’s unpublished construction of
a monopole category) by looking at an (n—2)-dimensional family of metrics
and perturbations parametrized by the associahedron K,. It is shown in
[22] that in the simplest case in which Y is S3, these operations (which
we denote 1) define an A.-algebra structure on C2(53), and for each Y
the operations 7, on CJ(Y) define an A,-module structure over it (see
[22] for the relevant background on A..-structures). For a fixed choice of
data on S3, such an A.-module structure on C3(Y) is well defined up to
Aoo-quasi-isomorphism. Indeed, it is shown in [22] that CJ(Y) also admits
Aso-bimodule operations

i s CUS3) L@ CI(Y) @ CI(SH®I~L = CI(Y).

such that mq, = m,. These will be relevant in the present paper when
computing the R-module structure on connected sums.
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Remark 1.1. There are some technical subtleties involved in the construc-
tion of [22], as one needs to impose certain transversality conditions on
the chains involved. In particular, the higher composition maps are only
partially defined. On the other hand, for the content of this paper (which
is mostly algebraic in nature), it will not be harmful to treat the structure
constructed in [22] as genuine A -structures.

Formality and connected sums. Recall that an A..-algebra A is called
formal if it is quasi-isomorphic to its homology (see for example [11] for the
special case of dgas). A classical obstruction to formality is provided by
Massey products: given the homology classes [a], [b] and [c] in H,(A) such
that [a] - [b)] = [b] - [¢] = 0, after choosing r, s such that dr = ab and 9s = be,
we define their triple Massey product to be the homology class

<[a]v [b]v [C]> = [TC +as+ /13((1, b, C)]

The product ([a], [b],[c]) is well-defined in a suitable quotient of H,(A).
Inductively, one can define the n-fold Massey products for n-tuples of
homology classes such that all lower Massey products vanish in a consistent
way. In the present paper, we will mostly focus on triple and four-fold
Massey products. Let us review the definition of the latter, as it will be
relevant in the sequel. Suppose we are given homology classes [a;] in H,(A)
for i =1,...,4 such that

[a1] - [a2] = [a2] - [as] = [as] - [a4] = 0.

Choose b; for ¢ = 1,3 such that db; = a;a;+1. Suppose that the triple
Massey products (defined in terms of these choices of b;) vanish, so that we
have ¢q, co such that

Ocy = biag + arby + pz(a1, az,a3), Ocag = baay + azbz + ps(az, az, as).
The four-fold Massey product ([a1], [a2], [as], [a4]) is defined to be

la1ca +craq + pz(ar, az, b3) + pa(an, bz, as) + ps(bi, as, as) + pa(ar, az, az, as)]

(3)
Again, this is well-defined in a suitable quotient of H.(A). The analo-
gous definitions carry over when defining the Massey products for an A..-
(bi)module M over A.
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It was shown in [22] the As-structure on C3(S3) is not formal: while
the relevant triple Massey products are zero, we have

(@Q,Q%,0.Q%) =V.

Intuitively speaking, this is a cohomological manifestation of the non-
triviality of the fiber bundle

RP? < BPin(2) — HP>.

The goal of this paper is to explore the non-formality properties of the
As-module C{(Y). This is particularly interesting in light of the the main
theorem of [22], which we now recall.

Theorem 1.2. There exists a quasi-isomorphism of As.-bimodules
C3(Y0,50) D¢, g3y (CF(Y1,81)) " 22 CYU(Yo#Y1, so#ts1)(—1).
where opp denotes the opposite bimodule.
Here by (n) we denote grading shift downwards by n, i.e.
(M(n))a = Mg—n,

while ® denotes the A.o-tensor product, whose definition we now recall.
Let N/ and M be (respectively a right and left) A.-modules over A, their
Aso-tensor product is defined to be the vector space

NemM=EPNe A" &M

n>0
equipped with the differential
n
O(x|ar| - lanly) =D mipr(xlar| - [a;)|ais1] - lanly
lnonﬂ'
+ )0 xfar| - laialpj—ir (@il -+ lag)|aja] - - lanly
i=1 j=0

n
+ Y xlar| - laia|mn i (ail - lan]y).
=1

Here M, A and N denote the underlying F-vector spaces of M, A and N
and, for simplicity, we will always denote elements of tensor products with
bars | instead of ®s. By considering the natural filtration given by

Fk:@N@@A"@M,

n<k
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we obtain the following.

Corollary 1.3. There is a spectral sequence whose E?-page is
Tor®, (HS4(Yo,50), HSe(Y1,51))

and which converges to HSo(Yo#Y1, s0#s1)(—1).

We will refer to this as the Filenberg-Moore spectral sequence, see [22] for
its heuristic motivation. Here Torf* is taken in the category of graded R-
modules, and is therefore a bigraded object. It can be computed by taking
a graded projective resolution of M, tensoring it with N and taking the
homology of the resulting complex. Recall, as a general fact, that given

modules My, M; over R, the identity
Torg, (Mo, My) = Mo @ M, (4)

holds. Corollary 1.3 follows from the fact that the E'-page of the spectral
sequence associated to the filtration {Fx} on N@M is naturally identified
with the tensor product of H,(M) with the bar resolution of H,(N); here
the key point is that C’Z(S‘g) is cohomologically unital. Of course, Torf* is
independent of the choice of resolution; in Section 4, we will discuss some
convenient resolutions to compute Torf* efficiently for our purposes.

While the computation of the E?-page only depends on the mod-
ule structure, the key observation is that the higher differentials in the
Eilenberg-Moore spectral sequence are determined by the Massey products
of the two summands. We have, for example, the following consequence of
the standard staircase argument (see for example Section 8 of [22]).

Lemma 1.4. Suppose we are given x € H,(M), r1,...,m, € H.(A) and
y € H.(N) such that

Xrl :’,’11/)"2 = . e :Tnflrn:rny:07
so that x|r1| ... |rply defines a class in (E} ,,d2). Then,
do(x|r1] .. |raly) = (x,71,m2) 73] - - rnly + X[(r1, ro, m3) [ral oL TRy
+x[ri| . [(Pn—2s Tt ) [y X[l (1, T, Y)

as an element of E%_g il
K
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In general, there are classes in E? that cannot be described as a simple
tensor. In Section 5, we will discuss the differentials of some of these more
complicated classes in terms of certain generalized Massey products .

Manolescu correction terms. From the R-module structure of Pin(2)-
monopole Floer homology, taking as inspiration Frgyshov’s invariant [9][18],
one can extract plenty of information regarding cobordisms between man-
ifolds. For simplicitly, let (Y, s) be a rational homology sphere Y equipped
with a self-conjugate spin® structure s or, equivalently, a spin structure
(as by = 0). We can fix an identification, up to grading shift, of graded
R-modules

HS,(Y,s) =R
where we set
R =F[V"V]QI/(Q%),
where F[V =1, V]] (which we denote by V) denotes Laurent power series. We
have the direct sum of F[[V]]-modules

R=V®Q Vo> V.

Recall that I;Tg'.(Y, s) and HS,.(Y,s) vanish in degrees respectively low and
high enough, so that

iyt HS4(Y,5) = R — HS.(Y,s)
pet HSW(Y,5) = R = HS,.(Y,s).
are isomorphism is degrees respectively high and low enough.

Definition 1.5. Given a nonzero r € R, we say that x € HS.(Y,s) is based
of type r if p.(x) = r. If p.(x) = 0, we say that x is unbased. We will say
that x is V, Q -V or Q2 - V-based according to where p,(x) belongs to.

We also call the images of V, Q -V and Q% -V in I}S‘.(Y,s) under i,
respectively the «, 8 and v-tower. The Manolescu correction terms (defined
first in the setting on Pin(2)-equivariant Seiberg-Witten Floer homology
[29]) are the numerical invariants defined as

a= %min{deg(xﬂx € a-tower}
8= %(min{deg(xﬂx € p-tower} — 1)

7= L (min{deg(x)[x € 1-tower} — 2).
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Using the long exact sequence relating the three Floer groups, these
numerical invariants can also be described in terms of based elements of
HS.(Y,s) as follows

a= —% (max{deg(x)|there exists a Q* - V-based element x} + 4)
B = —% (max{deg(x)|there exists a @ - V-based element x} + 3)
v = —% (max{deg(x)|there exists a V-based element x} + 2).

These invariants are rational lifts of —u(Y,s), where p denotes the Rokhlin
invariant, and they provide obstructions to the existence of spin cobordisms
with b5 = 0,1,2, see [24][23]. As a consequence, they are invariant under
homology cobordism. These corresponding numerical invariants for —Y
(the manifold obtained from Y by orientation reversal) can be obtained as
follows:

a(=Y,s) = —y(Ys)
B(=Y,5) = =B(Y,s)
1(=Y,8) = —a(Y;s).

The key point behind these identities is Poincaré duality, which is the
isomorphism of R-modules

HS*(~Y,s) = HS_1_.(Y,s), (5)

together with the fact that I;L/S"(—Y,ﬁ) is the dual R-module of I;R/S’.(—Y, s).
In fact, (5) holds at the level of A.-modules. Here the A.-structure
on I}‘/S"(—Y, s) has cohomological grading, consistent with the fact that
the cohomological action of Q and V have degrees respectively 1 and 4.
Furthermore, IE'(—Y, s) is the dual A..-module of II@.(—Y, s). While the
latter is a general notion of duality, we will not discuss it in detail here as
in all our examples it will admit a much more concrete and computable
manifestation (see for example the proof of Lemma 2.7).

Remark 1.6. More generally, using these duality relations together with
the long exact sequence (2), we can extract information about HS,(—Y,s)
from HS,.(Y,s). On the other hand, unlike the case of usual monopole
Floer homology, the R-module structure of fITS'.(Y, s) does not determine
the R-module structure of HS,(—Y,s). In fact, we will see in Lemma 2.7
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and in the proof of Corollary 5.4 that certain non-trivial multiplications
between elements of R and HS,.(Y,s) correspond to the existence of non-
trivial Massey products on HS.(-Y,s).

Remark 1.7. Of course, one can define analogues of the correction terms
also in cases in which b; > 0, depending on the structure of HS,(Y,s).
In fact, one can define a correction term for each F[V~! V]| summand
of HS.(Y,s). It is shown in [25] that the number of such summands
only depends on the triple cup product of Y, together with the Rokhlin
invariants of the 2*(Y) spin structures inducing s. For example, there
are two cases when b;(Y) = 1: when the two spin structures have the
same Rokhlin invariant, one obtains six correction terms, while in the case
the two spin structures have different Rokhlin invariants one obtains four
correction terms (see [23] and also Section 3).

Definition of the Floer chain complexes. Let us now review the main
features of the Floer chain complexes introduced in [24] that will be needed
in the rest of the paper. The key input of Pin(2)-symmetry is a natural
involution on the moduli space of configurations

7:B(Y,s) = B(Y,s),

whose fixed points are the reducible configurations [B,0] where B is the
spin connection of one of the 2°1(Y) spin structures inducing s. One would
like to perform the construction of the Floer chain complexes from [18]
in a way such that this symmetry is preserved. The main complication
is that one needs to work with Morse-Bott singularities. For a generic j-
equivariant perturbation, the critical set in the blown-up moduli space of
configurations B7(Y,s) consists of:

e a finite number of pairs of irreducible solutions, acted freely by the
action of ;

e for each non spin reducible critical point, an infinite tower of critical
points as in the Morse setting. The free action of j of non-spin reducible
critical points lifts to an action of the towers;

e for each spin reducible critical point, an infinite tower of reducible
submanifolds, each a copy of S?. The involution j acts as the antipodal
map on each critical submanifold.
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The chain complexes with involution (1) arise as some version of Morse-
Bott chain complexes. The underlying vector spaces are generated over F
by suitable geometric chains with values in the critical submanifolds, i.e.
smooth maps

fio—=C

where o is chosen among a suitable generalization of manifolds with bound-
ary and C' is a critical submanifold. The differential of such a chain o com-
bines the singular boundary within C' together with fibered products with
moduli spaces of flows M (C, C") from C' to another critical submanifold C’,
which we consider as singular chains with values in C’. In our case, we
are naturally lead to deal with d-chains and the key modification (inspired
from [26]) is that we consider chains which are non-degenerate, namely
both f(o) and f(0o) are not contained in the image of smaller dimensional
chains. For our purposes, we will only need that 3-cycles in the critical
submanifolds which are copies of S? are zero at the chain level.

Example 1.8. Consider the classes Q,Q? € R = @.(53). These are
represented respectively by generator in the one and zero dimensional
homology of C_1, the first unstable critical submanifold (where we consider
the round metric on S3, and a small perturbation). Of course, we know
Q-Q? = 0. In fact, such a product is zero at the chain level: for dimensional
reasons, it is a 3-chain in the second unstable critical submanifold C_5, and
because it is closed, it vanishes. For a similar reason, the triple Massey
product (@, Q?, Q) also vanishes at the chain level.

2. Description of certain Massey products

In general, the determination of the Massey products of an A..-module over
an A..-algebra is a rather involved process, as it requires the understanding
of higher compositions. Our goal in the present section is to show that
in the case of Pin(2)-monopole Floer homology, many natural Massey
(bi)products can be described very explicitly in terms of the relation with
the U- actlon in usual monopole Floer homology While we will work in the
setting of HS., all results carry over for HS and HS,. Before stating the
main results of the section, let us recall the Gysin exact sequence
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introduced in [24]. Here the maps ¢, and 7, preserve the degree, while
multiplication by @ has degree —1. It is an exact triangle of R-modules
where on HM ,(Y,s) we have that Q acts as 0 and V acts as U2. In the case
of a homology sphere of Rokhlin invariant 0, in degrees between —4k and
—4k — 3 with k£ > 0 the sequence looks like

F F F

where the side columns represents HS, and the middle column represents
HM,. Let us record the following general observation.

Lemma 2.1. Ifx € HS,(Y,s), then Q2 - x = 7, (U - 1,(x)).

We will prove this result later. Let us define the following Massey
operations:

e if Q- x=V-x=0, (Q,x,V), which is well defined up to Im@Q + ImV;
o if Q-x=0, (x,Q,Q?), well defined up to ImQ?;
o if Q%2 -x =0, (x,Q% Q), well defined up to Im@Q;

e if Q-x=0and (x,Q,Q% =0, (x,Q,Q% Q) well defined up to ImQ
(recall that (Q,Q?, Q) vanishes at the chain level, see Example 1.8).

On the other hand, using the Gysin exact sequence, we can define the
following four operations:

(1) Suppose @ -x=V -x=0. As Q-x =0, x = m,(y) for some y. Then
(U y) =V m(y) =V -x=0,
so that there exists z such that t.(z) = U%-y. We define ®;(x) = z. It

is readily checked that such an element is well defined up to elements
in ImV + Im@.
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(2) Suppose @ - x=0. Then again x = m,(y) for some y. We then define
®y(x) = (U - y). This is well defined up to Im@Q? in light of Lemma
2.1.

(3) Suppose Q% - x = 0. By Lemma 2.1, 7. (U - t.(x)) = 0, hence
U - 1i(x) = tx(y) for some y. Then we set ®3(x) = y. This is well
defined up to Im@Q.

(4) Suppose (x,Q, Q% = 0. By the second bullet of Theorem 2.2 below,
we have ®9(x) = 0. Then, up to choosing a different y in bullet (2)
above,

Po(x) =m(U-y) =0,

and therefore U -y = 1.(w) for some w. Finally, we set ®4(x) = w.

We will show in Section 3 that these four operations ®; are explicitly
computable in many cases. Their importance for our purposes is the
following result.

Theorem 2.2. Let x be an element in F/L\S'.(Y,s). We have the following
identities:

(1) ifQ-x=V-x=0,(Q,%x,V) = Py(x);
(2) ifQ-x=0, (x,Q,Q%) = ®a(x);
3) if Q*-x=0, (x,Q% Q) = ®3(x);
(4) if (x,Q,Q% =0, (x,Q,Q% Q) = Py(x).

In fact, while for simplicity we have limited our exposition to Massey
products involving only @Q,Q? and V, the result naturally generalizes to
the analogous Massey products involving QV* Q?*V7 and V**1. Let us
for example point out how to compute (Q,x, V¥*+1) where of course we
assume Q-x = VF*l.x = 0. As Qx = 0 implies that x = 7(y), and because
VEFL. x = 0, we have that 7, (U?**2 . y) = 0, so that U%**2 .y = 1(z). We
have then (Q,x, V1) = z. Furthermore, it will be clear from the proof
that the statement holds also for Massey products for the left A..-structure;
for example, ®3(x) = (Q, Q?, x).

Remark 2.3. Looking at the Gysin sequence of S3, we obtain a direct
proof (i.e. without relying on an argument involving the Eilenberg-Moore
spectral sequence as in [22]) of the fact that (Q,Q% Q,Q?) =V (here we
apply the theorem above to the left A, -structure).



16 F. Lin

Remark 2.4. While our main result involves specific Massey products,
one can in general exploit the natural A..-structure in homology provided
by Kadeishvili’s homotopy transfer theorem [16][37] to obtain more in-
formation. Let us for example consider the (classical) Massey product
(x|Q?|Q|Q?), where we assume x - Q = (x|Q?|Q) = 0. Recalling the van-
ishing of the triple products in R and the relation (Q|Q?Q|Q?) =V, we
obtain after substituting the latter in the A.-relations, the relation

x-V = (x|Q?1Q1Q% - Q.

In several cases, this is enough to determine (x|Q?Q|Q?).

The proof of this result occupies the rest of the section. Recall first
from [24] that the Gysin exact sequence arises as the long exact sequence
in homology associated to the short exact sequence of chain complexes

0 — CU(Y,s) = Cu(Y,5) —2 (1 + )Cu(Y,5) = 0 (6)

where C,(Y,s) is the Floer chain complex underlying HM «(Y,s) and the
chain complexes C3(Y, s) and (147)C4(Y,s) both have homology HS,.(Y,s).
We first review how the connecting map in the induced long exact sequence
is identified with multiplication by . Consider a representative x of a
class x € HS, (Y,s). Consider its image under the map induced by the
cobordism (I x Y\ int(B*) with cylindrical ends attached, where we look
at the solutions converging to the first negative critical submanifold C_;
on the additional incoming S3 end, or, equivalently the element 1z (z|C_1)
obtained from the product map

1y s Co(Y,8) @ Co(S?) = Co(Y,5)

by considering the chain C'_; on the second factor. As this map induces
the identity in homology, this element is also a representative of x. Recall
that C_; is a copy of S? on which 7 acts as the antipodal map. Denote by
D? the upper hemisphere, and by S' = 9D? the equator (notice that the
latter is j-invariant). We have then S? = D? U 3(D?) = (1 + ) D?, so that

ia(2|C1) = rna(x|(1 + 7)D?) = (1 + g}z (2| D?) = (1 + 5)(y)
where y = 1y (x| D?) € Co(Y,s). Now, as dz = 0, we have

dy =20 (7”712(33|D2)) = g (x[0D?) = rna(z]S")
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which is a j-invariant cycle, hence in the image of the inclusion C3(Y,s) —
C.(Y,s). By definition, its class in HS. represents the image of x under the
boundary map in the induced long exact sequence. On the other hand, as
S is a representative of Q in HS.(S3) =R, y also represents @ - x.

In a similar spirit, we now provide the proof of Lemma 2.1.

Proof of Lemma 2.1. Let p be a point in C_;. Then the point p is a cycle
representing U € oM «(S3), while p U gp is an invariant cycle representing
Q% € HS.(S®). If y € Co(Y,s) represents y € HM,(Y,s), then U -y is
represented by 7y (y|p), while if # € C2(Y,s) represents x € HS(Y,s), then
Q? -y is represented by ma(z|p U gp). On the other hand we have for
x € CJ(Y,s) that

1ha(z[p U gp) = ma(z|(1 + 7)p) = (1 + g)ma(z[p),
and the result follows. O

With these simple computations in mind, we are ready to prove Theorem
2.2.

Proof of Theorem 2.2. Throughout the proof, let us fix a representative
x € CL(Y,s) of x. Will will prove the various statements separately (with
the warning that the proof of (4) builds on the proof of (2)).

Proof of (1). Recall that the action of V on I}g’. and of U? on EM. are
both obtained by multiplication by the second negative critical submanifold
C_, on the additional incoming S® end. Let

y = ma(x|D?) € Cu(Y,5)

as above, so that its image under 1 + 7 is a representative of x, and
dy = ma(x|St) is a j-invariant chain cycle representing @ - x = 0. Hence
we have 7y (x|S?) = 8t for t € CL(Y,s). Consider also 1 (z|C_3), which
represents V - x = 0 and hence is s for s € C2(Y,s). Then by definition
the triple Massey product (Q,x, V) is represented by

o (tC_a) 4 g (Ss) + 1o (St z]|C_s) € CL(Y,s).

Consider the image of this cycle in Cy(Y,s). By adding to it the (non
J-invariant) boundaries
6m2’2(D2|x|0_2) =
= 1h2,2(S" 2] C_2) + 12 (1712 (D?|2)|C-2) + 12 (D? |12 (2]C-2))
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and
amg(D2|S) = m2(81|8> + mg(D2|’ﬁ”L2(l‘|C_2))

we see that 1, ((Q,x,V)) € HM(Y,s) is represented by
iy (t+1a(D?[2)|C_2) € Cu(Y,5). (7)

As t is j-invariant, ¢ 4+ mq(D?|z) is a cycle in Cy(Y,s) whose image under
7« 18 a representative of x; furthermore, the chain (7) represents its image
under the action of V = U?, so that the result follows.

Proof of (2). Recall from Example 1.8 that Q? - Q is zero at the chain
level. Consider as above the cycle 1z (z]S?), and let ¢ be a j-invariant chain
such that 9t = o (z|S!), where again we use @ - x = 0. Then the Massey
product (x,Q,Q?) is by definition represented by

o (HpUgp) +1is (1S [pUgp) = (147) (ha(tlp) +1is (S |p)) € (142)Ce(Y5).

(8)
Of the two natural disks D? and 7D? whose boundary is S, we can assume
without loss of generality that o (D?|p) = 0. Adding then to the expression
above

O[(1 + 7) (15 (2] D?|p))] = (1 + ) (1v3 ([ S [p) + 1o (12 (x| D?)[p))
we see that the Massey product is represented by
(1 + 9)[na(t + 12 (2] D?)|p)].

Now t 4 1ha(2|D?) € C4(Y,s) is again a cycle mapping to a representative
of x, and the result follows.

Proof of (3). As Q% -x =0, by Lemma 2.1 we can consider z € C{(Y,s)
such that 9z = mgo(z|p U gp). Then by definition the Massey product
(x,Q%, Q) is represented by

1 (2]S1) + g (2lp U gp|ST) € CI(Y, 5).

Consider its image under the inclusion in Cy(Y;s). Assume 7 (p|D?) = 0,
and set p’ = My (yp|D?). We can add the (non j-invariant) boundary

Oz (z[p U gp|D?) = rng(z|p U gp|SY) + 1o (e (z[p U gp)| D?) + g (z[p’).
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We see that the image in é.(K s) of the triple Massey product is also
represented by

o (2]SY) + g (e (z[p U gp)|D?) + iz (a[p’) = ma(zlp’) 4+ 0ma(z| D?),

and the result follows.

Proof of (4). Suppose (x,Q,Q?) = 0. Then, in the notation of the proof
of the second bullet, we have that

(1 + )l (t + 1z (2| D?)|p)] = Ow. (9)

for some w € (147)C4(Y,s) so that for the chain representative in Equation
(8) we have

(1 + ) (12 (tlp) + 13 (]S p)) = O(w + (1 + 7)B) (10)

with 8 = mg(x|D?|p). As the products Q - Q%, Q- Q and (Q,Q? Q) are
zero at the chain level (see Example 1.8), the formula (3) for the 4-fold
Massey product greatly simplifies. In particular, we have that (x,Q, Q?, Q)
is represented by

g (w + (14 )B|S") + a(x] S p U gp|S*) + s (t[p U gplST).

Let us point out that while in the proof of (2) we worked up to boundaries,
it is important here that we work with the actual chain representative in
Equation (8) of the Massey products. We claim that under the inclusion
into Co(Y,s) this maps to the same class as ma(t + 1o (z|D?)|p), so that
the result follows. Let us choose again disks D? such that s (p|D?) =
0 = ma(D?|p) = 0. Here the two disks are not the same, but we will
not incorporate that in our already heavy notation as it should not create
confusions. We have

(]S |plSY) = dra (x| ST |p|D?) + g (s (2|5t p)| D?)+
+ 1 (e (2] S1)|[p| D?) + e (a|ris (S*p| D?))

and
13 (tp|S) = Orns(t[p| D?) + 1o (tha(tp)|D?) + 1 (1ha (2| S)[p| D?).

where we used in both cases 72(p|D?) = 0. Notice that, regarding the last
term in the first sum, 73(St|p|D?) is a collection of points, so that 1 + 3
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of the last term represents a multiple of Q? - x = 0; we can ignore the last
term. Hence the image ¢.((x,Q,Q? Q)) € HM,(Y,s) is represented by the
cycle

(w0 + (1 )B1S") + (14 )i (i (x5 |p) D) + saiia(lp) D) =

g (w|S) + (14 )2 (B]S") + ria (g (2[5 p) | D?) + ina (i (tlp) D).
Notice that

o (w|Sh) = My (w|0D?) =
= 87"7b2(w|D2) + 1z ([(1+2) (hz(t + o (2| D?)p)]| D?) |

and, using now s (D?|p) =
) =

1 (g (]St [p)|D? ( s(z|0D?|p)|D?) =

= 1n2(Oris (x| D?[p) + e (in2(x[D?)|p) | D?).
Hence ¢ of our cycle has the form (up to boundaries)
ia((1+ 7)o D?) + (1+ g)lha(a + 9BID?) + 1z (B]S)]
where a = Mo (t + e (x| D?)|p), or equivalently
ina(9ar| D* U 3D?) + 0[(1 + y)ina(B|1D?)].

Here 72 (ya| D? U 3D?) represents the same class as ja. Finally, relation (9)
implies that this is also the class of « itself, and the result follows. O

Let us point out some immediate consequences regarding correction
terms. There is a plethora of numerical invariants of homology cobordism
of rational homology spheres that one can in principle extract from the
R-module structure in Pin(2)-monopole Floer homology (these might go
under the name generalized correction terms). On the other hand, the
simplest correction term, namely the Froyshgv invariant §(Y,s) arising from
usual monopole Floer homology cannot be recovered from the R-module
structure (see [35]). We briefly recall the definition of the latter (which is
—h(Y,s) in the notation of [18]). We have that, given a rational homology
sphere Y,

HM,(Y,s) = F[UL, U]
and that the map i, : HM.(Y,s) — HM «(Y,5) is an isomorphism in degrees

high enough and vanishes in degrees low enough. We then define

§(Y,s) = %min{deg(xﬂx € Im(iy)}.
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We have the following characterization of 6(Y,s) purely in terms of the
Massey products in Pin(2)-monopole Floer homology. From this, Theorem
3 in the Introduction directly follows.

Proposition 2.5. Let x be the bottom element of the vy-tower which is not in
the image of Q. Then

5(Y.s) = {;(deg(x) —2) if either Q*-x # 0 or (Q,Q%,x) #0

1deg(x) otherwise.

Proof. Let x be the bottom of the element in the y-tower which is not in the
image of Q. By exactness of the Gysin sequence, ¢,(x) # 0. Furthermore,
by comparing with the Gysin sequence in degrees high enough, we see that
t+(x) is in fact an element of the U-tower of HM o(Y,5). We claim that
U?.,(x) = 0. In fact, we would have otherwise

0#U? 1,(x) =V 1.(x) = 1.(Vx),

so that Vx, which is an element in the -tower, is not in the image of @,
which contradicts our choice of x. The bottom of the U-tower is therefore
given by either ¢,(x) or U - 1,(x). In the latter case, by exactness we have
that either U - 1,(x) is in the image of ¢, or its image under 7, is non-
vanishing. These two cases correspond, thanks to part (3) ofTheorem 2.2
and Lemma 2.1, to respectively (Q,Q?,x) # 0 or Q?-x # 0, and the result
follows. O

In fact, a more natural correction term to study in Pin(2)-monopole
Floer homology (introduced in [35]) is

§(Y,s) = %(min{deg(xﬂx € y-tower x ¢ ImQ} — 2)

which, by the discussion above, coincides with either §(Y,s) or §(Y,s) + 1.
Furthermore, ¢'(Y,s) reduces modulo 2 to —u(Y,s). While we have

5(=Y,8) = =6(Y,5),

the effect of orientation reversal on ¢’(Y,s) cannot be described purely in
term of the module structure (see also Remark 1.6). On the other hand, it
can be described in terms of Massey products as follows.
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Proposition 2.6. Let x be the bottom element of the v-tower such that either
Q% - x#0 or (x,Q%Q) #0, and set

5"(Y,5) = %(deg(x) _9).
Then we have §'(=Y,s) = —¢"(Y,s).

The key observation here is that one can use Poincaré duality and the
long exact sequence (2) to obtain relations between E’S’.(Y) and I;Tg'.(—Y).
As this will be used repeatedly in the final part of the paper, let us discuss
here in detail the simplest manifestation of these ideas, which is at the core
of the proof of Proposition 2.6.

Lemma 2.7. There is an element z # 0 in degree k in the ~y-tower of FFE’.(Y)
which is in the image of Q if and only if there is an element x # 0 in degree
—k in the vy-tower of HSo(=Y) for which Q?-x =0 and (x,Q% Q) # 0.

Proof. Let us show in detail the forward implication. Given y € HS k+1(Y)
such that @ -y is in the v-tower, notice that its image j.(y) in [/JTS’kH (Y)
is annihilated by Q. We claim that (j.(y),Q, Q%) is Q? - V-based. To see
this, we notice that the exactness of the Gysin exact sequence implies that
y is not in the image of 7., while j.(y) is. Comparing this with the exact
triangle relating the three flavors of usual monopole Floer homology, we see
by a simple diagram chasing that j.(y) is in the image of a non U-torsion
element w € HM,(Y,s). For such a w, we have that 7, (U - w) € HS,_(Y)
is Q2 - V-based (again by a simple diagram chasing), and the claim follows
by bullet (2) of Theorem 2.2.
Now, the Poincaré duality isomorphisms

HM*(~Y) = HM _,_,(Y)
HS*(=Y) = HS_,_,(Y)
provide a natural identification of the two diagrams

*

— Ty —~ — —_—
HM i (Y) > HSjir (Y) HS ™ (—Y) <— HM*(-Y)

U~l Uﬁ

Ty ~

HM 1 (Y) > HS 1 (Y) HS+-2(-Y) '« HM—*2(-Y)
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exchanging the role of 7, and +*. Under this identification we see therefore
(using the natural cohomological version of Theorem 2.2) that there is
an element *(y') € HS*2(-Y) for which (*(y'),Q,Q2) € HS*(-Y) is
Q? - V-based. Now, the cohomological diagram on the right is dual to the
homological diagram below.

by

HS_(—Y) —> HM _4(~Y)

HS __o(=Y) > HM _j_o(=Y)
We can fix an identification
HM~*2(=Y) = im(.") & ker ("),
and observe that
(U ker(1?)) = (U - im(x)) = Q2 - im(r")

does not contain Q2 - V-based elements (as there are no V-based elements
in degree k —2). We can therefore fix a splitting

HM*=2(-Y) = F(y’) & W & ker(:*)

with the properties that:
o *(U- (W @ker(:*))) does not contain Q2 - V-based elements.
o (U -y')is Q- V-based.
e " restricted to F(y’) & W is injective.

On the dual homological diagram, this implies that there exists an element
X € ﬁTS_k(—Y) belonging to the v tower such that U - 1, (x) is in the image
of ¢, and the result follows by Theorem 2.2. The proof of the reverse
implication is analogous. d

Proof of Proposition 2.6. Consider the element z in degree 26’(Y)+2 in the
v-tower of ﬁg'.(Y), so that it realizes the minimum in the definition of §'.
Then we have that Vz is either zero, or is in the image of (). In either
case, we get a non-zero element x in the ~-tower of ES’.(—Y) in degree
—26'(Y) + 2 which satisfies Q2 - x # 0 in the former case, or Q% -x = 0 and
(x,0% Q) # 0 in the latter. Finally, the same arguments above show that
x indeed realize 6" (-Y). O
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3. Examples

In this section we discuss several classes of manifolds for which the descrip-
tion of the Massey products in terms of the Gysin exact triangle from the
previous section is very explicit.

Manifolds of simple type M, . We introduce a special class of homology
spheres which play a central role in Pin(2)-monopole Floer homology. Let
us first discuss the relevant algebraic definitions; these are slightly different
according to whether n is even or odd.

In the case n = 2k, we define

M, =F[[V]] @ F[[V][{4k — 1) @ F[[V][{4k — 2) @ F[V]]/ (V") (4k - 3),

where the action of V respects the direct sum decomposition and the action
of (Q maps one column to the one on the right and has maximal possible
rank. This module can be depicted graphically as

D N

Fayeoy F - v .« F_F . Fo_F_F

~y ~y

” \\)IF \\’]F

k copies

where the arrows in the upper and lower rows represent respectively the ac-
tions of V and @, and the bottom row corresponds to the F[[V]]/(VF~1)(4k—
3) summand. Let 1 be the generator of the first summand and gv=* be the
generator of the second summand. They lie in degrees respectively 0 and
4k — 1, and are V and @ - V-based.

In the case n = 2k + 1 for k£ > 0, we define

M, =F[[V][(-2) @ F[[V]](4k + 1) & F[[V][{4k) @ F[[V]]/(VE1) {4k - 1).

where again the action of V respects the direct sum decomposition and the
action of Q maps one column to the one on the right and has maximal
possible rank. More visually,

D P

F4k+1JF . v oo F_FT . . F Fy - F_F_ F--

- F ¥

k copies
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We denote the generator of the first summand by v and the generator
of the second summand by qu~*. They lie in degrees —2 and 4k + 1 respec-
tively, and are V and @ - V-based.

The following is the key definition of this section (an analogous concept
of manifolds of projective type was introduced in [36]).

Definition 3.1. A homology sphere Y has Pin(2)-simple type M, if there
is a direct sum decomposition as R-modules

HS.(Y) = My (1)@ J

with p.(J) = 0 and no non-trivial Massey products between the two
summands.

From the Gysin exact sequence it readily follows that the part of
HM 4(Y') interacting with M, (—1) has the form

FIUI-1) @ F[U]]/U"(2n - 2)

This implies that if Y has simple type M, 6(Y) =0 and a(Y) = (YY) = n,

1Y) =

0 if n is even
1 otherwise,

and that the Rokhlin invariant of Y is simply the parity of n.

Surgery on L-space knots. There are several examples of manifolds with
simple type M, obtained by surgery on a knot in S® (this should be
compared, in the Heegaard Floer setting, to the results in [13]). In what
follows, we prefer to work for notational reasons with the to homologies
I;E'.. Let us introduce a notation for the standard U and V-towers

ut =FU~U)|/F[[U]]

Vi =FV- V]|/F[[V]],
where the bottom element lies in degree zero. Recall that a knot K c §3
is called an L-space knot if for large enough r > 0, the manifold S3(K) is

an L-space (i.e. it has vanishing reduced monopole Floer homology HM,).
Given an L-space knot, we have

HM o(S3(K), 50) = Ut (—1) & U (~2n) (11)
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for some n > 0. Here sg denotes the unique torsion spin® structure. We
say in this case that K has type n. The analogous fact in Heegaard Floer
homology is well-known [32], and implies our claim via the isomorphism
with monopole Floer homology (see [17], [2], and subsequent papers). Our
key source of examples is the following.

Proposition 3.2. Let K be an L-space knot of type n. Then the manifold
—83,(K) has simple type M,, where —Y denotes Y with the orientation
reversed.

Example 3.3. Recall that all positive torus knots have a positive lens space,
hence L-space, surgery. More concretely, the torus knot 7'(2,4n — 1) is an
L-space knot of type n, and furthermore S2,(7T(2,4n — 1)) is the Seifert
space %(2,4n —1,8n —1). Therefore, —%(2,4n — 1,8n — 1) has simple type
M,.

Remark 3.4. In fact, in the setting of the statement above, the same proof
will show that —Sil/%ﬂ(K) has simple type M, for k > 0.

Notice that the Arf invariant of an L-space knot K is the same as the
parity of its type n. The proof of Proposition 3.2 is simpler in the case
of Arf = 1, and essentially follows from the computations involving the
surgery exact triangle in [23]. The proof of the Arf = 0 case is more
subtle, and follows from the content of the unpublished note [21]. We here
discuss the main ideas involved for both cases. We denote by S, /q the group
E?.(Sf’/q(K)). For each ¢, the main result of [23] implies that there is an
exact triangle

A, 4

Nz

S1/(+1)

Sl/q

where the maps /12 and Bg are those induced by the (spin) cobordisms
given by handle attachments. The key observation is the following.

Lemma 3.5. The composite
Bq o Aq : Sl/q — Sl/q (12)

is given by multiplication by Q).
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By contrast, the analogous map in the usual setting of monopole Floer
homology vanishes, see [19].

Proof. The composition of the two cobordisms is described by the Kirby
diagram in Figure 1. The cobordism from Y;/,(K) to Yy(K) is given by
a two handle attachment along the knot K’, while the following one from
Yo(K) to Y7y,4(K) is given by attaching another two handle along a zero
framed meridian of K’. If we trade this second handle for a 1-handle (i.e.
adding a dot in the notation of [12]), we obtain a pair of canceling 1 and
2-handles. Hence the composite cobordism is obtained from the product
cobordism [0,1] x Y; ,,(K) by removing a neighborhood S x D? of a loop
and replacing it by S? x D?. The result then follows from the fact that the
map induced by S? x S? with two ball removed induces multiplication by
@ (see the proof of Theorem 5 in [23]). O

K/

QS
J

Figure 1. A handlebody description of the composite of the cobordisms defining the
map Bq o Aq. This link is inside Y7 /4.

When K has Arf invariant zero, we have from [23], or more generally
[25], that

So=R(-1) &R, (13)
where we fix the identification so that so that Aj is an isomorphism onto
the first summand, so that the triangle looks schematically like

F —— F
F F —> F
F F —> F
. .
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repeated in both directions four-periodically. Here the three columns
denote S3,S5 and S§ respectively. Lemma 3.5 implies that for ¢ = —1
(or, in general, ¢ odd) the triangle looks like

. F —— F
\’]F4>IB‘
\

repeated in both directions four-periodically.

The final observation is that the isomorphism (11) implies via the Gysin
exact sequence that, setting

Rt = HSW(S*) =Vt @ Q- VI @ Q* V',
we have _
HS.(S3(K)) = RY{(—1) ® R (—2n).
With this in hand, the proof of Proposition 3.2 in the Arf zero case follows
as in the next example.

Example 3.6. Consider the case of the torus knot K = T'(2,7), which is
an L-space knot of type 2. We have then the identification of the triangle
with ¢ = —1 with

where for 51mphc1ty we have only depicted Ay, and we have omitted
summands in HS, (52 ,(K)) arising from the non-torsion spin® structures on
S3(K), as they do not have interesting Massey products due to naturality.
Here the dotted arrow denotes a ) action, and the horizontal dotted line
represents grading zero. The result then follows from Poincaré duality.
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The case in which K has Arf invariant one is significantly simpler.
Indeed, in this case we have

HSW(S5(K)) = (Ve FQl/Q*) & (V @ FIQ]/Q*)(-2).

so that the maps on HS, in the exact triangle are uniquely determined, see
[23] for the details.

Remark 3.7. In fact, we see that HS.(S5(K)), where K has Arf invariant
1, has many interesting Massey products itself. The Gysin exact triangle
looks in this case like

F F F
B F £
F *—» F F
F F F

where the solid arrows depict the maps ¢, and 7, while the dotted arrows
denote the actions of @ and U. In light of Theorem 2.2, we see that there
are many non-trivial Massey products of the form (-, Q,Q?) and (-, Q?, Q).

Manifolds of simple type —M,,. Of course, from the view point of the
Massey products discussed in Section 2, manifolds of simple type M,, are
not particularly interesting. On the other hand, the manifolds obtained by
orientation reversal, to which we refer as manifold with simple type —M,,,
have a richer structure. For simplicity we will focus on the case in which n
is even. Let us start from n = 2. The R-module structure for a manifold
of type —Ms is given by

FIVI(-4) @ F[[V]](=5) @ F[[V]|(-2) © Fo

where the action of @ is injective from the first tower to the second, and
from the second to the third. Graphically,

Fpb - F, - F_F_F

~ -~

As a notation, we will denote the generator in degree zero by z, while
the generators in degree —2 and —4 by ¢? and v respectively. For a
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general manifold Y of simple type —Ms, we will have a decomposition
HS.(Y) = —M, @ C as R-modules, where furthermore there are no non-
trivial Massey-products between the summands. The key observation is
the following.

Lemma 3.8. We have the triple Massey products (z,Q,Q%) = ¢* and
(V.2,Q) =v.

Proof. We use the Gysin sequence characterization of the triple Massey
product, Theorem 2.2. The corresponding component in HM, is given by
F[[U]] @ F[[U]]/U?. In degrees > —6, the Gysin sequence looks like

where the dotted arrows represent the U action. Consider the element
1 € F[[U]]. Then comparing with the Gysin triangle in HS,, we see that
7.(1) = z. Furthermore V1,(¢?) = t.(¢?v) = 0, hence U is not in the image
of 1, and 7, (U) = ¢*. The second statement follows in the same way. [

In the case of general even n = 2k, we have that the module structure
is given by the R-module

(FV](—4k) @ F[V](—4k — 1)) @ F[V](-2) @ Fo[V]/ V"™

where the action of @) is injective from the first tower to the second, and
from the second to the third. We will denote the direct sum of the first
three terms by Noi. Graphically, in the case n = 4, M, is given by

Fob - F, - F .- F . F_F_F
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Denote the generators of the summands by ¢2, v", qv™ and z. We then
have for example the relations

(z,Q,Q%) =¢* (V",2,Q) ="

This follows in the same way as Lemma 3.8, using the fact that the
corresponding component in HM, is given by F[U] @ F[U]/U?*.

Seifert spaces. Another large class of manifolds for which the Massey
products described in Theorem 2.2 can be understood explicitly is given
by Seifert spaces. The main observation here is that we can assume that
all irreducible solutions have odd degree for a suitable choice of orientation
(see [31], and also [3] for a discussion of the more general case of plumbed
manifolds).

Example 3.9. Rather than describing a general theory (which would be
analogous to parts of the content of [7]), let us focus on an interesting
example (due to Duncan McCoy) that involves three or more F[[U]]-
summands. Consider the Seifert space Y = ¥(13,21,34). Then, up to
grading shifts, we have that

HM.(Y) = F[[U]o & (F[U))/U)11 & (F[U])/U" )11 & (B[U]]/U*)g @ &

where the involution action exchanges the two copies of J®2. As for this
orientation there are only irreducible critical points of odd degree, it is
straightforward to reconstruct the underlying chain complex Cy(Y) (where
we forget about the J®2 summand as it is irrelevant for our purposes):

F F F F F Fo - F
I\ I\ I\ I\ \
My oy Aoy oy Ny
IF2 \\ IF2 \\ FQ \\ ]F2 \\ IF2 F2
\ AN \ \
N ..\* \i ) \A
F2 2 F2 F2

Here the first row represents the tower corresponding to the reducible
solution, while the second and third rows correspond to the irreducible
solutions; the dotted arrows depict the action of U, while the dashed ones
represent the differential (where each dashed arrow sends the generator of
F to the sum of the generators of F2). The natural involution j fixes the
first row and exchanges the summands in each copy of F2. Also, we labeled
the irreducible generators as F[[U]]-modules by x, y and their conjugates
via 5. The invariant chain complex CZ(Y) is therefore
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F F F F F F F F Fy, - F
F ' “>F F ' “F F “F
tF F F F

where the two underlined summands are generated by respectively (14+7)Ux
and (1+7)y.
The Pin(2)-monopole Floer homology HS.(Y) is then

- F Ty - F F - F Fp - F

where the solid arrows denote the (Q and V' actions. From this description,
and the fact that the Gysin exact sequence is the long exact sequence
induced by the short exact sequence of chain complexes (6), one can
determine the non-trivial Massey products. Let us spell out a specific
example. Denote the underlined class in HS «(Y) by z. It is represented by
either (1+ 7)Ux or (1+ 3)y. The Massey product (z, Q?, Q) is by Theorem
2.2 a class mapping via ¢, to the class in ﬁ]\\/l.(Y) of either (1 + 7)U?x
or (14 7)Uy. Each of these generates one of the F summands in degree
7. Of course, once we quotient by the image of @), they are identified, as
their sum is the image of the class in degree 8. Even though involving a
different definition, the Massey product (z, Q, Q?) also consists of the same
two classes, which are again identified under the image of Q2. Finally, we
leave to the reader to identify the dotted arrow with a Massey product of
the form (-, Q, Q?).

4. Some homological algebra over R

In this section, we discuss some homological algebra relevant in the descrip-
tion of the E?-page of our spectral sequence

Tor;’ik(M7 N)

for a pair of graded R-modules M and N. Recall from Section 1 that Torz*
arises in our setting naturally as the homology of the tensor product of M
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with the bar resolution of N. While the latter object has nice formal prop-
erties, it is quite unmanageable for actual explicit computations. As the
computation of Torf* is independent of the choice of projective resolution,
we first discuss how to compute a particularly nice projective resolution
of N, called minimal free resolution. As the name suggests, this will be
very efficient in terms of size. On the other hand, when discussing higher
differentials we will need to represent classes in E? as elements of the bar
complex, and the second part of the section will be devoted to translating
back in this language the construction using minimal resolutions.

While there is in general no satisfactory classification of finitely gener-
ated modules over R, the theory of their resolutions is quite well under-
stood, see for example [8] and [33] for a more general and detailed treat-
ment. The ring R is local with maximal ideal m generated by @ and V.
Given a graded module L, we will denote by L the F-vector space L/mL.
We say that a graded R-module homomorphism w : L — L’ is minimal if

e 1w is surjective;
o ker(u) C mL.

This is equivalent (by Nakayama’s lemma) to requiring that the induced
map @ : L — L' is an isomorphism. A graded minimal free resolution of a
graded R-module N is a graded resolution of the form

d d d
N = R™ = R™ = R™ ¢— -

where d; : R™ — ker(d;—;) C R™-! is minimal for each i. Here we omit
from the notation the grading shift of each R component. The main result
from [8] is the following.

Theorem 4.1. FEvery finitely generated R-module N admits a graded mini-
mal free resolution. Any two minimal free resolutions are (non-canonically)
isomorphic. Furthermore, minimal free resolutions are two-periodic for i > 3
(up to grading shift), and we have therefore we have the isomorphism

Torﬁz,k_s(M, N) = Torfk(M, N)
fori>2.

For our purposes, the existence statement is the most important, and
we now quickly review the explicit construction. Notice first that for any
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module finitely generated moduleM, there is a minimal map u : R"™ — M.
This can be constructed by choosing a basis {¢;}, i =1,...,n of M over F.
Lifting these elements to e; € M provides a minimal

uw:R" = M.

Given now an R-module N, choose a minimal map dy : R™ — N.
Inductively, we can choose a minimal map d; : R™ — ker(d;_1), and these
form a minimal resolution.

Let us comment about the rest of the statement. The two-periodicity of
the minimal free resolution is a general consequence of the fact that we are
considering the coordinate ring of a hypersurface, namely the zero set of the
polynomial (Q3) C F[[Q, V]], see [8] (notice that while several results in the
paper do not hold for finite fields, the results about two-periodic resolutions
in Section 5 and 6 hold). Furthermore, the dimension n; is independent of
1 > 3. Therefore, to each module N we can associate a matrix factorization

FI[Q, V]" === F[[Q,V]]"

where A and B are the n x n matrices corresponding to do; and dg;41 for
i > 0, respectively. These have the property that AB = BA = Q3 - I.

Given this general discussion, let us provide some concrete examples in
which we describe the minimal free resolution.

Example 4.2. The trivial R-module F (thought of in degree zero) has a
projective resolution

FERARGRERIRE RGR A ..

where, in matrix notation, d; = [V @], and for ¢ > 0 we have

Q 0 e
if 7 is even
Vo Q2
d; )
@ if 7 is odd.
Vo Q

This is clearly two-periodic for i > 2.

Example 4.3. Consider the graded R-module
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F .
S

This has the minimal free resolution

d d d d
N&ERVERVERVE R — -

where
Q 0 0 O
di=|V @ Q 0
0O 0 V Q2
and for 7 > 1 we have
Q> 0 0 O Q@ 0 0 0
L_|vVe oo V@ 0 0
710 0 @ of " lo 0o @ o
0 0 V Q 0 0 V Q2

Example 4.4. Consider the graded R-module

F F_F_TF

~ T~

S
This has the minimal free resolution

d d d d
N&ERPERPERE R — -

2.0
= [% QQ]

where

and for 7 > 1

20 0
A e

Example 4.5. Consider the module

T
F_F - - F

This has the minimal free resolution

d d d d
N&ERERE R E R — -
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where
dy=1[V? QV @

and for 7 > 1 we have

QO 0 0 02 0 0
dyy = |V Q 0 doiv1= |QV Q% 0
0V Q V2 oQV Q2

We now discuss how to represent classes in Tor?:* (M, N) in terms of the
bar resolution. Let us start with the simplest case of Torf* (F,F), which is
well-studied in light of the classical Eilenberg-Moore spectral sequence in
algebraic topology (see for example [30]). In this case, recall that for graded
algebras A and B over F there is an isomorphism of graded bimodules

Torf?B(IF,F) = Torf*(F,F) ® Torf*(IF,]F)

which is indeed also an isomorphism of coalgebras. Denoting the bar
resolution by B, this is induced by the map

B(A)® B(B) 24 B(A® B).

The map EZ is the shuffle map appearing in the proof of the Eilenberg-
Zilber theorem, namely

EZ((a1] - lap) @ (bal---10)) = D ol leotpra

(p,q)—shuffle o
where
api) ®1if 1 <o(i) <p
Co(i) = . .
D W @by ifp+1<o(i) <pta
and a (p, q)-shuffle is a permutation o of {1,...,p+ ¢} such that
o(l)<o(2)<---<op—1) <o(p)
olp+1) <o(p+2)<---<olp+q-1)<olp+q).

The computation in our case is quite simple:

Toer*(IF, F) = Torffiv]] (F,F) ® TOI“I:[S]/Q3 (F,F).

The group Tor"V(F, F) is non zero only in bidegrees (0,0) and (1, —4)
(generated by the empty product [| and V respectively), while TorF1@l/@° (F,F)
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is non zero in degrees (2i,—3i) and (2i +1,—3i — 1) for i > 0. If we define
the n-tuple

0, = (Q,0%,Q,--,Q,Q%Q) ifnisodd,
" <Q27Q7Q27 e 7Q7Q2;Q) if n 1S evel,

then the generator of Tor"1Q)/@° (F,TF) in homological degree n is represented

by @,. Putting these pieces together, we see that Torf’* (F,F) is a copy of
F in the cases in which (4, ) is

* (0,0);
e (2n,—3n) and (2n,—3n — 2) for n > 0;
e 2n+1,-3n—1)and (2n+1,-3n —4) for n > 0.

The generators of Torl%* (F,F) can then be described explicitly in terms of
the shuffle map. Given an ordered n-tuple (as,...,a,) and an element b in
R, we define their shuffle as

sh((ay,...,a,),b) = ZC“" - ailblaitt] - an € RO,
=0

The representatives of the classes described above are given respectively by
e [
b Q2n and Sh(QQn—h V)a

e Q2,41 and sh(Qa,, V).

The following picture represents the groups for i < 7, where the top left
element has bigrading (0,0). It should make apparent the two-periodicity
of the Tor?j* (F,F).
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F

For general Torl%*(M , V), we can adapt this approach involving shuffle
maps by taking into account a minimal resolution of one of the two modules.
Consider the minimal free resolution

N<d_ORTL1 <d_1Rn2<d_2R”3<d_3Rn4<_...’
so that Torz*(M , V) is the homology of the chain complex
M O e Tz ppng Ly @ds yna

obtained by tensoring over R with M. Our goal is to define a canonical
quasi-isomorphism {¢;} between the minimal free resolution

R <d_1Rn2£Rn3<d_3’R"4%...
and the bar resolution
RINCLRIRINCZRIRIRAIN & ...

Of course, the map
Pp1: R =>RON

is given by
x 1 ®dp(x).

Suppose now inductively that we are given

;i R" — R*® N.
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We have d;;1(ej) = > rjke), where e; and e are the standard bases of
R™+1 and R™ respectively. We then define
Yit1 : R+ — RN
ej = > 1@ (rj- pi(e})).
This is readily checked to be a chain map, and as the complexes are acyclic

in degrees > 1 it is a quasi-isomorphism. Using this quasi-isomorphism,
one can describe elements in Tor”, in terms of a minimal free resolution

of N. Indeed, if m = (m;) € M is in the kernel of 1); ® dg_1, then it
corresponds to the cycle

Let us discuss this rather abstract construction in a very concrete example.

Example 4.6. Let us generalize the description of Torf* (F,F) in terms of
shuffles to Torf* (M,T), for any R-module M. We computed above that
the minimal free resolution of F is given by

d d d d d
F& RE-R2EREE RS

and using the description above one can write explicit representatives for
all the cycles in Torz*(M ,IF) as follows. Let us denote by z the generator
of F. For n > 1, every element of Tors*(M ,F) has a representative of the
form

X|sh(@n-1,V)|z +y|Qnlz

where d,,—1(x,y) = 0. For example:

e cvery element in Torf* (M,T) has a representative of the form
x|V0z+y|Q|z

with Vx + Qy = 0, and such an element is zero if and only if x = Qa
and y = Va+ @%b for some a, b;

e every element in Tor;?*(]\/[ ,IF) is represented by

a|Q|V|z + a|V|Ql|z + a|Q?|Q|z

where Qa = 0 and Va + Q@?b = 0, and such an element is zero if and
only if a = Q?x and b = Vx + Qy for some x,y;
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e every element in Tor;f* (M,T) is represented by

x|Q*|Q[V]z +x|Q*|V|Qlz + x|V]Q*|Qlz + y|QIQ*|Qlz,

with Q?x = Vx + Qy = 0, and such an element is zero if and only if
x = Qa and y = Va + @%b for some a, b.

The description then can be generalized to n > 4 in a two-periodic fashion.

5. Connected sums with manifolds of simple type

In this section we study the effect on Floer homology of the connected sum
with a manifold of simple type M, or its opposite —M,,, see Definition
3.1. Of course, if we are interested only in the information related to
homology cobordism contained in I;R\S'., we do not need to consider the
additional summand J in Definition 3.1. We know from the previous
section the general recipe to compute the E? page of the Eilenberg-Moore
spectral sequence, and the goal of this section is to understand higher
differentials and extensions. There are several different cases to discuss, and
our treatment will combine general results with explicit examples. Before
dwelling in our main cases of interest, let us discuss a warm up example.

Example 5.1. Suppose we have an R-module decomposition s oY) =
M @ TF without non-trivial Massey products among the two summands. We
want to understand the contribution to I?L\S'.(Y#Y) of Torf* (F,F). The
latter was described in detail in Section 4. As dy has bidegree (—2,1), we
see that the only possible non-trivial dy differentials are from an F summand
in bidegree (2n, —3n) to a F summand in bidegree (2n—2, —3n+1) for n > 2.
On the other hand, the former is generated by

Q2 = Q°Q| - |Q%|Q,

and we have that dy(Q2,) = 0. This is a direct consequence of the
description of ds in Lemma 1.4 and the fact that

(Q,Q%,Q) =(@Q%,0Q.Q% =0,

which follows from Theorem 2.2 (see also Example 1.8). Regarding ds,
the natural generalization of Lemma 1.4 describes it in terms of four-fold
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Massey products; and the products (Q,Q? Q, Q% = (Q%,Q,Q% Q) =V
implies that we have the differentials

d3(Qi) = sh(Qi—4,V)

for i > 5. Graphically, we see the differentials

F
F
F
F . F
F\\. \\IF
I\F\;;h-IF
Foeo
\\. OF
F~----F

repeating in a two-periodic fashion. This implies that the spectral sequence
collapses at the E* page, and (as there is no space for extensions), the
final R-module is a copy of F? in degrees 0 and —1, corresponding to the
underlined F-summands.

Connected sum with Ms,. We observe that the R-module My, has a very
nice 2-step graded minimal free resolution
Moy, <2 R(4k — 1) & R <2 R(-1)
where dy sends, in the notation introduced in Section 3,

(1,0) = qu*
(0,1) —» 1

and d; is given in matrix notation by the matrix

[
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In particular, the E2-page of the Eilenberg-Moore spectral sequence for the
connected sum Y # Moy, is supported on the first two columns; this implies
that there are no higher differentials, so that £ = E?, and all we need to
understand is the extension problem. Recall furthermore that

TOI"Z)Q,*(E*\SV-(Y)’ Moy) = I?S-(Y) Qr May,

and, by the discussion in the previous section, Torf*(}/[:g. (Y), M) is in
bijection with elements x € ker(d;) = kerV* Nker@ via the assignment

x — x|V qv™* + x|Q|1.

Hence, we need to understand the action of R on such an element. We
have the following.

Proposition 5.2. In the setup above, we have the identity
Q- (x|VEqu™* +x|QI1) = (Q,x, VF)|qv™" € EgS.
If Vx # 0, we have
V- (x|VEquTF +x|Q[1) = Vx|VFIgu™" + Vx|Q|1 € ETS.
while if Vx = 0 we have
V- (x|[VEquTF +x|QI1) = (V,x,Q)|1 € EZ..

This implies that the R-module structure of Y# My, is determined
entirely by the triple Massey products of the form (Q,x,V*), which we
have described in Theorem 2.2 in terms of the Gysin exact triangle. Let us
discuss a simple example (see also Section 6 for more examples).

Example 5.3. Let us compute the homology of —Ms# M, using the result
above. The E? page is computed to be, graphically,

F F - . F, F . F F F
F . F_ . - -SF i
’V\/

Foooroo R

F
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Above the line, we have depicted TOI'Z)?;*(—M27 My) = (—Ms) @r My. The

2 and v|1, consists of based

~2 and ¢?|quv?;

first row, which is generated over R by v|qv~
elements. The first two elements in the second row are z|qv
we have depicted with a dotted arrow the Massey product relating them
(whose existence follows from Lemma 3.8). The solid arrows represent the
non obvious R-actions. Under the line, we represented Tor?’*(—Mg, My),
which, by the lemma above, corresponds to kerV* NkerQ = {z}. It is
represented by the element z|V?|qv=2 + z|Q|1, and its image under the
action of () is

Q- (2[V?|qv> +2|Q[1) = (Q,2,V?)|qv? = v*|qu? = v|qu ™",
as depicted by the dashed arrow. To sum up, the final result is

F F - F F F .- F F F

F - _F_ . . \F o)
F >

and in particular « = 8 =2, v = 0.
In fact, we have the following more general observation.

Corollary 5.4. The Manolescu correction terms of Y# My are determined
the R-module structure of HSo(—Y).

In fact, the proof of the corollary implies that one can in principle write a
(not particularly illuminating) formula for the correction terms of Y # M}, in
terms of the R-module structure of HS «(—Y). This is again a manifestation
of the fact that one can use Poincaré duality and the long exact sequence
(2) to relate HSo(Y) and HS,(—Y), see Lemma 2.7.

Proof. We need to interpret the statement:
(a) there exists x € HS,,(Y) for which y = (Q,x, V*) # 0 is based

purely in terms of the R-module structure of I-/ITS”.(—Y). Let us point out
first that, as y is defined up to the image of @ and V*, this implies that
there are no based element such that its image under @ or V¥ is in the
same grading as y. Now of course p,(x) = 0, so we have x = j,(x) for
x' € Ii/?.(Y). If both @Qx’ = V*x’ = 0, then we would have by naturality
of Massey products

y = <Q3X’ Vk> = <Q7j*(x/)vvk> = j*(<QaX/)Vk>)v
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so y would not be based. This implies that one of the two products is non-
zero, and in fact by exactness of the Gysin sequence it a non-zero element
in a tower. In fact, up to adding to x’ the element in the tower in its same
degree, we have shown that (a) implies the following

(b) there exists x’ in ﬁgm(Y) such that V*x’ = 0 and Qx’ belongs to the

tower.

In fact, it is easy to show that the reverse implication also holds. As this
condition might seem slightly obscure, let us point out a simple instance of
it. Suppose I?S'.(Y) contains x with y = (@,x,V) # 0 is @ - V-based. We
represent this schematically as

F Fu--f---- > Fy

F |

F

F F,
F

Here, the left part of the diagram represents I?\[;/S’.(Y), the right part
of the diagram represents I;,\S.(Y), and the dashed arrow is the map
j«. The underlined elements represent respectively the tower and the
based elements, and the dashed arrow represents the Massey product
y = (Q,x,V). From the picture it should be clear that the fact that Vx' =0
but @x’ is a non-zero element in the tower is a non-trivial constraint on
the R-module structure of HS «(Y); this is because element in the tower in
the same degree is acted on non-trivially by V.

Finally, using that I;,/S"(Y) = HS_,_,(~Y) is the dual R-module of
IE‘.(Y), condition (b) can be rephrased purely in terms of the R-module
structure of HS.(—Y). For example, in the concrete example above
this corresponds to the following: there exists an Q?V-based element in
HS_1_,,(~Y) which is in the image of V but not in the image of Q. O

The key computations behind Proposition 5.2 are the following two
general lemmas.

Lemma 5.5. Suppose xr = xs =tx =0 and ry + sz = 0, and consider the
element x|r|y + x|s|z € Torz_‘:*. If it survives in the E*°-page, multiplication
by t sends it to (t,x,r)|y + (r,x, s)|z.
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Proof. Suppose we have fixed cycles representing the homology classes
X,¥,%, 7,8, which we denote with the same letter. Choose chains a,b,c
such that

da=xr, 0b=xs, OJdc=ry+ sz, OJ0d=tx.

Then
x|rly + x|s|z + aly + b|z + x|c

is a cycle in the A..-tensor product whose image in the E?-page is the class
x|r|ly + x|s|z. By definition, the action of ¢ on it is given by the cycle

tx|r|y + tx|s|z + taly + tb|z + tx|c + ms(t|x|r)|y + s (t|x]s)|z.
Now, we have the identities

A(d|rly + d|s|z) = tx|r|y + tx|s|z + dr|y + d|ry + ds|z + d|sz
d(d|c) = tx|c+ d|ry + d|sz

so that summing all the three equations we see that a representative of the
action by ¢ is

(ta + dr + ms(t|x|r))|y + (tb + ds + ms(t|x|s))|z,
hence the result. O
The second lemma is the following.

Lemma 5.6. Suppose that rx = 0. Then (r,x,r) = 0.

The proof of this lemma is a special case of a more general result
involving generalized Massey products that arise when studying higher
differentials of elements which are not represented by simple tensors (see
Lemma 1.4 and the following discussion). The simplest case is the following.
Consider classes x and r,s with xr = xs = 0, where we do not assume
rs = (0. Choose chains a, b, ¢ such that

OJa=xr, O0b=xs, OJc=rs-+ sr.
Then the following expression
as + br + xc + mz(x|s|r) + ms(x|r|s) (14)

is a cycle, and we define its homology class to be the generalized Massey
product (x|r,s). We then have the following.
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Lemma 5.7. Given classes x,r and s as above, we have (x|r,s) = (r,x,s).

For example, for — M the identity

(#|Q,V) =(Q,2,V) = ¢*
holds, see Lemma 3.8.

Proof. Let us first spell out some details implicit in the construction of the
Aoo-bimodule structure in [22]. Suppose the family of metrics and pertur-
bations has been chosen so that the A,-module structure {m,} is defined
(this takes as input an embedded ball in Y'). The A,.-bimodule structure
takes as input a second embedded ball, disjoint from the first. Then, by
suitably pulling back via a family of isotopies (as in the construction of [22])
the metric used to define {m,, } for our new data (defined by the second em-
bedded ball), we see that we can assume that our multiplication safisfies
1g.1(d|y) = 112(y|d) for all choices of d € C3(S®) and y € C{(Y). Notice
that this does not imply that the multiplication ps on C’Z(S3) is commuta-
tive at the chain level (rather than just commutative up to homotopy), as
the data on S® has been fixed a priori. The implication for our purposes is
that, once this choice of data is made, we have that (r,x, s) is represented
by
as + rb+ mg(r[x|s),

where we are using the notation introduced above. To show that this cycle
is cobordant to the one in Equation (14), let us consider a family of metrics
and perturbations on the manifold with cylindrical ends

(I x Y\ (intD* ITintD*))"

parametrized by a hexagon as in Figure 2, and consider the chain obtained
by taking fibered products on the incoming end with x,» and s. We
provide a sketchy description of the metrics and perturbations involved
- the details of the construction are very similar to those in [22]. The
thick edges of the hexagon H correspond to stretching along the three pairs
of hypersurfaces on the right of the figure, and taking fibered products
one obtains the chains ms(x|r|s), ms(x|s|r) and 7o 2(r|x|s) respectively.
The top thin edge corresponds to a metric in which the top hypersurface
is streched to infinity, and we perform a chain homotopy realizing the
commutativity of u on C3(S3); the corresponding chain is ¢. The bottom
thin lines correspond to a chain homotopy between 1y ; and m; 2 with one
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of the diagonal hypersurfaces stretched to infinity; as discussed above we
can choose such a chain homotopy to be induced by an isotopy of metrics,
so that the chains in consideration will just be I x (xr)s and I x (xs)r,
hence they are zero in our chain complex (as they are small, see Section
1). The boundary of the hexagon can be filled with a family of metrics and
perturbations of the manifold with cylindrical ends, as the corresponding
space is contractible; taking the fibered product with the moduli spaces
parametrized by H, we obtain a chain whose boundary (from the discussion
above) is ms(x|r|s) +ms(x|s|r) +1me2(r|x|s) +xc and the result follows. O

Figure 2. On the left, the hexagon #H parametrizing the family of metrics and
perturbations, where we have denoted the strata corresponding to each corner. On
the right, we have depicted three hypersurfaces in a doubly punctured I x Y; the top
one is a copy of $% while the diagonal ones are copy of Y. Each pair determines a
one parameter family of metrics and perturbations defining higher compositions 73
or mg 2.

Proof of Proposition 5.2. Given the lemmas above, Proposition 5.2 follows
immediately, with the additional observation for the last point that when
Vx = 0, x|V¥|qu™" +x|Q|1 is also represented by x|V |qv~! +x|Q|1, as they
differ by the boundary of x|V|V*~1|qu~F. O

Connected sums with —Ms,. We now discuss the effect of connected
sums with manifolds of type —Msy, i.e. manifolds obtained by manifolds
of type My by reversing the orientation (see Section 3). Of course, the
correction terms of Y# — My, are determined by the correction terms of
—(Y# — M) = =Y # Moy, so that Corollary 5.4 implies in turn that they
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are determined entirely by the module structure of s, (Y). We will explain
this fact by a direct inspection of the Eilenberg-Moore spectral sequence.

For simplicity, we will start with the case &k = 1, in which case —Ms =
F @ N, as R-modules. A convenient projective resolution for the trivial
module F was defined in Section 4. The module N also admits a simple
two-periodic projective resolution

N RORARORE ROR P ROR ...

where, in matrix notation, for i > 0 we have

Q 0 e
if 7 is even
Vo Q2
d; = 2 |
@ if 7 is odd.
\%4

Here dy sends (1,0) to v and (0,1) to ¢°.
As usual Toer* (M,N3) = M ®r Ny. Then the general description of

R
T,%)

generators of Tor;",, as given in Section 4, specializes to our case as follows.

Define
0, = (Q%,Q,--,Q,Q% ifnisodd
" (Q,Q% - ,0Q,Q% ifnis even.

Lemma 5.8. Let n > 1. Then every element of TorZL%*(M, N3) has a
representative of the form

X‘th} + X|Sh(Qn—17 V)‘q2 + Y|Qn|q2

where d,,(x,y) = 0.

The elements in Torf’*(M ,IF) were described in detail in Example 4.6.
Consider first an element in Tor;%*, which has the form

a = alQ|Vl]z + a|V|Q|z + b|Q2|Q|z

where Qa = 0 and Va + @?b = 0. Such an element is zero if and only
if a = Q*x and b = Vx + Qy. Given elements a,b satisfying Qa = 0
and Va+ Q?b = 0, we can define their generalized triple Massey product
¢(a, b) in the same way as Equation (14). More explicitly, suppose we have
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chosen chain representatives, and choose chains r, s such that 0r = Qa and
s = Va + Q?b. Then ¢(a,b) is the class of

Vi + Qs +1n3(Q[Vla) + 3 (V|Qla) + 115(Q|Q[b).

To see that this is a cycle, recall that the product of Q and Q? is zero at
the chain level. Then the differential on the E?-page is identified with

da() = ¢(a,b)|z + a|((Q, V|z)) + b[(Q*, Q, 2)
= ¢(a,b)|z + ajv + blg’.

where in the last row we used Lemmas 3.8 and 5.7. This easily generalizes
to the case of elements in Tory, with n even. Specializing the discussion

T, *

of Section 4, a general element is of the form
a = alsh(Qn-1,V)|z+ b|Qy|z

where Qa = 0 and Va + @b = 0, and such an element is zero if and only
if a= @Q?x and b = Vx + Qy. Its differential is then given by

d2(04) = <aa Qa Q2>|Sh(Qn—37 V)|Z + ¢(a> b)|Qn—2|Z+
+a|Qn-2v+ alsh(Qn-3,V)|¢* + b|Qn_2|¢? (15)

The key observation to have in mind is that this differential naturally de-
composes in two parts: the one in the first row, which defines an element
in Toranz,* (M, N3). In
fact, the latter is the element corresponding to the pair (a,b) from Lemma
5.8.

(M,TF), and the one in the second row in Torf,h

An analogous description holds to the odd case too (provided of course
that n > 3). For the sake of clarity, we first write down explicitly the case
of Tor?f*(M ,F). An element in this group has the form

B =x|Q*QV|z + x|Q*|V|Qlz + x|V|Q*|Qlz + y|Q|Q*|Ql=

where Q?x = 0 and Vx + Qy = 0. Such an element is zero if and only
if x = Qa and y = Va + @?b. To a pair x,y like this we can assign
a generalized triple Massey product as in Equation (14). We then have
(using again the computation in Lemma 3.8)

d2(B) = (x,Q* Q)|Vl|z + ¥ (x,y)IQlz + x|Q*v + x|V|¢* + y[Ql¢*.
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In the general case for n odd, we have that the general element of
Torz*(M, F) is
B = X|Sh(Qn71’V)‘Z +Y‘Qn|za

where x and y are as above. We then have

d2(B) = (x,Q% Q)sh(Qn—s,V)|z + ¥ (x,y)|Qn_2|z+
+X|Qn72|v+X|Sh(Qn73vv)|q2 +Y|Qn72|q2- (16)

Again, the first row is an element in Torf_Q’*(M ,IF), and the second row is

the element in T01“§727>|F(M7 N3) corresponding to the pair (x,y).

With this discussion in hand, we are ready to prove the following.

Proposition 5.9. The FEilenberg-Moore spectral sequence for the connected
sum with —M> collapses at the E3-page. Furthermore, EX. =0 fori>2, and
all elements in ETS, have the form x|V|z+y|Q|z for pairs X,y of elements in
M such that Vx + Qy = 0. The action of V and Q on such an element are
given respectively by x|v and y|q?.

From this, it is clear as mentioned in the introduction that the correction
terms of Y# — M, are determined entirely by the module structure of Y.

Proof. Set M = I?L\S'.(Y). Let us consider first the part in degree 2n of the
E2%-page, i.e.

Torl, , (M, —M,) = Tor}, (M, Ny) & Torl, , (M, F).

For n > 1, both summands can be identified with
Q* 0] ,. [@ O
W:ker[v 0 /im Vo2

where we think the matrices as acting on M?2. Because of two periodicity,
the part in even grading of the (E?, d3) page can be rewritten as the complex

B wew BwWew BwWeW B .. Bwew B waew.

When thought of as a 2-by-2 matrix, dy is upper triangular, and by (15)
above we see that it has to be of the form

A Idw
dg—[o B].
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Imposing d3 = 0 we also obtain A? =0 and A = B, so that

A Idw
dz—[o A].

We want to show that ds is exact. Suppose da(x,y) = 0. Hence, Ax =y

and Ay = 0. Then
A Idw| [0]  [x
wo0=[5 L] =[]

and the result follows.
The analogous argument holds for the odd part, as for each n > 1

Tor;%’1,+l,*<M7 —Ms,) = Tor;anﬂ,*(Mv No) @ Tor;%z+l,*(F7F>'

each of the summands on the right can be identified with

vowlf Gmlt S

Vo Q? V o Q
and do has an analogous shape, see equation (16). Finally, the R-module
structure can be easily computed using Lemma 3.8 and 5.5. g

The general case of My, can be derived with few modifications, so
that the analogue of Proposition 5.9 also holds. Let us discuss the key
modifications involved. Recall that as R-modules, My, = Noj, @ F[V]/VE.
The module F[V]/V* has minimal free resolution

FV]/VF <2 R RoRE ReR P ROR ...

where in matrix notation

dy = [Vk Q] ’
and for 7 > 2 we have
Q 0 s
o if 7 is even
d; = -
@ if 7 is odd,
Vk

while Ny, has minimal projective resolution

Ny X ReREROREZERORE ROR ...
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where for ¢ > 1 we have

Q 0 e
L ) if 7 is even
d; = Vi@
v 2
0
gk if 7 is odd.

Here dj sends (1,0) to v™ and (0,1) to ¢2. The result then follows from the
identities from Section 3, (V" z, Q) = v™ and (z,Q, Q?) = ¢, in the same
way as for —Ms.

The odd case. We have seen in the previous section that connected sums
with manifolds of type My, are rather simple to understand. We will
discuss the case in which n = 2k + 1 is odd. Let us first discuss a suitable
minimal projective resolution.

My <2 RERA RORERIRE RORE ...

where )
0
VkQ—H Q2vk ifi =1
[ 0
d; = @ ifiisodd >3

voQ

Q? 0 s

if 7 is even
LV Q

and dy maps (1,0) to v and (0,1) to qu=*. The computation of the E?
page, from the general description of Section 4, is the following.

Lemma 5.10. Let m be odd. generators of Torﬁ’*(M, M) have representa-
tives of the form

X|Qm|v + XSh(Qm—la V)lq + Y|C~2m|q-

where Qx = Vx + Q% = 0. Let m be even. Then the generators of
Tor, «(M, N1) have representatives of the form

X|Qm|v + x|sh(Qmm_1, V)|g + ¥|Qmlg

where Q?°x = Vx+Qy = 0. The description of Torz*(M, Moy11) in the case
k > 1 is analogous.
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The description of the E°° page is not as straightforward as in the even
case. While the differential on E? can be described as in the even case in
terms of certain generalized Massey products, the spectral sequence does
not collapse at the E3-page in general. On the other hand, because the
relation

<sz7 szj, ka’ Q2vl> — Vl+i+j+k+l
holds, it can be shown that the spectral sequence collapses at the E* page
(see also Example 5.1). Rather than discussing the quite involved general
theory, let us work out in detail a specific example that enlightens the key
aspects of the computation.

Example 5.11. Let us revisit the example of the connected sum M;#M;
discussed in [22] from our new perspective. The E? page of the Eilenberg-
Moore spectral sequence is depicted below. Here, starting from the left
R . with the element on the top left having

the ith column represents Tor;",,
bidegree (0,2). The picture repeats two-periodically to the right as in

Example 5.1.
F~
. F
F
F  ofF
F F
F. - F
F T
F F - F
F

The first column in Torz)%* is generated by the based elements

qlg, qlv, vlv,

while the additional summand @F is generated by ¢|v + v|q. The elements
of the higher Tor;’?* groups can be described thanks to Lemma 5.10. In
particular, the generators of the top summand of each of the first three
columns are given by

qdQ%le, QqlQIQ%|g, qlQ*|QIQ%q.
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The differential ds (described in Lemma 1.4) vanishes thanks to our de-
scription of the Massey products (-,Q?,Q) and (-,Q,Q?) in Theorem 2.2.
On the other hand, the differential ds is non-trivial. In the picture, the top
dotted arrows represents

d3(q|Q%Q1Q%q) = (¢, Q% Q, Q%)|q + ¢l{Q% Q,Q% ) = v|q + qlv

where the Massey product (g, Q%, Q, Q%) = v is computed as in Remark 2.4.
Similarly, the other two dotted arrows represent

d3(Qq|QIQ*QIQ%|q) = v|Q%q + Qq|V]q + Qq|Qv
d3(q|Q%|Q1Q%|Q|Q%|q) = v|Q|Q%|a + q|V|Q?%|q + q|Q*|V|q + ¢|Q*|Q|v,

and in general the whole two-periodic tail cancels out in this fashion as
in Example 5.1. This implies that of the Torf* for ¢ > 1 only the two
underlined summands survive to the E* page. There is only one non
trivial extension, namely

Q- (Qq|QIQ%q) = vlg,

which can be again computed thanks to Theorem 2.2. The final result is
therefore graphically depicted as

so that « =2 and g =~y =0.

Example 5.12. Consider the connected sum of two manifolds of simple
type Msz. The computation of the E? page is showed below. The group
TOTZ)%* is as usual the tensor product M3 ®p% Ms; the first column consists
of based elements and is generated over R by

q tqu™, que, o

lying in degrees respectively —10, —3 and 4, while the summands ®F are

1

unbased and are represented by qv~!|v + v|gv~! and its image under V
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respectively. Again there is a two-periodic infinite tail as in the case of
Torf* (F,F); its top generator in each of the first three columns is given
respectively by

qQ°Vigv™, QqlQIQ*V|gv™", ¢Q*|Q|Q*VI|qv!.

The main difference in this case is the presence of the extra summand F,
which is represented by qu~!|Q*V|qu~!, and corresponds to

(0,qu™") € ker [Q 0 } )

V2 Qv
F
. [E‘»
F
F
. F
P
F oF
F~
. F )
F
F &F <
F F
Fr F
F F <
F F
F F F
F

From this description, we readily recover the E°°-page as in Example
5.11. In particular EZO‘; vanishes for i > 3, and of Tor™ , i > 1, only the

v,k

underlined summands survive. The only non-trivial extension is given as
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in Example 5.11 by
Q- (QqlQIQ*V|gv™") = v?[qv~" = vlq

The Floer homology of Ms# M3 then looks like the following:

Therefore, « =6, § =2 and v = 0.

Remark 5.13. Recall that for the usual monopole Floer homology we have
that

HM o (Yo#Y1,s0#s1) = Tor, U (HM 4 (Yo, 50), HM o(Y1,51))(1),
see [22]. Hence the usual monopole Floer homology of Ms# Mj is given by
(FlU] & F[U]/U°(5) & F[U]/U*(10)) & (F[U]/U(5))**.

The first summand is related via the Gysin exact triangle to the first two
rows of our final result, while the second summand to the third row. This
last computation implies the existence of some Massey products relating
the three F summands in the third row of I;L\S'..

6. Connected sums with more summands

In this final section we discuss the proof of Theorems 1 and 2; the key point
behind them is to understand connected sums involving multiple manifolds
of simple type (possibly with both orientations). Let us begin by discussing
the correction terms of connected sums with a given orientation.

Proposition 6.1. Consider for ny > no > ng > 1 a connected sum of the
form

Y=Yi+Ys+Yi
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where Y; has simple type M,,.. Then, if Y n; is even, we have yv(Y) =0 and

(n1 + na,ny), if n1,na are both even
(n1 +ng —1,n1 — 1) if ny is odd and ng is even
(a(Y),B(Y)) =

(n1 +n2 —1,n1) if ny is even and ny is odd

(n1 + na,ny — 1) if n1,n2 are both odd

In other words, o and B are the largest even numbers smaller or equal than
ny and ny + ng respectively. Similarly, if > n; is odd, we have y(Y) =1 and
a and B are the largest odd numbers smaller than ni +ny and ny respectively.

Proof. This can be computed inductively in the number of summands, using
the description of connected sums with manifolds of simple type discussed
in Section 5. Let us start by considering the Floer homology of a connected
sum Moy, # Moy, for k1 > ko. Recall that we have the identification

Torg, (M, Msy,,) = M3y, @r Mg,
The latter can be written as a direct sum of two R-modules, one of which
is

F[V] @ F[V]{4k; — 1) @ F[[V]](4(k1 + ko) — 2)

SFV]/VRHR Ak + ko) — 3) @ F[V]/VF2 (A(ky + k2) — 4) (17)
where the action of @ is not trivial from one summand to the one next to
it on the right when there are two F summands that differ in degree by
one, and the other is F[V]/V*2(4ky — 1). The group Torﬁ is isomorphic

to F[V]/V*2(4ky — 4). In the case where k; = 2 and k = 1, Tor, can be
graphically described as follows:

F . . F F . - F F . Fpb, F F

\’]F F \\’IF \\’IF

Here the first three rows represent Torz)%* (the first two rows being the
summand in equation (17)) while the forth row represents Tor?,*. For
clarity, we have only depicted the R-actions between elements of different
rows. There are no trivial R-extensions, so that

a(Ykl#Ykz) =2k + 2]{)2, B(Ykl #Yk2) = 2k1, ’y(Ykl #YkQ) =0,
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The general case of a connected sum with all even summands now follows
from this basic computation inductively by taking sums in decreasing order.
Notice that there are no non-trivial Massey products of the form (V*3 x, Q)
in the Floer homology of the connected sum. This implies that when taking
a connected sum with Ya,, again only Torzf* has to be taken account
when computing correction terms. From here, a simple computation of
the effect of tensoring with My, implies the claim; in particular, under the
assumption ki > ko > k3, the correction terms of the result are not affected.
Finally, the general case in which also odd summands are involved, the
strategy is the same and the only complication is that one should also keep
track of some non-trivial extensions as in Example 5.12. g

With this computation in mind, we can now prove Theorem 1.

Proof of Theorem 1. As in the proof of the analogous result in [34], we
need to show that a unique factorization property holds. Suppose we have
a relation in the homology cobordism group of the form

Yo, ]+ Yol = Yo + - [V

where ny > -+ > ny and my > --- > my where [Y,,,] and [Y;,.] have simple

J

type M,, and M,,; respectively. Then we also have a relation of the form
Yo, |+ Yo ] + ] = [V, ]+ [V, ] + [Y3]

where Y; has simple type M;, and the sum of the indices has changed
parity. Comparing this with the computation of the correction terms in
Proposition 6.1, we conclude that n; = my, and the conclusion follows by
induction. O

Before proving Theorem 2, let us discuss some examples of connected
sums where manifolds with both orientations appear.

Example 6.2. Consider M = M;# M, whose relevant part of the homol-
ogy was computed in Example 5.11 to be

Let us consider the dual —(M;#M;), which has Floer homology depicted
as
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Here the dotted line represents the triple Massey product (-, Q, Q?), which
is determined by inspecting the Gysin exact sequence as in Proposition
2.5. Consider now M’ = —(Mi#M;)#M>. Using the description for
connected sums with M, of Section 5, we see that the relevant part of
its Floer homology is given by

F,~ - F_F_F
F ST

where the element in degree 2 is the tensor product of the element of degree
zero in the homology of —(M;#M;) and qu~!. In particular, it comes with
a non trivial Massey product onto the generator in degree 0, as depicted
by the dotted arrow. M and M’ can be distinguished up to homology
cobordism just by looking at Massey products. Of course, in this case we
already know that they cannot be homology cobordant because M; and My
are linearly independent.

Example 6.3. Let us discuss a slightly more involved example, namely
My# — M3# — M3. To compute this we will regroup it as My# — (Ms#Ms).
The relevant part of Ms#Ms was described in Example 5.12, so that by
Poincaré duality (as in the proof of Corollary 5.4) the relevant part of
—(Ms#Ms3) is

r - - - F - - F IF'

Here the elements in the top row are based, while the elements in the bottom
row are not. Denote by x the element in degree zero in the bottow row. We
have highlighted with a dotted line the Massey product (Q,V?x,V) = v3,
which will be needed later. As in the proof of Corollary 5.4, this corresponds
to the non-trivial @-action into the tower in the HS-to Floer homology
of Ms#Ms. When connecting sum with My, Tor& corresponds to the
elements in kerV?NkerQ, i.e. Vx and V?2x. Therefore, they give rise to the
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two elements
Vx|V qv—? + Vx|Q|1, Vx|V qu? + Vx| Q1. (18)

The action of V' sends the first element to the second, and by Proposition
5.2 the second element is mapped via the action of Q to v3|qv=2 € Torz)z,*.
The computation of the module structure of the connected sum is then
readily obtained from that of Torgik7 i.e. the tensor product. The relevant
part of the final result is

F .- F - F - F_ F_F - F_F_F

m

F . F - F .- F

where the underlined F summands correspond to the classes (18) from
Tor&. We have in this case

Again, the relevant Massey products can be inferred from both the tensor
product formula or the Gysin exact triangle with

Fl[U]) @ (F[[U])/U")7 @ (F[[U])/U®)7 @ (F([U])/U?)2
see also Example 3.9.

Going one step forward, we have the following computation.

Proposition 6.4. Consider integers a > b > c¢ > d > 1, and assume that the
inequality a < b+c+d holds. Then the manifoldY = — Moy — Moo — Mog+ Mo,
has

a(Y)=2a-2b
B(Y) =2a—2b—2c
y(Y) =2a—2b—2¢c— 2d,

and of course §(Y) = 0.

Proof. Following the examples above, we start by computing the Floer
homology of Msy, + Ms. + My, whose relevant part is
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F....F..-FF ..-.FF.TF FF
FFF--FFF >FF F F F S F

d copies c copies b copies

Here the first row corresponds to the based elements, the second row is
generated as an R-module by the leftmost element, and we have only
depicted the non-trivial Q-actions from the first row to the second row.
As in the examples above, the relevant part of —Ms, — My, — Moy consists
then of the based part

Fpe oo F - - Fpp F -« FF - Fpre FF --- FFTF

qu
b copies ¢ copies

together with an R-summand (which we will denote by L) of the form

Ff, - F - - FF ---FF.-FFTF ... FFTF

b copies ¢ copies d copies

corresponding to the dual of the bottom row of the picture for May, + Mo, +
Msy. Furthermore, if x is one of the underlined elements, the Massey
product (Q,x, V*) is a V-based element provided k is large enough so that
Vkx = 0 (this again follows as in the proof of Corollary 5.4, and corresponds
via the dualities to the arrows in the picture for My, + Ma. + Msg). More
precisely, if y is the rightmost underlined summand (Q,y, V*) = vbFetk=1
provided k > d + 1.

We now need to compute the connected sum of this with Ms,. The
based elements in Toer* are given by v**¢|1 (which is V-based), qv®|1 and
vPT¢|qu™? (which are @ - V-based) and ¢?|1 and qv°|qu~=* (which are Q - V-
based). As in the previous examples, the extensions on the E*°-page can
only introduce new V-based elements, so we obtain right away the claimed
computations of « and 5. Recall that an element in Torﬁ* has the form

x|V qu™* +x|Q|1

where Vo = @Qx = 0. Furthermore, V* maps it to (V*|x|Q)|1. Now,
exactly the rightmost a — d > 0 underlined summands of L satisfy V%x =
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@x = 0. Denoting by z the one with highest degree (i.e. the (a — d)-th
from the right), we have

Ve (2[Ve o™ +2|Q[1) = v* T,
where we use that a < b+c+d. From this, the computation of v follows. [

Proof of Theorem 2. The construction in the previous proposition provides
us with examples with «, 8 and + even and d = 0 where o > 0 > v and

a_ﬂzﬂ_’%

the last inequality corresponding to the assumption ¢ > d. Given the
formula provided there, it is straightforward to check that for any choice
of a, f and ~ satisfying thes constraints, one can find a, b, ¢, d such — Moy, —
My, — Moy + Ms, has the desired correction terms. The case in which
the reverse inequality @ — 8 < 8 — « holds is obtained by considering the
manifolds with opposite orientation My, + Mo, + Mg — Ms,. The case
in which 6 = 0 and «, 5 and « are odd is treated in the same spirit by
taking sums —M, — My — M, + M>;, with some of the indices e, f, g odd; the
details of the computation are analogous to the even case (and the various
examples in this section) and are left to the reader. Finally, the case of
general 0 is obtained by taking further connected sums with the Poincaré
homology sphere $(2,3,5): as HS4(2(2,3,5)) = R(—3) (see [23]), we have

H‘\SO(E(27 3, 5)#Y) = [/{,\S'.(Y)<—2>,

so that all four correction terms are shifted down by —1. O
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