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ABSTRACT. We show that the Seifert-Weber dodecahedral space SW is a monopole Floer
homology L-space. The proof relies on our approach to study Floer homology using hyper-
bolic geometry. While SW is significantly larger than previous manifolds studied with this
technique, we overcome computational complexity issues inherent to our method by exploit-
ing the many symmetries of SW. In particular, we prove that small eigenvalues on coexact
1-forms on SW have large multiplicity.

The Seifert-Weber dodecahedral space SW is obtained by identifying opposite faces of a
dodecahedron by a 3/10 full turn [16]; it was one of the first examples of closed hyperbolic
three-manifold to be discovered [18]. Despite its very simple description, it is a quite compli-
cated space from the point of view of three-dimensional topology. For example, the conjecture
of Thurston from 1980 that SW is not Haken has been considered a benchmark problem in
computational topology and took 30 years to settle [3].

In the present paper, we look at SW from the point of view of monopole Floer homology
[8]. Recall that H,(SW) = (Z/5Z)3, so that SW is a rational homology sphere.

Theorem 0.1. The Seifert-Weber dodecahedral space SW is an L-space, i.e. its reduced Floer
homology HM ,.(SW) vanishes.

More is true, in fact: our proof will show that, for all spin®-structures on SW (equipped
with the hyperbolic metric), small perturbations of the Seiberg-Witten equations on M admit
no irreducible solutions, and therefore SW is a minimal L-space in the sense of [10].

As a direct consequence of Theorem 0.1, we obtain that the Seifert-Weber dodecahedral
space does not admit coorientable taut foliations [9]. Furthermore, as SW is also an arith-
metic hyperbolic three-manifold of the simplest type with H;(SW,Z/27Z) = 0 (see Remark
1.2), the construction of [1] can be directly adapted to provide more examples of hyperbolic
4-manifolds with vanishing Seiberg-Witten invariants.

Our approach to Theorem 0.1 builds on the ideas of our previous work [10], where we fo-
cused our attention on much smaller manifolds. There, we showed that a hyperbolic rational
homology sphere Y for which the first eigenvalue on coexact 1-forms A} is strictly larger than
2 is an L-space. We then developed numerical techniques (based on the Selberg trace for-
mula) to provide explicit lower bounds on A} in terms of the volume and closed geodesics of
Y. More specifically, taking as input the volume and the list of complex lengths of geodesics
with length at most R (as computed for example by SnapPy [4]), we determine an explicit
function Jg+(Y) which is an upper bound to the multiplicity of ¢? as an eigenvalue of A on
coexact 1-forms. In particular, if Jp; < 1 then t2 is not an eigenvalue; using this, we showed
(choosing R = 6.5) that several manifolds with small volume (< 2.029..) have A} > 2, and
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are therefore L-spaces.

The volume of SW is ~ 11.119, about 5 times greater than the census examples we con-
sidered in [10]. Correspondingly, by Weyl’s law one expects coexact 1-form eigenvalues to be
about 5 times as abundant. Based on this influence of volume, compared to the small census
manifolds Y considered in [10], one also heuristically expects the resolutions of Jg;(SW) and
Jr+(Y) to be comparable only when R is significantly larger than R'. Using SnapPy, we
computed the length spectrum up to cutoff R = 8 in about 5 hours. The function Jg{(SW)
for R = 8 determined by our method has the form

1
J&t(SW) - <A_1Ct7 Ct>’

where (-, -) denotes the standard dot product on R*! and:

e A is a symmetric positive definite 41 x 41 matrix (independent of ¢) whose entries are
determined via the trace formula,
1

) 2 cos(dt
o = (%) : ( ) e RY with § = 8/(2 - 40 + 4);

cos(406t)
its plot can be found in Figure 1. Unfortunately, the lower bound provided by Jg; <1 is
A7 > 1.9188...

which is insufficient for our purposes.
On the other hand, the graph of Jg; is peaked just barely above height 6 in the narrow
interval [1.427877...,1.430337...]; this strongly suggests that

N e [(1.427877...)%,(1.430337...)%] = [2.03883...,2.04586. . ]

and that the corresponding eigenspace has dimension 6. As we expect Jr; to approximate
better and better the indicator function of the spectrum (with multiplicities) for large R, one
could in principle prove that A} > 2 by showing that Jr; < 1 for ¢t < v/2 by computing the
length spectrum for some larger value of R. Unfortunately, this is unfeasible at a practical
level because the amount of time required to compute the length spectrum to some cutoff
grows at least exponentially with the cutoff, see Table 1.

Remark 0.1. It should be pointed out that the computations for SW are extremely fast (even
though not enough for our purposes). For example, the computation at cutoff R = 6 only
took 12 seconds, while for most of the other three-manifolds we tested before it took around
15 — 20 minutes.

We instead took a more conceptual approach. Our main result is the following;:

Claim 0.2. Any eigenvalue \* < 64 of the Hodge Laplacian on coexact 1-forms on SW has
multiplicity at least 4.

From this, we can prove Theorem 0.1 by looking again at the function Jg¢(SW).

Proof of Theorem 0.1. Recall that Jg;(SW) provides an upper bound for the multiplicity of
the eigenvalue t2. We have that Jg ;(SW) < 4 for t < 1.414380. .. (see Figure 2). This implies
that A\¥ > (1.414380...)% = 2.0004717... > 2, and Theorem 0.1 follows from Theorem 0.3 of
[10]. O
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FIGURE 1. The graph of t — Jg(SW) for t € [0,4].

Length cutoff R | v/2 — height 1 crossing point | Running time in CPU seconds

6.0 0.207732 ... 12
6.5 0.152766. . . 61
7.0 0.096385. .. 348
7.5 0.051723. .. 2255
8.0 0.028979. 19112

TABLE 1. Differences between v/2 and point where the graphs of t — J. Rrt(SW)
cross height 1 for various length cutoffs R. Assuming the actual value of \/)\—’f
to be about 1.428.., this suggest that a computation of length spectrum at
cutoff R = 9.5 could prove A} > 2. Being quite optimistic (e.g. assuming
that memory limitations do not affect the running time), such a computation
would take at least several months. Here we used an Intel Core i7 2.7GHz
with 10GB of allocated memory.

The rest of this paper is dedicated to the proof of Claim 0.2. Determining eigenvalue
multiplicities is in general a very delicate problem, especially in the context of numerical
computations. There are two key observations about SW underlying Claim 0.2:

(1) SW is a very symmetric manifold. In particular, its isometry group is isomorphic to
the symmetric group S5 [13]. Here the alternating subgroup As corresponds to the
orientation preserving isometries of the dodecahedron;
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FIGURE 2. The graph of t — Jg(SW) for ¢ € [1.413,1.415].

(2) while the orbifold SW/Aj5 is not implemented in SnapPy (which currently only has
infrastructure to handle orbifolds with cyclic singularities), it admits a very explicit
arithmetic description; in particular, one can use number theoretic techniques to com-
pute its length spectrum (see Chapter 30 of [17]).

By generalizing the techniques of [10] to the case of orbifolds, we can use the computation
of the length spectrum (together with some additional geometric data) to show that the
orbifold SW/ A5 satisfies AT > 64; this implies that the A\*-eigenspace of SW for every A* < 64,
viewed as a representation of the isometry group S5, does not contain copies of the trivial
representation of As. From this we will be able to conclude Claim 0.2 via the classification of
irreducible representations of Sj.

In fact, a more detailed analysis involving the trace formula allows one to confirm the
multiplicity and narrow window for the first eigenvalue suggested by Figure 1.

Proposition 0.3. There is exactly one eigenvalue t2, for the Laplacian acting on coexact
1-forms on SW, satisfying |t| < 2.3124. It occurs with multiplicity 6 and lies in the window
|t| € [1.4278772,1.4303375].

The proof will also show that the first eigenspace is isomorphic to the unique 6-dimensional
irreducible representation of Ss.

Our approach to Theorem 0.1 is based on many of the beautiful geometric and arithmetic
properties of SW. One would expect that the same result can be achieved by other means,
given that there is an algorithmic (yet impractical) way to determine whether a given rational
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homology sphere is an L-space [15]. On the other hand, even though SW is a cyclic 5-
fold branched cover of the Whitehead link (the one corresponding to the homomorphism
H1(S*\L) — Z/57Z sending one meridian to 1 and the other to 2), it does not admit a simple
surgery description and is not the double branched cover of any link in S (see Remark 1.1),
so at least the most efficient computational tools available seem not to be directly applicable
to it.!

Remark 0.2. In particular, SW provides an example of an L-space which is neither asymmetric
nor the branched double cover of a link in S3 (cfr. the asymmetric L-spaces found in [6]).

Plan of the paper. In §1 we discuss several geometric and arithmetic properties of SW
which will be relevant for our purposes. In §2, we generalize our techniques from [10] to the
case of orbifolds and apply it to the case of SW/A5. In §3 we prove Claim 0.2, and in §4
we extend the analysis to prove Proposition 0.3. Finally, in §5 we discuss a closely related
tetrahedral orbifold.

Acknowledgements. The authors would like to thank Ian Agol for suggesting that the
Seifert-Weber dodecahedral space could be an interesting example to test their techniques,
Aurel Page for sharing his code to compute length spectra of arithmetic orbifolds, Nathan
Dunfield for the interesting comments, and the anonymous referee for the several useful sug-
gestions. The first author was partially supported by NSF grant DMS-1807242 and an Alfred
P. Sloan fellowship.

1. THE GEOMETRY AND ARITHMETIC OF SW

1.1. The isometry group. We follow closely the discussion of [13], to which we refer for
additional details. As mentioned in the introduction, SW is obtained by identifying opposite
faces of a dodecahedron by a 3/10 full turn. Under this identification, all vertices of the
dodecahedron get identified and the 30 edges get identified in groups of five. The hyperbolic
metric is realized by considering the regular dodecahedron D in H? with dihedral angles of
27/5 = 72°. The barycentric subdivision of D is made of 120 copies of the the tetrahedron T
with totally geodesic faces in Figure 3.

Denote by I' the group generated by reflections across the faces of T, and by I'" < T the
index two subgroup consisting of orientation-preserving isometries. This has presentation

(1) 't ={a,b,cla®> = b* = ¢® = (bc)? = (ca)® = (ab)® = 1)

where a, b and ¢ are the rotations around the axes VF, EF and EV of angles 7, m and 27/5
(the latter with orientation as in Figure 3); see Section 4.7 of [12]. In terms of reflections,
defining for a vertex P of T the reflection Rp across the face opposite to P, we have

a = RERo, b= RvRo, Cc = RFRo.

INathan Dunfield has recently pointed out to us that, even though SW is significantly larger than the
manifolds he studied in [5], his approach can be adapted to provide an alternative proof of Theorem 0.1. In
particular, he cleverly found a sequence of suitable surgeries to bootstrap the computations of [5] to the case
of SW.
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F

FIGURE 3. A schematic picture of the tetrahedron T. An edge labeled n has
dihedral angle m/n. The vertices O, V', E and F are respectively the center of
the dodecahedron D, one of its vertices, the center of an edge and the center of
a face. In Coxeter notation this is the tetrahedron [5,3,5]. The arrow denotes
the orientation for the order 5 rotation c.

Following [13], the surjective homomorphism

(%) IF+ - A5
a— (23)(45) b (12)(35) ¢ — (12345)

has kernel identified with 7;(SW). In particular, we see that there is a natural action of Aj
on SW by isometries (corresponding to the isometry group of D, which is isomorphic to As),
and the quotient orbifold SW/As5 has fundamental group I't. Furthermore, the fundamental
domain for the action of I't on H? is given by doubling T along any face; looking at the iden-
tifications, we see that the quotient SW/A5 is homeomorphic to S3, and the orbifold locus is
described again by Figure 3, when thought of as a labeled trivalent graph in S3. In particular
the isotropy groups of the vertices V', O are isomorphic to A5 and the isotropy groups of FE,
F' are isomorphic to the dihedral group with 10 elements Dqg.

The tetrahedron T admits an incidence and edge label-preserving symmetry sending V to
O and FE to F'; because there is a unique hyperbolic tetrahedron with given dihedral angles,
this symmetry is realized by an isometry ¢. Geometrically, ¢ is the rotation by 7 along the
geodesic connecting the midpoints of the segments FF and VO (such a geodesic is necessarily
orthogonal to the edges at the endpoints). Since ¢ maps faces to faces, it normalizes I' and
hence the orientation-preserving subgroup I'*. Thus, the subgroup A of Isom™ (H?) generated
by I't and ¢ is the semidirect product of I't and the order two subgroup generated by ..
Furthermore, ¢ can be extended to a homomorphism

@:A— S5
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by sending ¢+ to # = (12). Indeed, extending to A is equivalent to the relation p(1gt™!) =
zp(g)z~! for all g € I'*. It is readily checked that this relation holds for every g among the
generators a, b, ¢ of I'",2 which suffices.

In particular, ¢ normalizes the kernel of ¢, and hence induces an isometry of SW. This
isometry switches O and V, and will be referred to as the inside-out isometry. The main
theorem of [13] is then the following.

Theorem 1.1 ([13]). The isometry group of SW is isomorphic to S5, and is generated by ¢
and the orientation-preserving isometry group of the dodecahedron = As.

Remark 1.1. In [13], the author also determines the action of S5 on the first homology H;(SW).
In particular, for the order 2 elements in S5 the quotient has non trivial Hy, and is therefore
not S3. By geometrization, SW is not the branched double cover of a link in S3.

Remark 1.2. From our description it is clear that m1(SW) is commensurable to a tetrahedral
group (see Section 4.7.2 of [12]), and is therefore arithmetic of the simplest type by [11].

1.2. Covolume of centralizers. For later applications, for a non-trivial element v € I't we
need to understand the volume vol(I'7\G), where G, and T'Y are the centralizers of v in
G = PSLy(C) and I'" respectively. In closed hyperbolic manifold groups, all elements are
hyperbolic and the centralizer of 7 with ~ primitive is the cyclic group generated by 7o,
and therefore the quantity of interest is simply the translation length ¢(g). For the closed
hyperbolic orbifold group I'", we need to consider two special classes of elements:

e elliptic elements;
e bad hyperbolic elements, i.e. hyperbolic elements whose axis is the fixed axis for some
elliptic element.

To determine these quantities, we will refer to the picture of SW/A5 in Figure 3 (considered
again as S3 with orbifold locus).

Up to conjugacy, the elliptic elements of order 5 are rotations around F'O and VE. As
these two rotations are exchanged by the inside-out isometry, we need only perform the
computations on the non-trivial conjugacy classes of powers of ¢, a rotation of 27/5 around
the geodesic f in H? connecting I and O. Notice that vf and ’y]Tl are conjugate in I'" because
in the isotropy group of F', which is isomorphic to D1, every order two element is conjugate to
its inverse. Therefore in I'" there are exactly 4 conjugacy classes of order 5 elliptics, namely
Vs 'y]% and their conjugates under :. Now, G, consists of the elliptic elements with axis f
and the hyperbolic elements with axis f which preserve the endpoints of f. Furthermore,
Fj + is the abelian group generated by s and a primitive hyperbolic element hy in 't with
axis f (and which preserves endpoints). The image of f in SW/A5 is |OF|, a geodesic of
mirrored-arc type, and therefore the translation length of hy is 2|OF|. This quantity can be
determined by looking at the geometry of the triangle with vertices F, F and O as follows.
Direct geometric considerations with the dodecahedron D show that

/OFE =1/2,  LOEF =1/5.

2For example, because ¢ conjugates Rp to R,(p), it conjugates a = RpRo to RrRv = RrRoRoRy = ch L.
So indeed,

pliar™) = p(eb™) = (13)(45) = zp(a)a".
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The angle ZEOF can be computed via formulas of spherical trigonometry using the fact that
a small sphere centered at O intersects T in a geodesic triangle with angles 7/2, 7/3 and /5.

We have
-1
/ZEQOF = arctan <\/52 > .
Since OF' E spans a geodesic hyperbolic right triangle, we obtain
cos(LOEF)
h|OF| = ———— =1.5388...
cosh |OF| = S 7 EOF)

so that |OF| = 0.9963... and
1 1
+ _ _ _
The same computation holds also for 7;.

There is exactly one conjugacy class of order 3 elliptic elements corresponding to the
rotation by 27/3 around the geodesic v in H? connecting O and V/, which we denote by ,.
We see that -, is conjugate to 7, ' by looking at the isotropy group of O: this is isomorphic
to As, and every order 3 element in Aj is conjugate to its inverse. Denoting by h,, a primitive
hyperbolic element in Fjv, computations analogous to the case of vy show that

vol(T\G,,) = % (hy) = % 2|0V = 1.2685 . .

The case of the order 2 elements is somewhat more complicated. The isotropy groups of
FE and F' are isomorphic to Djg, and therefore the three edges of T labeled with 2 are the
image in SW/ A5 of fixed point set of a single order 2 elliptic element. Therefore, there is only
one conjugacy class of such elements, given by the 7 rotation around the geodesic v, in H?
connecting F and O. Denoting by h. a primitive hyperbolic element in F,Te, we have

l(he) = 2(|OE| + |EF| + |FV]|) = 7.5836.. ..
Furthermore:

(a) the centralizer G, has an extra connected component corresponding to hyperbolic
elements with axis e that switch the endpoints.

(b) The centralizer I‘;re contains the group generated by 4. and h. as an index 2 subgroup;
more specifically, it contains an extra involution commuting with ~.. This is given by
another order two elliptic element in the isotropy group of O, corresponding to the
fact that order 2 elements in A5 have centralizer isomorphic to the Klein four group.

Putting things together, we obtain

1
vol(TT\G,,) = 2- 1f(he) =3.7918...

where the factors of 2 and 1/4 take into account (a) and (b) respectively.

The case of a bad hyperbolic element h is simpler, as in this case the quantity vol(F;{\Gh)
is the length ¢(h) divided by the order of the subgroup of elliptics having the same axis at h.
Only the case of order 2 elements require some extra thought, and follows from the fact that
the extra involution described in (b) above does not commute with the hyperbolic element.
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1.3. Arithmetic description. The group I'" is a tetrahedral group (see also Remark 1.2),
and admits the following arithmetic description (we refer the reader to Chapter 8 of [12] for

the relevant notions). Consider the number field £ = Q (\/ -1- 2\/5), which has exactly

one complex place. Consider the quaternion algebra A over k ramified exactly at the two real
places, and let O be a maximal order in A (all of them are conjugate in this case, cfr. Section
6.7 of [12]). Under the complex embedding, we get the inclusion of the norm one elements

p: O < SLy(C),

and by projectivizing we obtain the arithmetic group Pp(O') = PSL2(C). We have the
following:

(2) It =~ Pp(OY).

The proof of this statement can be easily adapted from the analogous result for the tetrahedral
group with Coxeter symbol [3,5,3] in Section 11.2.5 of [12]. First of all, (1) readily implies
that T* = (I't)®). Furthermore, I't is arithmetic with invariant trace field and quaternion al-
gebras k and A (see Appendix 13.1 of [12]). By Corollary 8.3.3 in [12], Tt = (I'")?) ¢ Pp(O')
for some maximal order O, and the equality follows because the two groups have the same
covolume.

1.3.1. Conjugacy class data for Pp(O') by arithmetic methods. While the orbifold corre-
sponding to I'" is not implemented in the software SnapPy because of its complicated orbifold
singularities, the identification (2) makes it feasible to compute the length spectrum of I't
using techniques from number theory. The method is described in Chapter 30 of [17], and
has been implemented in PARI/GP by Aurel Page [14].

Let O be an order in a quaternion algebra A over a number field £ with ring of integers
Zy,. Given an element v € O', K = k(v) is a quadratic extension of k that embeds in A.
Furthermore, S = K n O is a quadratic Zg-order that embeds in O. The key facts underlying
the method are the following:

e Ol-conjugacy classes in O! having the same characteristic polynomial as v (or equiv-
alently conjugate to p(7y) in PSLy(C)) are in bijection with Zg-algebra embeddings
¢ : S < O up to O'-conjugation.

e ~v is primitive exactly when the embedding S — O is optimal, i.e. after extending ¢
linearly to K, we have p(K) n O = ¢(S5).

e the optimal embeddings S < O up to O'-conjugation may be parametrized adelically.

These observations allow one to express the multiplicity of a given element C/(y) in the
complex length spectrum in terms of the class number of S and purely local information like
local embedding numbers; when O is a maximal order, the latter can be understood in a very
explicit form which is directly computable in PARI/GP.3

3The computations of class numbers were certified using bnfcertify, and therefore do not rely on the
Generalized Riemann hypothesis.
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2. THE SELBERG TRACE FORMULA FOR COEXACT 1-FORMS FOR SW/A5

The explicit Selberg trace formula for coexact 1-forms on a hyperbolic three-manifold in [10]
can be readily generalized to the case of orbifolds. The main complication is the evaluation
of the terms in the geometric side corresponding to conjugacy classes which are either elliptic
or bad hyperbolic. We have the following.

Theorem 2.1 (Explicit Selberg trace formula for coexact 1-forms on closed hyperbolic 3-orb-
ifolds). Let O be a closed oriented hyperbolic three-dimensional orbifold, corresponding to a
quotient H3/T. Denote by 0 < \f < A5 < --- the spectrum of the Hodge Laplacian on co-

exact 1-forms, and set t; = )\;-‘. Let H be an even, smooth, compactly supported, R-valued
function on R. Then the following identity holds:
1 1\ ~ 1S A vol(O) "
(3u00) - 3) O + 2 2105 = 25 (0 - 1'0)
cos(hol(y))
(3) * [%1“7) VOlT\Gy) |1 —eCtO] |1 — e—u(”/)|H ().
.

where:
. f](t) := (g H(z)e"'dx is the Fourier transform of H;
o t(y) = % if v is an elliptic element of order 2, and is 1 otherwise.
e G, and I, are the centralizers of v in G and I' respectively.

Furthermore, the formula holds for the class of less reqular compactly supported functions
described in [10].

Remark 2.1. In the trace formula (3), if 7 is elliptic, the term cos(hol(v)) H (¢())

[1—eClO|-[1—e—CtO)|
cos(hol(7))
reduces to |1_ei<h01(7>|,‘1_67i-h01(7)‘H(O)'

Note that if v is a good (i.e not bad) hyperbolic element, then

vol(T;\G5) = £(70)
where 7y is a primitive element of which v is a multiple. In particular, Theorem 2.1 is a direct

generalization of Theorem 0.4 of [10]. In the case of the orbifold SW/Aj5, we determine these
volume terms for the elliptic and bad hyperbolic elements in Section 1.2.

Proof of Theorem 2.1. The proof of the formula for manifolds in [10] adapts directly to the
case of orbifolds, provided that there are no elements of order 2. In particular, each of the
terms in the second line corresponds to a quantity of the form

wlt\G) [ pa e gt
G,\G G~

for some suitable f. When ~ is not an elliptic element of order 2, G is the connected group
corresponding of hyperbolic elements sharing the axis of v and fixing its endpoints, and we
proved in [10] that the integral term (after additional work) is of the form in the theorem.
In the case of an elliptic element of order 2, G, has an additional connected component
corresponding to elements preserving the same axis but exchanging the two points at infinity.
The integrand g — f(g~'vg) is invariant under the action of the order 2 group Gg\Gy, and
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FIGURE 4. The graph of t — Jg ;(SW/As5) for ¢ € [0, 10].

so integrating over G,\G, which equals the Gg\GW quotient of Gg\G , introduces the claimed
factor of 1/2. O

3. ProoF orF CrAM 0.2

In [10], we adapted the techniques of Booker and Strombergsson [2] to provide precise lower
bounds for A} of a hyperbolic three manifold Y in terms of its volume and length spectrum.
In particular, given the volume and the length spectrum of Y up to cutoff R, we produced a
function Jg,(Y) giving an upper bound to the multiplicity of ¢* as an eigenvalue. The same
approach (which is based on the Selberg trace formula) can be readily adapted to the case
of orbifolds using Theorem 2.1 provided we additionally know exactly the list of elliptic and
bad hyperbolic elements, together with the associated quantities vol(I';,\G).

In our case of interest SW/Aj, the length spectrum can be computed via the arithmetic
description is §1.3 using the code of Aurel Page [14]. The elliptic conjugacy classes were
determined in Section §1.2. Given an elliptic element of order n, for n = 2, 3,5, there are, up
to taking inverses, exactly n primitive bad hyperbolic elements sharing the same axis (with
holonomies differing by 27k/n, for k = 0,1,...,n — 1); their length was determined in §1.2,
and their holonomies are

e 0,7 when n = 2;
e 0,27/3,47/3 when n = 3;
e 7/5,31/5,m,7w/5,97/5 when n = 5.
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This can be seen either directly via a geometric argument, or by looking at the length spec-
trum, as in our specific case these are exactly the holonomies that appear for the translation
lengths of the bad hyperbolics. Finally, the covolumes of the centralizers were determined in
§1.2.

Using a cutoff R = 8 we obtain the function Jg;(SW/A5) in Figure 4. In particular,
Js+(SW/A5) < 1 for t < 8, so that SW/A5 has no eigenvalues < 64. Eigenforms on SW/A5
correspond to eigenforms on SW which are invariant under the action of A5 by isometries. In
particular, we obtain that for any A*-eigenspace Vi of SW for A* < 64, there are no copies
of the trivial As-representation. Now V)« is a finite dimensional representation of the full
isometry group Ss. The only irreducible representations of S5 of dimension < 4 are the trivial
representation and the sign representation (Section 3.1 of [7]); both of these representations
restrict to the trivial representation of As. Therefore any Vi« with A\* < 64 is at least
4-dimensional, and Claim 0.2 follows.

4. THE FIRST EIGENSPACE OF SW

This section builds to the characterization of the first eigenspace in Proposition 0.3. We
begin by proving two lemmas that provide upper and lower bounds for the number of small
eigenvalues (counted with multiplicities).

Lemma 4.1. Every eigenvalue t? of the Laplacian acting on coexact 1-forms on SW for which
|t| < 2.3124 satisfies |t| € [1.41,1.45]. Furthermore, the number of such eigenvalues (counted
with multiplicity) is at most 6.

Proof. By Claim 0.2, every eigenvalue t? satisfying |t| < 8 has multiplicity at least 4. Thus,
every eigenvalue t> must be among those t for which Jg+(SW) > 4. The value of Jg;(SW) is
less than 4 on [0, 2.3124]\[1.41, 1.45]. This proves the first part of the Proposition.

For the second part, we recall from [10, §3] that for a given t, € R, Jg;, (SW) is the

minimum value 3 |H (¢,)|? of the optimization problem

sin(dt)
ot

2
For H(t) € R-span of {( ) -cos(két) 1 k=0,... ,40} where 6 = 8/(2-40 + 4)

(4) Minimize . |H (t,)]?

Subject to H (t) = 1.
The functions H = H are linear combinations of shifts of the convolution 4" power of 11 54
and are supported on [—8, 8] for this particular choice of §. We refer the reader to [10, §3] for
further details.

For a given t,, the function H;, solving the optimization problem of (4) is unique, and
because fIt* (tx) = 1, by continuity fIt* (t') is close to 1 for ¢’ quite close to ti. Indeed, for

the particular value t, = 1.428, the function \m\Q assumes values between 0.9 and 1.11
on the interval ¢ € [1.41,1.45].
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FIGURE 5. The graph of t — Im(t) for t € [1.41,1.45].

This implies that the number of |, | € [1.41,1.45] is at most 6. Indeed,
6.0037 ... = Jg1.428(SW)

= Z |f{1’4\28(tn)|2
tn

> > | Hy 428 (tn)|?
|tnle[1.41,1.45]

> #{n : |ta| € [1.41,1.45]} - 0.9.
Since #{n : |t,| € [1.41,1.45]} is a non-negative integer, this implies
#{n : [tn] € [1.41,1.45]} <6,
and the claim follows. 0

Lemma 4.2. The number of eigenvalues t> of the Laplacian acting on coexact 1-forms on
SW for which |t| € [1.41,1.45] is at least 6.

Proof. We will apply the trace formula to test functions G, satisfying

. 6 2
éc:b=%'(h(t—a)+h(t+a)) where h(t) =2 - <w> -(1_ (%) )7

~+

8
6

where we assume a > b > 0 (see Figure 6 for a specific instance). The function G, is a linear
combination of the 6" convolution power of 1[_§ 5] and its second derivative, all multiplied
676

by the phase cos(ax). The key properties of the function G/C;, are the following:
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e it has maximum value close to 1, achieved very close to the points ¢t = +a;
e it is positive only if t € [—a — b, —a + b] U [a — b,a + b].
This is useful for our purposes because if the value of the spectral side of the trace formula
D, @(tn) equals X > 0, we can reasonably hope that the number of ¢, € [-a — b, —a +
bl U [a—b,a + b] is at least X.
In the example at hand, we applied the trace formula to the test function G1,3372_2_1,33.4
This function has maximum approximately 0.99998429.. and we calculate

Z 61.33,2.271.33(%) =5.238...

ln

The function @1.3372,2,1.33 is only positive for |¢| € I for some interval I containing [1.41, 1.45].
All t,, satisfying |t,,| < 2.2 are actually contained in [1.41,1.45] by Proposition 4.1. It follows
that

5.238... = Z @1,33,2.2—1.33(7571)

in

< 2 G1.332.2-1.33(tn)
|tn|e[1.41,1.45]

(5) < #{n: |t,| € [1.41,1.45]} - 1.
Since #{n : |t,| € [1.41,1.45]} is a non-negative integer, (5) implies that
#{n: |t,| € [1.41,1.45]} > 6

and proves our claim. O

Proof of Theorem 0.3. It follows immediately, by combining Lemmas 4.1 and 4.2 that every
eigenvalue 2 for which [t| < 2.3124 satisfies |t| € [1.41,1.45] and that the total number of
such t (counted with multiplicity) exactly equals 6.

Consider V' = @yjeq1.41,1.45) L2, the direct sum over [¢| € [1.41,1.45] of the t2-eigenspaces
of the Laplacian for on coexact 1-forms on SW; as the group Sy acts by isometries on SW,
the space V is an Ss-representation. By our main argument proving Claim 0.2, V' does not
contain either the trivial representation or the sign representation of S5. By the classification
of irreducible representations of S5, the space V decomposes as a direct sum of Ss-stable
subspaces of dimensions 4, 5, or 6. Since dimV = 6, the only possibility is that V is the
irreducible 6-dimensional representation of Ss. This implies that there is a single eigenvalue
t? satisfying |t| € [1.41,1.45].

Since the multiplicity of the t*-eigenvalue equals 6, it follows that Js+(SW) > 6. In the
range |t| € [1.41,1.45],

Js+(SW) > 6 = |t| € [1.4278772,1.4303375].
This completes the proof. ]

41 est this choice seem arbitrary, note that we computed the spectral side of the trace formula for Gc2.2—c
for about 100 different values of ¢ close to 1.42... - any eigenvalue parameter provably lies in [1.41,1.45] by
Lemma 4.1. The choice ¢ = 1.33 maximized the value of the spectral side of the trace formula within our
sample.
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F1cURE 6. The function d:b for the specific values a = 1.33, b = 2.2 — 1.33
used in the proof.

5. ANOTHER TETRAHEDRAL ORBIFOLD

We can adapt our discussion to the closely related tetrahedral orbifold T’ with Coxeter
symbol [3,5,3]. This is obtained from Figure 3 by switching the label 3 to 5 and viceversa.
This is known to be the smallest arithmetic Kleinian group of the form Pp(O') (see Section
11.7 in [12]). The arithmetic description is provided in Section 11.2.5 of [12]; in particular, it
can be identified with Pp(O!) for a maximal order O in a quaternion algebra over the number

field Q(1/3 — 24/5) ramified exactly at the two real places. Our geometric approach from
Section 1.2 to determine elliptic and bad hyperbolic elements, and their relevant geometric
quantities, can be readily adapted to this case, and we obtain lower bounds for the first
eigenvalue on coexact 1-forms as in Figure 7.

Remark 5.1. Both SW/A5 and T’ admit an orientation reversing isometry r corresponding to
the fact that they are the index 2 subgroups of orientation preserving isometries in a Coxeter
group. Geometrically, r is obtained by reflecting along any of the faces of the tetrahedron.
This implies that the eigenspaces of the Laplacian on coexact 1-forms A are even dimensional
(which is nicely consistent with Figure 4 and 7). This is because A acts as (*d)? on coexact
1-forms, and the action of r on the \.-eigenspace of A exchanges the ++/)\, eigenspaces of
#d.
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