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of genome stability

Onyekachi E. Ononye' - Christopher W. Sausen? - Matthew L. Bochman?® . Lata Balakrishnan'

Received: 2 October 2020 / Revised: 2 October 2020 / Accepted: 9 October 2020 / Published online: 20 October 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support
genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA
repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pifl
over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports
cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities
to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows
that C-terminal phosphorylation of S. cerevisiae Pifl regulates its telomere maintenance activity, and we recently identified
that Pifl is also regulated by lysine acetylation. The over-expression toxicity of Pifl was exacerbated in cells lacking the
Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esal ameliorated this toxicity. Using
recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding
activities of Pifl. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest
that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently
unclear what triggers lysine acetylation of Pif]1 and how this modification impacts the many in vivo functions of the helicase,
but future work promises to shed light on how this protein is tightly regulated within the cell.
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Introduction

The Petite Integration Frequency 1 (PIFI) gene was identi-
fied in 1983 during a screen for mutants that disrupt mito-
chondrial DNA recombination in the budding yeast Saccha-
romyces cerevisiae (Foury and Kolodynski 1983). A decade
later, the Pif1 gene product was purified and shown to have
single-stranded DNA (ssDNA)-dependent ATPase and 5'-3'
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DNA helicase activities (Lahaye, et al. 1993, 1991). Little
did the field know that this yeast enzyme was the found-
ing member of the PIF1 family of multifunctional DNA
helicases found in both prokaryotes and eukaryotes (Boch-
man et al. 2010, 2011) whose metazoan members would
eventually be linked to cancer (Chen et al. 2020; Chisholm
et al. 2012; Gagou et al. 2011, 2014; Luo et al. 2009), aging
(Zhang et al. 2006), and obesity (Bannwarth et al. 2016;
Belmonte et al. 2019).

In many respects, the second wave of PIF1 research
began with the “rediscovery” of S. cerevisiae PIFI as a
gene whose mutation affects telomere length (Schulz and
Zakian 1994). Since that time, Pif1 has been shown to have
roles in multiple DNA transactions in vivo, and insights
into the function(s) of S. cerevisiae Pifl in these processes
are included below. In vitro, biochemical and biophysi-
cal approaches have demonstrated that Pifl preferentially
unwinds DNA fork substrates compared to substrates with
a single ssDNA tail (Lahaye et al. 1993; Ononye et al. 2020;
Ramanagoudr-Bhojappa et al. 2013), suggesting that Pifl
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undergoes secondary interactions with the strand of DNA
complementary to the one upon which it translocates. In sup-
port of this, RNA:DNA hybrid forks stimulate Pif1 activity
above that displayed on DNA forks, when the DNA strand
supplies the 5’ ssDNA tail (translocating) and the RNA sup-
plies the 3’ ssDNA tail (non-translocating) of the fork struc-
ture (Boule and Zakian 2007; Chib et al. 2016; Ononye et al.
2020; Zhou et al. 2014). Notably, RNA-DNA hybrids adopt
an A-form conformation instead of the canonical B-form
of duplex DNA (Wong and Shao 2017), and this is not the
only non-canonical structure that is preferentially unwound
by PIF1 family helicases. For PIF1 enzymes from multi-
ple species, it has been shown that G-quadruplex structures
also stimulate helicase activity (Mohammad et al. 2018;
Paeschke et al. 2013; Sanders 2010).

Lesser-studied biochemical activities of PIF1 helicases
include ssDNA annealing and nuclease activity. Strand
annealing by S. cerevisiae Pifl was first demonstrated by
the Raney group, and this activity occurs in vitro under
unwinding conditions (i.e., in the presence of ATP), even in
the presence of single-stranded binding proteins (Ramana-
goudr-Bhojappa, et al. 2014). This strand annealing activ-
ity is evolutionarily conserved with hPIF1 and intrinsic to
its helicase domain (George et al. 2009), which is the most
conserved portion of all PIF1 proteins (Bochman et al. 2010,
2011). Thus, strand annealing may be a general feature of all
PIF1 helicases. Another putative conserved PIF1 biochemi-
cal function is 3'-5' exonuclease activity, which has been
reported for recombinant Candida albicans Pifl and other
fungal PIF1 proteins, including S. cerevisiae Pif1 (Wei et al.
2017). However, these findings are controversial because
high concentrations of S. cerevisiae Pif1 were necessary to
observe the nuclease activity, and the absence of a contami-
nating nuclease from the recombinant protein expression
host was not rigorously demonstrated.

Crystal structures of the S. cerevisiae helicase domain
have been solved (Lu et al. 2018), as well as structures of
PIF1 family helicases from Bacteroides species (Chen et al.
2016; Zhou et al. 2016) and the hPIF1 helicase domain
(Dehghani-Tafti et al. 2019). Although these structures
have revealed some commonalities and species-specific dif-
ferences between PIF1 family helicases, it is unclear how
informative they will be to the genome integrity field at
large. This is because research has shown that in certain
instances, PIF1 helicase domains are generic motor modules
whose activity is either regulated by accessory domains or
complemented by flanking domains necessary for proper
in vivo function (Andis et al. 2018). The N- and C-terminal
domains that flank the central helicase domain are also likely
why a full-length eukaryotic PIF1 structure has eluded the
field. These domains vary in length and sequence between
species (Bochman et al. 2010, 2011), but a common charac-
teristic among them is that they are predicted to be natively
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disordered (Nickens et al. 2019). Thus, modern structural
biology approaches such as cryo-electron microscopy will be
needed to solve the structures of these enzymes, which may
exist in an ensemble of conformations in solution. The utility
of such natively disordered regions in proteins has gained
recent attention as they are often sites of protein—protein
interaction (Fong et al. 2009), post-translational modifica-
tions (Bah and Forman-Kay 2016), and/or involved in lig-
uid-liquid phase separation (Kato et al. 2012).

Multifunctional activities of nuclear Pif1

Based on its ability to unwind DNA and RNA/DNA hybrid
duplexes, nuclear Pif1 has been implicated in a multitude
of nucleic acid transactions. For instance, during Okazaki
fragment maturation, Piflstimulates the strand displace-
ment activity of DNA polymerase delta (pol 8), creating
long 5’ primer flaps (Pike et al. 2009). Lengthening of this
flap gives rise to the accumulation of the ssDNA binding
protein, replication protein A (RPA), which when bound,
prevents illegitimate recombination, formation of secondary
structures, and inappropriate degradation of genetic mate-
rial (Bartos et al. 2008). RPA-bound flaps prevent primer
cleavage by flap endonuclease 1 (FEN1), pushing Okazaki
fragment processing toward an alternative pathway, known
as the long-flap pathway. This necessitates the activity of
the helicase/nuclease Dna2 mediates RPA displacement and
flap removal (Pike et al. 2010; Stewart et al. 2008). This
proposed mechanism succeeded initial genetic data by Budd
et al. (2006), which revealed that the presence of Pifl neces-
sitates the endonuclease activity of Dna2, presumably by
functioning together in the lagging strand maturation process
(Budd et al. 2006). Pif1 also plays a role in repetitive riboso-
mal DNA (rDNA) replication. Movement of the replication
fork proceeds in a manner such that the right moving fork is
unhindered, while the left moving fork experiences a stop at
the replication fork barrier (RFB) (Ivessa et al. 2000). The
presence of the RFB is essential so that replication proceeds
in the same direction as transcription, preventing macromo-
lecular collisions (Kobayashi 2003). The protein Fob1 binds
to these RFB sequences and serves as a unidirectional block
to fork progression (Kobayashi and Horiuchi 1996). Pifl
directly interacts with Fob1 to maintain this barrier, though
the exact mechanism by which this happens has yet to be
fully explored (Muellner and Schmidt 2020). Interestingly,
the second PIF1 family helicase in S. cerevisiae, Rrm3, has
the opposite function during rDNA replication, mitigating
fork stalling at the RFB (Ivessa et al. 2000). Additionally,
ScPif1 also plays a backup role to Rrm3 in tRNA gene rep-
lication (Tran et al. 2017).

While majority of the studies investigating the role
of PIF1 helicases during DNA replication focus on the
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elongation phase, more recently, Pif] and Rrm3 have been
associated with replication termination. Their unwinding
activity is proposed to relieve torsional strain in the final
section of the parental DNA in budding yeast (Deegan et al.
2019; Su et al. 2019). Failure to unwind this region prevents
the convergence of replication forks, thereby giving rise to
late termination intermediates (LTIs) that stall replication
termination (Steinacher et al. 2012). Compared to other S.
cerevisiae helicases that are known to resolve structured
intermediates, such as Sgs1 and Chll, only Pifl and Rrm3
allow for proper replication termination of preformed LTIs
in vitro (Deegan et al. 2019).

Pif1 also acts as a G-quadruplex (G4) resolvase on both
strands of the replication fork. In its absence, the lagging
strand containing these stable non-canonical DNA second-
ary structures experience stalling (Dahan et al. 2018; Sparks
et al. 2019). Therefore, although other helicases have dis-
played the capability to resolve G4 structures in vitro, such
as Sgsl and Dna2, it is now clear that in comparison to the
activity of Pifl, such helicases function much less efficiently
on intramolecular G4s, which are more commonly formed
during lagging strand replication (Lerner and Sale 2019;
Liu et al. 2010; Paeschke et al. 2013). Similarly, PIF1 fam-
ily helicases can also efficiently unwind other non-B form
DNA structures such as R-loops. This activity was initially
implicated by the stimulation of S. cerevisiae Pifl helicase
activity by RNA-DNA hybrids (Boule and Zakian 2007) and
the finding that Pif1 binding is enriched at highly transcribed
genes genome wide (Paeschke et al. 2011). More recently,
it has been demonstrated that both Pif1 and Rrm3 promote
genome stability at tRNA genes by removing R-loops (Tran
et al. 2017). In addition to its role in structure resolution,
Pif1 can also remove protein barriers from dsDNA (Koc
et al. 2016). Furthermore, along with the various roles of
Pifl during replication, the helicase is also involved in the
repair of single-stranded nicks via break-induced replication
(BIR) (Malkova and Ira 2013). During this process, Pifl
recruits pol 8 to D-loops that are formed following strand
invasion and stimulates pol & synthesis via bubble migra-
tion as the helicase interacts with PCNA (Buzovetsky et al.
2017).

Finally, Pifl’s activities also modulate—and are modu-
lated by—protein—protein interactions such as is the case
with telomerase. Biochemical studies reveal that Pif1 inhib-
its Est2, the reverse transcriptase subunit of telomerase,
using its ATPase activity to unwind the telomerase RNA and
the telomeric DNA hybrid (Boule et al. 2005; Phillips et al.
2015). Overexpression and deletion studies of Pifl in vivo
reveal a decrease and increase in telomere length, respec-
tively, showing that telomere length is inversely proportional
to the amount of Pifl activity in S. cerevisiae (Boule et al.
2005). Although Pif1 is a known regulator of telomerase at
telomeres, it is equally capable of regulating telomerase at

sites of DNA double-strand breaks (DSBs). Indeed, to spe-
cifically prevent the de novo addition of telomeres at DSBs
instead of telomeres, Pifl is phosphorylated in a Rad53-
dependent manner (Makovets and Blackburn 2009). This
regulation of Pifl telomere maintenance activity also occurs
via an interaction with the Hrql helicase (Bochman et al.
2014), and the combined activities of these two helicases
has been shown to synergistically tune telomerase activity
up and down in vitro (Nickens et al. 2018).

The known central functions of Pifl in various cellular
pathways are featured in Fig. 1. Given the myriad of path-
ways mediated by Pif1, the cell must have multiple mecha-
nisms in place to regulate the activity of this low copy num-
ber protein within the cell.

Lysine acetylation of nuclear Pif1

Dynamically reversible protein post-translational modifica-
tions (PTMs) function to enhance the diversity of the pro-
teome without much energetic cost to the cell. Following
identification of Pif1 phosphorylation in S. cerevisiae (Mak-
ovets and Blackburn 2009), quantitative proteomic analyses
further revealed hPIF1 to also be modified by phosphoryla-
tion and by ubiquitination (Kettenbach et al. 2011; Sharma
et al. 2014; Udeshi et al. 2013). In our recent work, we show
that S. cerevisiae Pif1 is acetylated in vivo and can also be
modified in vitro (Ononye et al. 2020). The acetylation sig-
nature of Pifl spans the entire protein, with lysine residues
being modified on the N-terminus (Lys 118, Lys 129), within
the helicase domain (Lys 525, Lys 639, Lys 725), and the
C-terminus (Lys 800). Using lysine acetyltransferase (KAT)
and lysine deacetylase (KDAC) mutant strains, we assessed
the impact of altering the acetylation status of Pifl on cell
viability. While overexpression of Pifl in itself is highly
toxic to the cell, specific KDAC knockouts accentuated this
toxicity phenotype. In contrast, a specific KAT knockout
ameliorated the overexpression toxicity. Based on the viabil-
ity of Pifl-overexpressing cells, we were able to assign the
NuA4 (Esal) KAT and its counteracting KDAC Rpd3 as
responsible for dynamically altering the acetylation status of
Pif1 within the cell. Because Pif1 acetylation had a profound
impact on cell viability, we characterized the biochemical
changes to Pifl function upon lysine acetylation. Helicase
assays using preferred substrates of Pifl showed that the
acetylated form of the helicase was much better at unwind-
ing duplex strands (either DNA/DNA or RNA/DNA hybrid)
compared to unmodified Pifl. Analyzing the reason for this
increased helicase activity revealed that while acetylated
Pifl did not display an increased rate of unwinding, it was
simply able to remain bound to the substrate longer, allowing
for improved unwinding function. This observation directly
correlates with our binding assays, wherein Pif1 displayed
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Fig. 1 Role of nuclear Pifl in different biological DNA transactions.
Pif1 functions in a flap lengthening during Okazaki fragment process-
ing; b modulating fork convergence during replication termination;
¢ aiding G4 structure resolution; d promoting break-induced replica-
tion; e unwinding R-loops; and f regulating telomere length. Acetyla-

higher binding affinity to its cognate substrates compared to
unmodified Pifl. Similar to the stimulated helicase activity
and increased DNA binding affinity, we also detected higher
ATPase efficiency by acetylated Pifl.

Due to being natively disordered, the functional role
of the N-terminus of Pifl has remained somewhat of an
enigma. Though acetylation marks were identified across
multiple domains of Pifl, we were particularly interested in
understanding the role of this modification on the N-termi-
nus of the helicase. Over-expression of a Pif] mutant lack-
ing its N-terminus (Pif]1 AN) resulted in decreased cellular
toxicity compared to the full-length helicase. The toxicity
phenotype of Pif1 AN was further rescued in strains lacking
RPD3. This observation clarified the role of the N-terminus
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tion of Pif] mediated by the lysine acetyltransferase NuA4 (Esal) and
lysine deacetylase (Rpd3) may play a regulatory role in how Pifl’s
functions are altered in all of these outlined pathways. Triple arrows
indicate directionality of Pif1 activity

in contributing to the acetylation-based regulation of Pifl's
enzymatic activities. Biochemical studies showed that simi-
lar to the full-length protein, the helicase and ATPase func-
tions of Pifl AN were stimulated by acetylation. However,
the mutant helicase did not exhibit increased DNA binding
affinity when modified.

We were curious about the role of lysine acetylation
in driving conformational changes in the Pifl structure,
which could impact its function. Limited proteolysis assays
revealed that acetylation afforded Pifl protection from
cleavage, suggesting a change in conformation compared to
unmodified Pif1l. The unmodified Pif1 AN was more resist-
ant to proteolysis, suggesting that the N-terminus directly
impacts overall protein structure, and perhaps acetylation
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of this domain modifies the three-dimensional architecture
of Pifl to stimulate its biochemical activities. Future struc-
tural analyses will be required to delineate the role of the
acetylated N-terminus in altering the Pif1 structure, thereby
regulating the binding, unwinding, and ATPase functions
of the protein.

Current perspectives and future research

The activity of Pifl in the cell needs to be finely tuned to
ensure the maintenance of genome stability and cell via-
bility. Too much or too little Pifl activity creates havoc in
the cell, leading to checkpoint activation and ultimately
cell death. Our observation that lysine acetylation leads to
increased Pifl enzymatic activities suggests that PTM of
the helicase could be another mode by which the cell can
dynamically regulate the functions of this protein. Modifi-
cation of Pifl could also change the outcome of a specific
biological pathway. For example, increased helicase func-
tion of acetylated Pifl could lead to rampant unwinding of
Okazaki fragments, causing the accumulation of checkpoint-
triggering ssDNA in the cell. Alternatively, this could also
push Okazaki fragment maturation (OFM) to the long-flap
pathway of processing, wherein the pol synthesized prim-
ers would be completely displaced, promoting resynthesis
by the higher fidelity polymerase, pol. Because deletion of
PIF ] rescues the lethal phenotype of dna2 in S. cerevisiae,
it has been proposed that both of these helicases work in
conjunction during OFM (Budd et al. 2006), and multiple
biochemical studies lend credence to this proposal (Ayya-
gari et al. 2003; Pike et al. 2009, 2010; Rossi et al. 2008).
However, recent genetic studies also suggest that formation
of long flaps is not widespread in the cell (Kahli et al. 2019).
A very recent study suggests that it is not their activity dur-
ing OFM but the combined activity of these helicases in
replication fork restart that make them vital to cell viability
(Appanah et al. 2020; Falquet et al. 2020). Human Dna2 was
previously shown to be acetylated in vivo, and biochemi-
cal analysis revealed that its nuclease, helicase and binding
activities were stimulated in vitro (Balakrishnan et al. 2010),
similar to our report of increased activity by acetylated yeast
Pif1 (Ononye et al. 2020). Combined modification of Pifl
and Dna2 may directly impact their role in both flap process-
ing and/or replication fork restart. A multitude of proteins
functioning in replication and repair are also known to be
modified by lysine acetylation, including the hBLM (Wang
2017) and hWRN helicases (Lozada et al. 2014; Muftuoglu
et al. 2008). While the alterations to enzymatic activities of
these acetylated replication proteins have not all been char-
acterized, we are now starting to gain a better understanding
of this mode of protein functional regulation.

Our recent study serves as good first step in defining the
role of lysine acetylation in regulating the biochemical func-
tions of the Pif1 helicase, but many questions remain about this
mode of protein regulation. Specifically, it will be important to
know what fraction of Pifl is constitutively acetylated within
the cell or if there are specific triggers for lysine acetylation
of the helicase, such as cell cycle phases or the DNA dam-
age response. Alterations in the acetylation signature of the
helicase upon different triggers would help us to identify how
specific lysine modifications could impact Pif1’s interactions
with other proteins in a biological pathway. Further, it would
be interesting to know if the same enzyme modifiers that
we identified in our study (i.e., the KAT, NuA4 [Esal], and
KDAC, Rpd3) are exclusively responsible for altering Pifl’s
acetylation status or if other redundant acetylation-specific
modifiers also play a role in the PTM of this enzyme. Further,
we need to characterize the impact of Pifl acetylation on the
myriad of biochemical processes that the helicase has been
implicated in (outlined in Fig. 1) and the consequences of this
modification on these biological pathways. Finally, while we
have preliminary evidence showing that hPIF1 is acetylated
in vivo (unpublished observation), we are currently unaware
of the biochemical consequences of this modification and its
impact on human genome integrity. Multiple avenues exist to
further understand this regulatory modification on PIF1 family
helicases, and future research on this topic will help to shed
light on the significance of this protein in genome maintenance
and cell viability.
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