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Abstract. We show that the Seifert-Weber dodecahedral space SW is a monopole Floer
homology L-space. The proof relies on our approach to study Floer homology using hyper-
bolic geometry. While SW is significantly larger than previous manifolds studied with this
technique, we overcome computational complexity issues inherent to our method by exploit-
ing the many symmetries of SW. In particular, we prove that small eigenvalues on coexact
1-forms on SW have large multiplicity.

The Seifert-Weber dodecahedral space SW is obtained by identifying opposite faces of a
dodecahedron by a 3{10 full turn [16]; it was one of the first examples of closed hyperbolic
three-manifold to be discovered [18]. Despite its very simple description, it is a quite compli-
cated space from the point of view of three-dimensional topology. For example, the conjecture
of Thurston from 1980 that SW is not Haken has been considered a benchmark problem in
computational topology and took 30 years to settle [3].

In the present paper, we look at SW from the point of view of monopole Floer homology
[8]. Recall that H1pSWq “ pZ{5Zq3, so that SW is a rational homology sphere.

Theorem 0.1. The Seifert-Weber dodecahedral space SW is an L-space, i.e. its reduced Floer
homology HM ˚pSWq vanishes.

More is true, in fact: our proof will show that, for all spinc-structures on SW (equipped
with the hyperbolic metric), small perturbations of the Seiberg-Witten equations on M admit
no irreducible solutions, and therefore SW is a minimal L-space in the sense of [10].

As a direct consequence of Theorem 0.1, we obtain that the Seifert-Weber dodecahedral
space does not admit coorientable taut foliations [9]. Furthermore, as SW is also an arith-
metic hyperbolic three-manifold of the simplest type with H1pSW,Z{2Zq “ 0 (see Remark
1.2), the construction of [1] can be directly adapted to provide more examples of hyperbolic
4-manifolds with vanishing Seiberg-Witten invariants.

Our approach to Theorem 0.1 builds on the ideas of our previous work [10], where we fo-
cused our attention on much smaller manifolds. There, we showed that a hyperbolic rational
homology sphere Y for which the first eigenvalue on coexact 1-forms λ˚

1 is strictly larger than
2 is an L-space. We then developed numerical techniques (based on the Selberg trace for-
mula) to provide explicit lower bounds on λ˚

1 in terms of the volume and closed geodesics of
Y . More specifically, taking as input the volume and the list of complex lengths of geodesics
with length at most R (as computed for example by SnapPy [4]), we determine an explicit
function JR,tpY q which is an upper bound to the multiplicity of t2 as an eigenvalue of ∆ on
coexact 1-forms. In particular, if JR,t ă 1 then t2 is not an eigenvalue; using this, we showed
(choosing R “ 6.5) that several manifolds with small volume (ď 2.029..) have λ˚

1 ą 2, and
1
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are therefore L-spaces.

The volume of SW is « 11.119, about 5 times greater than the census examples we con-
sidered in [10]. Correspondingly, by Weyl’s law one expects coexact 1-form eigenvalues to be
about 5 times as abundant. Based on this influence of volume, compared to the small census
manifolds Y considered in [10], one also heuristically expects the resolutions of JR,tpSWq and
JR1,tpY q to be comparable only when R is significantly larger than R1. Using SnapPy, we
computed the length spectrum up to cutoff R “ 8 in about 5 hours. The function JR,tpSWq
for R “ 8 determined by our method has the form

J8,tpSWq “ 1

xA´1ct, cty
,

where x¨, ¨y denotes the standard dot product on R41 and:

‚ A is a symmetric positive definite 41ˆ 41 matrix (independent of t) whose entries are
determined via the trace formula,

‚ ct :“
´
sinpδtq

δt

¯2

¨

¨
˚̊
˚̋

1
cospδtq

...
cosp40δtq

˛
‹‹‹‚P R41 with δ “ 8{p2 ¨ 40 ` 4q;

its plot can be found in Figure 1. Unfortunately, the lower bound provided by J8,t ă 1 is

λ˚
1 ą 1.9188 . . .

which is insufficient for our purposes.
On the other hand, the graph of J8,t is peaked just barely above height 6 in the narrow

interval r1.427877 . . . , 1.430337 . . .s; this strongly suggests that

λ˚
1 P rp1.427877 . . .q2, p1.430337 . . .q2s “ r2.03883 . . . , 2.04586 . . .s

and that the corresponding eigenspace has dimension 6. As we expect JR,t to approximate
better and better the indicator function of the spectrum (with multiplicities) for large R, one
could in principle prove that λ˚

1 ą 2 by showing that JR,t ă 1 for t ă
?
2 by computing the

length spectrum for some larger value of R. Unfortunately, this is unfeasible at a practical
level because the amount of time required to compute the length spectrum to some cutoff
grows at least exponentially with the cutoff, see Table 1.

Remark 0.1. It should be pointed out that the computations for SW are extremely fast (even
though not enough for our purposes). For example, the computation at cutoff R “ 6 only
took 12 seconds, while for most of the other three-manifolds we tested before it took around
15 ´ 20 minutes.

We instead took a more conceptual approach. Our main result is the following:

Claim 0.2. Any eigenvalue λ˚ ď 64 of the Hodge Laplacian on coexact 1-forms on SW has
multiplicity at least 4.

From this, we can prove Theorem 0.1 by looking again at the function J8,tpSWq.
Proof of Theorem 0.1. Recall that J8,tpSWq provides an upper bound for the multiplicity of
the eigenvalue t2. We have that J8,tpSWq ă 4 for t ď 1.414380 . . . (see Figure 2). This implies
that λ˚

1 ą p1.414380 . . .q2 “ 2.0004717 . . . ą 2, and Theorem 0.1 follows from Theorem 0.3 of
[10]. �
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homology sphere is an L-space [15]. On the other hand, even though SW is a cyclic 5-
fold branched cover of the Whitehead link (the one corresponding to the homomorphism
H1pS3zLq Ñ Z{5Z sending one meridian to 1 and the other to 2), it does not admit a simple
surgery description and is not the double branched cover of any link in S3 (see Remark 1.1),
so at least the most efficient computational tools available seem not to be directly applicable
to it.1

Remark 0.2. In particular, SW provides an example of an L-space which is neither asymmetric
nor the branched double cover of a link in S3 (cfr. the asymmetric L-spaces found in [6]).

Plan of the paper. In §1 we discuss several geometric and arithmetic properties of SW
which will be relevant for our purposes. In §2, we generalize our techniques from [10] to the
case of orbifolds and apply it to the case of SW{A5. In §3 we prove Claim 0.2, and in §4
we extend the analysis to prove Proposition 0.3. Finally, in §5 we discuss a closely related
tetrahedral orbifold.

Acknowledgements. The authors would like to thank Ian Agol for suggesting that the
Seifert-Weber dodecahedral space could be an interesting example to test their techniques,
Aurel Page for sharing his code to compute length spectra of arithmetic orbifolds, Nathan
Dunfield for the interesting comments, and the anonymous referee for the several useful sug-
gestions. The first author was partially supported by NSF grant DMS-1807242 and an Alfred
P. Sloan fellowship.

1. The geometry and arithmetic of SW

1.1. The isometry group. We follow closely the discussion of [13], to which we refer for
additional details. As mentioned in the introduction, SW is obtained by identifying opposite
faces of a dodecahedron by a 3{10 full turn. Under this identification, all vertices of the
dodecahedron get identified and the 30 edges get identified in groups of five. The hyperbolic
metric is realized by considering the regular dodecahedron D in H3 with dihedral angles of
2π{5 “ 720. The barycentric subdivision of D is made of 120 copies of the the tetrahedron T

with totally geodesic faces in Figure 3.
Denote by Γ the group generated by reflections across the faces of T, and by Γ` ă Γ the

index two subgroup consisting of orientation-preserving isometries. This has presentation

(1) Γ` “ xa, b, c|a2 “ b2 “ c5 “ pbcq2 “ pcaq3 “ pabq5 “ 1y

where a, b and c are the rotations around the axes V F , EF and EV of angles π, π and 2π{5
(the latter with orientation as in Figure 3); see Section 4.7 of [12]. In terms of reflections,
defining for a vertex P of T the reflection RP across the face opposite to P , we have

a “ RERO, b “ RV RO, c “ RFRO.

1Nathan Dunfield has recently pointed out to us that, even though SW is significantly larger than the
manifolds he studied in [5], his approach can be adapted to provide an alternative proof of Theorem 0.1. In
particular, he cleverly found a sequence of suitable surgeries to bootstrap the computations of [5] to the case
of SW.
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by sending ι to x “ p12q. Indeed, extending to Λ is equivalent to the relation ϕpιgι´1q “
xϕpgqx´1 for all g P Γ`. It is readily checked that this relation holds for every g among the
generators a, b, c of Γ`,2 which suffices.

In particular, ι normalizes the kernel of ϕ, and hence induces an isometry of SW. This
isometry switches O and V , and will be referred to as the inside-out isometry. The main
theorem of [13] is then the following.

Theorem 1.1 ([13]). The isometry group of SW is isomorphic to S5, and is generated by ι

and the orientation-preserving isometry group of the dodecahedron – A5.

Remark 1.1. In [13], the author also determines the action of S5 on the first homologyH1pSWq.
In particular, for the order 2 elements in S5 the quotient has non trivial H1, and is therefore
not S3. By geometrization, SW is not the branched double cover of a link in S3.

Remark 1.2. From our description it is clear that π1pSWq is commensurable to a tetrahedral
group (see Section 4.7.2 of [12]), and is therefore arithmetic of the simplest type by [11].

1.2. Covolume of centralizers. For later applications, for a non-trivial element γ P Γ` we
need to understand the volume volpΓ`

γ zGγq, where Gγ and Γ`
γ are the centralizers of γ in

G “ PSL2pCq and Γ` respectively. In closed hyperbolic manifold groups, all elements are
hyperbolic and the centralizer of γn0 with γ0 primitive is the cyclic group generated by γ0,
and therefore the quantity of interest is simply the translation length `pγ0q. For the closed
hyperbolic orbifold group Γ`, we need to consider two special classes of elements:

‚ elliptic elements;
‚ bad hyperbolic elements, i.e. hyperbolic elements whose axis is the fixed axis for some
elliptic element.

To determine these quantities, we will refer to the picture of SW{A5 in Figure 3 (considered
again as S3 with orbifold locus).

Up to conjugacy, the elliptic elements of order 5 are rotations around FO and V E. As
these two rotations are exchanged by the inside-out isometry, we need only perform the
computations on the non-trivial conjugacy classes of powers of γf , a rotation of 2π{5 around

the geodesic f in H3 connecting F and O. Notice that γf and γ´1

f are conjugate in Γ` because

in the isotropy group of F , which is isomorphic to D10, every order two element is conjugate to
its inverse. Therefore in Γ` there are exactly 4 conjugacy classes of order 5 elliptics, namely
γf , γ

2
f and their conjugates under ι. Now, Gγf consists of the elliptic elements with axis f

and the hyperbolic elements with axis f which preserve the endpoints of f . Furthermore,
Γ`
γf

is the abelian group generated by γf and a primitive hyperbolic element hf in Γ` with

axis f (and which preserves endpoints). The image of f in SW{A5 is |OF |, a geodesic of
mirrored-arc type, and therefore the translation length of hf is 2|OF |. This quantity can be
determined by looking at the geometry of the triangle with vertices E, F and O as follows.
Direct geometric considerations with the dodecahedron D show that

=OFE “ π{2, =OEF “ π{5.
2For example, because ι conjugates RP to RιpP q, it conjugates a “ RERO to RFRV “ RFR0R0RV “ cb´1.

So indeed,

ϕpιaι´1q “ ϕpcb´1q “ p13qp45q “ xϕpaqx´1
.
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The angle =EOF can be computed via formulas of spherical trigonometry using the fact that
a small sphere centered at O intersects T in a geodesic triangle with angles π{2, π{3 and π{5.
We have

=EOF “ arctan

ˆ?
5 ´ 1

2

˙
.

Since OFE spans a geodesic hyperbolic right triangle, we obtain

cosh |OF | “ cosp=OEF q
sinp=EOF q “ 1.5388 . . .

so that |OF | “ 0.9963... and

volpΓ`
γf

zGγf q “ 1

5
¨ `phf q “ 1

5
¨ 2 ¨ |OF | “ 0.3985 . . .

The same computation holds also for γ2f .

There is exactly one conjugacy class of order 3 elliptic elements corresponding to the
rotation by 2π{3 around the geodesic v in H3 connecting O and V , which we denote by γv.
We see that γv is conjugate to γ´1

v by looking at the isotropy group of O: this is isomorphic
to A5, and every order 3 element in A5 is conjugate to its inverse. Denoting by hv a primitive
hyperbolic element in Γ`

γv , computations analogous to the case of γf show that

volpΓ`
γvzGγvq “ 1

3
¨ `phvq “ 1

3
¨ 2 ¨ |OV | “ 1.2685 . . .

The case of the order 2 elements is somewhat more complicated. The isotropy groups of
E and F are isomorphic to D10, and therefore the three edges of T labeled with 2 are the
image in SW{A5 of fixed point set of a single order 2 elliptic element. Therefore, there is only
one conjugacy class of such elements, given by the π rotation around the geodesic γe in H3

connecting E and O. Denoting by he a primitive hyperbolic element in Γ`
γe , we have

`pheq “ 2p|OE| ` |EF | ` |FV |q “ 7.5836 . . .

Furthermore:

(a) the centralizer Gγe has an extra connected component corresponding to hyperbolic
elements with axis e that switch the endpoints.

(b) The centralizer Γ`
γe contains the group generated by γe and he as an index 2 subgroup;

more specifically, it contains an extra involution commuting with γe. This is given by
another order two elliptic element in the isotropy group of O, corresponding to the
fact that order 2 elements in A5 have centralizer isomorphic to the Klein four group.

Putting things together, we obtain

volpΓ`
γezGγeq “ 2 ¨ 1

4
`pheq “ 3.7918 . . .

where the factors of 2 and 1{4 take into account (a) and (b) respectively.

The case of a bad hyperbolic element h is simpler, as in this case the quantity volpΓ`
h zGhq

is the length `phq divided by the order of the subgroup of elliptics having the same axis at h.
Only the case of order 2 elements require some extra thought, and follows from the fact that
the extra involution described in (b) above does not commute with the hyperbolic element.
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1.3. Arithmetic description. The group Γ` is a tetrahedral group (see also Remark 1.2),
and admits the following arithmetic description (we refer the reader to Chapter 8 of [12] for

the relevant notions). Consider the number field k “ Q

´a
´1 ´ 2

?
5

¯
, which has exactly

one complex place. Consider the quaternion algebra A over k ramified exactly at the two real
places, and let O be a maximal order in A (all of them are conjugate in this case, cfr. Section
6.7 of [12]). Under the complex embedding, we get the inclusion of the norm one elements

ρ : O1
ãÑ SL2pCq,

and by projectivizing we obtain the arithmetic group PρpO1q Ă PSL2pCq. We have the
following:

(2) Γ` – PρpO1q.

The proof of this statement can be easily adapted from the analogous result for the tetrahedral
group with Coxeter symbol r3, 5, 3s in Section 11.2.5 of [12]. First of all, (1) readily implies

that Γ` “ pΓ`qp2q. Furthermore, Γ` is arithmetic with invariant trace field and quaternion al-

gebras k and A (see Appendix 13.1 of [12]). By Corollary 8.3.3 in [12], Γ` “ pΓ`qp2q Ă PρpO1q
for some maximal order O, and the equality follows because the two groups have the same
covolume.

1.3.1. Conjugacy class data for PρpO1q by arithmetic methods. While the orbifold corre-
sponding to Γ` is not implemented in the software SnapPy because of its complicated orbifold
singularities, the identification (2) makes it feasible to compute the length spectrum of Γ`

using techniques from number theory. The method is described in Chapter 30 of [17], and
has been implemented in PARI/GP by Aurel Page [14].

Let O be an order in a quaternion algebra A over a number field k with ring of integers
Zk. Given an element γ P O1, K “ kpγq is a quadratic extension of k that embeds in A.

Furthermore, S “ K XO is a quadratic Zk-order that embeds in O. The key facts underlying
the method are the following:

‚ O1-conjugacy classes in O1 having the same characteristic polynomial as γ (or equiv-
alently conjugate to ρpγq in PSL2pCq) are in bijection with Zk-algebra embeddings
ϕ : S ãÑ O up to O1-conjugation.

‚ γ is primitive exactly when the embedding S ãÑ O is optimal, i.e. after extending ϕ

linearly to K, we have ϕpKq X O “ ϕpSq.
‚ the optimal embeddings S ãÑ O up to O1-conjugation may be parametrized adelically.

These observations allow one to express the multiplicity of a given element C`pγq in the
complex length spectrum in terms of the class number of S and purely local information like
local embedding numbers; when O is a maximal order, the latter can be understood in a very
explicit form which is directly computable in PARI/GP.3

3The computations of class numbers were certified using bnfcertify, and therefore do not rely on the
Generalized Riemann hypothesis.
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2. The Selberg trace formula for coexact 1-forms for SW{A5

The explicit Selberg trace formula for coexact 1-forms on a hyperbolic three-manifold in [10]
can be readily generalized to the case of orbifolds. The main complication is the evaluation
of the terms in the geometric side corresponding to conjugacy classes which are either elliptic
or bad hyperbolic. We have the following.

Theorem 2.1 (Explicit Selberg trace formula for coexact 1-forms on closed hyperbolic 3-orb-
ifolds). Let O be a closed oriented hyperbolic three-dimensional orbifold, corresponding to a
quotient H3{Γ. Denote by 0 ă λ˚

1 ď λ˚
2 ď ¨ ¨ ¨ the spectrum of the Hodge Laplacian on co-

exact 1-forms, and set tj “
b
λ˚
j . Let H be an even, smooth, compactly supported, R-valued

function on R. Then the following identity holds:
ˆ
1

2
b1pOq ´ 1

2

˙
pHp0q ` 1

2

8ÿ

j“1

pHptjq “ volpOq
2π

¨
`
Hp0q ´ H2p0q

˘

`
ÿ

rγs‰1

tpγq ¨ volpΓγzGγq ¨ cospholpγqq
|1 ´ eC`pγq| ¨ |1 ´ e´C`pγq|H p`pγqq ,(3)

where:

‚ pHptq :“
ş
R
Hpxqeix¨tdx is the Fourier transform of H;

‚ tpγq “ 1

2
if γ is an elliptic element of order 2, and is 1 otherwise.

‚ Gγ and Γγ are the centralizers of γ in G and Γ respectively.

Furthermore, the formula holds for the class of less regular compactly supported functions
described in [10].

Remark 2.1. In the trace formula (3), if γ is elliptic, the term cospholpγqq
|1´eC`pγq|¨|1´e´C`pγq|

H p`pγqq
reduces to cospholpγqq

|1´ei¨holpγq|¨|1´e´i¨holpγq|
Hp0q.

Note that if γ is a good (i.e not bad) hyperbolic element, then

volpΓγzGγq “ `pγ0q
where γ0 is a primitive element of which γ is a multiple. In particular, Theorem 2.1 is a direct
generalization of Theorem 0.4 of [10]. In the case of the orbifold SW{A5, we determine these
volume terms for the elliptic and bad hyperbolic elements in Section 1.2.

Proof of Theorem 2.1. The proof of the formula for manifolds in [10] adapts directly to the
case of orbifolds, provided that there are no elements of order 2. In particular, each of the
terms in the second line corresponds to a quantity of the form

volpΓγzGγq
ż

GγzG
fpg´1γgq dg

dgγ

for some suitable f . When γ is not an elliptic element of order 2, Gγ is the connected group
corresponding of hyperbolic elements sharing the axis of γ and fixing its endpoints, and we
proved in [10] that the integral term (after additional work) is of the form in the theorem.
In the case of an elliptic element of order 2, Gγ has an additional connected component
corresponding to elements preserving the same axis but exchanging the two points at infinity.
The integrand g ÞÑ fpg´1γgq is invariant under the action of the order 2 group G0

γzGγ , and
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This can be seen either directly via a geometric argument, or by looking at the length spec-
trum, as in our specific case these are exactly the holonomies that appear for the translation
lengths of the bad hyperbolics. Finally, the covolumes of the centralizers were determined in
§1.2.

Using a cutoff R “ 8 we obtain the function J8,tpSW{A5q in Figure 4. In particular,
J8,tpSW{A5q ă 1 for t ď 8, so that SW{A5 has no eigenvalues ď 64. Eigenforms on SW{A5

correspond to eigenforms on SW which are invariant under the action of A5 by isometries. In
particular, we obtain that for any λ˚-eigenspace Vλ˚ of SW for λ˚ ď 64, there are no copies
of the trivial A5-representation. Now Vλ˚ is a finite dimensional representation of the full
isometry group S5. The only irreducible representations of S5 of dimension ă 4 are the trivial
representation and the sign representation (Section 3.1 of [7]); both of these representations
restrict to the trivial representation of A5. Therefore any Vλ˚ with λ˚ ď 64 is at least
4-dimensional, and Claim 0.2 follows.

4. The first eigenspace of SW

This section builds to the characterization of the first eigenspace in Proposition 0.3. We
begin by proving two lemmas that provide upper and lower bounds for the number of small
eigenvalues (counted with multiplicities).

Lemma 4.1. Every eigenvalue t2 of the Laplacian acting on coexact 1-forms on SW for which
|t| ă 2.3124 satisfies |t| P r1.41, 1.45s. Furthermore, the number of such eigenvalues (counted
with multiplicity) is at most 6.

Proof. By Claim 0.2, every eigenvalue t2 satisfying |t| ă 8 has multiplicity at least 4. Thus,
every eigenvalue t2 must be among those t for which J8,tpSWq ě 4. The value of J8,tpSWq is
less than 4 on r0, 2.3124szr1.41, 1.45s. This proves the first part of the Proposition.

For the second part, we recall from [10, §3] that for a given t˚ P R, J8,t˚pSWq is the

minimum value
ř | pHptnq|2 of the optimization problem

For pHptq P R-span of

#ˆ
sinpδtq

δt

˙2

¨ cospkδtq : k “ 0, . . . , 40

+
where δ “ 8{p2 ¨ 40 ` 4q

Minimize
ÿ

| pHptnq|2(4)

Subject to pHpt˚q “ 1.

The functions H ˚H are linear combinations of shifts of the convolution 4th power of 1r´δ,δs

and are supported on r´8, 8s for this particular choice of δ. We refer the reader to [10, §3] for
further details.

For a given t˚, the function Ht˚ solving the optimization problem of (4) is unique, and

because pHt˚pt˚q “ 1, by continuity pHt˚pt1q is close to 1 for t1 quite close to t˚. Indeed, for

the particular value t˚ “ 1.428, the function | {H1.428|2 assumes values between 0.9 and 1.11
on the interval t P r1.41, 1.45s.
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‚ it has maximum value close to 1, achieved very close to the points t “ ˘a;
‚ it is positive only if t P r´a ´ b,´a ` bs Y ra ´ b, a ` bs.

This is useful for our purposes because if the value of the spectral side of the trace formulař
tn

yGa,bptnq equals X ą 0, we can reasonably hope that the number of tn P r´a ´ b,´a `
bs Y ra ´ b, a ` bs is at least X.

In the example at hand, we applied the trace formula to the test function G1.33,2.2´1.33.
4

This function has maximum approximately 0.99998429.. and we calculate
ÿ

tn

pG1.33,2.2´1.33ptnq “ 5.238 . . .

The function pG1.33,2.2´1.33 is only positive for |t| P I for some interval I containing r1.41, 1.45s.
All tn satisfying |tn| ď 2.2 are actually contained in r1.41, 1.45s by Proposition 4.1. It follows
that

5.238 . . . “
ÿ

tn

pG1.33,2.2´1.33ptnq

ď
ÿ

|tn|Pr1.41,1.45s

pG1.33,2.2´1.33ptnq

ď #tn : |tn| P r1.41, 1.45su ¨ 1.(5)

Since #tn : |tn| P r1.41, 1.45su is a non-negative integer, (5) implies that

#tn : |tn| P r1.41, 1.45su ě 6

and proves our claim. �

Proof of Theorem 0.3. It follows immediately, by combining Lemmas 4.1 and 4.2 that every
eigenvalue t2 for which |t| ă 2.3124 satisfies |t| P r1.41, 1.45s and that the total number of
such t (counted with multiplicity) exactly equals 6.

Consider V “ À
|t|Pr1.41,1.45s Et2 , the direct sum over |t| P r1.41, 1.45s of the t2-eigenspaces

of the Laplacian for on coexact 1-forms on SW; as the group S5 acts by isometries on SW,

the space V is an S5-representation. By our main argument proving Claim 0.2, V does not
contain either the trivial representation or the sign representation of S5. By the classification
of irreducible representations of S5, the space V decomposes as a direct sum of S5-stable
subspaces of dimensions 4, 5, or 6. Since dimV “ 6, the only possibility is that V is the
irreducible 6-dimensional representation of S5. This implies that there is a single eigenvalue
t2 satisfying |t| P r1.41, 1.45s.

Since the multiplicity of the t2-eigenvalue equals 6, it follows that J8,tpSWq ě 6. In the
range |t| P r1.41, 1.45s,

J8,tpSWq ě 6 ùñ |t| P r1.4278772, 1.4303375s.
This completes the proof. �

4Lest this choice seem arbitrary, note that we computed the spectral side of the trace formula for Gc,2.2´c

for about 100 different values of c close to 1.42 . . . - any eigenvalue parameter provably lies in r1.41, 1.45s by
Lemma 4.1. The choice c “ 1.33 maximized the value of the spectral side of the trace formula within our
sample.







MONOPOLES AND THE DODECAHEDRON 17

[16] W. Thurston. Three-dimensional geometry and topology. Vol. 1. Edited by Silvio Levy. Princeton Mathe-
matical Series, 35. Princeton University Press, Princeton, NJ, 1997.

[17] J. Voight. Quaternion algebras.

[18] C. Weber, H. Seifert. Die beiden Dodekaederrume. Math. Z. 37 (1933), no. 1, 237-253.

Department of Mathematics, Columbia University

E-mail address: flin@math.columbia.edu

Department of Mathematics and Statistics, McGill University

E-mail address: michael.lipnowski@mcgill.ca


	1. The geometry and arithmetic of SW
	1.1. The isometry group.
	1.2. Covolume of centralizers.
	1.3. Arithmetic description. 

	2. The Selberg trace formula for coexact 1-forms for SW/A5
	3. Proof of Claim 0.2
	4. The first eigenspace of SW
	5. Another tetrahedral orbifold
	References

