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Abstract
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support 
genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA 
repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 
over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports 
cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities 
to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows 
that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified 
that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the 
Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using 
recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding 
activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest 
that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently 
unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, 
but future work promises to shed light on how this protein is tightly regulated within the cell.
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Introduction

The Petite Integration Frequency 1 (PIF1) gene was identi-
fied in 1983 during a screen for mutants that disrupt mito-
chondrial DNA recombination in the budding yeast Saccha-
romyces cerevisiae (Foury and Kolodynski 1983). A decade 
later, the Pif1 gene product was purified and shown to have 
single-stranded DNA (ssDNA)-dependent ATPase and 5ʹ-3ʹ 

DNA helicase activities (Lahaye, et al. 1993, 1991). Little 
did the field know that this yeast enzyme was the found-
ing member of the PIF1 family of multifunctional DNA 
helicases found in both prokaryotes and eukaryotes (Boch-
man et al. 2010, 2011) whose metazoan members would 
eventually be linked to cancer (Chen et al. 2020; Chisholm 
et al. 2012; Gagou et al. 2011, 2014; Luo et al. 2009), aging 
(Zhang et al. 2006), and obesity (Bannwarth et al. 2016; 
Belmonte et al. 2019).

In many respects, the second wave of PIF1 research 
began with the “rediscovery” of S. cerevisiae PIF1 as a 
gene whose mutation affects telomere length (Schulz and 
Zakian 1994). Since that time, Pif1 has been shown to have 
roles in multiple DNA transactions in vivo, and insights 
into the function(s) of S. cerevisiae Pif1 in these processes 
are included below. In vitro, biochemical and biophysi-
cal approaches have demonstrated that Pif1 preferentially 
unwinds DNA fork substrates compared to substrates with 
a single ssDNA tail (Lahaye et al. 1993; Ononye et al. 2020; 
Ramanagoudr-Bhojappa et al. 2013), suggesting that Pif1 
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undergoes secondary interactions with the strand of DNA 
complementary to the one upon which it translocates. In sup-
port of this, RNA:DNA hybrid forks stimulate Pif1 activity 
above that displayed on DNA forks, when the DNA strand 
supplies the 5ʹ ssDNA tail (translocating) and the RNA sup-
plies the 3ʹ ssDNA tail (non-translocating) of the fork struc-
ture (Boule and Zakian 2007; Chib et al. 2016; Ononye et al. 
2020; Zhou et al. 2014). Notably, RNA–DNA hybrids adopt 
an A-form conformation instead of the canonical B-form 
of duplex DNA (Wong and Shao 2017), and this is not the 
only non-canonical structure that is preferentially unwound 
by PIF1 family helicases. For PIF1 enzymes from multi-
ple species, it has been shown that G-quadruplex structures 
also stimulate helicase activity (Mohammad et al. 2018; 
Paeschke et al. 2013; Sanders 2010).

Lesser-studied biochemical activities of PIF1 helicases 
include ssDNA annealing and nuclease activity. Strand 
annealing by S. cerevisiae Pif1 was first demonstrated by 
the Raney group, and this activity occurs in vitro under 
unwinding conditions (i.e., in the presence of ATP), even in 
the presence of single-stranded binding proteins (Ramana-
goudr-Bhojappa, et al. 2014). This strand annealing activ-
ity is evolutionarily conserved with hPIF1 and intrinsic to 
its helicase domain (George et al. 2009), which is the most 
conserved portion of all PIF1 proteins (Bochman et al. 2010, 
2011). Thus, strand annealing may be a general feature of all 
PIF1 helicases. Another putative conserved PIF1 biochemi-
cal function is 3ʹ-5ʹ exonuclease activity, which has been 
reported for recombinant Candida albicans Pif1 and other 
fungal PIF1 proteins, including S. cerevisiae Pif1 (Wei et al. 
2017). However, these findings are controversial because 
high concentrations of S. cerevisiae Pif1 were necessary to 
observe the nuclease activity, and the absence of a contami-
nating nuclease from the recombinant protein expression 
host was not rigorously demonstrated.

Crystal structures of the S. cerevisiae helicase domain 
have been solved (Lu et al. 2018), as well as structures of 
PIF1 family helicases from Bacteroides species (Chen et al. 
2016; Zhou et al. 2016) and the hPIF1 helicase domain 
(Dehghani-Tafti et  al. 2019). Although these structures 
have revealed some commonalities and species-specific dif-
ferences between PIF1 family helicases, it is unclear how 
informative they will be to the genome integrity field at 
large. This is because research has shown that in certain 
instances, PIF1 helicase domains are generic motor modules 
whose activity is either regulated by accessory domains or 
complemented by flanking domains necessary for proper 
in vivo function (Andis et al. 2018). The N- and C-terminal 
domains that flank the central helicase domain are also likely 
why a full-length eukaryotic PIF1 structure has eluded the 
field. These domains vary in length and sequence between 
species (Bochman et al. 2010, 2011), but a common charac-
teristic among them is that they are predicted to be natively 

disordered (Nickens et al. 2019). Thus, modern structural 
biology approaches such as cryo-electron microscopy will be 
needed to solve the structures of these enzymes, which may 
exist in an ensemble of conformations in solution. The utility 
of such natively disordered regions in proteins has gained 
recent attention as they are often sites of protein–protein 
interaction (Fong et al. 2009), post-translational modifica-
tions (Bah and Forman-Kay 2016), and/or involved in liq-
uid–liquid phase separation (Kato et al. 2012).

Multifunctional activities of nuclear Pif1

Based on its ability to unwind DNA and RNA/DNA hybrid 
duplexes, nuclear Pif1 has been implicated in a multitude 
of nucleic acid transactions. For instance, during Okazaki 
fragment maturation, Pif1stimulates the strand displace-
ment activity of DNA polymerase delta (pol δ), creating 
long 5ʹ primer flaps (Pike et al. 2009). Lengthening of this 
flap gives rise to the accumulation of the ssDNA binding 
protein, replication protein A (RPA), which when bound, 
prevents illegitimate recombination, formation of secondary 
structures, and inappropriate degradation of genetic mate-
rial (Bartos et al. 2008). RPA-bound flaps prevent primer 
cleavage by flap endonuclease 1 (FEN1), pushing Okazaki 
fragment processing toward an alternative pathway, known 
as the long-flap pathway. This necessitates the activity of 
the helicase/nuclease Dna2 mediates RPA displacement and 
flap removal (Pike et al. 2010; Stewart et al. 2008). This 
proposed mechanism succeeded initial genetic data by Budd 
et al. (2006), which revealed that the presence of Pif1 neces-
sitates the endonuclease activity of Dna2, presumably by 
functioning together in the lagging strand maturation process 
(Budd et al. 2006). Pif1 also plays a role in repetitive riboso-
mal DNA (rDNA) replication. Movement of the replication 
fork proceeds in a manner such that the right moving fork is 
unhindered, while the left moving fork experiences a stop at 
the replication fork barrier (RFB) (Ivessa et al. 2000). The 
presence of the RFB is essential so that replication proceeds 
in the same direction as transcription, preventing macromo-
lecular collisions (Kobayashi 2003). The protein Fob1 binds 
to these RFB sequences and serves as a unidirectional block 
to fork progression (Kobayashi and Horiuchi 1996). Pif1 
directly interacts with Fob1 to maintain this barrier, though 
the exact mechanism by which this happens has yet to be 
fully explored (Muellner and Schmidt 2020). Interestingly, 
the second PIF1 family helicase in S. cerevisiae, Rrm3, has 
the opposite function during rDNA replication, mitigating 
fork stalling at the RFB (Ivessa et al. 2000). Additionally, 
ScPif1 also plays a backup role to Rrm3 in tRNA gene rep-
lication (Tran et al. 2017).

While majority of the studies investigating the role 
of PIF1 helicases during DNA replication focus on the 
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elongation phase, more recently, Pif1 and Rrm3 have been 
associated with replication termination. Their unwinding 
activity is proposed to relieve torsional strain in the final 
section of the parental DNA in budding yeast (Deegan et al. 
2019; Su et al. 2019). Failure to unwind this region prevents 
the convergence of replication forks, thereby giving rise to 
late termination intermediates (LTIs) that stall replication 
termination (Steinacher et al. 2012). Compared to other S. 
cerevisiae helicases that are known to resolve structured 
intermediates, such as Sgs1 and Chl1, only Pif1 and Rrm3 
allow for proper replication termination of preformed LTIs 
in vitro (Deegan et al. 2019).

Pif1 also acts as a G-quadruplex (G4) resolvase on both 
strands of the replication fork. In its absence, the lagging 
strand containing these stable non-canonical DNA second-
ary structures experience stalling (Dahan et al. 2018; Sparks 
et al. 2019). Therefore, although other helicases have dis-
played the capability to resolve G4 structures in vitro, such 
as Sgs1 and Dna2, it is now clear that in comparison to the 
activity of Pif1, such helicases function much less efficiently 
on intramolecular G4s, which are more commonly formed 
during lagging strand replication (Lerner and Sale 2019; 
Liu et al. 2010; Paeschke et al. 2013). Similarly, PIF1 fam-
ily helicases can also efficiently unwind other non-B form 
DNA structures such as R-loops. This activity was initially 
implicated by the stimulation of S. cerevisiae Pif1 helicase 
activity by RNA–DNA hybrids (Boule and Zakian 2007) and 
the finding that Pif1 binding is enriched at highly transcribed 
genes genome wide (Paeschke et al. 2011). More recently, 
it has been demonstrated that both Pif1 and Rrm3 promote 
genome stability at tRNA genes by removing R-loops (Tran 
et al. 2017). In addition to its role in structure resolution, 
Pif1 can also remove protein barriers from dsDNA (Koc 
et al. 2016). Furthermore, along with the various roles of 
Pif1 during replication, the helicase is also involved in the 
repair of single-stranded nicks via break-induced replication 
(BIR) (Malkova and Ira 2013). During this process, Pif1 
recruits pol δ to D-loops that are formed following strand 
invasion and stimulates pol δ synthesis via bubble migra-
tion as the helicase interacts with PCNA (Buzovetsky et al. 
2017).

Finally, Pif1′s activities also modulate—and are modu-
lated by—protein–protein interactions such as is the case 
with telomerase. Biochemical studies reveal that Pif1 inhib-
its Est2, the reverse transcriptase subunit of telomerase, 
using its ATPase activity to unwind the telomerase RNA and 
the telomeric DNA hybrid (Boule et al. 2005; Phillips et al. 
2015). Overexpression and deletion studies of Pif1 in vivo 
reveal a decrease and increase in telomere length, respec-
tively, showing that telomere length is inversely proportional 
to the amount of Pif1 activity in S. cerevisiae (Boule et al. 
2005). Although Pif1 is a known regulator of telomerase at 
telomeres, it is equally capable of regulating telomerase at 

sites of DNA double-strand breaks (DSBs). Indeed, to spe-
cifically prevent the de novo addition of telomeres at DSBs 
instead of telomeres, Pif1 is phosphorylated in a Rad53-
dependent manner (Makovets and Blackburn 2009). This 
regulation of Pif1 telomere maintenance activity also occurs 
via an interaction with the Hrq1 helicase (Bochman et al. 
2014), and the combined activities of these two helicases 
has been shown to synergistically tune telomerase activity 
up and down in vitro (Nickens et al. 2018).

The known central functions of Pif1 in various cellular 
pathways are featured in Fig. 1. Given the myriad of path-
ways mediated by Pif1, the cell must have multiple mecha-
nisms in place to regulate the activity of this low copy num-
ber protein within the cell.

Lysine acetylation of nuclear Pif1

Dynamically reversible protein post-translational modifica-
tions (PTMs) function to enhance the diversity of the pro-
teome without much energetic cost to the cell. Following 
identification of Pif1 phosphorylation in S. cerevisiae (Mak-
ovets and Blackburn 2009), quantitative proteomic analyses 
further revealed hPIF1 to also be modified by phosphoryla-
tion and by ubiquitination (Kettenbach et al. 2011; Sharma 
et al. 2014; Udeshi et al. 2013). In our recent work, we show 
that S. cerevisiae Pif1 is acetylated in vivo and can also be 
modified in vitro (Ononye et al. 2020). The acetylation sig-
nature of Pif1 spans the entire protein, with lysine residues 
being modified on the N-terminus (Lys 118, Lys 129), within 
the helicase domain (Lys 525, Lys 639, Lys 725), and the 
C-terminus (Lys 800). Using lysine acetyltransferase (KAT) 
and lysine deacetylase (KDAC) mutant strains, we assessed 
the impact of altering the acetylation status of Pif1 on cell 
viability. While overexpression of Pif1 in itself is highly 
toxic to the cell, specific KDAC knockouts accentuated this 
toxicity phenotype. In contrast, a specific KAT knockout 
ameliorated the overexpression toxicity. Based on the viabil-
ity of Pif1-overexpressing cells, we were able to assign the 
NuA4 (Esa1) KAT and its counteracting KDAC Rpd3 as 
responsible for dynamically altering the acetylation status of 
Pif1 within the cell. Because Pif1 acetylation had a profound 
impact on cell viability, we characterized the biochemical 
changes to Pif1 function upon lysine acetylation. Helicase 
assays using preferred substrates of Pif1 showed that the 
acetylated form of the helicase was much better at unwind-
ing duplex strands (either DNA/DNA or RNA/DNA hybrid) 
compared to unmodified Pif1. Analyzing the reason for this 
increased helicase activity revealed that while acetylated 
Pif1 did not display an increased rate of unwinding, it was 
simply able to remain bound to the substrate longer, allowing 
for improved unwinding function. This observation directly 
correlates with our binding assays, wherein Pif1 displayed 
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higher binding affinity to its cognate substrates compared to 
unmodified Pif1. Similar to the stimulated helicase activity 
and increased DNA binding affinity, we also detected higher 
ATPase efficiency by acetylated Pif1.

Due to being natively disordered, the functional role 
of the N-terminus of Pif1 has remained somewhat of an 
enigma. Though acetylation marks were identified across 
multiple domains of Pif1, we were particularly interested in 
understanding the role of this modification on the N-termi-
nus of the helicase. Over-expression of a Pif1 mutant lack-
ing its N-terminus (Pif1∆N) resulted in decreased cellular 
toxicity compared to the full-length helicase. The toxicity 
phenotype of Pif1∆N was further rescued in strains lacking 
RPD3. This observation clarified the role of the N-terminus 

in contributing to the acetylation-based regulation of Pif1′s 
enzymatic activities. Biochemical studies showed that simi-
lar to the full-length protein, the helicase and ATPase func-
tions of Pif1∆N were stimulated by acetylation. However, 
the mutant helicase did not exhibit increased DNA binding 
affinity when modified.

We were curious about the role of lysine acetylation 
in driving conformational changes in the Pif1 structure, 
which could impact its function. Limited proteolysis assays 
revealed that acetylation afforded Pif1 protection from 
cleavage, suggesting a change in conformation compared to 
unmodified Pif1. The unmodified Pif1∆N was more resist-
ant to proteolysis, suggesting that the N-terminus directly 
impacts overall protein structure, and perhaps acetylation 

Fig. 1   Role of nuclear Pif1 in different biological DNA transactions. 
Pif1 functions in a flap lengthening during Okazaki fragment process-
ing; b modulating fork convergence during replication termination; 
c aiding G4 structure resolution; d promoting break-induced replica-
tion; e unwinding R-loops; and f regulating telomere length. Acetyla-

tion of Pif1 mediated by the lysine acetyltransferase NuA4 (Esa1) and 
lysine deacetylase (Rpd3) may play a regulatory role in how Pif1′s 
functions are altered in all of these outlined pathways. Triple arrows 
indicate directionality of Pif1 activity
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of this domain modifies the three-dimensional architecture 
of Pif1 to stimulate its biochemical activities. Future struc-
tural analyses will be required to delineate the role of the 
acetylated N-terminus in altering the Pif1 structure, thereby 
regulating the binding, unwinding, and ATPase functions 
of the protein.

Current perspectives and future research

The activity of Pif1 in the cell needs to be finely tuned to 
ensure the maintenance of genome stability and cell via-
bility. Too much or too little Pif1 activity creates havoc in 
the cell, leading to checkpoint activation and ultimately 
cell death. Our observation that lysine acetylation leads to 
increased Pif1 enzymatic activities suggests that PTM of 
the helicase could be another mode by which the cell can 
dynamically regulate the functions of this protein. Modifi-
cation of Pif1 could also change the outcome of a specific 
biological pathway. For example, increased helicase func-
tion of acetylated Pif1 could lead to rampant unwinding of 
Okazaki fragments, causing the accumulation of checkpoint-
triggering ssDNA in the cell. Alternatively, this could also 
push Okazaki fragment maturation (OFM) to the long-flap 
pathway of processing, wherein the pol synthesized prim-
ers would be completely displaced, promoting resynthesis 
by the higher fidelity polymerase, pol. Because deletion of 
PIF1 rescues the lethal phenotype of dna2 in S. cerevisiae, 
it has been proposed that both of these helicases work in 
conjunction during OFM (Budd et al. 2006), and multiple 
biochemical studies lend credence to this proposal (Ayya-
gari et al. 2003; Pike et al. 2009, 2010; Rossi et al. 2008). 
However, recent genetic studies also suggest that formation 
of long flaps is not widespread in the cell (Kahli et al. 2019). 
A very recent study suggests that it is not their activity dur-
ing OFM but the combined activity of these helicases in 
replication fork restart that make them vital to cell viability 
(Appanah et al. 2020; Falquet et al. 2020). Human Dna2 was 
previously shown to be acetylated in vivo, and biochemi-
cal analysis revealed that its nuclease, helicase and binding 
activities were stimulated in vitro (Balakrishnan et al. 2010), 
similar to our report of increased activity by acetylated yeast 
Pif1 (Ononye et al. 2020). Combined modification of Pif1 
and Dna2 may directly impact their role in both flap process-
ing and/or replication fork restart. A multitude of proteins 
functioning in replication and repair are also known to be 
modified by lysine acetylation, including the hBLM (Wang 
2017) and hWRN helicases (Lozada et al. 2014; Muftuoglu 
et al. 2008). While the alterations to enzymatic activities of 
these acetylated replication proteins have not all been char-
acterized, we are now starting to gain a better understanding 
of this mode of protein functional regulation.

Our recent study serves as good first step in defining the 
role of lysine acetylation in regulating the biochemical func-
tions of the Pif1 helicase, but many questions remain about this 
mode of protein regulation. Specifically, it will be important to 
know what fraction of Pif1 is constitutively acetylated within 
the cell or if there are specific triggers for lysine acetylation 
of the helicase, such as cell cycle phases or the DNA dam-
age response. Alterations in the acetylation signature of the 
helicase upon different triggers would help us to identify how 
specific lysine modifications could impact Pif1′s interactions 
with other proteins in a biological pathway. Further, it would 
be interesting to know if the same enzyme modifiers that 
we identified in our study (i.e., the KAT, NuA4 [Esa1], and 
KDAC, Rpd3) are exclusively responsible for altering Pif1′s 
acetylation status or if other redundant acetylation-specific 
modifiers also play a role in the PTM of this enzyme. Further, 
we need to characterize the impact of Pif1 acetylation on the 
myriad of biochemical processes that the helicase has been 
implicated in (outlined in Fig. 1) and the consequences of this 
modification on these biological pathways. Finally, while we 
have preliminary evidence showing that hPIF1 is acetylated 
in vivo (unpublished observation), we are currently unaware 
of the biochemical consequences of this modification and its 
impact on human genome integrity. Multiple avenues exist to 
further understand this regulatory modification on PIF1 family 
helicases, and future research on this topic will help to shed 
light on the significance of this protein in genome maintenance 
and cell viability.
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