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Abstract

A major goal in the field of galaxy formation is to understand the formation of the Milky Way’s disk. The first step
toward doing this is to empirically describe its present state. We use the new high-dimensional data set of 19
abundances from 27,135 red clump Apache Point Observatory Galactic Evolution Experiment stars to examine the
distribution of clusters defined using abundances. We explore different dimension reduction techniques and
implement a nonparametric agglomerate hierarchical clustering method. We see that groups defined using
abundances are spatially separated, as a function of age. Furthermore, the abundance groups represent different
distributions in the [Fe/H]-age plane. Ordering our clusters by age reveals patterns suggestive of the sequence of
chemical enrichment in the disk over time. Our results indicate that a promising avenue to trace the details of the
disk’s assembly is via a full interpretation of the empirical connections we report.

Unified Astronomy Thesaurus concepts: Milky Way Galaxy (1054); Red giant clump (1370); Stellar populations
(1622); Clustering (1908); Stellar abundances (1577); Astrostatistics techniques (1886)

1. Introduction

The Milky Way’s stellar mass is concentrated in the disk, the
chemodynamical characteristics of which can constrain the
Galaxy’s formation history. The spatial and kinematic
distribution of the Milky Way’s disk has historically been
separated into two populations, termed the “thin” and “thick”
disk (Gilmore et al. 2002). These two populations have also
been found to have different chemical properties, with the thin
and thick disk structures having lower/higher [Fe/H] and
higher/lower [a/Fe] respectively (e.g., Fuhrmann 1998;
Bensby et al. 2014). However, the disk’s distribution has also
been argued to be better represented by a set of populations
with a continuous sequence in morphological parameters,
rather than described by a strict binary division (Bovy et al.
2012).

The advent of large spectroscopic surveys has provided the
opportunity to examine the disk’s chemodynamical structure in
new ways. The Apache Point Observatory Galactic Evolution
Experiment (APOGEE) survey, in particular Majewski et al.
(2017), has afforded important insight into the disk, due to its
deep infrared coverage (Zasowski et al. 2014), medium-
resolution spectra (R = 22,500; Holtzman et al. 2015; Garcia
Pérez et al. 2016) and large number of stars (>300,000 in data
release 14 (DR14); Blanton et al. 2017; Majewski et al. 2017;
Abolfathi et al. 2018). Studies can now traverse a larger spatial
extent (e.g., Nidever et al. 2014; Hayden et al. 2015) and
simultaneously, across a diversity of chemical elements,
beyond a bulk [Fe/H] and [«/Fe] (e.g., Weinberg et al. 2019).

APOGEE revealed bimodality in the two-dimensional
[Fe/H]-[c/Fe] plane, with the stars clearly divided into a
“high-a”” and “low-a” sequence. These two sequences of high-
and low-a stars have different ages and spatial and kinematic
distributions. The relative fraction of high- and low-a stars
varies depending on disk height and radius, with old high-«
stars living primarily in 0.5 < |z] < 2kpc and 3 < Rgap <
11kpc and younger low-a stars living in |z] < 1kpc for
3 < RgaL < 9kpc and evenly spread throughout |z| for
Rgar, > 9kpc (e.g., Nidever et al. 2014; Hayden et al. 2015;

Silva Aguirre et al. 2018). Using stars that are sampled by
APOGEE and Gaia, the high- and low-« sequences are seen to
exhibit different orbital properties as well as age—velocity
dispersion relations and distributions (e.g., Mackereth et al.
2019), including at fixed age (Blancato et al. 2019; Gandhi &
Ness 2019).

It is tempting to associate these two sequences defined
chemically directly with the thin and thick disks that have been
defined in the stellar spatial and kinematic distribution, in
apparent confirmation of the bimodal picture. However, it has
become clear that the spatial-to-chemical mapping is discordant
across large spatial extents, with the geometry of the two disks
defined spatially differing from those where the separation is
made in the chemical plane (Bland-Hawthorn et al. 2019).

The observed spatial and kinematic differences between the
high- and low-« stars have led to the interpretation that there
are two discrete modes of chemical evolution in the disk, with
much debate regarding the origin of the sequences. Simulation
work (e.g., Mackereth et al. 2018; Clarke et al. 2019) has been
pursued to find the sources of these differences. From 133
Milky Way-like Evolution and Assembly of Galaxies and their
Environments (EAGLE) simulations, Mackereth et al. (2018)
find that the Milky Way bimodality in chemistry is rare,
evolving in only 5% of the simulation galaxies. With their
simulations, they discuss how the bimodality is a consequence
of an early gas accretion episode. On the other hand, Clarke
et al. (2019) demonstrate with a Gasoline simulation that the
bimodality is natural if the early gas-rich disk fragments,
causing a mixture of clumpy and distributed star formation.
The clumps enrich rapidly and migrate from the low- to high-«
sequence due to the clumps’ high star formation rate, while the
distributed star formation produces the low-a sequence. Using
a chemical evolution model, Lian et al. (2020) suggest that the
inner disk formed from two main starbust episodes, with about
4 Gyr of secular, low-level star formation activity in between.
The high-a and metal-poor low-«v sequences are formed from
the first and second starbust respectively, while the secular
evolution phase is responsible for the metal-rich low-« stars.
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Many different methods for dividing the stars in the [a/Fe]-
[Fe/H] plane have been used to aid with interpretation and
comparison to simulations (e.g., Masseron & Gilmore 2015;
Blancato et al. 2019; Weinberg et al. 2019). In addition to
density contours, Masseron & Gilmore (2015) used the [C/N]
ratio to confirm their high- and low-a sequence populations.
Weinberg et al. (2019) traced the groups in a two-dimensional
density distribution and followed a shallow valley separating
the two sequences in their division. Blancato et al. (2019)
employed a more robust separation through a soft clustering
using a Gaussian mixture model in the [«/Fel]-[Fe/H] plane,
but found that their results were sensitive to the initialization
parameters.

There are several limitations to these simple divisions in [a/
Fe]-[Fe/H]. There is no standard way to separate the stars into
the two sequences, and many approaches rely on an ad hoc
division-by-eye. Moreover, any chemodynamical analysis of
the disk that uses only [a/Fe]-[Fe/H] potentially omits
important features from the larger chemical space. Perceiving
two clusters in the two-dimensional plane does not necessarily
mean that there are only two populations in the larger
abundance space, and this approach may effectively margin-
alize over potentially physically meaningful sub-structures or
signatures.

Large surveys that measure many dimensions of chemical-
space, like APOGEE, offer the opportunity to investigate
abundance distributions more generally. Working with high-
dimensional data is nontrivial as the dimensions are difficult to
visualize, there is a possibility of models over-fitting data, and the
higher-dimensional space will be sparse without a large sample
size—all often referred to as the curse of dimensionality. Previous
work has attempted to reduce the high-dimensional data into
something more manageable in an attempt to find clusters
(e.g., Garcia-Dias et al. 2019). Ting et al. (2012) use principal
component analysis (PCA) on 25 elements from High-Efficiency
and high-Resolution Mercator Echelle Spectrograph (HERMES)
in order to find the most informative lower-dimensional space
for high- and low-metallicity stars. They establish a connection
between the principal components and nucleosythesis mechan-
isms, and also allude to the fact that too many redundant
dimensions reduce our ability to locate clusters. Through the
employment of Expectation Maximized PCA on the full spectra,
Price-Jones & Bovy (2018) find that only about 10 principal
components accurately model the spectra. Recently, Casey et al.
(2019) studied a data-driven model of nucleosynthesis with
chemical tagging in a lower-dimensional latent space on the The
GALactic Archaeology with HERMES data set. They found that
~2500 stars divide into three clusters in the latent chemical
abundance space; however, results were not consistent as more
stars were added, indicating that a parametric Gaussian model is
likely incorrect.

In this paper, we seek to leverage the >20 element
abundances measured by the APOGEE survey to effectively
cluster stars by their overall chemical similarity. We follow a
similar approach to previous work, such as Ness et al. (2019),
Bovy et al. (2016), and Price-Jones et al. (2020), by focusing
on the abundances, and then analyzing the structure and ages of
the clusters in abundance space. However, our contribution is
unique because we are working with (i) the full [«e/Fe]-[Fe/H]
plane (unlike Ness et al. 2019), (ii) uninformed clustering
rather than binning in two-dimensional abundances (unlike
prior Bovy et al. 2016 work), and (iii) a larger set of 19
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dimensions. We emphasize that for many analyses, it is
convenient to make an ad hoc separation (e.g., Bland-Hawthorn
et al. 2019) or statistical model of two populations in the
[Fe/H]-[c/Fe] plane. This prior approach helps motivate our
analysis, which instead explores how the data prefer to group
in a larger abundance space using a clustering approach.
Our results set the basis for asking the questions: (i) why do the
data cluster as they do (including not into the ad hoc two
populations often prescribed) and (ii) what can we learn
from this?

Unlike other approaches, our approach is nonparametric and
impartial to how many underlying populations comprise the
data: hierarchical clustering (Ward 1963) in a 19-dimensional
chemical abundance space. We choose this method rather than
something like K-means (e.g., Hogg et al. 2016), as with
hierarchical clustering there is no prior concern of choosing the
correct number of clusters. Without being able to visualize all
dimensions at once, choosing the wrong number of clusters
could give rise to misleading results for a method requiring the
number of clusters beforehand. Additionally, we investigate
what abundances are driving the clustering results, and employ
the standard data reduction techniques PCA (Pearson 1901;
Hotelling 1933) and Isomap (Tenenbaum et al. 2000) to
determine the most important features of the data and ensure
clustering results are not over-fit. We also consider how many
groups are justified as discrete populations.

This paper is organized as follows. In Section 2 we discuss
the data sets used. Methods used for clustering, dimension
reduction, and determining the number of stellar populations
are outlined in Section 3. Section 4 briefly explores the
abundance correlations, and investigates how the clusters
defined from the large chemical abundance space appear in
the [a/Fel-[Fe/H] plane. In Section 5, the question of how
many significantly different clusters is investigated. Finally,
Sections 6 and 7 present the main conclusions and a discussion
of our analysis.

2. Data

In this paper, we use APOGEE DR14 data (Majewski et al.
2017; Abolfathi et al. 2018) from Sloan Digital Sky Survey-IV
(Blanton et al. 2017). We focus on the red clump (RC) stars found
in the DR14 APOGEE RC catalog (Bovy et al. 2014), with their
abundances processed by the APOGEE Stellar Parameter and
Chemical Abundance Pipeline (ASPCAP; Pérez et al. 2016) and
ages calculated by Sanders & Das (2018). Stellar parameters of
Ter, logg, and [Fe/H] as well as over 20 chemical element
abundances are derived from the spectra with the ASPCAP
pipeline.

2.1. APOGEE RC Abundances and Ages

In our analysis, we examine chemical abundance ratios for
the RC stars given in the DR14 APOGEE RC catalog. RC stars
span a narrow parameter space in effective temperature, Tegy,
and surface gravity, logg. This avoids systematic effects
induced in abundances by astrophysical diffusion (Liu et al.
2019) or imperfect stellar modeling (Weinberg et al. 2019),
creating a high-fidelity sample of stars. As detailed in Bovy
et al. (2014), the RC catalog was created through a combination
of selection cuts in surface gravity, T.g, metallicity, and
dereddened color [J — K(]o. Contamination from red giant
branch stars is estimated to be less than 5%.
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We also consider the stars’ associated ages and errors calculated
by Sanders & Das (2018). Through a Bayesian artificial neural
network, posterior estimates for distances, masses, and ages are
found from spectroscopic, photometric, and astrometric data. The
priors assigned reflect the stars’ likely population membership,
with age priors differing depending on whether the star is likely
located in the thin disk, thick disk, bulge, or stellar halo.

For our analysis, we select the 19 abundances from the
available set of 25 in the APOGEE catalog that we deem to
have the most reliable measurements. The set of abundances
selected to work with consists of Ni, Co, Fe, Mn, Cr, V, Ti,
Till, Ca, Si, Mg, O, K, S, P, AL, N, CI, and C.

2.2. Quality Cuts on the Data

In order to remove outliers with anomalous abundance
measurements, we consider stars with abundances —1 < [X/
Fe] < 1 and —1 < [Fe/H] < 1. Similarly, since all but a
handful of stars have ages greater than 0.1 Gyr, we remove the
few very young stars. This provides a final sample of 27,135
RC stars with no missing parameters.

After removing outliers, the abundances still cover different
ranges. For instance [Co/Fe] spans nearly the entire interval [—1,
1] while [Ni/Fe] values only fall between [—0.34, 0.39]. This
variance in the range leads to biases in dimension reduction
techniques such as PCA, which we employ in this paper. In order
to combat this, we standardize the data to give each abundance
mean 0 and standard deviation 1. From here on we refer to these
standardized abundances simply as abundances.

Our choice to work in the ([Fe/H], [X/Fe]) plane (for our
clustering and dimension reduction approaches) is motivated by
capturing the similarity of elements, with respect to the reference
of (primarily) supernovae Ia (SNe Ia) enrichment. As discussed in
Ting et al. (2012), the [X/Fe] space is less correlated than [X/H],
so it can potentially better capture the subtle variations to
differentiate populations that are most chemically similar.

3. Methods

In this section, we describe the methods used in our analysis.
We first wish to examine how the data are organized into groups
using a clustering algorithm. Further, how do the groups obtained
with a clustering approach compare to the high- and low-o
sequences as they are typically defined? The implementation
of our selected clustering method, hierarchical clustering, is
described in Section 4.1. In Section 4.3, we compare the
clustering performed in 19 dimensions to groups determined
using lower-dimensional representations of the data produced by
PCA and Isomap. These best capture the most important features
of the data and are a test of how robust our results are when done
using the full dimensionality of the available data. We also
address the question of how many stellar populations our data set
can be decomposed into with clustering, and what this means. We
examine how many groups justifiably exist in the abundance
space using the Gap Statistic metric (Section 5) and Dunnett’s
modification of the Tukey—Kramer method (Section 5.1).

3.1. Clustering Methodologies
3.1.1. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering is a clustering method
that organizes stars into groups (Jain & Dubes 1988), working
from individual data points (in our case each star with its set of
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abundances) that hierarchically merge into groups (in our case
defined by their abundance similarity). The resulting clusters
contain the stars that are most similar to one another, while the
clusters themselves are most dissimilar from each other. The
metric that splits the difference between what is similar and
different is left up to the user. We discuss our choice of metric in
Sections 4.1 and 5.1.

Many clustering methods, such as K-means (Hartigan &
Wong 1979), require prior knowledge for how many clusters
comprise the data. Hierarchical clustering, however, does not
require a predefined number of clusters to be set. Rather, it
hierarchically builds groups from the number of data points, N,
to a single group, in a tree-like structure. That is, it first merges
the most similar two stars and moves up the hierarchy until
only one cluster remains after combining the least similar
groups. The user can employ a metric to indicate the maximum
number of different clusters that are justified given the data.
The output is expressed in a so-called dendrogram, or tree
diagram. This dendrogram illustrates the hierarchical arrange-
ment of the clusters and allows us to visualize the similarity
structure of the data. A dendrogram shows the transition from
N = 27,135 groups to 1, where all 27,135 stars are plotted as
the leaves of the tree and groups combine at certain “heights”
to create nodes. In the metric we choose to implement for the
clustering, the node heights represent the total within cluster
sum of squares error for clusters K = 1, ..., 27,135,

K 19
oDy — E)

k=1ieS; j=1

where Sy is the set of stars in cluster k, x;; is the jth abundance
of star i, and X;; is the average of the jth abundance for the kth
cluster. While a larger node height indicates the combining
groups are more dissimilar, the difference between subsequent
node heights can be thought of as a potential; the larger the
potential, the more confidently we can say that the two
adjoining groups are distinct. Once the user views the structure
of the dendrogram, they are able to decide an appropriate
number of clusters (Ward 1963). Thus hierarchical clustering
suits not only our goal to cluster the data into two sequences,
but also to determine if the RC sample forms more than two
populations in the larger abundance space.

We choose to cluster the data via agglomerative hierarchical
clustering, using Ward’s minimum variance criterion (Ward 1963),
which minimizes the total within-cluster variance at each step.
This dissimilarity measure maximizes the distances between
clusters while minimizing the distances between stars within a
cluster (Ward 1963). This measure aligns with our goals for
classifying stellar populations, where stars most similar in chemical
space should be grouped together.

Specifically, we use the Ward2 algorithm described in
Kaufman & Rousseeuw (2009) and Murtagh & Legendre
(2011). Beginning with each star as its own cluster, at each step
we combine the pair of clusters that leads to a minimum
increase in total within-cluster variance until only one large
cluster containing all the stars remains. The explicit steps are
given as Algorithm 1 in the Appendix.

3.1.2. PCA

PCA (Pearson 1901; Hotelling 1933) is a linear dimension
reduction technique. In our case, this transforms the data from a
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19-dimensional abundance space to a much smaller set of
variables that contain the most information about the data. The
new smaller linearly uncorrelated set of variables, or principal
components, are linear combinations of the 19 abundances. The
first of these components is in the direction of the largest spread
in the data. The second component, third component, and so
forth, lie in the direction of the maximum variance subject to
being uncorrelated to the previous components (Jolliffe 1990;
Ringnér 2008).

As discussed in Section 2.2, we first normalize, or
standardize, each variable to have mean 0 and standard
deviation 1. Before standardization, each variable spans a
different range and, if used directly, this would prevent each
abundance from having equal importance in the analysis.
Instead, a few variables would dominate and skew the results.
Therefore, the 19 x 19 abundance covariance matrix that is
calculated for PCA is computed using the standardized
abundances as inputs. The covariance between any two
abundances, x and y, is given as

1 n
Z )Ciyi.
i=1

n—1:

The eigenvectors and eigenvalues of this covariance matrix are
then calculated. It is established that the largest eigenvalues
contain the most useful information regarding the spread of the
data, and that the smallest eigenvalues primarily capture the
noise. In fact, the eigenvalues capture the amount of variance
explained by the associated eigenvector (Wold et al. 1987).
Therefore, the first principal component is the eigenvector
corresponding to the largest eigenvalue and so on (Jolliffe 1990).
Additionally, the principal components are scaled to have unit
norm in order to easily compare the amount each abundance
contributes to a specific component.

3.1.3. Isomap

While PCA is beneficial as a linear dimension reduction
methodology, a more generalized approach is to assume that
our data lie on an embedded nonlinear manifold within the 19-
dimensional space. This assumption requires a more flexible
model that is able to capture additional (nonlinear) structure in
the data, which may not be revealed with PCA. The nonlinear
dimension reduction technique, Isomap (Tenenbaum et al.
2000), finds a low-dimensional embedding of the data that
preserves the geodesic distances from 19 dimensions. Here, the
geodesic distances represent the distances between stars in a
neighborhood graph, as explained below. With the advantage
of being less sensitive to noise, Isomap more reliably represents
the data’s global structure in the new lower dimensions
(Tenenbaum et al. 2000; Silva & Tenenbaum 2003; Rosman
et al. 2010). By comparing the results to PCA, we hope to
understand the key features of the data.

The algorithm is introduced in Tenenbaum et al. (2000) and
contains three primary steps. It is detailed in Algorithm 2 in the
Appendix and described here. The first step establishes the five
nearest neighbors for each data point. Star j is a neighbor of star
i if it is one of the five closest stars to star i in the 19-
dimensional abundance space using a Euclidean distance
calculation. This creates a neighborhood graph G, where the
edge length, G;;, is equal to the Euclidean distance between
the two neighbors if star j is a neighbor of star i, and is set to O
if not.
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The second step creates a geodesic distance matrix, dg. This
approximates the shortest graph distance between star i and star
J» using Dijkstra’s algorithm (Dijkstra 1959), on the neighbor-
hood graph G for all stars, i and j. Following the optimal path
between nearest neighbors at a given stage, Dijkstra’s
algorithm finds the shortest path from star i to star j, dg(i, j).
The explicit steps of the algorithm are given in Algorithm 3 in
the Appendix.

In the last step, Isomap applies classical multidimensional
scaling (MDS; Kruskal 1964) to the geodesic distance matrix,
dg, found in the previous step. MDS solves the problem of
creating a coordinate matrix from distances provided (Kruskal
1964) and is given in detail in the Appendix as Algorithm 4.
For our analysis, we choose to project our data into two
dimensions.

3.2. Metrics to Quantify Cluster Significance
3.2.1. The Gap Statistic

Proposed by Tibshirani et al. (2001), the gap statistic is a
method for estimating the number of clusters in a data set by
formalizing the elbow method. The elbow method is explained
in detail in Kodinariya & Makwana (2013). Briefly, in a plot of
total within-cluster sum of squares (WSS) versus number of
clusters, the elbow method requires one to infer where an
“elbow” lies. The elbow method is usually subjective since in
practice it can be unclear where exactly to cut off the number of
clusters.

Assuming k clusters, in our analysis W is defined as the
pooled WSS about the cluster means. The goal is to compare
log(W;) to what the expected value would be if the data were
from a reference distribution, E*[log(W;)]. The reference
distribution is typically a uniform distribution taken over the
range of observed values, with E*[log(W;)] being the mean
log(W,) for many bootstrapped samples from the reference
distribution. The gap statistic is then defined as

Gap(k) = E*[log(Wo)] — log(W).

The determined number of clusters £ is the smallest value k
such that Gap(k) > Gap(k + 1)—s; | where s; is the standard
deviation of E*[log(W,)] for k clusters from Monte Carlo
simulations.

3.2.2. Dunnett’s Modification of the Tukey—Kramer Method for
Determining Cluster Significance as a Function of Age

To find the maximum number of groups with statistically
significant values that we do not use for clustering—in our case
different mean ages in Section 5.1—we use Dunnett’s modifica-
tion of the Tukey—Kramer method to compare the mean ages of
the clusters. Due to our large stellar sample, we choose a pairwise
multiple comparison test over the Kolmogorov—Smirnov test,
(Massey 1951) which compares distributions.

For each cluster of stars, k, we can calculate a mean age, fi.
We wish to evaluate if our clusters are representative of
populations with significantly different mean ages. To test the
statistical significance of the mean age differences, we conduct
a pairwise multiple comparison test, which compares the means
of clusters 1 and 2, clusters 1 and 3, clusters 2 and 3, and so on.
To quantify our results, we choose the confidence level to be
the standard value 0.95 to create confidence intervals. A
confidence level of 1 — o means that if many samples were
drawn using a given true parameter, we would expect the true
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parameter to fall in (1 — «) x 100% of the confidence
intervals.

We specifically implement Dunnett’s modification of the
Tukey—Kramer method (Dunnett 1980), which allows for the
clusters to have unequal sample sizes and different variances.
In order to determine if two clusters i and j have significantly
different mean ages, we look at the confidence interval

1/2
2 Sj2

S
i = 1y £ Ajjak —+ = .
n; n;

where n;, n; are the number of stars in group i, j respectively,
and s;, s; are the unbiased estimated standard deviations given
by

! Zi(ax - di)z
i — 1 x=1

S =
n;

1 o _
5 :\/ . > (ay — @)
nj— 1 =1

for ages a with @; and @; being the mean ages for group i and j.
Let g, k, v be the critical value of a Studentized range
distribution—with parameters k clusters and degrees of free-
dom r—that gives the boundary of the acceptance region for
the test with confidence level 1 — a. Then, A . x is a weighted
average of the critical values given by

2 2

A 1 Doin—1Si /l’l,' + Qo ke,n;—kSj /nj

ok = —= :
V2 sl-z/n,- + sjz/nj

In order to determine the largest number of clusters with distinct
age distributions, we start with two clusters and increase the
number of groups until the mean ages are no longer significantly
different. We begin by evaluating if y is significantly different
than p, when the data are split into two clusters. We claim the two
cluster means are significantly different if the confidence interval
does not contain 0, and show no significant difference if O is
included. If O is not contained in the interval, we then split the data
into three clusters and compare (i to tp, 14 to 3, and pp to . If
every one of these tests returns means that are significantly
different then we proceed onto four clusters and compare i1 to i,
L4y 10 p3, iy to piy and so on. We continue to increase the number
of clusters until one of the pairwise tests concludes that at least two
means are not significantly different. Say this happens when there
are K* + 1 clusters. Then the maximum number of clusters with
distinct ages is K*.

4. Results I: Clusters in Abundance Space Projections

Using Mg as our representative a-element, the bimodality of
our sample in the [Mg/Fe]-[Fe/H] plane is clearly visible in a
scatter plot of the data presented in Figure 1. Following
Weinberg et al. (2019) and Blancato et al. (2019), we split the
data by eye with two straight lines of differing slopes (orange
line), joined at [Fe/H] = 0. Hereafter, we label the 3211 stars
above and the 23,924 stars below the orange line respectively
as the high- and low-a sequence.

In this section we examine how two clusters defined in the
full 19-dimensional chemical abundance space compare to the
high- and low-a sequences determined by eye, after projection
into the [Mg/Fe]-[Fe/H] plane. We then investigate the true
dimensionality of the data, and cluster again in representative
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Figure 1. Our sample of 27,135 RC stars projected into the standardized [Mg/
Fel-[Fe/H] plane. The expected bimodality associated with the high- and low-
« sequences is evident. Typically, the two sequences are divided by eye. One
such division of the stars is given by the orange line, with the high-a sequence
being above and the low-« sequence being below. The traditional bend at [Fe/
H] ~ 0 used by Weinberg et al. (2019) outlines the low-« stars to create the
recognizable banana-like shape. We will refer back to this reference split of the
sequences many times throughout this paper.

lower-dimensional hyperplanes to demonstrate that the clusters
from 19 dimensions are genuine. We additionally explore
the sequences in many different abundance planes to determine
the key elements contributing and informing the clustering.
We defer exploration of age and spatial relationships to
Sections 5.1 and 5.2.

4.1. Clustering the Stars Using Their 19 Abundance
Dimensions

We first cluster our 27,135 stars using their vector of 19
abundances with the hierarchical clustering method described
in Section 3.1.1. We project the clustering hierarchy from
individual stars to a single grouping in the dendrogram, shown
in Figure 2. The y-axis of the dendrogram represents the
potential difference between clustered groups. As discussed in
Section 3.1.1, the larger this difference, the more significant the
group classification. To first examine the most simple
clustering case, we find a large jump in the total WSS from
457.2 to 281.9 in going from one to two clusters, which splits
the data into two samples of 2292 and 24,843 stars,
respectively.

The projection of these two clusters in the [Mg/Fe]-[Fe/H]
plane is given as the leftmost plot in Figure 3. The two clusters
look very similar to the previously defined high- and low-«
sequences, with the black stars (cluster 1) corresponding to the
high-a sequence and the green stars (cluster 2) corresponding
to the low-a sequence, and part of what is typically included as
the high-a sequence (highlighted as yellow stars in top left of
Figure 8). While these two sequences are similar to the by-eye
division, the sub-group of just over 900 stars with 0 < [Fe/
H] < 2 and 0.5 < [Mg/Fe] < 1.5 is assigned to the same
cluster as the bulk of the low-« stars.
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Figure 2. Dendrogram produced via agglomerative hierarchical clustering using Ward’s minimum variance criterion on 27,135 RC stars. This dendrogram presents
the clustering structure of the data, where the height of the y-axis represents the total within-cluster sum of squares (WSS) for the given number of clusters. The bottom
(at height 0) is where each star is its own individual cluster and agglomerates to the top (at height ~450) where where all the stars combine into one main cluster. In
order to best determine the number of clusters our sample is comprised of, we compare the relative total WSS when successive groups combine. The total WSS for
when there is one cluster is 457, and jumps down to 282 when the data split into two clusters. This jump is subjectively large, and justifies two main populations in our
sample. However, the differences between total WSS for two through six clusters can all be considered “large,” and thus make finding the number of meaningful

populations in our data set nontrivial.

We validate our clustering results are robust to the under-
lying density distribution of the data by sampling a uniform
number of stars across the [Fe/H]-[c/Fe] plane and repeating
our analysis, which gives consistent results. Additionally, while
we use the L2 norm throughout this paper, the main results are
consistent for different norms.

4.2. Correlation Structure of the Data

In the previous subsection, we showed the two main clusters
in 19 dimensions projected into the two-dimensional [Fe/H]-
[Mg/Fe] plane. In order to determine the validity of the
groupings found in 19 dimensions, we continue our analysis by
investigating the structure of our data sample. Examining the
correlation structure of each pair of abundances allows us to see
if the data lie in a higher-dimensional ambient space than
needed for doing work on the data such as clustering. Since our
variables are normalized to have 0 mean and a standard
deviation of 1, the correlation coefficient between abundance

vector x and abundance vector y is
Tey =X ).

Figure 4 shows the correlation structure of the data that we
calculate, in a matrix organized by elements divided into their
families. A darker shade of either red or blue illustrates a
stronger positive or negative linear relationship between the
corresponding abundances, whereas a lighter shade indicates a
very weak linear relationship between the two.

Our intention with this analysis is not to make strong
statements about the strength of correlations within families.
Rather, the purpose is to show connections between elements
of the vector of chemical abundances. We will subsequently
use the PCA reduction for a comparative analysis, to test how
robust our results are when our analysis is performed using the
full vector of elements (and dimensions) of the available data.

In order to determine if there are any intra-family relation-
ships in the [X/Fe] space that suggest linear sub-structure, we
categorize the abundances into four groups according to how
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Figure 3. Two-dimensional projection in the standardized [Fe/H]-[Mg/Fe] plane of the two clusters that are found using agglomerative hierarchical clustering, with
Ward’s minimum variance criterion for the 27,135 RC stars, using (left) the 19-dimensional chemical abundance space, (middle) the first two dimensions of PCA
decomposition, and (right) the first two dimensions of Isomap decomposition. We refer to these two clusters as 1 (black) and 2 (green). In all three plots there is a
group of stars between 0 < [Fe/H] < 2 and 0 < [Mg/Fe] < 1.5 that typically are visibly classified as high-« stars, but more closely resemble the low-« sequence in
19 dimensions and the first two main dimensions of lower-dimensional embeddings. The stability of this grouping over the three different methods suggests that the
results are a real yet unexpected feature of the data when using this algorithmic approach to clustering.
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Figure 4. Correlation structure in the standardized abundances from the APOGEE red clump catalog for 27,135 stars. The correlations are quantified using the scale
shown at the right. The abundance labels are colored according to their nucleosynthetic family and the elements are ordered within these families. Primarily, families
either have positive correlations among their members (i.e., a- and iron-peak elements), or they have strong correlations that are both positive and negative (i.e., light
elements). The strong intra-family relationships are indicative that the true dimensionality of the data is <19 dimensions of the individual abundances that are

measured, and motivate our use of dimension reduction techniques.

the elements were produced: light elements with even atomic
number (C, CI, N), light elements with odd atomic number (Al,
P, K), a-elements (S, O, Mg, Si, Ca, Ti, Till), and iron-peak
elements (V, Cr, Mn, Fe, Ni). Figure 4 reveals that there do

appear to be connections within the different familial groups.
The a-elements are fairly strongly positively correlated with
one another, while the three light elements with even atomic
number are very strongly linearly related. On the other hand,
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Figure 5. Depiction of how much each of the 19 chemical abundances contributes to the first three principal components. The first three components explain just over
50% of the variance of the 27,135 red clump stars in the 19 dimensions. Grouping and coloring the abundances by nucleosynthetic family allows us to quickly identify
that the a-elements all positively contribute to the first component, the second component primarily captures the iron-peak elements, while the light elements with

even atomic number contribute to the third.

the iron-peak elements are only weakly correlated with each
other in this space. This is not particularly surprising since
the abundances are normalized against Fe. Therefore these
elements mostly represent the scatter due to measurement
uncertainties (in the <0.05 dex precision regime). Looking at
specific elements, [N/Fe], [Fe/H], and [Mn/Fe] are anti-
correlated with nearly every other abundance. The poorly
measured abundances in APOGEE ([P/Fe], [V/Fe], and [Cr/
Fe]) have no strong correlation with any of the abundances,
indicative of their large uncertainties in their measurements.
Due to some elements having quite strong linear correlations,
we see from this simple investigation that the true dimensionality
of the data is lower than the number of elements measured and
considered in this work. Therefore, we proceed with implement-
ing dimension reduction techniques in our clustering approaches.

4.3. Investigating Lower-dimensional Embeddings
4.3.1. Exploring the Influential Dimensions

Section 4.2 demonstrated that the abundances are highly
correlated. Therefore, we now implement PCA on our 19-
dimensional abundance data for our 27,135 stars to identify the
primary features that dominate the clustering hierarchy. We find
that the first three principal components explain 53% of the
variance in the data. Therefore, focusing on these components
allows us to examine how the abundances contribute to the key
aspects of the data’s distribution in higher dimensions. The
relative contributions of each element to the first three principal
components is shown in Figure 5. This figure demonstrates that
the a-elements all positively contribute to the first principal
component (PC1), the iron-peak elements all positively contribute

to the second principal component (PC2), and the light elements
with even atomic number are the main contributors to the third
principal component (PC3). [P/Fe] does not strongly contribute to
any of the first three components, rendering it insignificant in
analyzing the data set’s variability. It should also be noted that
[Mg/Fe] provides the most absolute contribution to PC1, which is
reassuring for [Mg/Fe] being a sound representative or proxy for
an overall a-element in considering the [«v/Fe]-[Fe/H] plane.

We now examine the three principal components from Figure 5
in two-dimensional projections. We show the first two components
and the first and third components in the left and right of Figure 6
respectively to validate the significance of examining two groups.
In both projections, the stars (colored according to their grouping
defined in Section 4.1) are split into two primary populations, with
each group corresponding to either the black (cluster 1) or green
(cluster 2) cluster with little crossover. In addition to being spatially
discrete in these planes, the two sequences show different
behaviors in these projections. The black cluster (cluster 1) is
evenly distributed along PC1 and PC2 and shows a strong positive
correlation between PC1 and PC3, while the green cluster (cluster
2) is evenly distributed among all three components. This confirms
the populations contain distinct differences.

4.3.2. Determining the Validity of the Clustering Model

One concern in working with high-dimensional data is the risk
of over-fitting due to the curse of dimensionality. In order to
determine if the group of ~900 stars discussed in Section 4.1 are
“misclassified” as a side effect of working in 19 dimensions, we
cluster the stars using only the first two principal components
(PC1 and PC2) rather than their 19 abundances as previously
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Figure 6. Red clump sample of 27,135 stars projected into (left) the first two components of principal component analysis (PCA), which explain 46% of the variance
in the 19-dimensional data, and (right) the first and third PCA components. The stars are color coded according to their clusters found in 19 dimensions using
agglomerative hierarchical clustering with Ward’s minimum variance criterion. These clusters coincide with the two noticeable groups created in both planes. Since
the first three components capture more than half of the data’s variability from 19 dimensions, our choice of first examining two populations is validated.

done. We choose to only use the first two components as PC1 and
PC2 together explain 46% of the variance of the data, thus
capturing nearly half of the data’s spread and ensuring we only
examine the main features of the data. We again project the
resulting two clusters back into [Mg/Fe]-{Fe/H] plane as shown
in the middle panel of Figure 3. The results are almost identical to
clustering in 19 dimensions: 89% of the small group of ~900 stars
in the green cluster (cluster 2) that join the black cluster (cluster 1)
at high-a values are similarly identified as being part of the green
cluster (cluster 2) using the first two principal components. This
shows that this group of stars differentiates from the high-o
sequence along the linear axes that describe the most spread.

In 19 dimensions we are unsure of the structure of the data,
and a linear projection (e.g., PCA) may not be optimal.
Therefore, we also run a nonlinear dimension reduction technique
to compare our results with this methodology. This is the Isomap
reduction discussed in Section 3.1.3. It is clear from Figure 7 that
the first two components of Isomap look analogous to the first
two components of PCA, demonstrating the merit of clustering
into two primary groups that are consistent between different
methodologies and assumed models.

Following the same approach as with PCA, we choose to
cluster the stars in the first two dimensions of Isomap to examine
if the two clusters are differently distributed and what happens to
the group of metal-rich cluster 2 stars from the left of Figure 3,
that are often associated with the high-a sequence (cluster 1). The
two clusters determined with the data following Isomap
dimension reduction are projected back into the [Mg/Fe]-[Fe/
H] plane in the far right panel in Figure 3. Yet again, the two
clusters show the same distribution as with PCA and without
dimension reduction. The results are again almost identical to
clustering in 19 dimensions: 97% of the small group of ~900 stars
in the green cluster (cluster 2) that join the black cluster (cluster 1)
at high-a values are similarly identified as being part of the green
cluster (cluster 2) using the first two first I[somap dimensions.
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Figure 7. Red clump sample of 27,135 stars projected into the first two
components of Isomap. The stars are colored according to their sequences from
19 dimensions, determined via agglomerative hierarchical clustering with
Ward’s minimum variance criterion. Similar to PCA, the first two components
split primarily into two groups, further confirming that dividing the data into
two groups is reasonable for this data set.

4.4. Projecting Our Two Clusters across Different Abundance
Planes

We want to examine the projection of the two largest
clusters from hierarchical clustering in different abundance
planes. In particular, we are interested in the subset of
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Figure 8. Red clump sample of 27,135 stars projected into (left) three abundance—abundance planes, (right) the first three components of PCA and first two
dimensions of Isomap, in order to investigate where the ~900 low-« stars (colored in yellow) live in different planes. The black group is the (higher-a) sequence of
stars (cluster 1) from the left of Figure 3, while the green and yellow groups combine to create the green cluster (cluster 2) from the same figure. These plots were
chosen as representatives from the full set of abundance—abundance planes. In some, there are visibly two groups of stars, where the yellow stars are part of the green
group where the black group connects (middle left). In others, the yellow stars are dispersed throughout the green group (bottom left). The first two-dimensions of
PCA and Isomap reveal that this group of stars is unique—closely resembling the green group but in a distinct, less dense region than the rest of the green stars.

Similar to some abundance—abundance planes, PC1-PC3 shows the yellow group as an extension of the black group into the green group.

metal-rich stars that have been typically associated with the
high-a sequence (see Figure 1) yet we find associated with
our green cluster (cluster 2; Figure 3), which is comprised of
low-« stars. We therefore differentiate this group of stars by

eye from the rest of the green cluster (cluster 2) in a series of
two-dimensional abundance planes to demonstrate that they
sensibly align with the group the algorithm associates
them with.

10
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Figure 9. Nineteen-dimensional clustering dendrogram for 27,135 red clump stars created using agglomerative hierarchical clustering with Ward’s minimum variance
criterion. The two branches marked contain the majority of the ~900 low-a stars that are typically classified as part of the high-« sequence in the [c/Fel]-[Fe/H]
plane. The red-orange group contains ~42% of this group of stars, followed by the orange group containing ~20%. The other 38% are spread evenly throughout the
other branches of the larger cluster. This shows that these stars contain large differences among each other, and do not show any resemblance in 19 dimensions to the
more metal-poor high-« stars (cluster 1 in the left of Figure 3), which are highlighted here as light blue.

Specifically, we are interested in the yellow stars in Figure 8.

19

After going through the 2) abundance—abundance plots, we

present in Figure 8 the unique plots that show the different
scenarios in which the group of stars that are typically classified
as high-« stars (black cluster) more closely resemble the low-«
sequence (green cluster). Additional abundance—abundance plots
are given as Figure A4 in the Appendix. In many of the plots,
there are two blob-like structures, such as in the middle left plot.
Here one group contains the black stars while the other mainly
contains the yellow and green stars. Visually, the yellow stars are
considered to be part of the green population, but they are located
where the black group connects to the green one. In the bottom
left plot we see that the two groups are less distinct, but here the
yellow stars are condensed, located in the center of the green
group. We also show at the top and bottom right of Figure 8
where the group of ~900 stars live in the first two dimensions of
PCA and Isomap. In both cases, but more strikingly in the
Isomap plane, the stars are located in the less dense region of the
green cluster near the connection to the black cluster. This
suggests that, while these stars do more closely resemble the low-
« sequence, they also contain qualities which make them unique
to both clusters. From the PC1-PC3 plane (center right) the
yellow stars appear to be an extension of the black cluster, but
again located within the green group. These exploratory plots in

11

Figure 8 (and the Appendix) show that the yellow subset of stars
primarily coincide with the green low-a group, affirming their
separation from the high-a sequence.

The natural question that follows on from this is whether this
small subset of metal-rich stars is similar throughout the
hierarchy of clusters, or contains distinct branches within itself.
Figure 9 shows where the majority of the green clustered
(cluster 2) metal-rich stars lie in the dendrogram. This subset of
stars splits nearly in half when the entire sample of stars divides
into three clusters, revealing that there are major differences
within this unique group of ~900 stars. Additionally, the
majority of these stars lie within clusters with fairly small total
WSS near 100, which is a very large jump to where the high-«
sequence combines at a total WSS of 457. Between this and the
fact that these stars are not all grouped together shows that they
are well separated from the high-a sequence in the 19-
dimensional chemical abundance space. This combined with
the pairwise abundance plots indicates that a division of the
abundance distribution into two clusters only is perhaps sub-
optimal. That is, the data can be better described as breaking up
into more than two groups.

5. Results II: Number and Properties of Significant Clusters

We have established that the data justifiably cluster into at
least two groups using different approaches. Additionally, we
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Figure 10. Gap statistic curve created using 10 bootstrapped samples of size
27,135 with 1o error bars. The Gap statistic helps determine the number of
clusters based on the 19-dimensional abundance space alone. The Gap statistic
for six clusters only just meets the nominal criteria for deciding the highest
number of clusters the data can be decomposed into, of being larger than the
previous cluster’s lower error bar. This is primarily due to the small error bars
from our large sample size. This statistic, however, does suggest that there are
at least six underlying populations in the data, but the Gap statistic for four
through 10 clusters is very close.

have shown that these two groups are different from those
typically visually assigned in the [Fe/H]-[«/Fe] plane. The
next question we ask is: how many underlying clusters are
our data potentially comprised of, and how do we determine
this number? Given the dendrogram in Figure 2, two, three,
four, and six clusters all seem reasonable for this data set
given the large difference in the total WSS measurement on
the y-axis. The second row of Figure 11 shows the split in the
dendrogram for potential clusters for two through six groups.
The top row shows the respective breakdown in the [Mg/
Fe]-[Fe/H] plane.

As mentioned in Section 4.1, we compare the total WSS to
infer the number of groups. Splitting the data into one, two,
three, four, five and six clusters yields a total WSS of 457.2,
281.9, 190.2, 134.1, 126.1, and 102.3 respectively. To help
determine the most appropriate cutoff, we examine the Gap
statistic introduced in Section 3.2.1. The associated plot given
in Figure 10 shows the Gap statistic, with 1o standard deviation
error bars for one through 10 clusters. The error bars are small
primarily due to the large sample size. This is why we choose
to run only 10 bootstrapped samples; increasing the number of
bootstraps makes the error bars even more insignificant. The
Gap statistic for four through 10 clusters is very close to
reaching the significance threshold (a flattening of the statistic)
but the turn-over is around six clusters. This suggests that the
data can be meaningfully represented by up to six clusters.
However, more generally, the roll of this statistic is indicative
of a continuum of structure underlying the abundance
distribution.

12
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5.1. Ages As Tags of Cluster Populations

We now wish to test if the different clustered groups are also
groups with different mean times of formation. Presumably, if
the clustering of abundances links in any physically meaningful
way to how the disk was formed over time, we might expect
our statistically identified populations to have discrete ages. We
find that our clusters do have different mean ages, with age
distributions for the two to six clusters shown in the third row
of Figure 11. Therefore, we now test the age separation as an
independent metric via which we can justifiably decompose the
data into discrete clusters.

The third row of Figure 11 presents the log;, age densities
for each cluster as a function of the number of total groups. The
black population of stars (cluster 1) remains unaffected when
separating the data up to six clusters. It is comprised of
primarily the oldest stars from the sample, and its age
distribution is noticeably different from the other clusters. For
the data to divide into three groups, the green group from two
clusters (cluster 2; top row) splits into a left- and a right-skewed
distribution which peak at the edges of the original plateau.
Then the youngest stars break away from the right-skewed red
cluster (cluster 3) to create four total clusters. Once the current
blue group (cluster 4) separates, it becomes difficult to
differentiate the middle-aged clusters. For instance the black
(cluster 1), green (cluster 2), and light blue (cluster 6) densities
are easy to distinguish for six populations, but the orange
(cluster 5), blue (cluster 4), and red (cluster 3) densities are
quite similar. Despite having similar densities, the pairwise
multiple comparisons test outlined in Section 3.2.2 performed
on the log,, ages from Sanders & Das (2018) suggest that our
data separate into six populations at a confidence level of 0.95.

To investigate the sampling confidence of this result, we run
1000 Monte Carlo simulations by drawing new ages for each
star, i, from a normal distribution with mean log,, age; and its
associated error as the 1o standard deviation. We report that
24.1%, 31.4%, and 44.5% of the simulations respectively
produced four, five, and six clusters for a confidence level of
0.95. This implies that for up to six populations the stars
separate into groups of different mean ages. This does not
necessarily imply that there are six underlying clusters
physically in the data, but rather age is a fundamental single
variable by which the stars are linked together via their many
abundances. Despite the age distributions being difficult to
differentiate in Figure 11, our sample, clustered with
abundances only, suggests that each of the six clusters has a
statistically significant different mean age. This leads us to next
examine the spatial distributions of the clusters.

5.2. Spatial Distributions of the Cluster Populations

We now examine the spatial distributions of our clustered
groups by looking at the Galactocentric radial distance, Rgap.,
and the absolute distance from the mid-plane, |z|, (both in
kiloparsecs and calculated assuming the Sun is 8 kpc from the
Galactic center and 25 pc above the mid-plane). The bottom
two rows of Figure 11 show that for two to six clusters, the
clusters have different distributions in Rgap, and |z|. The
structure in these distributions is driven by the APOGEE
survey selection function (for example the relatively large
number of stars in the specially targeted Kepler field near the
Sun). It is the relative dissimilarity between the groups that is
relevant and noteworthy here. This is indicative that stars that
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Figure 11. Colored top row: [Mg/Fe]-[Fe/H] planes, second row: dendrograms, third row: log;, age densities, fourth row: Rgay densities, bottom row: |z| densities
for two, three, four, and six clusters. The colors order the clusters by mean age, with black (cluster 1) labeling the oldest group, then green (cluster 2), red (cluster 3),
blue (cluster 4), orange (cluster 5), and finally light blue (cluster 6) defining the youngest group of stars.

are most chemically similar (according to our clustering) are
also more spatially similar to one another and different between
groups.

Starting with two clusters (left of Figure 11), we see the
black cluster (cluster 1) is strongly peaked in Rgay, (fourth row)

at RgaL ~ 8 kpc while the green cluster (cluster 2) is bimodal
with a sharp peak at Rgar ~ 8 and broader peak from
Rgar = 9-11kpc. To create three clusters, the green cluster
(cluster 2) divides into two bimodal distributions, with the new
groups having their second peaks at Rgap =~ 9 (red cluster,

13
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Figure 12. Clusters shown in Figure 11, projected into (Rgar, [z]) spatial planes as a function of age. The clusters show different trends, with the centroids shifting in
|z]-age and living in separate areas in Rgap—age. The contour lines shown contain 50% of the stars in each cluster.

cluster 3) and 11 kpc (green cluster, cluster 2). The red group
(cluster 3) then splits to create four clusters, with the new red
group (cluster 3) taking on the majority of the Rgar ~ 8 kpc
stars compared to the blue group (cluster 4). Six groups become
difficult to discern, with the majority of the clusters losing their
bimodality and becoming somewhat unimodal.

The |z| distributions (bottom row of Figure 11) allow us to
observe the thickness of the distribution of the different
clusters. The black cluster (cluster 1) takes on a broader range
of higher |z] values, while the green cluster (cluster 2) is more
centralized at |z] ~ 0. As the green cluster (cluster 2) divides
and more clusters are created, the |z| densities stay peaked at
|z| =~ 0, with each additional, younger, cluster becoming more
localized near the center.

We further investigate the spatial-age distributions for two
through six clusters. Figure 12 shows how our groups separate
spatially (Rgar. and |z]) as a function of age. The distributions in
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|z]-age show a shift in the density centers, with the cluster
centroids showing a positive correlation between |z| and age. As
the stellar sample is divided into more clusters, the youngest
group of stars consistently gets more localized about the
Galactic mid-plane. On the other hand, the primary centers of
the clusters separate in no obvious pattern in the Rgar—age
plane; the oldest stars are localized to Rgap = 8 kpc with the
next oldest primarily centered at about Rgar ~ 11kpc, then
the third oldest cluster is primarily centered at Rgar., ~ 9 kpc,
the fourth oldest more strongly localized near Rgar, = 8 kpc,
the fifth oldest spread around Rgar =~ 9kpc, and finally the
youngest group of stars located mainly at Rgar =~ 9.5 kpc.

6. Summary and Discussion

In the regime of high-dimensional data, we have the
opportunity to go beyond a two-dimensional visual classifica-
tion of stars into populations, and examine the information in
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its entirety. In this paper, we use the APOGEE RC sample of
stars, with stellar ages provided by Sanders & Das (2018) to
investigate the distribution of the data in 19-dimensional
abundance space as well as age and space. Our key findings can
be summarized in three points.

1. There is coherent (correlated) structure in the abundance
values themselves, as seen through their correlation
matrix and PCA analysis (see Sections 4.2 and 4.3.1).
The correlation structure between standardized abun-
dances shows familial relationships in the light and «-
elements, which motivates that the data can plausibly be
projected into lower dimensions. The first three compo-
nents of PCA, which describe just over 50% of the
variance of the data, exhibit the same intra-family
correlations.

2. In Section 4.1, we show that under the assumption that
only two clusters describe the data, the projection of these
into the [Mg/Fe]-[Fe/H] plane reveals that there is a
subset of stars (~900 stars in this case) that visually
appears to be a member of what is typically considered
the high-a sequence, but in fact more closely resembles
the low-a sequence using our algorithm. That is,
clustering by a distance minimization algorithm in the
19-dimensional abundance space gives a different two-
dimensional projection of abundance groups in the [Fe/
H]-[«/Fe] plane than that given by a simple visual
classification. Clustering in the first two components of
both PCA and Isomap confirmed the robustness of this
finding, as well as our overall clustering results to lower
levels of the hierarchy (see Section 4.3.2).

3. In Section 5.1 we show our clusters, which are defined in
abundance space alone, separate into populations that are
also distinct in both age and spatial distribution. We can
decompose our sample into at most six clusters, as this is
the highest number of clusters that we can reasonably
resolve into different populations in age and (Rgar, |2])
distributions given our age errors, which dominate our
error budget (a median of ~15%). However, the stars can
also reasonably be described by a continuum of structure,
with no definitive number of clusters comprising our
sample (see Section 5).

Our first finding on correlations and PCA component
structures in the chemical elements confirms the underlying
simplicity of abundance space. In agreement with both Ting
et al. (2018) and Price-Jones & Bovy (2018), we find that the
dimensionality of the data set is much smaller than the full 19
dimensions from our sample. This simplicity can be interpreted
as arising from the finite number of nucleosynthetic processes
and distinct sites that yield enrichment with distinct abundance
patterns (again, in agreement with Ting et al. 2018). We report
that the first principal component corresponds to SNe II
enrichment, the second principal component corresponds to
enrichment from SNe Ia, and the third principal component
captures contributions from dying low-mass stars.

The difference between the separation that assigns stars by-
eye into the low- and high-a sequences and the distributions of
our two clusters (found using information from 17 additional
abundances) in the [«/Fe]-[Fe/H] plane calls into (further)
question the extent to which disk decomposition in low
dimensions can be physically interpreted. This difference gives
insight into the discordant results when dividing into thin and
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thick disk populations using either space or [o/Fe]-[Fe/H].
Recently, in agreement with our findings, Ciucd et al. (2020)
also argue that the subset of typically defined high-« stars is
separate from the thick disk, and smoothly connects the high-
and low-a sequences.

The clarity of the separation of spatial and age distributions
of our abundance-defined clusters suggests that these higher
dimensions add important constraints on Galactic history. For
example, when ordered as a sequence in age, the distribution of
our clusters in the [a/Fel-[Fe/H] plane contradicts the
simplest pictures of the monotonic chemical evolution in this
plane. Rather, our intermediate-age and -metallicity clusters
encompass both the low- and high-a sequences, likely
reflective of a complex enrichment history by successive
generations of both SNe II and SNe Ia. Indeed, in their
hydrodynamical simulations of disk formation Clarke et al.
(2019) find star-forming clumps that form on the low-a
sequence, migrate to the high-a sequence, and eventually
return to the low-a sequence.

Overall, our results provide confirmation of the remarkable
simplicity underlying the abundance distributions of stars in the
Galactic disk, as has already been reported from different
perspectives in other studies. For example, Weinberg et al.
(2019) show using APOGEE data that the abundance trends
can be described by two populations across the Galaxy, and
Ness et al. (2019) demonstrate that the age and [Fe/H] of stars
on the low-a sequence can be used to predict [X/Fe] for other
elements in the data to within 0.0 two-dimensionalex, on
average. Our work is consistent with this picture, as apparent in
Figure 13.

The age catalog we use has been determined using both
spatial and metallicity priors (Sanders & Das 2018). In the
Appendix (Section A.1), we compare the spatial-age and [Fe/
H]-age distributions using two different age catalogs, where
ages have been determined using the spectra directly to
propagate asteroseismic ages (Pinsonneault et al. 2018) using
data-driven modeling (Ness et al. 2019; Sit & Ness 2020). We
obtain consistent results from all age catalogs; however, the
clusters show slightly different distributions in these planes.

7. Conclusion and Future Prospects

We conclude that clustering in high-dimensional abundance
space is informative about the sequence and locations of
forming stellar populations. This is a particularly promising
variant of chemical tagging (Freeman & Bland-Hawthorn
2002), even if we are unable to go as far as reconstructing the
individual physical clusters in which stars are originally born
(e.g., Ting et al. 2017; Ness 2018; Kamdar et al. 2019). We by
no means claim that there is a discrete number of stellar
populations comprising the disk of the Milky Way (i.e., six as
shown in Figure 11). Rather, our clusters characterize the
underlying continuous evolution in age and metallicity across
the disk, analogous to analyses of mono-[Fe/H]-age popula-
tions (e.g., Bovy 2016). Our findings of a continuous evolution
are in agreement with Bovy et al. (2012) in that there is no
distinct bimodality of the thin and thick disk. However, we
show this result by a completely different approach, making
use of more abundance information.

This is a pilot study that outlines the potential of current and
future data to capture the chemical enrichment sequence during the
formation of the disk. With just under 30,000 stars used in this
work, we see clustering organizes stars into age—abundance groups.
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Figure 13. [Fe/H]-age contours containing 50% of the stars for each cluster, shown in Figure 12, showing the separation of the clusters in this plane.

However, this does not find individual birth clusters themselves.
With much larger data sets, however, many stars from the same
cluster may presumably fall within these groups, extending the
effectiveness of high-dimensional clustering to aspirations of
chemical tagging of individual birth clusters. Additionally, while
we utilize the RC sample of stars, which have abundance
measurements with reasonably small amplitudes, including the
errors in the analysis will improve the assigned clustering. This is in
both the weighting of the most informative elements and for
recovering the true underlying populations that are most chemically
similar, given the errors in the data. With the increase in both
sample size and precision expected in future catalogs, stronger
conclusions will be able to be drawn as to how the abundance
clustering is tracing the birth properties of stars.

We seek to understand the formation of the Milky Way’s
disk. To do so, we must know the materials stars were born
with ([Fe/H], [X/Fe]), when they were born (), and where
they were born (Ry;)- In observational data, we have access to
precise ([Fe/H], [X/Fe]) and imprecise ages for a significant
number of stars: data we work with in this paper. Only in a
simulation however, do we have access to the full set of
properties to trace formation and evolution of disks ([Fe/H],
[X/Fel, tyirm, and Rpi)- This enables us to use simulations to
investigate and understand the dependencies and relationships
between these properties in disk galaxies. As such, our work in
preparation forms Paper II in this series. B. L. Ratcliffe et al.
(2020, in preparation) uses hydrodynamical simulations of
Milky Way analogs to interpret the origin of different
abundance clusters in the disk. Due to the anticipated chemical
homogeneity of stellar birth clusters (for clusters up to 10°M_;
Bland-Hawthorn et al. 2010), we expect that in grouping
chemically similar stars—as done in this work and Paper II—
we are assigning stars within birth clusters to similar groups.

Several aspects of our approach could be improved. In order
to determine the maximum number of clusters with significantly
different age populations, we choose to compare the mean ages.
The pairwise multiple comparison test design we propose is
provisional—there are other ways to determine discrete aged
clusters. Additionally, comparing means is not representative of
distributions when the densities are non-normal or spread out.
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Ideally distributions would be compared, without the worry of
small fluctuations misleading results.

In addition, we do not take into account the abundance
measurement errors on the APOGEE data. Therefore all
measurements are weighted equally in our clustering algorithm,
whereas in reality some stars are measured more precisely than
others and some elements are systematically measured more
precisely than others. Future data sets (or more sophisticated
analyses of existing data sets) are likely to give higher-precision
measurements of abundances, ages, and locations, which will
allow cleaner measurements of distributions in these spaces.

Overall, our results are indicative of the immense promise of
future data sets, which could contain even more informative
dimensions. One limitation of the APOGEE DR14 abundance
catalog is that it is restricted to «, iron-peak, and light abundances,
but is missing the channels from neutron capture processes, which
are sensitive to different production mechanisms. The next data
release of APOGEE, as well as future mission data (Kollmeier
et al. 2017), will also contain valuable neutron capture element
measurements (Hasselquist et al. 2016; Cunha et al. 2017) for
millions of disk stars. This will enable a more complete abundance
clustering analysis to inform our picture of the assembly of the
disk. These additional elements could reveal additional details or
structures that are not apparent in the 19 (highly correlated)
abundances that we use, and explain (for example) the events
which lead to the formation of the low- and high-a sequences.

We acknowledge helpful conversations with the Milky Way
Stars group at Columbia University. K.V.J. is supported by
NSF grant AST-1715582 and B.S. is supported by NSF grant
DMS-1712822. M.K.N. is in part supported by a Sloan
Foundation fellowship.

Appendix

A.l. Comparison Using Other Age Catalogues

We find that our clusters show separation in planes of [Fe/H]-
age and (RgaL, |z|)-age. However, we use the age catalog from
Sanders & Das (2018), which is generated using priors from a
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model of the spatial distribution of populations in the Galaxy and
metallicity priors (see also Das & Sanders 2018). We want to
validate that we are not directly recovering these priors. Therefore,
we examine two other age catalogs that have been generated
differently to that of Sanders & Das (2018). We use two
comparison catalogs: one generated using APOGEE DRI12
spectra in Ness et al. (2016) and one generated using APOGEE
DRI14 spectra in Sit & Ness (2020). Both approaches employ the
data-driven methodology of The Cannon directly on the stellar
spectra (Ness et al. 2015). However, there are important
differences. The earlier work employs a smaller training set using
the then available APOKASC catalog (Pinsonneault et al. 2014),
as well as DR12 spectra and propagates this age information to the
remaining DR12 across the parameter range where the survey data
are representative of the training data. The later work uses the far
larger training set of stars in Pinsonneault et al. (2018) and the
DRI14 spectra, propagating age to a larger set of stars across a
broader range in stellar parameters as well as simultaneously
inferring individual abundances. The other major difference
between the Ness et al. (2016) and Sit & Ness (2020) catalogs
is that the latter uses a separate model to infer ages for low- and
high-« stars, as motivated by Ness et al. (2019).

There are 17,152 stars in common with our analysis using the
Sanders & Das (2018) ages from Ness et al. (2016), and 25,924
stars in common with Sit & Ness (2020). Given the different
number of stars, we repeat our analysis in its entirety for these
other age catalogs. Using the metric described in Section 5.1, we
find we can go to fewer clusters (in both cases five clusters). This
is a consequence of the smaller number of stars being analyzed
and of the larger age errors (about 40% for both catalogs). We
show the [Fe/H]-age and (Rgar, |z|)-age planes for these age
catalogs in Figures Al and A2 to compare with our results shown
in the paper (Figures 12 and 13). The primary difference between
these results and those in our main analysis is the less dramatic
separation in the spatial planes with age. The discernible trend of
younger stars living closer to the Galactic mid-plane found using
the Sanders & Das (2018) ages is less apparent for both age
catalogs, along with the separation in Rga;—age using the Ness
et al. (2016) ages. However, we still see distinct cluster centers in
R a1 —age using the Sit & Ness (2020) ages for up to four clusters.
Additionally, both age catalogs show cluster separation in [Fe/
HJ-age, with trends reminiscent of the ones found in Figure 13.
Overall, results using ages from the Ness et al. (2016) and Sit &
Ness (2020) catalogs complement our main results found.

A.2. Isomap Physical Intuition

While Isomap uses the Euclidean distance to create the
neighborhood graph G, it relies on the geodesic distances between
points to create the new lower-dimensional embedding. Take, for
example, the two-dimensional spiral roll in Figure A3, where the
points marked with a red square are close in terms of their
Euclidean distance. If we take into account the structure of the
data, however, they are significantly separated from one another
(along the geodesic path). The neighborhood graph constructed in
Isomap yields the shortest path between points along the data
structure itself, an approximation to the true geodesic path.
Therefore, Isomap will project these two points further away than
if we were to use a Euclidean distance metric, such as PCA.
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A.3. Algorithms and Additional Figures

Here, we present the explicit steps for the different
methodologies used in this work, as well as extra figures.
The steps for Ward’s minimum variance agglomerative
hierarchical clustering, Isomap, Dijkstra’s algorithm, and
multidimensional scaling are given in Algorithms 1, 2, 3, and
4, respectively. Figures Al and A2 show the (Rgay, |z])—age
and [Fe/H]-age planes for the clusters found in the main body
of this work, with ages from Ness et al. (2016) and Sit & Ness
(2020). Figure A3 aids in the physical interpretation of Isomap.
Figure A4 is an extension of Figure 8.

Algorithm 1. Ward’s Minimum Variance Agglomerative
Hierarchical Clustering

Step 1: Start with each star as its own cluster.

Step 2: Create a dissimilarity matrix between cluster i and cluster j for all i and
J. Let Cy be cluster * and c, be its cluster center. Then the dissimilarity
matrix is:

d=19
62(Ci, 6) = llci — ¢l = > (citk) — ¢j(k))?
k=1
where
cx = 1 > xeRY
ICHl Jec,
Step 3: Combine the least dissimilar clusters C;* and C ;‘ and update the dis-
similarity matrix:
ICH + 1Gd
I+ ICH1 + 1Gl
[HRLCTR
I +Ichi+ Gl

SCFUC], G = 62(CH, G
|Gl

C)— ———
ICH + IC1 + 1Gl

52(Cl C)

Step 4: Repeat Step 3 until all clusters are combined and one large cluster
containing all the stars remains.

Algorithm 2. Isomap

Step 1: Find the k nearest neighbors for each data point. Construct a neigh-
borhood graph G, with the edge length G;; equal to the Euclidean distance
between the two neighbors if star j is a neighbor of star i.

Step 2: Create a geodesic distance matrix, dg, that approximates the shortest
path between all pairs of points using Dijkstra’s algorithm (Algorithm 3).

Step 3: Apply classical multidimensional scaling to ds (Algorithm 4).

Algorithm 3. Dijkstra’s Alogrithm

This is pseudo-code to find dg(i, j), the geodesic distance from star i to star j.

Step 1: Start with all stars marked as unvisited nodes with tentative distance co
and star i as the current node.

Step 2: For each of the current node’s unvisited neighbors, compare the
neighbors current assigned distance to the tentative distance through the
current node. Replace the assigned distance if tentative distance is smaller
than assigned distance.

Step 3: Once all unvisited neighbors of the current node are considered, mark
the current node as visited.

Step 4: Continue by selecting the unvisited node with the smallest tentative
distance and repeat steps 2—4 until star j has been visited.
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Figure Al. (RgaL, |z])—age planes of the clusters in Figure 12, only using the age catalog of Ness et al. (2016), at top, and of Sit & Ness (2020) at bottom. The clusters
show more overlap in the (RgaL, |z])-[Fe/H] planes, but have different means and dispersions.
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Figure A2. [Fe/H]-age planes of the clusters in Figure 13, only using the age catalog of Ness et al. (2016), at top, and of Sit & Ness (2020) at bottom. The age errors from
these catalogs, at around 40%, are about double that of Sanders & Das (2018). However, they are derived using the stellar spectra themselves and have no prior probability
assigned from spatial or abundance information. The different clusters show some overlap in the age—[Fe/H] plane, but have different means and dispersions.
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Algorithm 4. Multidimensional Scaling

MDS takes a distance matrix ds and returns coordinates in a p -dimensional
space, where p is the pre-specified desired number of dimensions which we
choose to be 2.

Step 1: Create a squared distance matrix S where S;; = dg(i, )

Step 2: Apply double centering through B = —%JSJ where J =1 — %1 Iis
the centering matrix.

Step 3: Calculate the eigenvalues and eigenvectors of B. Let Ay, ..., A, be the
p largest eigenvalues and ey, ..., ¢, be the associated eigenvectors.

Step 4: Define E, as the n x p matrix with eigenvectors ey, ..., ¢, as the
columns and A, as the diagonal matrix of the eigenvalues from step 3. The
new lower-dimensional coordinates are EI,Alp/ 2,
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