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THE SEIBERG-WITTEN EQUATIONS AND THE LENGTH
SPECTRUM OF HYPERBOLIC THREE-MANIFOLDS

FRANCESCO LIN AND MICHAEL LIPNOWSKI

In the last three decades, both hyperbolic geometry and Floer homology have
played a central role in the study of the geometry and topology of three-dimensional
manifolds (see for example [1], [23], [38], [40], [65]). Despite this, and even though
both subjects have by now reached their maturity, their mutual interaction (if any)
remains extremely mysterious. For example, while the computation of the Floer
homology for the Seifert fibered case is very well-understood in explicit, geometric
terms [18], [55], the Floer homology of hyperbolic manifolds (i.e. admitting a met-
ric with constant sectional curvature —1) has eluded similar descriptions. Because
Mostow rigidity implies that the geometric invariants of a hyperbolic metric are in-
deed topological invariants, the following is a very natural yet outstanding problem
one encounters.

Question. For a hyperbolic three-manifold Y, is there any relationship between the
topological invariants arising from the hyperbolic geometry of Y (e.g. the volume,
injectivity radius, lengths of geodesics, etc.) and the invariants arising from Floer
homology?

In the present paper we discuss, for a hyperbolic-three manifold Y with b,(Y) =
0, a relationship between the existence of irreducible solutions to the Seiberg-Witten
equations on Y and the hyperbolic geometry of Y. As a testing ground, we explore
this relationship for the first 50 manifolds in the Hodgson-Weeks census, which is a
good approximation to the complete list of hyperbolic three-manifolds with volume
< 6.5 and injectivity radius > 0.15 [32]. Our main application is the following.

Theorem 1. Let Y be one of the hyperbolic three-manifolds from the Hodgson-
Weeks census listed in Table 1. Then, for the hyperbolic metric, for any spin®
structure the Seiberg-Witten equations on'Y (for sufficiently small perturbations)
do not admit irreducible solutions.*

The only previously known examples of Riemannian rational homology three-
spheres with no irreducible solutions were provided by manifolds with positive scalar
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IThis result (and Theorem 2) takes as input the computations of the length spectrum provided
by the length_spectrum() method of SnapPy version 2.6.1 [11]. These are very accurate (especially
for the small manifolds we are dealing with in the paper), but are not yet certified using interval
arithmetic in the current version. There is promising work towards this end [66] using the certified
hyperbolic structure produced in [31].
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2 FRANCESCO LIN AND MICHAEL LIPNOWSKI

curvature, and the Hantzsche-Wendt manifold (the only rational homology three-
sphere with a flat metric) [39]. In this sense, the manifolds in Table 1 are also the
first examples of hyperbolic three-manifolds for which the set of solutions to the
Seiberg-Witten equations is determined explicitly.

TABLE 1. The hyperbolic manifolds of Theorem 1

| Census label | Volume | Injectivity radius |

0 0.94270. .. 0.29230. ..
2 1.01494. .. 0.41572. ..
3 1.26371. .. 0.28753. ..
8 1.42361. .. 0.17618. ..
12 1.54356. .. 0.16768. ..
13 1.54356. .. 0.28903. ..
14 1.58316. .. 0.27889. ..
15 1.58316. .. 0.38874. ..
16 1.58864. . . 0.26727. ..
22 1.83193. .. 0.26532. ..
25 1.83193. .. 0.26531. ..
28 1.88541. .. 0.29230. ..
29 1.88541. .. 0.19853. ..
30 1.88541. .. 0.19853. ..
31 1.88541. .. 0.29230. ..
32 1.88591. .. 0.20593. ..
33 1.91084. .. 0.22107. ..
39 1.96274. .. 0.21576. ..
40 1.96274. .. 0.28904. ..
42 2.02395. .. 0.17922. ..
44 2.02988. .. 0.43127. ..
46 2.02988. .. 0.27177. ..
49 2.02988. .. 0.21564. ..

As a direct consequence of Theorem 1, the manifolds in Table 1 are L-spaces, i.e.
their reduced Floer homology group HM vanishes. This had been previously shown
by Dunfield [15] in the setting of Heegaard Floer homology; the latter is known to
be isomorphic to monopole Floer homology (see [37], [12] and subsequent papers).
In fact, he has determined exactly which spaces in the Hodgson-Weeks census are
L-spaces; in this regard, Table 1 comprises 23 of the 28 L-spaces with label less
than 49.

Remark 0.1. As a matter of nomenclature, we will refer to rational homology
spheres admitting a metric with no irreducible solutions as minimal L-spaces.

As mentioned above, the proof of Theorem 1 exploits in an essential way the
fact that the underlying manifold is equipped with a hyperbolic metric. While
we do not know a direct way to relate the latter to the Seiberg-Witten equations,
we use as stepping stone the spectral geometry of the Hodge Laplacian acting on
coexact 1-forms. Recall that on a Riemannian 3-manifold with b1 (Y") = 0 the Hodge
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MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 3

decomposition implies the direct sum decomposition of 1-forms
QYY) = dQ°(YV) @ d*Q*(Y)

into exact and coexact ones; the Hodge Laplacian A = (d+d*)? preserves the latter
decomposition. We denote the spectrum of A acting on coexact 1-forms d*Q2(Y)
by
0< A <A <Mi<...

In the present paper, we will be mostly interested in the first eigenvalue A¥. While
not much is known in general about this quantity, it has recently attracted atten-
tion due to its relationship with a deep conjecture of Bergeron and Venkatesh [6]
regarding the growth of torsion in the cohomology of arithmetic hyperbolic three-
manifolds under towers of coverings. In our setting, its appearance as a stepping
stone is synthesized in the following diagram.

Non-existence of ir-
reducible solutions
to the Seiberg-
Witten equations

f l

lower bounds representation theory

First eigenvalue on

coexact 1-forms A\

Hyperbolic geometry

Remark 0.2. Tt is an interesting question whether there is any relation between
Floer homology and the spectrum of the Laplacian on functions (or, equivalently,
the spectrum on exact 1-forms), as the latter is a much better understood quantity.
While the appearance of A in our context stems naturally from the geometry of
the Seiberg-Witten equations, we do not know of any interesting relation between
the latter and the spectrum of the Laplacian of functions.

Before discussing the relationship between A and the Seiberg-Witten equations,
let us point out another of its applications.

Theorem 2. For the hyperbolic three-manifolds from the Hodgson-Weeks census
listed in Table 2, the precise numerical bounds for A} enumerated in that table hold
true.

Remark 0.3. One should compare these computations with the case of the first
eigenvalue on functions. While there are some numerical results in the latter case
(especially in the astrophysics literature; see [33], [13]), these are based on heuristic
computations. As we will see, a key input in the proof of Theorem 2 is given by
the computations of the topological invariants arising from Seiberg-Witten theory.

The passage from lower bounds on Af to the Seiberg-Witten equations relies
upon the following refinement of the main theorem of [44] as one key input. See
also §1 for a more detailed discussion.

Theorem 3. Let Y be rational homology three-sphere equipped with a hyperbolic
metric. If Xf > 2, then for any spin® structure the Seiberg-Witten equations (for
sufficiently small perturbations) do not admit irreducible solutions.
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4 FRANCESCO LIN AND MICHAEL LIPNOWSKI

TABLE 2. Bounds for A\f(Y) for the hyperbolic manifolds ¥ of
Theorem 2

| Census label \ AT lower bound | AF upper bound | Volume | Injectivity radius |

1 0.33749 0.33983 0.98136. .. 0.28904. ..
4 0.61613 0.64594 1.28448. .. 0.24015. ..
6 0.58541 0.60133 1.41406. .. 0.39706. ..
7 0.27882 0.28224 1.41406. .. 0.18244. ..
9 0.43598 0.97651 1.44070. .. 0.18076. . .
19 0.68344 0.82304 1.75712. .. 0.35268. ..
23 0.50310 0.51433 1.83193... 0.24060. . .
24 0.31571 0.32022 1.83193... 0.26531. ..
34 0.00131 0.00537 1.91221... 0.24958. ..
45 0.60516 0.76929 2.02988. .. 0.27176. ..
47 0.37043 0.38036 2.02988. .. 0.21563. ..
48 0.28543 0.29030 2.02988. .. 0.27176. ..

On the other hand, the relationship between hyperbolic geometry and spectral
geometry is provided by a specialization of the celebrated Selberg trace formula,
which provides, for a Lie group G and a lattice I' in it, a link between geometry
and spectral theory (which can be thought as a non-abelian generalization of the
classical Poisson summation formula). For simplicity, consider first the more famil-
iar context of a closed hyperbolic surface X, which corresponds to G = PSLy(R)
and I' = 71 (X). In this case, it was proven by Selberg (see [30]) that once we label
the eigenvalues with repetitions

0= X< A <A< )A3<...

of the Laplacian A acting on functions on X as A; = TJ2- + 1/4 with r; € Ryg U
[0,1/2]4/—1, the following identity holds for every g € CP(R)®ve":

W ) = YollX) ’ g(r)rtanh(7r)dr __ o)
M 20 == | atrtant(erya 19 e (@)gw(m

Here, §(t) := { g(x)e™"""dx is the Fourier transform of g, and the sum on the right
hand side runs over all non-trivial closed geodesics v on X. These correspond to
non-trivial conjugacy classes in 71 (X). We denote by £(v) the length of 7, and ~
is the primitive geodesic of which 7 is a multiple.

Remark 0.4. The value 1/4 plays a key role in the spectral theory of hyperbolic
surfaces, because it is the bottom of the L2-spectrum of the Laplacian on H?; see
[50] for a nice proof. Eigenvalues less than 1/4 (i.e. for which the parameter r; is
imaginary) are called small [10, Chapter 8], and are the protagonist of the famous
Selberg 1/4 conjecture [59].

The Selberg trace formula is a very powerful tool as it allows to extract seemingly
inaccessible information regarding spectral geometry of X via the understanding of
the lengths of its geodesics; the latter quantities are directly computable from the
traces of the elements m1(X) < PSLy(R).
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MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 5

In the present paper, we will derive a specialization of the general Selberg trace
formula that relates, for a closed oriented hyperbolic three-manifold Y, the following
quantities:

e on the spectral side, the square roots of the eigenvalues of the Laplacian
(with repetitions) on coexact 1-forms ¢; = , /A¥;

e on the geometric side, the volume vol(Y') and the complex lengths C¢(7) of
the closed geodesics vy of Y.

Recall here that for a closed geodesic v in a hyperbolic three-manifold there is a
notion of holonomy hol(y), namely how an orthonormal framing for the normal
bundle of v is rotated under parallel transport along . The complex length of v is
then given by

Cl(v) :=L(y) + i hol(y) e R + i (R/27Z).
As in the case of surfaces, these are directly computable in term of the traces of
elements 71 (Y) < PSL2(C). The formula is then the following.

Theorem 4 (Explicit Selberg trace formula for coexact 1-forms on closed hyper-
bolic 3-manifolds). Let Y be a closed oriented hyperbolic three-manifold, and let
H be an even, smooth, compactly supported, R-valued function on R. Then the
following identity holds:

(3000 = 3) 0+ 5 B0 = 52 (100) - 170
+ 3 o) e ey H 0.
[v]#1

where H(t) := Sg H(x)e " dx is the Fourier transform of H. In fact, the identity
also holds under weaker assumptions on H (see Theorem 2.2 for a more precise
statement).

Remark 0.5. While we could find other specializations of the Selberg trace formula
to differential forms on hyperbolic three-manifolds in the literature (see [19, The-
orem 2] and [53, Chapter II, §1]), none of them were sufficiently explicit for our
purposes. We refer to §2 for a more detailed discussion.

Taking as input computations of volume and length spectrum of Y provided by
SnapPy [11], this formula can be used to show that for a given value t € Rsq, t2 is
not an eigenvalue of the Laplacian on coexact 1-forms on Y. The specific procedure
we use, inspired by the work of Booker and Strombergsson related to Selberg’s %—
conjecture [7], is discussed thoroughly in §3.1. Granted this, let us discuss the logic

behind the proof of our main results:

e For the spaces in Theorem 1, we will use the Selberg trace formula to show
that t? is not a coexact, 1-form eigenvalue for any ¢? € [0,2]. Combined
with Theorem 3, this implies that there are no irreducible solutions to the
Seiberg-Witten equations.

e For the spaces in Theorem 2, it is known that their reduced Floer homology
HM is non-vanishing. This implies that for an arbitrarily small regular
perturbation, the Seiberg-Witten equations admit irreducible solutions, so
that A¥ € (0,2]. On the other hand, using Theorem 4 one can give in these
examples a precise constraint on which elements in [0,+/2] can possibly
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FIGURE 1. Surgery diagrams for the Weeks and Meyerhoff mani-
folds, which are respectively the manifolds labeled 0 and 1 in the
Hodgson-Weeks census. The link on the left is the Whitehead link,
while the knot on the right is the figure-eight knot

be square roots of eigenvalues. Combining with the existence result from
Seiberg-Witten theory implies the precise bounds in Table 2.

We conclude this introduction by discussing the two simplest examples in which
our main results apply; see Figure 1. The manifolds in the picture represent the
ones labeled 0 and 1 in the Hodgson-Weeks census. Both of these manifolds play a
special role in hyperbolic geometry; the manifold on the left, the Weeks manifold,
is known to have the smallest volume 0.94 ... among closed, orientable hyperbolic
three-manifolds [25], while the one on the right, the Meyerhoff manifold, which
has volume 0.98... was believed to have smallest volume for a long time. Using
the surgery diagrams in Figure 1, one can determine their Floer homology HM
and show, in particular, that the Weeks manifold is an L-space while the Meyerhoff
manifold is not. Such a drastic difference is not reflected in basic quantities that are
studied in hyperbolic geometry, as for example these manifolds have very similar
volume and injectivity radius. On the other hand, these manifolds are drastically
different from the point of view of the spectral geometry of coexact 1-forms, as for
the Weeks manifold A} > 8.9, while for the Meyerhoff manifold A} ~ 0.33. We
will provide a qualitative discussion of this drastic difference, in these and in more
general examples, in §5.

Plan of the paper. In §1 we provide some background material on monopole Floer
homology, and discuss its relation with spectral geometry and in particular Theorem
3. In §2 we provide the precise statement of Theorem 4 and discuss its significance
and place in the existing literature. In §3 we discuss the computational technique
of Booker and Strombergsson, and in §4 the outputs are presented. Finally, in §5
we discuss the limitations of our method and some natural questions that arise.

1. THE SEIBERG-WITTEN EQUATIONS AND MONOPOLE FLOER HOMOLOGY

In this section we review the basic setup of Seiberg-Witten theory on a (closed,
oriented, connected) three-manifold Y. We refer the reader to [43] for a more
thorough introduction and to [39] for the quintessential reference.

1.1. The geometric setup. Consider on Y a Riemannian metric and a spin®
structure s. For our purposes, the best way to think about the latter is a rank two
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MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 7

hermitian bundle S — Y together with a bundle map
p:TY — Hom(S, S),

called Clifford multiplication, satisfying p(v)? = —|v|?1g. In coordinates, this
means that for any oriented frame eq, ez, e3 at a point y, we can find a basis of
Sy so that p(e;) is the Pauli matrix oy:

(i 0 (0 -1 (0 i
9T=\0 —i) 2=\1 o) =\ o)

The Clifford multiplication can be extended to 1-forms via the musical isomorphism,
and to forms using the formula

plan 8) = 5 ((@)p(8) + ()19 p(B)p(a)) .
In particular, if « is a 1-form we have

(2) p(xa) = —p(a).
We consider the configuration space C(Y,s) consisting of pairs (B, V) where:

e U is a spinor, i.e. a section of I'(S).
e B is a spin® connection on S, i.e. a unitary connection for which p is
parallel, or, equivalently

(3) Vi(p(X)¥) = p(VX)T + p(X)V5¥

for any vector field X and spinor W. Here V is the Levi-Civita connection
and Vg the covariant derivative associated to B.

The condition (3) implies that the SO3-part of a spin® connection B is determined
by the Levi-Civita connection; as a consequence, B is determined by the connection
B! induced on the determinant line bundle det(S). In particular, the space of spin®
connections is an affine space over Q! (Y;iR).

The space of configurations C(Y,s) is acted on by the group of automorphisms
of the spin® structure, i.e. the gauge group G(Y,s) = Maps(Y, S?), via

u-(B,¥) = (u*B,u- V),

where u*B = B — u~'du is the pullback connection.

The stabilizer under the gauge group of the configuration (B, ¥) is trivial when
¥ is not identically zero. On the other hand the stabilizer of a configuration of the
form (B,0) is given by the constant gauge transformations, so it is identified with
S1. We call the configurations of the first kind irreducible, while the configurations
of the second kind reducible.

For a fixed base connection By, the Chern-Simons-Dirac functional

L£:C(Y,s) >R

is defined to be

1 1
£(B,V) = —¢ L(Bt = By) A (Fpr + Fiy) + 5 L<D3xp,\p>dvoz.

Here Fg: denotes the curvature of the connection B (hence an imaginary valued
2-form), and Dp is the Dirac operator associated to the connection B, i.e. the
composition

I'(S) 5 T(T*X ® S) > T(S).
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8 FRANCESCO LIN AND MICHAEL LIPNOWSKI

While the functional is invariant only under the action of the connected component
of the gauge group, it descends to a well defined functional

L:C(Y,5)/9(Y,5) — R/(27°L)

on the moduli space of configurations. The critical points of the Chern-Simons-
Dirac functional are given by the solutions (B, ¥) of the system

1
§p(*FBt) + (\IJ\II*)O =0
DpV¥ =0
to which we refer to as the Seiberg-Witten equations on Y. Here (UU*), is the
traceless part of UU* € isu(S); in coordinates, if ¥ = («, 3), we have

(4) (WT*), = [%(|0<|2— 181%) o ]

ap 31817 = lof?)
Remark 1.1. The first equation often appears in the literature as 2 p(Fpg:) — (F0*),

= 0; these are equivalent because of Equation (2). Our choice makes more apparent
the role of the coclosed 1-form *F'g:.

1.2. Monopole Floer homology and its applications. One can apply the ideas
of Morse homology to the Chern-Simons-Dirac functional £ on the moduli space
of configurations in order to define homological invariants of three-manifolds which
are topological (i.e. independent of the initial choice of the metric). The final
result is a package of invariants called monopole Floer homology [39] (see also [20],
[47] for alternative constructions). There are several complications to be handled,
most notably the need to introduce a suitable space of reqular perturbations to the
equations in order to achieve transversality, and the S'-symmetry of the functional.
In the setup of [39], the latter is dealt with suitably blowing up the configurations
space, and leads to the construction of S!-equivariant Floer homology group.

The simplest invariant arising from this construction is the reduced monopole
Floer homology group HM (Y, s), which plays a central role when studying gluing
formulas for the 4-dimensional Seiberg-Witten invariants (see the classical reference
[54] for the latter). It has also recently gained attention as it contains significant
information regarding three-dimensional geometric structures; from this perspective
it is convenient to consider the direct sum

HM(Y) = (D HM(Y, 5).

Objects of central study in three-dimensional geometry are coorientable taut foli-
ations, i.e. coorientable 2-dimensional foliations F equipped with a closed 2-form
w which is positive on the leaves of F. While criteria for the existence of such
foliations have been provided by Gabai for manifolds with b (Y") > 0 [22], a general
characterization in the case of rational homology spheres is missing. In this sense,
the following Floer theoretic obstruction from [41] plays a central role.

Theorem 1.1 (Theorem 2.1 of [41]). Suppose Y has b1(Y) = 0. If it admits a
coorientable taut foliation, then HM (Y) # 0.

This highlights the class of L-spaces, i.e. three-manifolds Y satisfying b, (Y) = 0
and HM(Y) = 0. This notion corresponds to the analogous notion of L-space in
Heegaard Floer homology (i.e. spaces for which HF,q(Y) = 0) via the isomor-
phism between the theories (see [37], [12], and subsequent papers). In fact, it

Licensed to Columbia Univ. Prepared on Mon Aug 16 15:38:56 EDT 2021 for download from IP 209.2.222.212.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 9

was conjectured by Ozsvath and Szabd that, under the assumption that Y is irre-
ducible, the converse of Theorem 1.1 holds. Furthermore, the concepts of L-spaces
and taut foliations are also conjecturally related to the existence of left-invariant
orders on the fundamental group of Y [5]. Such conjectures have been proved in the
case of graph manifolds [29], and have been verified in some families of hyperbolic
three-manifolds [15].

Even though the definition of the invariant HM (Y") involves the solution of cer-
tain non-linear PDEs, its computation can be carried over in several cases (including
those in Figure 1) using topological techniques, most notably the surgery exact tri-
angle [41]. Tt can also be computed in a (practically infeasible) purely combinatorial
fashion [60].

1.3. Relation with spectral geometry. We will focus from now on the case
of a rational homology sphere Y. If Y admits a metric such that for all spin®
structures (suitable small perturbations of) the Seiberg-Witten equations do not
admit irreducible solutions, then HM (Y) = 0. On the other hand, very little is
known in general about the set of solutions to the Seiberg-Witten equations itself
other than on manifolds which have positive scalar curvature or are flat (see [39]).
In this case, one can show that the equations do not admit irreducible solutions
for suitable small perturbations by means of a Bochner type argument involving
the Weitzenbock formula. The case of Seifert manifolds can be understood if one
studies a different set of equations where the Levi-Civita connection is replaced by
a non standard reducible one [55]. As a refinement of argument in the first case,
we will now discuss the following.

Theorem 1.2. Let Y be a rational homology sphere equipped with a Riemannian
metric g. Let ¥ be the least eigenvalue of the Laplacian on coexact 1-forms, and
5(p) the sum of the two least eigenvalues of the Ricci curvature at p. If \f >
—inf,ey3(p)/2 then for all spin® structures on (Y,g) the Seiberg- Witten equations
(for sufficiently small perturbations) have no irreducible solutions.

Theorem 1.2 is a slight refinement of the main result of [44], for which the
stronger assumption A\¥ > —inf,ey 5(p) is required. As for a hyperbolic metric
5§ = —4 everywhere, Theorem 3 follows.

While there are qualitative results on the behavior of A¥ for hyperbolic three-
manifolds [34],[49], the goal of this paper is to find examples of hyperbolic three-
manifolds for which the explicit bound A} > 2 holds. In fact, the slight improvement
on the main theorem from [44] provided by the inequality in Theorem 1.2 will be
crucial for drawing conclusions in many of the examples of Theorem 1.

The main theorem of [44] uses, at one important step, the inequality

(5) IVEP2 < |U2|VRT|? for & = p H(TT¥)o;

this holds for any configuration (B, ¥), not necessarily solving the Seiberg-Witten
equations. The key observation behind the improvement in Theorem 1.2 is the
following refinement for a configuration (B, ¥) which does solve the Seiberg-Witten
equations.

Proposition 1.3. Let (B, V) be a solution to the Seiberg-Witten equations, and
€ = p~Y(WU*)g. Then the pointwise identity

[VE[? + [dgf* = [V 0P
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10 FRANCESCO LIN AND MICHAEL LIPNOWSKI

holds.

Proof. We will prove this identity at a point p by a computation in coordinates. Fix
an oriented orthonormal frame e, ez, e3 which we can assume to be synchronous
at p (i.e. Vgej(p) = 0), and consider a basis of the spinor bundle S for which
p is represented by the Pauli matrices. We will write in this basis ¥ = («, ).
Locally, the covariant derivative Vg is obtained from the spin covariant derivative
by adding an imaginary valued one form; see Equation (3.2) in [54]; as the frame is
synchronous at p, the spin covariant derivative on S is just the standard derivative V
at p, and after a gauge transformation, we can assume that the covariant derivative
Vp on S is also the standard derivative V at the point p. We will therefore write
V¥ = (Va,Vp) at p as

Va =Y (Via)e', VB =>(ViBe

From Equation (4), we have

(6) €= i (%(042 —8]2)e! — Im(aB)e? + Re(aﬁ)eg) .
‘We have

(7) WPIVEY[* = (la]* +[8) - (IVal* + [VB]?).
We claim that the following identity holds:

(8) |dé|* = Im(aVa + VB)|* = [Im(aVa — SVB)|%.

In fact, we have from Equation (6) that at p the identity
[VE]? = [Re(aVa — BVB)|* + Im(aVp + (V&) B)[* + [Re(aVp + (Va)5)|?
holds, where we used that the framing is synchronous. Therefore
IVEP + |d€|? = |[aVa — BVB[° + |aVE + (Va)b|*.

Expanding, the mixed terms cancel out and we are left with (7).
We now show that (8) holds. The Dirac equation DgW = 0 is equivalent to the
system

iVia —Vaf +iV3fs =0,
—iV18 + Vaa + iVza = 0.
Using the identity
d¢ = Zei A Ve,€,

we can compute the —iel A e? component of d¢ (recalling that Re(iz) = —Im(z))

evaluated at p (using again that the framing is synchronous) as follows:
= —Re((Vaa)a — (Vaf)5) — Im((V1a)3 + a(V13))
= — Re((Vaa)a — (V28)B) + Re(i(Via)3 + ia(V16))
= —Re((Vaa)a — (V283)B3) + Re(—i(Via)B3 + ia(V15))
= + Re(a(—(V20a) +i(V1))) + Re(B((V2B) — i(V1a)))
=+ Re(ai(V3a))) + Re(Bi(V3P))
((V50)a + (V38)B),

=—Im
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MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 11

where we used the Dirac equation and the fact that for the standard derivative
Via = Via. Hence the ie? component of *d¢ is Im((Vza)a + (V33)3). The
computation for the remaining two components is analogous, and identity (8) fol-
lows. O

Finally, we can discuss how the refinement of Theorem 1.2 works in light of this
estimate.

Proof of Theorem 1.2. Let us quickly review the proof of the slightly weaker in-
equality of [44] (we refer the reader to the paper for more details). We assume for
simplicity of notation that the metric is hyperbolic, so that the Ricci curvature is
constantly —2; in particular, we will prove the statement of Theorem 3. Given a
solution (B, ¥) to the Seiberg-Witten equations, the Weitzenbock formula and the
equation involving the curvature Fg: imply the identity

AlT? = 20T, VEVRD) — 2|VR T2 = —|T|* + 3|02 - 2|V T|%.

Multiplying this by |¥|?, and integrating over the manifold, we obtain by Green’s
identity

O [P - s 2w PvavE - - [P - - [P <o
The Bochner formula states that on 1-forms:
(d+d*)* = V*V + Ric.

The curvature Fg: is closed by the Bianchi identity, and therefore our form & =
p 1 (¥W*)g = —1 % Fig: is coclosed. Hence we have

IVEI7: = ldg]7- + 2€]72 = (2 + AD)ElZ2,

where we used the variational definition of A\f in the last inequality. Hence, the
weak inequality (5) implies

1
J|\II|2|VB§|2 > |VElZ: = 2+ AD)El7e = 72+ AP,
where we used the pointwise identity |¢|> = |¥|*. Combining this with (9) we get
1
[ e+ 0n -t <o

so that if AT > 4, V¥ is identically zero, i.e. the Seiberg-Witten equations have no
irreducible solutions.

Let us now show how to refine the inequality. Using the identity in Proposition
1.3 we obtain

| 1R 17 0eP = el + 191
1
= 2[de|Zz +20€1* = 2+ 2ADIENT: = 5T + D@7
Combining this with (9), we see that the inequality
| e+ o -2 <o

holds, so that if AT > 2, ¥ is identically zero. Finally, under the assumption A} > 2,
the estimates continue to hold when we look at small perturbations of the equations,
and the result follows. O
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12 FRANCESCO LIN AND MICHAEL LIPNOWSKI

Let us point out that as a direct consequence of our discussion, if Y is a hyperbolic
rational homology sphere with A¥ > 2, then it is an L-space. The converse of this
is not true. For example, consider K to be the (—2,3,7)-pretzel knot. This is a
hyperbolic knot, and it is well known that it admits a lens space (hence L-space)
surgery [17]. In particular, for n large enough the manifold S3(K) obtained by n-
surgery is an L-space [41] and is also hyperbolic by a celebrated result of Thurston.
Furthermore, for this family of hyperbolic three-manifolds the diameter goes to
infinity while the volume stays bounded above. Then a result of McGowan [49]
implies that Af(Y,,) converges to zero; see also §5.

2. THE TRACE FORMULA

Our basis for estimating A} on hyperbolic 3-manifolds is the Selberg trace for-
mula. Introduced by Selberg [61], [62], this formula relates geometric data on
locally symmetric spaces, e.g. lengths of closed geodesics and their holonomies, to
spectral data, e.g. eigenvalues of Laplace operators on forms. The specialization to
hyperbolic 3-manifolds of the trace formula that we will use is the following:

Theorem 2.1 (Geometric trace formula for coexact 1-forms on hyperbolic 3-man-
ifolds). Let H be any even, compactly supported, smooth R-valued function on R.
Then the equality

5 2 1 (V) + (3n - 3) A0

A*¥=coexact 1-form eigenvalue

=0 (0) - 10)
+ 3 40 (11— SO 1= e O) T H (U()) - cos(hol(7))
[v]#1

holds. In the above formula,

e FEuvery eigenvalue \* is summed with multiplicity equal to the dimension of
the A\*-eigenspace for the Laplacian acting on coexact 1-forms on Y.

o H(t):= Sg H(x)e " dx is the Fourier transform of H.

o [v] # 1 ranges over non-trivial closed geodesics.

e v is a primitive closed geodesic some multiple of which equals .

We prove this result in Appendix B. By a limiting argument described in Ap-
pendix C, Theorem 2.1 can be bootstrapped to a larger space of test functions:

Theorem 2.2. Let § > 5/2. Let H be an even, compactly supported R-valued test
function satisfying

"N 2 a2 25
f <‘H(t)‘ + ‘H'(t)} ) (m) < 0.
R
Then the trace formula from Theorem 2.1 is valid for H.

Our computations in §3 use test functions from the larger space in Theorem 2.2.

Remark 2.1. In fact, one can extend the result to include also functions which are
not compactly supported, but decay at infinity fast enough (e.g. a Gaussian). This
is a delicate extension of Theorem 2.2, and will not be needed for the main results
in the paper.
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MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 13

2.1. Comments for non-experts in the trace formula. The trace formula
is an unconventional tool in Floer homology, and we have therefore crafted our
exposition so that in order to understand the basic methods of this paper, one
could treat Theorems 2.1 and 2.2 as black boxes. The most important feature to
keep in mind is the following: for nice test functions H, these formulas express the
eigenvalue spectrum for co-exact 1-forms, sampled using H , in terms of explicitly
computable geometric quantities sampled using H.

As we expect this paper to be mostly interesting for an audience at the inter-
section of gauge theory and low-dimensional topology, we provide in Appendix A
an introduction to trace formulas in a manner that we hope will be approachable
for our readers. The (somewhat technical) proof of Theorem 2.1 can be found in
Appendix B. We put significant effort into making the exposition suitable for a
reader with only some basic background on Lie groups and hyperbolic geometry,
and who has read through Appendix A. Furthermore, we provide at each stage
motivation and intuition behind the computations we perform.

2.2. Comments for experts in the trace formula. Some complications made
it impossible to simply refer to the literature for Theorem 2.1.

(a) The literature, e.g. Selberg’s original treatments, is strongly biased towards
specializations of the trace formula to functions on I'\G/K as opposed to
more general functions on I'\G (e.g. differential forms).

(b) Specializations in the literature of the trace formula to hyperbolic 3-
manifolds are unfortunately plagued with errors “in the constants”. Since
we calculate the geometric side of the trace formula on a computer, the
answers (and their interpretation) would be meaningless if parts of the for-
mula were off by innocent-seeming factors like 2 or %

(c) We needed the trace formula in completely explicit form to facilitate the
computer calculations in §4, and this required several steps. First of all, the
Plancherel measure needed to be calculated precisely, as normalized by the
standard hyperbolic metric of curvature —1. Then, the precise relationship
between Casimir eigenvalues and corresponding coexact 1-form eigenvalues
for the standard hyperbolic metric needed to be worked out. Finally, there
is a contribution from the trivial representation to the spectral side of the
trace formula from Theorem 2.1, which surprised us, since our formula is
meant to isolate coexact 1-forms.

Unfortunately, we found no reference meeting our needs for (a), (b), (¢). In
Appendix B, we specialize the trace formula to coexact 1-forms on hyperbolic 3-
manifolds ourselves, keeping careful track of all constants and checking their con-
sistency with known asymptotic statements that may be derived via the trace for-
mula, e.g. Weyl’s law. If there is any novelty at all in our specialization of the
trace formula, it lies in applying the main Theorem of Bouaziz [9]; Bouaziz’s theo-
rem characterizes, for a semisimple real group G, which functions on the space of
(semisimple) conjugacy classes of G = G(R) may be expressed as orbital integrals
of smooth, compactly supported functions on G.
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14 FRANCESCO LIN AND MICHAEL LIPNOWSKI

3. METHODS FOR RULING OUT SMALL EIGENVALUES

Suppose we have available a trace formula which expresses a spectral sum
(10) D ()
J

in explicitly computable terms for every nice test function H. For example, the
Selberg trace formula for the 0-form spectrum of hyperbolic surfaces (1) has the

above form. In that context, t; = 4/A; — i for the eigenvalues of the Laplacian on

the hyperbolic surface I'\H?, and the trace formula expresses the spectral sum (10)
in terms of H sampled at lengths of closed geodesics.

In our case of interest, the trace formula from Theorem 2.1 and Theorem 2.2 for
the coexact 1-form spectrum of hyperbolic 3-manifolds has the above form. In that

context, t; = )\;’-‘ for the eigenvalues )\;‘ of the Laplacian acting on coexact 1-forms

on the hyperbolic 3-manifold I'\H?, and the trace formula expresses the spectral
sum (10) in terms of H sampled at the lengths of closed geodesics (weighted by their
holonomy). Let us denote the list of ¢; (allowing repetition) by Spec’. The following
simple observation underlies the most effective method we know for proving that
t ¢ Spec’:

Lemma 3.1. Let H be a nice test function for which the trace formula computing
(10) applies. Suppose that H = 0 and that

H(t) > Zﬁ(m.

Then t ¢ Spec’.

Proof. Ift = t;, then }Al(t) is one summand in the full spectral sum. Because H> 0,
it must be less than the full spectral sum. (I

Call a test function H admissible if H > 0 and if the trace formula computing
(10) is valid for the test function H. Define

(11) Ipy = inf TH(t).

supp(H)c[—R,R] =
H admissible 7
H(t)=1
If Ir¢ < 1, then t ¢ Spec’; a test function which nearly realizes the infimal value
Ip+ is a witness to the fact that ¢ is not among the ¢; by Lemma 3.1.

3.1. Excluding eigenvalues: The method of Booker and Strémbergsson.
While the proofs of the two main results of the paper, Theorems 1 and 2, both
involve proving restrictions on the value of \/A¥(Y"), their nature is rather different.

e In Theorem 2, the entire interest lies in finding a narrow window in [0, /2]
in which /A¥(Y") certifiably lies.

e In Theorem 1, we need only show that /Af(Y) ¢ [0,+/2]. To demonstrate
the latter, there is no specific need to find narrow windows in (v/2,0) in
which A¥(Y") certifiably lies. However, localizing the value of 4/\f(Y") gives
independently interesting information about Y.

Licensed to Columbia Univ. Prepared on Mon Aug 16 15:38:56 EDT 2021 for download from IP 209.2.222.212.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 15

Both problems can be attacked with the method of Booker and Strémbergsson
[7]. But for completeness, we next describe a cruder approach yielding examples
for Theorem 1, i.e. Y for which 4/A¥(Y) > /2.

To find examples for Theorem 1, it is natural to apply the trace formula to
admissible test functions Hy for which I/J\o looks like the indicator function 1[_ V2.3]
(or any Hy for which Hy is large on [—4/2,4/2] and decays quickly to 0); such Hy
might allow us to use Lemma 3.1 effectively. Regarding the evaluation of ' j fl\o(tj)

via the trace formula, recall the prime geodesic theorem on closed, hyperbolic 3-
manifolds Y [58]:

2R
#{primitive closed geodesics on Yof length < R} ~ e

2R’

To evaluate the test function Hy on that many (complex) lengths and sum them
is exponentially difficult in R. For this reason, it is only possible, in practice, to
evaluate the spectral side of the trace formula, via the geometric trace formula from
Theorem 2.1 and Theorem 2.2 for admissible function Hy supported on [— Ry, Ro],
for some relatively small Ry. See §4 for discussion of practical choices for Ry. Of
course, by the uncertainty principle, restricting the support of Hy makes it difficult
to localize fl\o.

We applied the above approach with Hy(z) = %,B * $(2x/5) where

Blx) =

e~ V=2 if |z] < 1
0 otherwise

is a cutoff function and * denotes the convolution. Recall that the convolution of
f and g is defined to be

(f * 9)(x) = fRfu)g(x by,

The key property for our purposes is that the Fourier transform of the convolution
is the product of the Fourier transforms, i.e.

so that in particular the Fourier transform of Hj is a non-negative function. The
function Hy is supported in [—5,5], and we accordingly sampled the geodesics in

that range. This approach leads to a proof of Theorem 1. This is because for
the manifolds in Table 1 the inequality I/{\O(tj) < 0.017 holds, and ff\o(t) <
0.0176... for t € [0,4/2]. Furthermore, because smallness of 3 ; I/{\o(tj) correlates
strongly with largeness of \/Tf , the size of the latter spectral sum provides heuristic
information about the distribution of \/ﬁ in our sample of census manifolds; we
refer the reader to §5, and in particular Figure 5, for a more detailed discussion of
this.

We emphasize, however, that Ig, + provides more specific and interesting infor-
mation about the location of the ¢;:

e t = +t; implies that Ip,; > 1
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16 FRANCESCO LIN AND MICHAEL LIPNOWSKI

e The pointwise limit of Ir; picks out the eigenvalues of the Laplacian on
coexact 1-forms. More precisely,
(12)

lim IRt =
R—0 ’

dim (t?—eigenspaee of the Laplacian on coexact l—forms) ift ==+t
otherwise.

In particular, one might hope that if “Y" is small relative to R = Rp,” e.g. if inj(Y)
is significantly less than %R, the function ¢ — Ig,; approximates the character-
istic function of {y/Af,/A¥,...} (allowing repetition). Furthermore, t — Ig,
potentially does better at excluding eigenvalues, via Lemma 3.1, than any fixed
admissible function Hy supported on [—Rg, Ry] because

ZﬁO(tj).
Hy(t)

We do not know how to compute the function ¢t — Ig, ; for any Ry on any hyperbolic
3-manifold Y. However, the method of Booker and Strémbergsson [7] finds an upper
bound Jg,: = Ig,: which is explicitly computable via the trace formula. They
applied their method to exclude eigenvalues on (congruence arithmetic) hyperbolic
surfaces less than %, but their method is equally applicable whenever a trace formula
is available in the sense of (10). Their method runs as follows:

IRo,t <

(1) Let ho, ..., h, be even, R-valued functions on R supported in [—Z2, £o] for

which S :={h*h:h =" x;h; for z; € R} consists entirely of admissible
functions for the trace formula (10). Define

TRyt = inf > H(t)
H=hxheS,h(t)=1 7

= inf Z(foi(t))z

Sahi(t)=175 \[ 2o
= inf Tqxy ) ha(t;)ho(t;)
inhi(t)=1 a,bZ:O ; / ’
= inf (Az, z),

{eg,x)y=1

where (-, -) denotes the standard dot product on R™, A is the matrix with
entries

Aa,b = Z hmb(tj)7
J

and ¢; is the vector

(2) Clearly we have
IRyt < JRo t,

because I is the infimum of the same quantity over a larger space of func-
tions.
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MONOPOLES ON HYPERBOLIC THREE-MANIFOLDS 17

(3) Jr,,: is explicitly computable. It is the minimum of a (positive definite)
quadratic form on R"™ subject to a linear constraint. We calculate by La-
grange multipliers:

1
Jrot = ———.
Ro,t <A_1Ct, Ct>

The matrix A is explicitly computable using the trace formula (10).

4. COMPUTATIONS

4.1. Main computation. We discuss the proof of Theorem 1, our main result.
We restricted our investigation to manifolds Y from the Hodgson-Weeks census
with labels from 0, ..., 49. The Hodgson-Weeks census consists of 11,031 closed,
orientable hyperbolic 3-manifolds which is a good approximation to the (finite) set
of hyperbolic three-manifolds with volume at most 6.5 and injectivity radius at
least 0.15. Volume increases with the census label, and the first manifold in the
list (the Weeks manifold) is known to be the compact hyperbolic three-manifold
with the least volume. Census manifolds include many of the least complex closed,
hyperbolic 3-manifolds, and those census manifolds with labels O, ..., 49 are among
the least complex of them. For reasons we will explain in §5, the smallest coexact
1-form eigenvalue A (Y") tends to be small for complex Y. So, we limited our search
for A¥(Y) > 2 to the simplest Y we could find. Our computations make essential
use of the 3-manifold software SnapPy developed by Culler, Dunfield, and Goerner.

We applied the method of §3.1 to the trace formula from Theorem 2.1 (more
precisely: the slightly broader version from Theorem 2.2). More specifically, we used
the same shape of test functions as in [7] with the following parameters (notation
from §3.1):

. 1 *2
hi=(5511-001) -
hi(z) == % (h(z — k6) + h(x + kb)) . For these choices,

S ahi(t) = (smgt)> S cos(kdt).

d satisfying ¢ - (2n + 4) < R.
e n=19.

It is straightforward to check that the functions h, * hy satisfy the smoothness
hypothesis of Theorem 2.2 and hence are admissible for the trace formula therein.
The test function hy, ., = (X arhi)™* is supported on [—(2n + 4)d, (2n + 4)4].
Hence, the constraint ¢ - (2n + 4) < R guarantees that every hy, . .. is supported
on [-R, R].

For the closed, hyperbolic 3-manifold Y, the only way we know to compute the
matrix A from §3.1 is to compute vol(Y) and the full complex length spectrum
of Y up to real length R and sample these complex lengths via the test functions
hq # hy,0 < a,b <n+1, per the geometric side of the trace formula from Theorem
2.2, to recover the spectral side. Conveniently, SnapPy has built-in functions in the
main class Manifold to compute the volume and the complex length spectrum up
to a specified real length cutoff.

n

4.1.1. The particular choice of test functions hy. The test functions to which we
apply the trace formula are linear combinations of shifts, by integer multiples of
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18 FRANCESCO LIN AND MICHAEL LIPNOWSKI

¢ of the convolution fourth power H := (%1[_575])*4. Functions of this type are
convenient for several reasons:

e The function H is a bump function centered at 0 and supported on [—44, 40].
e For § small, any nice function supported on [—R, R] can be well approxi-
mated by such a linear combination of shifts. Indeed:

— The function H is a good approximation to dg, the delta distribution
supported at 0. Thus, for nice functions f, H = f is a good approxi-
mation to f.

— Replacing f by a step function feep ‘interpolating f with step length
0, the function H # fsep approximates H # f well. But the function
H # fgep is a linear combination of shifts, by multiples of J, of the
function H.

As such, one might hope to find a linear combination of shifts of H

(by integer multiples of §) which approximates well the solution to the
optimization problem defining I+ in (11), whose domain is the entire space
of admissible test functions supported on [—R, R].

e H is an explicit piecewise polynomial function. So for every value ¢, lin-
ear combinations of shifts of H evaluated at ¢ are rapidly and accurately
computable.

~ ‘ 4 :
o H(t)= (%) . Shifting by kd§ multiplies the Fourier transform by et
So the Fourier transforms of linear combinations of shifts of H are rapidly

and accurately computable.

One drawback to these test functions, however, is that they are not C®. It is for
this reason that we did the extra work to prove Theorem 2.2.

4.1.2. Choosing R. Heuristically, we expect
H,:=h <= Zxkhk) minimizing Zm(tn) subject to ?L(t) =1
o~ inf H(t
admissible H,H(t)lill,supp(H)C[fR,R]Z ()

=: JR,t~

Evidently, Jg + decreases with R. So in principle, one would obtain the most use-
ful information by taking R as large as possible. However, enumerating the complex
length spectrum up to real length R is prohibitively computationally intensive even
for moderately large R. Indeed, it is known that the number of primitive geodesics
of length at most R is approximately e?/'/2R [58]; in practice, the time needed
to compute the spectrum seems to be around Ce®® (see Table 3). For practical
purposes, R = 6.5 seemed to be a reasonable cutoff. For most of the manifolds we
tested, this computation took between 20 and 30 minutes (even though in some
special cases, including those of Table 3, it took much longer), and we expect the
computation for R = 7 to typically take about a couple of hours. Of course, this
time constraint limits the applicability of our method.

4.1.3. Choosing n. For the particular choice of test functions hy in the previous
section, the functions h, * hj, we will use satisfy

(ha * hy)(z) = % Z (h*h)(z+ (Aa + ub)d).
A pe{x1}
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TABLE 3. The time (in seconds) needed to compute the spectrum
at cutoff R for the manifolds Census 0 and 1 (on 3.1 GHz Intel
Core i5)

| Cutoff | Census 0 | Census 1 |

4.0 0.07 0.06
4.5 0.45 0.32
5.0 4.66 3.40

5.5 86.79 62.32
6.0 1290.23 | 1127.64

To compute A, we calculated the geometric side of the trace formula for the ~
constant - n different test functions h = h(z + kd),k = —2n, ..., 2n. Computing the
matrix A~! then requires inverting the (n + 1) x (n + 1)-matrix A.

To balance information gained with computational complexity, the specific choice
n = 19 suited our purposes.

4.2. Proofs of Theorems 1 and 2. We present the results of our main computa-
tion. We computed function Jg, +, described in general terms in §3.1, relative to the
functions h, hy described in §4.1 and the parameters (Rg,n,d) = (6.5,19, #5“)
explained in §4.1.2, 4.1.3. Recall that if ¢2 is an eigenvalue of the Laplacian acting

on coexact 1-forms on Y, then Jg, (V) > 1.
4.2.1. Proof of Theorem 1 (examples of hyperbolic, minimal L-spaces).

Proof. In Table 4, we record
PossibleSmallSpectrum(Y) := {t € [0,4] : Jg,+(Y) = 1}
for several small census manifolds.
For all Y listed in Table 4, PossibleSmallSpectrum(Y') is disjoint from [0, +/2]. If
A/AE(Y) lies in [0,4/2] at all, then it necessarily lies in PossibleSmallSpectrum(Y).

Because PossibleSmallSpectrum(Y') is disjoint from [0,4/2] for all Y tabulated
above, it follows that /A¥(Y) > +/2 for all Y from Table 4. O

Remark 4.1. For every entry in Table 4, it is in principle possible that \/E does
not belong to PossibleSmallSpectrum(Y’), which would mean that \/ﬁ > 4. The
following heuristic approach suggests that this cannot be the case. We applied the
trace formula to test functions of the shape

&? 2 —z2/2
Ha=<@+a>-e’”/

for various 0 < a < 4 (see Remark 2.1). The Fourier transform H is a constant
multiple of (—2 + a2) e=*"/2 and hence is positive if [t| < a and negative otherwise.
In particular, if Za(tn) > 0, then 4/Af < a. For various a = a(Y), chosen near
troughs of the graph of Jg, +(Y"), the approximate value of 3, I;T;(tn), as computed
via the trace formula from Theorem 2.2 truncated at Ry = 6.5, was “quite positive”.
One could estimate the size of the tail (beyond our cutoff Ry = 6.5) to rigorously
prove positivity, but we will not attempt to do so here.
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TABLE 4. The hyperbolic manifolds of Theorem 1

| Census label | Volume [ Injectivity radius | PossibleSmallSpectrum(Y")

0 0.94270 ... 0.29230 ... [2.962,3.124]

2 1.01494 ... 0.41572 ... 3.086, 3.302] U [3.977, 4]

3 1.26371 ... 0.28753 ... [2.145,2.222] U [3.617, 4]

8 1.42361 ... 0.17618 ... [2.031,2.263] U [3.234, 4]

12 1.54356. . . 0.16768. .. 1.658,1.686] U [2.478,2.778] U [3.720, 4]
13 1.54356. . . 0.28903. .. 1.520,1.672] u [2.108,2.213] U [3.140, 4]
14 1.58316 ... 0.27889 ... [2.018, 4]

15 1.58316 ... 0.38874 ... [2.396,2.595] U [3.248, 4]

16 1.58864. .. 0.26727. .. [1.809, 1.847] U [2.519, 3.013] U [3.221, 4]
22 1.83193. .. 0.26532 ... [1.680, 1.721] U [2.48, 4]

25 1.83193 ... 0.26531 ... 2.323,2.597] U [3.283, 4]

28 1.88541... 0.29230. .. [1.659, 1.689] U [2.543, 4]

29 1.88541. .. 0.19853. .. [1.540, 1.934] U [2.247, 3.554] U [3.951, 4]
30 1.88541. .. 0.19853... [1.541,1.704] U [2.156, 4]

31 1.88541 ... 0.29230 ... [2.172,3.015] U [3.864, 4]

32 1.88591... 0.20593. .. [1.740,1.794] U [2.491, 4]

33 1.91084. .. 0.22107. .. [1.710,1.799] U [2.214,2.731] U [3.012, 4]
39 1.96273 ... | 0.21576 ... [2.108,2.780] U [3.061, 4]

40 1.96274. .. 0.28904. .. [1.842,1.855] U [2.829, 3.365] U [3.634, 4]
42 2.02395. .. 0.17922. .. [1.779, 4]
44 2.02988 ... 0.43127 ... [2.717, 4]
46 2.02988. .. 0.27177. .. [1.992, 4]
49 2.02988. .. 0.21564. .. [1.681,1.894] U [2.681, 4]

4.2.2. Proof of Theorem 2 (narrow X\f-intervals for non-L-spaces).

Proof. In Table 5, we record the same information as in Table 4 for some small
census manifolds previously proven to be non-L-spaces. In particular, Dunfield has
determined exactly which manifolds in the Hodgson-Weeks census are L-spaces in
the setting of Heegaard Floer homology; in his approach, many of the spaces in the
census are shown to be L-spaces via surgery exact triangles, using the fact that they
are obtained by Dehn filling on cusped manifolds which admit lens space fillings.
More generally, most spaces in the census arise as branched double covers of links
in $2; hence their Floer homology can be computed using software developed in the
setting of bordered Heegaard Floer homology [68]. Via the isomorphism proved in
[37], [12], and the subsequent papers, this also provides a list of which manifolds in
the Hodgson-Weeks census are L-spaces in the setting of monopole Floer homology.

As for non L-spaces, the Seiberg-Witten equations admit irreducible solutions,
so Theorem 3 implies that /Af(Y) < v/2 for every non-L-space Y. Thus,

NE(Y) € [0, V2] n PossibleSmallSpectrum(Y) for every non-L-space Y.

In particular, per Table 5, 4/A¥(Census; ) belongs to [0.580,0.583], and the analo-
gous conclusion holds for the other entries. ]
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TABLE 5. Bounds for 4/Af(Y) for the hyperbolic manifolds Y of

Theorem 2
| Census label | Volume | Injectivity radius | PossibleSmallSpectrum (Y') |

1 0.98136 ... 0.28904 ... [0.580,0.583] U [3.163, 4]

4 1.28448 ... 0.24015 ... [0.784,0.804] U [2.220, 3.403] U [3.964, 4]
6 1.41406 ... 0.39706 ... [0.765,0.776] U [2.305, 3.383]

7 1.41406 ... 0.18244 ... [0.528,0.532] U [3.346, 4]

9 1.44069 . .. 0.36152 ... [0.660, 0.988] U [3.348, 4]

19 1.75712 ... 0.35268 ... [0.826,0.908] U [1.987, 4]

23 1.83193 ... 0.24060 . .. [0.709,0.718] U [2.391,2.797] U [3.045, 4]
24 1.83193 ... 0.26531 ... [0.561,0.566] U [3.043, 4]

34 191221 ... | 0.24958 ... [0.036,0.074] U [3.049, 4]

45 2.02988 ... 0.27176 ... [0.777,0.878] U [1.925, 4]

a7 2.02088 ... | 0.21563 ... [0.608,0.617] U [2.637, 4]

48 2.02988 ... 0.27176 ... [0.534,0.539] U [3.121, 4]

FIGURE 2. The graph of t — Jg, (Censusg) for ¢ € [0, 4]

4.3. Pictures bounding PossibleSmallSpectrum(Y’). Recall that Jg, +(Y") is de-

signed to approximate

lim IR t =
R—0 ’

otherwise.

{dim (t?—eigenspace of the Laplacian on coexact l—forms) ift = £t

(see §3.1 for further discussion). This bears out in pictures. We include pictures of
the graphs of t — Jg, ;(Census;) for i = 0, 1, 2. See Figures 2, 3, and 4, respectively.
In all three pictures, we expect the first peak of the graph to occur near

(v/A¥, dimension of the A\f-eigenspace for coexact 1-forms).
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FIGURE 3. The graph of t — Jg, (Census;) for ¢ € [0, 4]

FIGURE 4. The graph of t — Jg, (Censusy) for ¢ € [0, 4]

Indeed, the fact that the vertical coordinate just barely exceeds a positive inte-
ger is a non-trivial check on our computations. To compute the intervals from
PossibleSmallSpectrum(Y’), we solved for J;(Y) = 1 (up to tolerance 1079) via
bisection.

When the graph of J;(Y) is peaked just barely above vertical coordinate m for
some integer m > 1, the eigenvalue windows are likely much narrower than we
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claim. For example, note that
{t € [0,4] : Ji(Censusg) = 3} < [3.036, 3.040].

So if the A¥-eigenspace for Census 0 really is 3-dimensional, as Figure 2 suggests,
then 1/A¥(Censusg) € [3.036,3.040]. Likewise, if the Af-eigenspace for Census 2 is
actually 4-dimensional as Figure 4 suggests, then 4/\f(Censusy) < [3.177,3.183].

Remark 4.2. The trace formula is unable to distinguish between two parameters
tn,tn+1 which are very close versus equal on the nose. We do not know, in general
or even in the particular examples of Census 0 and Census 2, how to compute the
multiplicity of an eigenvalue having multiplicity greater than 1.

5. LIMITATIONS AND FURTHER DIRECTIONS

Even though our results can be seen a first step toward understanding the re-
lation between Floer homology and hyperbolic geometry in dimension three, our
approach has some significant limitations; we now discuss these and also some nat-
ural questions and problems these lead to.

5.1. Regarding the structure of the collection of hyperbolic minimal L-
spaces. While our test was successful when studying small manifolds in the census,
it can be seen that as the volume grows, the proportion of manifolds with A¥ < 2
increases. This should be contrasted with the computations of Dunfield [15], which
imply that a very large part of the manifolds in the census is L-space. This obser-
vation leads to the obvious question of whether there are infinitely many manifolds
with Af > 2, or the following more general question:

Question 1. Fix € > 0. Does the set
S, = {closed, hyperbolic Y : H*(Y,Q) = H*(S* Q) and A} > ¢}
have any discernable structure? In particular, is S, always a finite set?

While we do not have a completely satisfactory answer to the above question,
there are some clear restrictions on the local geometry of the elements in S.. The
discussion which follows is inspired by the work of McGowan [49] (which in fact
provides more refined estimates regarding the number of small eigenvalues, provided
upper bounds on the volume).

Recall that a hyperbolic tube T with complex length £e?’° is obtained by quoti-
enting the cylinder

{(rt,N0<r<ROST<LOeS")
equipped with the hyperbolic metric
dr? + cosh?rdt* + sinh?rd9?
via the identification
(r,0,9) ~ (r,£,9 + ).

We refer to R as the radius of the tube. The subset = 0 is a geodesic called the
core geodesic. Consider now on a tube T of radius R a 1-form of type a = f(r)dt.
A form of this kind is always coclosed. Furthermore, we have

da = f'(r)dr A dt.
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Now, |dr A dt| = 1/cosh(r). Choosing f to be a standard pyramid shaped function
on [0, R], we see that the Rayleigh quotient of « is approximatively
R
Spldal® §o1f'[Pdr
Splal  §5 f2ar
which converges to zero for R going to infinity. Hence, given ¢ > 0, there is a

universal upper bound of the diameter of a tube 7' — Y for a hyperbolic rational
homology sphere with A¥ > e. Using this, we have the following.

(13)

Proposition 5.1. Let Y be a hyperbolic 3-manifold. There exists R,d > 0 satisfy-
mg:

o if Y contains an embedded ball of radius R = Ry, then A¥(Y) < e.

o if inj(Y) < 4, then \f(Y) <e.
In particular, S, is contained in the set of allY for which the local injectivity radius
function has range contained in [J, R].

Proof. For the lower bound, we invoke [24, Theorem 3.2] which says: if there is an
embedded geodesic v of real length ¢, then ~ is the core of an embedded tube with
radius r(¢) with r(¢) — o0 as £ — 0. Because A¥ > e imposes a universal upper
bound on the diameter of an embedded tube, the latter implies that ¢ is bounded
below. Thus, the injectivity radius, which equals half the length of the shortest
closed geodesic [48, Proposition 4.3.2], must be bounded below too.

To see that there is an upper bound on the local injectivity radius, parametrize
the hyperbolic ball of radius R as (0,R) x S? equipped with the metric dr? +
sinhQ(r)gSz, where gg2 is the metric on the unit sphere in R®. Consider then for
a fixed non-zero coclosed 1-form 3 on S? the forms of the type g(r)3. This is
a coclosed form, and a computation analogous to (13) shows that its Rayleigh
quotient only depends on the Rayleigh quotient of g. In particular, when R goes
to infinity, this can be made to go to zero. O

Corollary 5.2. For every €,V > 0 there exists only finitely many hyperbolic three-
manifolds with \¥ > € and vol < V.

Proof. This follows directly from the previous proposition combined with the fact
that there are only finitely many manifolds with volume bounded above and injec-
tivity radius bounded below [28]. O

One is then led to ask where do the limitations of our approach stem from. Aside
from the applicability of the Booker-Strombergsson method to provide effective
computations of A, the main problem is that the bound we are using, i.e. AT <2
when the Seiberg-Witten equations admit irreducible solutions, is rather crude. In
particular:

e it does not use the hyperbolic metric in an essential way. In fact, Theorem
1.2 shows that Af(Y) < 2 provided Y is a Riemannian 3-manifold for
which the Seiberg-Witten equations on Y admit irreducible solutions and
that 5(Y) = —4;

e more importantly, in the proof of Theorem 1.2, we use the estimate ||d¢||3,
> Af||¢||3.. While this holds for any coclosed 1-form & on Y, one could
expect that a sharper estimate holds when & arises from a solution to the
Seiberg-Witten equations.
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FIGURE 5. We have plotted, among the first 100 manifolds in the
Hodgson-Weeks census, the L-spaces in blue and the non-L-spaces
in red. The y-axis records the volume, while the z-axis records
the value of the spectral sum ) H(;) obtained by using Ho(z) =
23 « B(2z/5) where B(z) = e~/(1=2") g a cutoff function (see
the discussion of the naive attempt in §3.1). The function Hy is
supported in [—5, 5], and we accordingly need as input the length
spectrum with cutoff R = 5. Heuristically, the graph should be
interpreted as follows: a low value of the spectral sum suggests a
big value for A}; in particular, the manifolds with spectral sum
< 0.017 have A\¥ > 2.

For example, we just saw that the smallness of A¥ for manifolds with large
embedded balls or short geodesics is caused by 1-forms of a special kind; it would
be interesting to understand if forms of small Rayleigh quotient on a tube or a ball
can arise from the solutions to the Seiberg-Witten equations. More generally, we
have the following.

Question 2. Suppose Y is a closed, hyperbolic rational homology sphere. Can one
improve upon the upper bound A < 2, which holds for all Riemannian 3-manifolds
Y satisfying 5(Y) = —4, using explicit and computable geometric data arising from
the hyperbolic geometry of Y (e.g. the injectivity radius)?

In fact, even though our methods are conclusive only in some examples, there
seems to be an intriguing correlation between the size of A and the property
of being L-spaces (see Figure 5). A better understanding of this experimental
observation could lead to interesting geometric characterizations of hyperbolic L-
spaces in terms of explicit quantities of interest in hyperbolic geometry.

Regarding the limitations of our methods, the following is also a natural question.
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Question 3. Is there an L-space Y which is not a minimal L-space? In other
words, is there an L-space Y such that for each choice of metric, the Seiberg-Witten
equations admit irreducible solutions?

By contrast, the construction of [20] shows that there is always a metric for
which the equations admit irreducible solutions.

5.2. Comparison to notions of minimality in other Floer homology the-
ories. In a different direction, one could try to compare our notion of minimal
L-space with the analogous ones of strong L-space in the setting of Heegaard Floer
homology [27] and the one of SUs-cyclic manifold in instanton theory (see for ex-
ample [63] and references therein). These are roughly speaking the spaces for which
the relevant Floer chain complex is as simple as possible. As our understanding of
minimal L-spaces is too limited to even formulate reasonable questions about the
relationships between these notions (see Question 3), we will focus here on pointing
out some interesting examples.

5.2.1. Comparison to strong L-spaces for Heegaard Floer homology. 1t is shown
n [26] that the branched double cover (L) over a non-split alternating link is
a strong L-space. In [27], the authors ask whether every strong L-space arises in
this manner, and they provide evidence towards a positive answer. By contrast, the
Weeks manifold, which we have shown to be a minimal L-space in Theorem 1, is not
the branched double cover over any alternating knot (as it follows via geometrization
from [52]). While the Conjecture in [27] would suggest that the Weeks manifold is
not a strong L-space, whether this is actually the case is currently an open problem.

Conversely, it is easy to find examples of alternating knots whose branched double
cover is hyperbolic and for which our methods strongly suggest that A\f < 2 (e.g.
10108); in particular we cannot determine whether these examples are minimal or
not. Nevertheless, browsing through small crossing alternating knots, one can find
several examples for which A} > 2 can be proved using our methods at a cutoff
R = 6.5. For example, the double branched covers of the alternating knots 949,
10100, 101027 10103, 10104 and 10109 all satisfy AT > 2 and are not among the
examples covered already in Theorem 1 (as they have larger volume).

As the topology and geometry of an alternating knot is deeply connected with the
combinatorics of its alternating diagram (see for example [42]) we ask the following.

Question 4. Suppose L is an alternating link in S for which the branched double
cover is a hyperbolic rational homology sphere. Can one provide explicit lower
bounds on Af of ¥(L) in terms of an alternating diagram of L?

5.2.2. Comparison to SUs-cyclic manifolds for instanton Floer homology. Regard-
ing the class of SUs-cyclic manifolds, our understanding is even more limited. Let
us point out that the hyperbolic manifolds ¥(8;g) (which is the example labeled 44
in Table 1) and ¥(10109), which were shown to be SUs-cyclic in [63], can be shown
to have A¥ > 2 using our methods, and are therefore minimal L-spaces.

In a different direction, the Weeks manifold ¥ (which we have shown to be a
minimal L-space) does admit a non-cyclic (indeed, faithful) SUs-representation.
This fact is well-known to experts, and can be seen directly from the arithmetic
description of ¢ : w1 (Y)>PSLy(C) given in Section 9.8.2 of [46] as follows (we refer
the reader to Section 8.2 of [46] for the relevant notions). The inclusion ¢ is defined
over a cubic field with exactly one complex place; by taking its Galois conjugate
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FIGURE 6. The graph of t — Jp, +(Censussy) for ¢ € [0, 4]

corresponding to the real place (at which the corresponding quaternion algebra is
ramified), we obtain a new embedding 71 (Y)—>PSUy = SO3. As H?(Y,Z/2Z) = 0,
this embedding lifts to an embedding into SUs.

5.3. L-spaces, integer homology spheres, and a conjecture of Ozsvath
and Szabé. An intriguing conjecture of Ozsvath and Szabd states that the only
irreducible L-spaces which are integral homology spheres are S® and the Poincaré
homology sphere. In particular, their conjecture predicts that no hyperbolic integer
homology sphere is an L-space. While Dunfield has already determined that none
of the 150 integral homology spheres in the Hodgson-Weeks census in an L-space,
it is still interesting to look at these examples from our perspective. Referring to
Figure 5, the four integral homology spheres (which have census label 5, 34, 77 and
79) all have spectral sum > 0.25, which is very large compared to the manifolds in
our sample. The case of Census 34 (see Figure 6) is emblematic: our computations
(see Table 2) imply that

0.001 < AT < 0.005.

This value is extremely small compared to the other manifolds with similar volume.
In light of the conjecture of Ozsvath and Szabd, we ask the following.

Question 5. For hyperbolic integer homology spheres Y, what are the best upper
bounds one can prove for A¥(Y) in terms of the hyperbolic geometry of Y7 In
particular, is it always true that A¥(Y) < 27

5.4. Isospectrality. A direct consequence of the Selberg trace formula (when ap-
plied to suitable test functions) is that two hyperbolic three-manifolds with the
same complex length spectrum have the same eigenvalues of the Laplacian on coex-
act 1-forms (and the same volume and by). A pair of such manifolds is called length
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isospectral; we refer the reader to Section 12.4 of [46] for a detailed discussion and
for some explicit examples. The following is an intriguing question.

Question 6. Is there a pair of length isospectral hyperbolic rational homology
three-spheres for which A¥ > 27

Unfortunately, all known examples of length isospectral hyperbolic three-
manifolds have volume significantly larger than the ones we have considered in
this paper [45]. On the other hand, a positive answer to the question would pro-
vide us a pair of non-homeomorphic hyperbolic three-manifolds which, from our
perspective, are L-spaces for the same geometric reason.

In fact, our techniques produce the same bounds on A¥ for manifolds with the
same volume and complex length spectrum up to a constant R, provided we restrict
ourselves to test functions H supported in [—R, R]. Examples of such pairs of
manifolds, where the cutoff R is comparable to the volume and for which admit
many geodesics with length at most R, are constructed in [21], and it would be also
interesting to find a pair where both manifolds have A¥ > 2 in this more general
context.

APPENDIX A. AN INTRODUCTION TO SELBERG TRACE FORMULAS

Our goal is to provide an introduction to the main ideas behind the Selberg trace
formula, crafted for someone working at the intersection of gauge theory and low-
dimensional topology. In particular, we assume only some basic familiarity with
the heat kernel on compact manifolds and the trace of operators, as in Chapters 7
and 8 of [57].

Remark A.1. To streamline the exposition, we will not concern ourselves in this and
Appendix B with technical aspects involving convergence and smoothness issues.
Of course, we do concern ourselves with these issues in Appendix C, where we
generalize the results to certain classes of non-smooth functions.

A.1. The basic idea. The various incarnations of the Selberg trace formula are
obtained by computing the trace of certain convolution operators in two ways,
one involving spectral data and the other involving geometric data. In fact, such
formulas are far reaching generalizations of the well-known fact that the trace of a
matrix can be computed both as the sum of its eigenvalues and as the sum of its
diagonal entries.

A.2. The trace of the heat kernel. Let us first discuss a very specific instance
of the trace formula for surfaces (1), due to McKean [51]. Given X = T'\H? a
compact hyperbolic surface, denote by 0 = A\g < A\ < Ao < ... the eigenvalues of
the Laplacian on functions. Then, for any t € R>?, the identity

(14)

© 0
Z e Mt = V—OI(X)eft/‘lf re” " tanh(nr) dr+ () —£2()/at
n=0 —0

_ #6%/4.2 _ o) |
4m (4rt)1/2 o sinh(¢(v)/2)

holds, where we follow the notation specified in the paragraph below Equation
(1). In fact, this follows from Equation (1) (which also holds for non-compactly
supported functions that decay fast enough at infinity) by taking g(z) = e~ %/* .
ﬁ e=*"/4 _for which §(r) = et +1/49),
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The identity (14) is obtained by equating two different computations of the trace
of the heat kernel on X. We discuss the main points behind the proof, and refer
the reader to Chapters 7 and 9 of [10] for more details.

Recall that the solution f; at time ¢ of the heat equation

%f(s>y) + Af(svy) =0
f(0,9) = foly)

on X is obtained by taking the convolution of fo with the heat kernel K;(x,y) on
X, ie.

ﬁM=Lhmmm@m

Furthermore, the map e~ 2 from L?(X) to itself sending fy to f; is trace-class, and
we have

trace(e '2) = J Ki(z,x)dx.
p's

We now discuss two explicit expressions for the heat kernel K;(x,y), which will
allow us to compute this quantity in two different ways.

A.2.1. Spectral computation of the heat trace. First of all, if {¢,} denotes an L>-
orthonormal basis of eigenvectors for A (where ¢,, has eigenvalue \,,), we have

Ki(e,y) = Y e (@)dn ().

and we can explicitly compute

trace(e”*2) = f Ki(x,z)dx
b's

— | S lou)Pas
_ Z o= Ant

as { [¢n(2)|*dz = 1 for every n. We therefore obtain the left hand side of Equation
(14). We regard the latter expression for the trace of the heat operator as the
“spectral side” of McKean’s formula, which loosely corresponds to computing the
trace of a matrix by summing its eigenvalues.

A.2.2. Geometric computation of the heat trace. Let k;(-,-) be the heat kernel on the
hyperbolic plane H2. An explicit expression for k;(-,) can be found in [10, Section
7.4], but for our introductory discussion all we need is the fact that it only depends
on the distance between the two points, i.e. it has the form

kt('v ) = ];t(d('v ))’
where d(-,-) denotes the hyperbolic distance. This follows directly from the fact
that the isometry group of H? acts transitively on the set of pairs of points with a

given distance.
The identity

(15) Ki(x,y) = ). ke(Z,7 - §)
~yell

holds, where 7, are any preimages of x,y in H? [10, Section 7.5]. Here, the right
hand side is manifestly bi-invariant for the action of I', and therefore descends to
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X x X. Then (15) readily follows from the characterization [57, Chapter 7] of
Ki(x,y) as the unique (sufficiently smooth) time dependent function on X x X
satisfying the properties

d
(E + Am) Kt(xay) =0
K(z,y) — 6(z,y) as t — 0.

These can be checked directly using the fact that for all ~y, ki (Z,~ - §) satisfies

d
— + Az | k(Z,v-9) =0
( g ) +(Z,7 - 9)
kt(i.7/yg) - 6(577’}/@) ast — 0,
because k; is the heat kernel on H?. We therefore also have

trace(e ') = | Ky(z,z)dx

where F is a fundamental domain for the action of I' on H2. We are left to compute
the above integrals. The v = 1 term corresponds to

= %(0) - vol(X),

which corresponds to the first term on the right hand side of (14) after taking into
account the explicit expression of the heat kernel. Regarding the other terms, let
us set {I'}’ to be the set of non-trivial conjugacy classes of T'; this set is in bijection
with the set of closed geodesics on X, because each free homotopy class of loops
contains exactly one geodesic representative [48, Section 4.1.5]. Denoting by I, the
centralizer of v in I, we have

> ki(Z,y-3)di = Y, )] th(i,é_lfyé~;i)di

~er\{1} * F [Y]e(T} 6eT\T

= > th(éi,yé-fc)di

[Ye{r} ser\D

= > D LFkt(iz,y-:E)di

[Yer} ser\D

J k(3,7 - B)d,
F’Y

[v]e{Ty

where F, = UéeFW\F 0F is a fundamental domain for I',.

The key observation here is that to compute each integral we can choose any
fundamental domain for I'y. In our case, I' is a torsion-free cocompact lattice
in Isom™* (H2?) = PSL(2,R), and therefore each non-trivial element is hyperbolic.
Writing v = 4 for a primitive geodesic [yo] and n € N, we have that I'y is the
infinite cyclic group generated by 7o, cf. [48, Lemma 4.2.2]. Working in the upper
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half plane model, after conjugation we can assume -y is the hyperbolic element
corresponding to the dilation

7o : H? — H?
zZ— Az

with A = ‘(). Here, using coordinates z =  + iy, we can take the strip 1 <y < A
as the fundamental domain for I',. Therefore, we have

dxdy
y:

(16) L/ ki(Z,7y - &)di = L ’ J:C ky(d(z,\"z))

Such an integral clearly only depends on A and n. To compute it, notice that for
fixed z,y, the map w — (w —x)/y is an isometry sending z to i and A"z to b+ A",
where b = (A" — 1)z /y. A simple substitution in the integral above then shows that

0
f k(@ - 7)di — 282 J Ter(d(i, b+ iA™))db.
P! Ar—=1] o

Following [10, Section 9.2], the last integral is essentially the Abel transform of
ky [10, Section 7.3]: this is a classical integral transform taking as input a radial
function (such as k. (d(i,-)) = ki(i,-)) and converting it into a function which is
constant on each horocycle y = const (in our case y = A" = 65(7)) by suitably
integrating it over it. The key point is that the Abel transform admits an ezplicit
inverse transform. This allows to calculate the desired integral using the explicit
form of the heat kernel k. In fact, the determination of k; also relies on the (inverse)
Abel transform [10, Section 7.4].

While we will not pursue the complete computation here, and refer again the
reader to Chapters 7 and 9 of [10] for details, the final answer gives us the corre-
sponding term in the sum on the right hand side of (14). We regard this second
determination of the trace of the heat operator as the “geometric side” of McKean’s
formula, which loosely corresponds to computing the trace of a matrix by summing
its diagonal entries.

A.3. The representation theoretic generalization. In our discussion of McK-
ean’s formula, we observed: equating two expressions for the trace of convolution
with the heat kernel on a compact hyperbolic surface leads to a deep relation-
ship between its hyperbolic geometry and its spectral geometry. This paradigm
can be greatly generalized as follows (see Section 3 of [67]). Consider a Lie group
G with Haar measure dg and a discrete cocompact subgroup I' € G. Denote
by K < G a maximal compact subgroup. In the concrete situation of a hyper-
bolic surface X, G = PSLy(R), I' = m1(X) is cocompact and torsion-free, and
K = PSO; < PSLo(R). Note that the hyperbolic plane arises as the locally sym-
metric space H? = G/K, where we use the upper half plane model for H?, G acts
via linear fractional transformations, and K is the stabilizer of i. Furthermore, we
can identify X = I'G/K.

Remark A.2. For the purposes of this section, following [67], we will make the
simplifying (but inessential, cf. Remark A.4) assumption that the group G and the
relevant subgroups we consider are unimodular, i.e. left and right Haar measures
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coincide. Recall in general that one can define the modular function of a Lie group
G as

(17) Ag(g) = [det Ad(g)].

This function measures the failure of a right Haar measure d,.(-) to be left invariant,
ie.

dr(9-) = Alg)dr(-),

and therefore a group G is unimodular iff its modular function is identically 1.
See [35, Chapter VIIIL.2] for basic facts about modular functions and unimodular
groups. In the present section we only need the fact that semisimple (e.g. PSLy(R)),
abelian and discrete groups are unimodular [35, Corollary 8.31]. The relevance of
this notion is the following. Let H be a closed unimodular subgroup of a unimodular
group G with Haar measure dg. Then for any Haar measure dh on H, there is a
unique G-invariant measure dx on H\G such that for all f € C the identity

L f(g)dg = L\G (JH f (hx)dh> da

holds; see [35, Theorem 8.36]. The measure dz depends on dh; we will denote it by

49 and write
_ dg
[ roaa=] (], sthayan) 5.

dh’
Similarly, if K is a closed unimodular subgroup of H with Haar measure dk, the

identity
iy _ an) dy
Jioa "5~ S (JK\H Ja) dk) ah

holds. In this section we will always work with K a discrete subgroup, and choose
dk to be the counting measure. In this case for simplicity we will denote Z—z and
% by dg and dh respectively.

Fix a Haar measure dg on G, and consider the Hilbert space L*(I'\G). Notice
that in this new setup the functions L?(X) on X = I'\G/K correspond to the
functions L?(I'\G) which are invariant under the action of K by right translation.
Given f € CP(G), we can use it to define the (right) convolution operator R(fdg)
whose value on ¢ € L?(T'\G) is given by

(R(fdg))(h) = JG f(9)d(hg)dy.

Again, we equate two expressions for the trace of such convolution operator
R(fdg); these loosely correspond to expressing its trace, on the one hand, by sum-
ming its diagonal matrix entries (the “geometric side”) and expressing it, and on
the other hand, as the sum of its eigenvalues (the “spectral side”) .
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Regarding the geometric side, notice that
(Rdg)o)(0) = | F(a)o(ho)ds
- [ 10900
G
= f > F(h ' g)é(vg)dg
neG

~yel'

= L\G (Z f(n™ 79)) ¢(9)dg

~yell

so that R(f) is an integral operator on I'\G with kernel K¢ (h, g) = >, r f(h=1vg),
cf. Equation (15). We can then compute the trace in terms of geometric data as
outlined in the previous paragraph. In this more general setup, if we set {I'} to be
the set of all conjugacy classes of I', and still denote the centralizer of v € I' by I,
we get

trace R(fdg) = Ky(g,9) dg
ne

= | > flg ") dg

NG ~el

- L SN Fg ) dg

\G (I} 6el,\I

=N % sete e dg
[y]e{r} *I\G ser\r

= > f flg™ ) dg.
[e{r} “T\C
For any v € I', we denote its centralizer in G by G, and assume that it is uni-

modular. After choosing a Haar measure dg, on G,, we have via Remark A.2
that

1 _ 1 dg
L\G flg" vg) dg = LW\G (L\Gv f((949) vgwg)dgv> dg.

_ dg
= flg™ g J dg, | —
.[GW\G< ( ) L \G~ ! dgy

B d
= vol(T,\G., dg.,) f f(g 179)—d 7
G, \G G~

where we used that g, commutes with 7. We therefore obtain
_ dg
trace R(fdg) = Y, vol(T;\G,, dgw)f f(g 1vg)d—-
[1Ie(r) G\G S

This is a far reaching generalization of the right hand side of (14). For example,
given a torsion-free cocompact lattice I' © PSLy(R) and a non-trivial conjugacy
class [7], for natural choices of Haar measures vol(I'\\G~, dg,) specializes to the
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more familiar quantity ¢(o). This follows because in this case v is hyperbolic, G, is
the copy of R consisting of the identity and the hyperbolic elements having the same
axis as v (in particular G, is unimodular), and I',, is the cyclic group generated by
Yo (see [48, Section 4.2.1]).

We also introduce the notation

dg > J -1 dg
19) - = e
! < dg- G \G flg™"9) dgy

and refer to this quantity as an orbital integral.

The spectral side of McKean’s formula (14), which involves the spectral theory
of the Laplacian, is generalized in terms of the representation theory of G. Namely,
L?(I'\G) carries a natural unitary action of G by right translation. One can show
that, as a unitary representation of G, it decomposes as an orthogonal direct sum
of irreducible unitary representations

(18) L*(T\G) = @ mr(n) -,

ned

where G denotes the set of equivalence classes of unitary irreducible representa-
tions, and each multiplicity mr () is finite [67, Theorem 3.16]. Notice also that
the number of representations with mr(7) # 0 is countable, because L?(I'\G) is a
separable Hilbert space (and therefore every orthonormal basis is countable). Con-
sider again the operator R(fdg) for f € C(G). This preserves the decomposition
into irreducibles (18), and so

trace R(fdg) = Z mr () - trace (w(fdyg)),
reG

where, for a representation 7 of G, w(fdg) is defined as

v | rlads
Putting everything together proves the following (see also Section 3.5 in [67]):

Theorem A.1l. Given a unimodular group G, consider a cocompact lattice T', and
assume that all centralizers G, are unimodular. Then, for every smooth compactly
supported function f on G, there is an equality

dg
(19) mp () - trace(n(fdg)) = vol(T\G,dgy) - Oy | f—— | .
; : [W]GZ{F} < dg’Y)

The right side of (19) is called the geometric side of the trace formula. The left
side of (19) is called the spectral side of the trace formula.

Remark A.3. Stated in this generality, the theorem does not require the cocompact
lattice I" to be torsion-free. On the other hand, we will only work with torsion-free
lattices in what follows.

Remark A.4. As mentioned in Remark A.2, the assumptions on unimodularity
can be dropped; see [61], [62], [64]. In fact, one shows that the mere existence
of a cocompact lattice I' = G implies that G and all centralizers G,y € I', are
unimodular.
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A.4. Specializing the general Selberg trace formula. The expression from
Theorem A.1, as written, is too general for practical use. It contains information
about the spectra of all G-invariant differential operators on I'\G/K and bundles
thereon. One can obtain equations such as (1) and the formula in Theorem 4 by
looking at the trace of suitable f € C*(G) to isolate a much smaller subset of these
spectra. While the process of specializing the trace formula to concrete examples
is somewhat technical, our main goal in this subsection is to make the basic idea
behind it transparent.

Consider the case of functions on a hyperbolic surface X = T'\H?. We refer
the reader to Section 4 of [67] for a more detailed discussion. Functions on X
correspond to functions in L?(I'\G) which are invariant under the action of K by
right translation. Therefore, if we wish to study spectrum of functions on X, we only
really care about representations 7 € G which admit non-trivial K-invariant vectors,
i.e. 7% # 0. These representations can be isolated in Theorem A.1 by taking
convolution with test functions f € C¥(G) with are invariant under the actions of
K by both right and left translations. In fact, if f is such a function, denoting by
Ry, the right translation by k € K on L?(I'\G), we have R(fdg) = R(fdg) o Ry, and

R(fdg) = jK R(fdg) o Rydk

_ R(fdg) L{ Rydk.

But acting through a representation 7, the operator SK Ry.dk corresponds to the
orthogonal projection onto 7. Hence, if 7% = 0, then 7(f) has trace zero. Let
us point out that there are plenty of K-bi-invariant functions on G; in fact, they
correspond one-to-one with even functions on R via the so-called Harish-Chandra
transform. Here we identify R with the subgroup A = R>? = G of positive diagonal
matrices (via the exponential), and define for a K-bi-invariant function f

(20) (g D )=a [ (G )

see [67, Section 4.5]. In fact, this is essentially the translation in the language of
representation theory of the Abel transform we discussed in §A.2.2. First of all,
K bi-invariant functions on G correspond to radial functions on H? of the form
f(d(i,-)). Furthermore, in the quotient G/K = H?2, the argument of f in the
integral (20) corresponds to the point a?z + ia®>. We are therefore integrating f
along the horocycle y = a?, and we can think of Hf as a function constant on
such horocycles. In this language, the fact that the Harish-Chandra transform is a
bijection corresponds to the fact that the Abel transform admits an explicit inverse.

Furthermore, we have a complete understanding of the (non-trivial) unitary rep-
resentations 7 of PSLy(R) for which 7% # 0. These are often denoted by 7, where
s € iRuU[—1,1], and are all infinite dimensional. The ones corresponding to an imag-
inary parameter are called (unitary) principal series representations, while those
corresponding to a real parameter are called complementary series representations.
We have in these cases that 7 is one dimensional, and via the correspondence be-
tween K-fixed elements and functions on X, a basis element of this one dimensional
space T = L?(I'\X) corresponds to an eigenvector of the Laplacian of eigenvalue
(1 —s?)/4. To conclude, by taking f to be K-bi-invariant, the left side (the “spec-
tral side”) of Theorem A.1 reduces to a non-trivial sum involving the eigenvalues
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of the Laplacian on X, while the right side (the “geometric side”) reduces to a sum
involving the lengths of the geodesics of X. To massage this formula into its final
form (1), one needs to perform a series of non-trivial computations (see Section 4
of [67]).

Finally, an analogous approach works in the context of the present paper. In our
context, G = PGLy(C) and K = PU(2) =~ SO3. As we are interested in 1-forms,
instead of looking at representations 7 € G with 7K 0, we look at those containing
copies of the standard representation of K = SOz on R3. An additional complication
in this case is that the spectrum on 1-forms contains both the spectrum on exact
forms (i.e. the non-trivial spectrum on functions) and coexact forms (which is what
we are really interested in). Using test functions of a very particular type, whose
existence is afforded to us by a theorem of Bouaziz [9], we are nonetheless able to
isolate the contribution of coexact 1-forms. We do so in Appendix B.

Remark A.5. As in the case of PSLa(R), the group G = PGL2(C) is semisimple
hence unimodular. Furthermore, we will see that in our setup all relevant cen-
tralizers are also unimodular, so that Theorem A.1 can be applied. On the other
hand, when describing explicitly the unitary irreducible representations of both
PSL2(R) (which are the s mentioned above) and PGL2(C), one is naturally led
to consider the subgroups of upper triangular matrices, which are not unimodular.
We will discuss in detail the construction of the unitary irreducible representations
of PGL2(C) in §B.1.4 of Appendix B, while the case of PSLy(R) can be found in
[67, Section 4.4].

APPENDIX B. THE TRACE FORMULA SPECIALIZED TO COEXACT 1-FORMS ON
HYPERBOLIC 3-MANIFOLDS

Consider a closed oriented hyperbolic Y three-manifold, and fix a smooth com-
pactly supported even test function H on R. Our goal is to explain how, by spe-
cializing the general trace formula

dg
(21) mp(m) - trace(w(fdg)) = vol(T\Gry, dgy) - Oy { 7=
Zﬂ—: [’y]g{:f‘} ( dg"/)

of Theorem A.1 appropriately for the semisimple group G = PGL(2,C) and the
torsion-free cocompact lattice I' = 71(Y) < G, one can obtain the identity of

Theorem 2.1:
1 ~ 1 1\ ~
3 Smp(V) - H (\/)\*) + (—b1 (Y) - —> [(0)
A*¥ =coexact 1-form eigenvalue 2 2 2
_ vol(Y) " cos(hol(7))
T on (H(O) —-H (0)) + Z £(70) = e@g(,y)‘ . 67C£(7)| CH(L(v)).

[v]#1
Our discussion is structured as follows:

e In §B.1, we discuss some relevant preliminary notions about G needed for
our computation. In particular, we review the identification of G with the
isometry group of H?, fix conventions for the Haar measures, and describe
the classification of its irreducible unitary representations.

e In §B.2, we introduce the so-called Satake-Harish-Chandra transform of
f. This is a function Sf defined on the maximal torus T" of G, and is a
generalization of the Harish-Chandra transform (20).
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e In §B.3 and B.4 we begin our specialization process by showing how the
terms in Equation (21) can all be expressed very concretely in terms of the
Satake-Harish-Chandra transform Sf of f. In particular, this will greatly
simplify the orbital integral on the geometric side and the trace computation
on the spectral side.

e In §B.5 we invoke a result of Bouaziz to rewrite the trace formula directly
in terms of a given function F' on T, rather than the transform Sf of f.

The formula obtained this way (see Corollary B.7) is still too general for our appli-
cation, as it takes into account all unitary irreducible representations of G (hence,
in some sense, all natural differential operators on Y'). To remedy the situation, we
proceed as follows:

e In §B.6 and §B.7, we identify precisely which unitary irreducible represen-
tations of G are relevant for our purposes, i.e. contain information about
the spectrum on coexact 1-forms.

e Finally, in §B.8 and §B.9, we complete the proof by choosing suitable func-
tions F' on T that isolate the contribution of the spectrum on coexact
1-forms.

B.1. Preliminaries on the Lie group G. We begin by recalling some background
notions regarding our group, fixing notations and Haar measures, and discussing
its unitary irreducible representations.

B.1.1. The isometry group of H?. We review some notions of hyperbolic geometry
which are relevant for our purposes, and refer the reader to [46, Chapter 1] for a
more detailed discussion. While for our purposes it will be more convenient to deal
with the group G = PGLy(C), the relationship with hyperbolic geometry is more
transparent when working with PSLy(C) (which is clearly isomorphic to G). We
will always work with the upper half-space model

H3 =C x R>°

with coordinates (z,t) and metric tensor ggs = t% Feucl- The group of orientation-
preserving isometries of H? is isomorphic to PSLy(C), and the action of

( o« ) & PSL,(C)

on H3 is given by

(22) (Z (bi>.(Z’t):((aerb)(EZer)JraEt t >

lcz 4+ d|2 + [c|?t2 ez + d|? + |c|?t2

see [16, Section 1.1].

A compact hyperbolic three-manifold Y corresponds to a quotient I'\H?® with
I’ € PSLy(C) a torsion-free cocompact lattice; in this case, every non-trivial element
in I' is loxodromic. Recall that a loxodromic element v is an element whose action
on H3 has exactly two fixed points, both at infinity; this is equivalent to tr v €
C\[—2,2]. Geometrically it corresponds to a screw motion translating by ¢() > 0
along the geodesic connecting the two fixed points at infinity (called the axis of
v), and simultaneously rotating by hol(y) around it. There is a bijection between
non-trivial conjugacy classes in I' and oriented closed geodesics in Y [48, Lemma
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4.1.5], and under this bijection the complex length Cl(vy) = ¢(7) + ¢ hol(v) of the
class of an element ~ conjugate to

w 0
(6 0) =

is C4(y) = 2logw [46, Section 12.1].

Remark B.1. When thinking of PGLy(C), any loxodromic element 7 is conjugate

to
z 0

for some z, and we have Cl(y) = log z.

We conclude by discussing the various centralizers that will appear; see [48,
Section 4.2.1] for details. For a given loxodromic element <, the centralizer G,
consists of the identity element, all the loxodromic elements which translate with
rotation along the axis of v (possibly in the opposite direction) and all the elliptic
elements fixing pointwise the axis of 4. It is therefore a copy of R x S* =~ C*. In
particular it is abelian, hence unimodular (cf. Remark A.2), so that the general
trace formula of Theorem A.1 applies.

Similarly, the centralizer I'y of vy in the cocompact torsion-free lattice I' = 7 (Y")
is the cyclic group generated by a primitive loxodromic element vy with v = ~§. At
the level of geodesics, 7 corresponds to a prime geodesic of which 7y is a multiple.

B.1.2. Subgroups of G = PGLy(C). We now introduce some distinguished sub-
groups of PGLy(C) (defined via subgroups on GL2(C) under the quotient map):

e B, the subgroup of upper triangular matrices;

e K = PU; = SOg; this is a maximal compact subgroup of G corresponding
to the stabilizer of (0,1) € H3, and H® = G/K;

e T the subgroup of diagonal matrices (the unique maximal torus, up to
conjugation);

e A, the subgroup of diagonal matrices with real entries;

e M, the maximal compact subgroup of T' (diagonal unitary matrices);

e N, the subgroup of upper triangular matrices with both diagonal terms
equal to 1.

Recall that the Iwasawa decomposition [35, Chapter VI.4] implies that the multipli-
cation map N x A x K — G is a diffeomorphism. In particular, every element in G
can be written uniquely in the form nak where n,a, k are in N, A, K respectively.
For our purposes, it will be useful to use a slightly different decomposition; see
Remark B.2. Notice that nak = a(a~'na)k, and that A normalizes N. Therefore
the multiplication map

(23) AxNxK-—G

is also a diffeomorphism.
Furthermore, we will use the following notation:

e We denote by W = N(T')/T, the Weyl group of T. Here N(T') denotes the
normalizer of T. The group W consists of two elements.

e We will denote the Lie algebra of a given Lie group with the corresponding
gothic letter. For example g is the Lie algebra obtained from the matrix
Lie algebra gl,(C) by quotienting by multiples of the identity matrix.
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e For S © G consisting of semisimple elements, let S;e; denote those elements
of S which are regular, i.e. the elements for which the centralizer of S is a
maximal torus. In our context, every non-trivial element of I is loxodromic
and therefore regular; also, Ties consists of all elements except those of
order at most two.

B.1.3. Haar measures. While the trace formula is valid for any choice of measure on
G and the centralizers G, for explicit computations it is convenient to fix concrete
measures. Notice that all distinguished groups above are unimodular with the only
exception of B. In the latter case, the modular function (17) is given by

a * a *
(24) (4 n ) man(n) -tk

For the rest of this Appendix, we will make the following choices of (bi-invariant)
Haar measures:

e dk denotes the volume 1 Haar measure on K.
e da = du, where A = 60 (1) :u € R} and du is standard Lebesgue

measure on R.

i0
Odm—%dHWhereM—{(e 0

01 ) :0e R/QTFZ} with df the standard
Lebesgue measure. This measure has volume 1.

eu+i9 0
odt=%d9du,whereT=AM={< 0 1>ZUER,96R/27TZ}.

e dn is the standard FEuclidean measure dr dy on N =

1 x4y \ .
{(O 1 ).x,yeR}.

Via the decomposition (23), these can be combined to define the measure dg =
da dn dk on G, meaning that

(25) Jf dg—fjffankdadndk

The right side of (25) does indeed define a Haar measure on G. This follows directly
by applying the result [35, Theorem 8.32] on decompositions of Haar measures first
to the product subgroup H = AN < G and then to the product HK = G. The
only non-trivial observation is that the modular function Ay of H is trivial on its
second factor V.

Remark B.2. This is why we use the decomposition AN K instead of NAK: the
modular function of NA is not trivial on A.

B.1.4. The classification of irreducible unitary representations of PGLa(C). We fol-
low [36, IT §4], to which we refer for additional details. The trivial representation
1 is clearly unitary and irreducible. The other such representations are all infinite
dimensional, and are parametrized by n € Z,s € C as in the following discussion.
Let xs,n : B — C* denote the character

o (3 3) o (2 (3 3) 5 )

Denote by 7, 5, the induced representation

= Indg(Xs,n : 51/2)a
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where ¢ is the modular function of B in Equation (24). Very explicitly, this is
defined as follows.? Consider the space of functions
(27)

Vin = {f : G — C| f is smooth and f(bg) = xs.n(b) - 5(b)/?f(g) for all be B}.

Given that G = BK, a function f in Vj, is determined by the restriction f|x, and
we set 7, , to be completion of V; ,, with the respect to the L?-norm

Iflv... = I flxllLex)-

The action of G on 75, is via right translations.
We can also describe of 75, more concretely as follows. For G = PSLy(C), we
can identify

N\G = (C*\(0,0)) / ~ where (z,y) ~ (—z,—y).

Here we think of C? as the space of row vectors, with the right action of SLy(C)
(so that NV is the stabilizer of (0,1)). As ¢ and x5, are trivial on N, a function f
in V; ,, descends to a function f on N\G such that

B A —2n

Foa) =2 (1) Fe)
for all A € C*. One readily checks that this construction defines a bijection between
Vs.n and functions on N\G with this homogeneity property.

All irreducible unitary representations of G, besides the trivial one, are of the
form 7 . However, the condition that 75, is unitary (i.e. it admits a G-invariant
inner product) severely restricts the possible s, n. Indeed, there are only two classes
of such representations:

e For all n € Z and s € iR, x,, is a unitary character. In this case 7, is
irreducible and one can check that the inner product associated to || - |v, ,
is in fact G-invariant. The representations 7y ,,s € iR, are called unitary
principal series representations.

e For s € [—1,1]\{0}, the representations 7, ¢ are all irreducible and admit
a strange G-invariant inner product. These representations are known as
complementary series representations.

Finally, the only coincidences among the representations , ,, are
Tsm = T5,—n;

see also Remark B.5 for an explanation of these coincidences in terms of traces. We
sum up our discussion as follows.

Proposition B.1 ([36, II §4]). Every unitary irreducible representation of G is
isomorphic to one of the following:

e the trivial representation 1;
o Ty, Wheren > 1 and s € iR;
o s where s € iRZY U [0,1].

Furthermore, two distinct representations in this list are not isomorphic.

2Recall that given groups K — H, and a representation = of K on V, the (algebraic) induced
representation IndE 7 is the set of functions f : H — V for which f(kh) = m(k)f(h), with the
action of H by right translation. In our setup, one needs a little more attention in order to define
a Hilbert space structure.
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B.2. The Satake-Harish-Chandra transform. As discussed in the previous
section, the group G and the relevant centralizers are all unimodular, so that the
trace formula of Theorem A.1 applies. Our first goal in specializing the trace for-
mula is to show how all the terms appearing in (21) can be expressed in terms of
a special integral transform of f. This is the natural generalization of the Harish-
Chandra (or equivalently Abel) transform used in §A.2 to functions which are not
necessarily K-bi-invariant. We will need this more general type of functions in
order to describe differential forms on Y from a representation-theoretic viewpoint.

Given a compactly supported smooth function f on G, we define its Satake-
Harish-Chandra transform to be the function

Sf:T—C
o 1/2 -1
£ 6(1) fN L{ F(k~Ynk)dkdn,

where 0(t) is the modular function defined in (24) evaluated at t € T < B. The
function Sf(t) is cleary smooth and compactly supported; it is also invariant under
the action of the Weyl group

(u,0) — (—u, —0) or, equivalently, t — ¢t~

cf. Proposition B.2. Notice that if f is K-bi-invariant, and a is positive, the integral

simplifies to
0
(6 a0 ) e L (5 0 )

which is the direct analogue of (20). On the other hand, as we are interested in
coexact 1-forms, we will need to consider functions which are not necessarily K-bi-
invariant. A key result we will need in our discussion (generalizing the fact that
the Harish-Chandra transform is a bijection) is a suitable surjectivity statement for
the Satake-Harish-Chandra transform; see §B.5.

B.3. The geometric side of the trace formula and the Satake-Harish-
Chandra transform. In this section we begin to specialize the geometric side of
the general trace formula (21) to our specific case of interest, and show how it can
be expressed in terms of Sf. In particular, we need to compute for each conjugacy
class the orbital integral

dg —1 dg
10) - ) = I
y <f di> LW\G flg™9) dg.

and the covolume of the centralizer
vol(Ty\G, dgs ).

We will see that the former can be expressed in terms of the Satake-Harish-Chandra
transform of f, while the latter admits a direct geometric meaning in terms of
translation length. The computation for the trivial conjugacy class is very different
from that of a loxodromic conjugacy class, and we begin with the latter.

B.3.1. Orbital integrals for loxodromic classes. Because I' = 71(Y") is torsion-free
and cocompact, every 1 # v € I is loxodromic, hence regular (see §B.1.2). In
particular,

h=tyh = ty € Tieg for some h e G.

Licensed to Columbia Univ. Prepared on Mon Aug 16 15:38:56 EDT 2021 for download from IP 209.2.222.212.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



42 FRANCESCO LIN AND MICHAEL LIPNOWSKI

This choice of h is unique up to right multiplication by N(T). We can define a
specific Haar measure dg, on the centralizer G- by
dg, = (conjugation by h).dt.

Because the Haar measure dt is invariant under N(T'), the above specification of
dg is well-defined. In particular,

dg dg
@) — | =0 — .
(i) -0 ()
We now discuss how to compute the latter integral. We have the following.

Proposition B.2. For every element t € Tieg, there is an equality

dg - _ -1/
0 (15) =I5,
where

D(t) := [det(1 — Ad(t)[¢g)]
is the Weyl discriminant, and S f is the Satake-Harish-Chandra transform.

Very explicitly, if ¢ = ( S (1) ) € PGL2(C), we readily calculate that
(28) D(t) =1 —-2)*(1—=7")?.
Proof. For a given t € Tyey (for which Gy = T'), this corresponds to the integral
dg
flg~ g) =

Using the integration formulas in Remark A.2, we have, setting for the sake of

notation dy = %:

_ dg 1 -1 dg
fgltg—zj flg 'y Myg) dy | —
A\G ( )da e \Jar ( ) dt

_ 1 dg
= JT\G (f (9~ tg) L\T 1 dy> =

_ dg
= flg™ " tg) =
G ( ) dt

- o, (f%) ,

where we use that y commutes with ¢ and that A\T = M has volume 1. Using
Equation (25), we see then

dg\ _ -1 @
Oy (fa) " e flg tg)da
:j J Pk~ 0 M nk)dkdn

NJK

_ fN L PO 0 )k diedn,
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The Jacobian of the change of variables ¢t 'n~'tn < n is the constant
S(t)~Y2|D(t~1)|"/2, hence
dg

Ot<fzg> = U)@*lﬂ*Lﬂ5@)V2J;}£(f(k*an)dkdn,

and the result follows. O

B.3.2. Covolumes of centralizers of loxodromic elements. Let 1 # v € I". As recalled
in §B.1.1, the centralizer I', equals {vy), where 7y € T' is primitive and v = ~¢.
Therefore,

vol(I',\G, dg,) = vol((ro)\G~, dgy)
~ Vol({to T db).
Suppose

t%=<? ?)dﬂb@L|%>L

With respect to our chosen Haar measures,

vol((tyo )\T', dt) = log [20] = £(70),
see Remark B.1.

B.3.3. The identity element. In the case of 1 e I', G; = G and I'; = I'. Therefore,
with respect to our chosen Haar measure dg = da dn dk,

vol(I'\G, dg) = vol(Y),
and the contribution of the identity term to the trace formula equals
vol(Y) - f(1).

Proposition B.3 expresses f(1) in terms of the Satake-Harish-Chandra transform
Sf(t). It is a special case of the general Plancherel formula, which expresses the
value of a function at the identity element in terms of suitable integral transforms.
For example, in the case the group is R, it simply states the following familiar
consequence of the Fourier inversion formula:

H(0) = % i H (t)dt.

Proposition B.3. There is a constant ¢ > 0 for which the identity
d? d?
f(1) =—c (W + W) Sfleu,0)=(0,0)

holds for every smooth compactly supported f.

Proof. This is Lemma 11.1 in [36], where in their notation F;;F is the Satake-Harish-
d

Chandra transform, d(e) = - — -4 and d(a) = &£ + i<, O
Remark B.3. While in principle the constant ¢ can be determined directly, we will
instead derive it at the end of our computations via the Weyl law for the asymptotic
number of coexact eigenvalues.
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B.4. The spectral side of the trace formula and the Satake-Harish-
Chandra transform. We now discuss how to compute the spectral side of (21)
in terms of Sf. We need to compute trace(w(fdg)) for every irreducible unitary 7
of G (classification recalled in §B.1.4). Our goal is to express all of these traces in
terms of the Satake-Harish-Chandra transform S f.

B.4.1. The trivial representation. In this case the trace is simply

trace(1(fdg) = | f(o)dg
We have the following.

Proposition B.4. Given our choices of Haar measures, the identity

trace(1(fdg)) — ﬁ L D12 SF(t)dt

holds. Here W is the Weyl group of T, hence |W| = 2.

Proof. This follows from the following computation

C [ e 1y
J, f@ds = g 10Dl stam e G

= ot | e (e hpco, (145 ) i
_ ﬁ JT ID(EYY2 - SF(t)dt.

In the first line we used the Weyl integration formula for non-compact groups
[35, Theorem 8.64], where we set r = 1 and H; = T because in our case T is the
unique maximal torus of G up to conjugation. In fact, this last observation implies
that the proof of the Weyl integration formula for compact groups [35, Theorem
8.60] applies directly. O

Remark B.4. Notice that a copy of the trivial representation 1 = L*(T\G) corre-
sponds to a G-invariant function; therefore mr(1) = 1, with 1 = L?(I'\G) consisting
of the subset of constant functions.

B.4.2. The representations ms . Recall that given a compactly supported function
F:T—-C,

one can define its Fourier transform

)
~
!

a

where T is the unitary dual, and

In our case, very explicitly, we identify T = iR x Z, where (r,m) corresponds to
the U(1)-character

(u, 9) s erueimel
The Fourier transform is then

A~

F(r,m) = L F(u,0)e e "™ dudf.
2T T
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Of course, this expression also makes sense for r real (because F' is compactly sup-

ported). We can therefore evaluate the Fourier transform 5’3‘ of Sf:T — C at all
the characters xs , in Equation (26) parametrizing the irreducible representations

of G (thought as elements of T via restriction). Given this, we have the following
computation.

Proposition B.5. With respect to the Haar measure dg = da dn dk,
trace(ms,n(fdg)) = Sf(X;’}L)?

where ™ denotes the Fourier transform

Proof. Translating into our notation, Equation (10.21) from [36] says
1 ,
trace(ms , (fdg)) = — J J J S(t)Y2 f(ktnk=1)e e df du dn dk
21 Jr In Ik
1 )
= J Sf(t)es e dh du
2T T

= Sf(x:h)

In their notation, the parameter (o, v) corresponds to (n,s), a = e* and eP1°8¢ =
S(t)V2. O

B.5. Getting rid of the Satake-Harish-Chandra transform. So far, we have
succeeded in our first goal of expressing all the summands in the trace formula in
terms of the Satake-Harish-Chandra transform S'f:

e Combining Proposition B.5 and Proposition B.4, the spectral side of the
trace formula for fdg equals

spectral side(fdg) Zmr Tsm) S’f(xsn Il f ID(t1)[V2 - Sf(t)dt

e Combining the calculation of regular orbital integrals from Proposition B.2,
the computation of §B.3.2, and Proposition B.3, the geometric side of the
trace formula for fdg equals

Lo d? d? 1y —
geometric side(fdg) = (d 5 d92) Sfli=1+ Z £(0) (t71)| 1z Sf(ty),
[v]#1

where the sum runs over all non-trivial conjugacy classes in I'. The constant
¢ is the same as in the statement of Proposition B.3.

Having expressed all terms of the trace formula, applied to fdg, in terms of Sf, it
is essential to understand the image of the Satake-Harish-Chandra transform. This
was answered by Bouaziz [9] for all real semisimple groups G. We state Bouaziz’s
theorem only in the special case G = PGL2(C).

Theorem B.6 ([9]). For G = PGL2(C), every smooth, compactly supported, W -
mwvariant function on T is of the form Sf for some smooth, compactly supported
function f on G.

In particular, this allows us to rephrase our computations purely in terms of a
function F' : T — C. Recall that in our setup the Weyl group W consists of two
elements and is generated by (u,8) — (—u, —0).
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Corollary B.7 (Preliminary geometric trace formula). Let F' be any smooth, com-
pactly supported function on T for which F(u,0) = F(—u,—0). The equality

mp(msn) - F(x J Dt~ Y)|Y2 - F(t)dt
;L IW\

d? d? Sy —
:—C-VO](Y) (d 102 )Ft 1+ Z f’}/o | (t,yl)| 1/2-F(t7>
[v]#1

holds, where c is the constant from Proposition B.3.

Remark B.5. The result of Bouaziz can also be used to understand coincidences be-
tween pairs irreducible unitary representations = ,,, as mentioned in §B.1.4. This is
because the representations 7, ,, and 7y s are isomorphic iff they have equal traces,
i.e. trace(ms n(fdg)) = trace(my ./ (fdg)) for all smooth, compactly supported func-
tions f on G. Equivalently by Proposition B.5, for all smooth compactly supported
f we have

Sf(Xan) = trace(ms ,(fdg)) = trace(my v (fdg)) = Sf(xgh)-
By Theorem B.6, the latter is equivalent to
H(x;h) = H(xoh)
for all W-invariant, compactly supported functions H on 7. But this is only possible
if (s',n’) = (s,n) or (3, —n).

B.6. Irreducible representations and coclosed 1-forms. As written, the for-
mula in Corollary B.7 is still too general, as it includes contributions from the
eigenvalue spectrum of all natural differential operators on I'\G/K and not just the
coexact 1-form eigenvalue spectrum. In order to find a trace formula for coexact
forms, we first need to understand which representations 75, from Proposition B.1
contribute to the spectrum on coclosed 1-forms, and then we need to choose suit-
able test functions that isolate their contribution. The goal of this subsection is to
tackle the first question, which will be answered in Proposition B.9.

We begin by discussing the representation theoretic interpretation of differential
forms on Y = I'\G/K. We denote by py < g the subspace isuy(C) consisting of
2 x 2 traceless hermitian matrices. As K is the stabilizer of (0,1) € H?, we have
the natural identification of K-representations

po = (o1 H?.
We will use the notation p = pg ® C, and interpret it as the complexified tangent
space to H? at (0,1). Notice that the quotient map

NG - I"\G/K
is a principal K-bundle. Furthermore, the bundle of complex valued differential

forms QF(Y, C) is the vector bundle associated to p via the natural representation
of K on the dual exterior algebra (A*p)¥. We therefore have the following.

Lemma B.8 (Matsushima). For k =0,1,2,3, there is a natural identification
QM(\H?, C) = Homg (A"p, C*(I\G)),
hence by (18) the orthogonal Hilbert space decomposition

L2QF(I\H?, C (—D mp(r) - Homg (A*p, 7)
el
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holds.

The latter should be thought (as it will be made clearer later in §B.7 and specif-
ically Proposition B.13) as a representation theoretic version of the eigenspace
decomposition of the Hodge Laplacian. We will refer to non-zero elements in
Hompg (AFp, m) as AFp-isotypic vectors in m. The main result of this subsection
is the following.

Proposition B.9. Consider the space of coclosed 1-forms ker d* = Q', and denote
by ker d* its L?-closure. Then, under the identification of Lemma B.8, we have the
orthogonal decomposition

ker d* = @ mr(ms1) - HomK(Alp,wsyl),

seiR

where the {Ts1}seir are unitary irreducible representations described explicitly in
§B.1.4. Furthermore, each Homp (A'p,ms1) is 1-dimensional. Finally, as in the
decomposition (18), each multiplicity mr(ms 1) is finite and for only countably many
s € iR we have mr(ms1) # 0.

Roughly speaking, this proposition says that among all unitary irreducible sub-
representations contained in L*(I'\G), exactly those of the form 7,1 contribute to
the coclosed 1-form spectrum.

The rest of the subsection is dedicated to the proof of Proposition B.9. The
first step is to understand which of the representations 75, contain a AFp-isotypic
vector. In what follows, we denote by A¥p|ys the representation of M obtained by
restriction (via the inclusion M < K).

Lemma B.10. For all representations ms ., there is a canonical isomorphism of
vector spaces

HomK(/\kpvﬂ's,n) = HomM(Akp‘vavt)v

M—{( 6;0 ?):QER/ZWZ}

and xp 18 the 1-dimensional representation of M with character
ei@ 0 in
X'n ( 0 1 ) =€ )

Proof. We claim that there is an isomorphism of K-representations

(29) Tom = Indb .

where we recall that

cf. Equation (26).

(This means, in particular, that for fixed n and varying s, the representations s,
are all isomorphic as K-representations). Given this, one readily concludes because

HomK(/\kpu 7Ts,n) = HomK(AkFU IndI]V([Xn) = HomM(Aklea Xn)7

where the second isomorphism is given by Frobenius reciprocity, i.e. the fact that
restriction |5; and induction Ind%; are adjoint functors [35, Theorem 9.9].
To see why (29) holds, notice that Ind%;x,, consists of functions f : K — C such
that
fimk) = xn,(m)f(k) for all me M,k € K.
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Noticing that G = BK, M = B n K, and the modular function 4 of B is trivial
when restricted to M, one can associate to such f a well-defined function f : G — C
satisfying

(k) = x5, (D)8 2(0) F (K).
One readily checks that f belongs to s, = Ind%(xs., - 0%/2) (see Equation (27)),
and that this assignment is an isomorphism. ([

For our specific case, recalling that the action of K =~ SO3 on Alp is the com-
plexification of the standard representation on R?, we have the isomorphism

/\1P|M = x1 D x-1D Xo

as representations of M =~ SOy < SO3. Here we use that the complexification of
the standard action of SO, on R? is isomorphic to x; @ x_1. Furthermore, as each
Xn is 1-dimensional, we readily check

lifn=m
di H ny Xm) =
im¢e Hom s (X Xm) {() otherwise.

Hence Lemma B.10 implies that the representation 7, (where we use the
parametrization of Proposition B.1) contains A lp-isotypic vectors if and only if
n = 0 or 1, in which case the space of such vectors is 1-dimensional. Notice also
that for the trivial representation 1 we clearly have

Homg (A'p,1) = 0.
Therefore, in the case of 1-forms Matsushima’s Lemma can be simplified to

(30) L*Q' = @ mr(ms,)  Homg (A'p, mn).
seiR
n=0,1
The proof of Proposition B.9 is then completed by Lemma B.11.
Lemma B.11. Vectors in Hompg (Alp,ms o) correspond to exact 1-forms, while
vectors in HomK(Alp,ws,l) correspond to coclosed 1-forms.

Before proving the lemma, we need to discuss the Hodge star * and the exterior
derivative d in a representation theoretic framework. For an irreducible subrepre-
sentation T = L*(I'\G), we have the commutative diagram

Hompg (AFp, 1) ————  Homg(AFp, L2(T\G)) = L2QF

o J l *
Hompg (A3 7Fp, 1) ——— Hompg (A3 Fp, L2(T\G)) = L2Q3~F
where the horizontal arrows are inclusions, * is the Hodge star on Y, and *, is the

following: recalling that p is identified with T(071)H3 ®C, the operator #, is defined
by precomposition with * applied to T(OJ)H?’ ® C. Similarly, we have the diagram

Hompg (AFp, 1) ————  Homg (AFp, L2(T\G)) = L2QF

| E

Hompg (A¥T1p 1) ——— Homp (AF*ip, L2(T\G)) = L2QF+!
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where the horizontal arrows are inclusions, d is the exterior derivative and d, is
the representation theoretic version of d. The explicit formula for d, mirrors the
invariant formula

dw(Xo,...,X")=Z(—1)iX~ (Xo,. ., X, X))

+Z D w([Xo, X1, Xy oy Xy Xy)
i<j

for the exterior derivative d evaluated at smooth vector fields Xy,..., X,. See [8,
Chapter 1, §1] for further details.

Proof of Lemma B.11. We have that A%p =~ C is the trivial representation of K,
hence A%p|ar= xo as representations of M. As mr(1) = 1 (see Remark B.4), we
therefore obtain the following analogue of Equation (30) for functions:

(31) L*Q° = Homg (A%, 1 ((—Dmp (7s,0) HOIIlK(/\Op,TFS’())),

where the sum runs over the relevant parameters s, and each isotypic summand
is 1-dimensional. In particular, for every s, Homg (A%p, 75 0) appears in the de-
composition of L?Q° with the same multiplicity as Homg (Alp, 750) appears in the
decomposition of L?Q!.

Now, for a given 7, the operator

dr : Homp (A%, ) — Hompg (Alp, m)
acts on
w:Adp=Coa
in the following way:
de(w): Alp > 7
dr(W)(X) =7(X) - w(l).

Of course, d; is the zero map. We claim that d, , is injective for every representa-
tion 7, ¢ (this is the representation-theoretic incarnation of the basic fact that the
differential of a non-constant function is not identically zero). In fact, w(1) € 7,9
is a K-invariant; hence it is annihilated by €*; if we had d, ,(w) = 0, w(1) would
be annihilated by p too, hence by all of g since g = po @ ¢. This is a contradic-
tion, because C - w(1) < 75 would then be a G-subrepresentation. We conclude
that dr, , is an isomorphism (as both domain and target space are 1-dimensional)
and therefore all vectors in HomK(Alp,ws,o) correspond to exact 1-forms by the
commutativity of the diagram relating d and d, ,.
For the second part of the statement, since d* equals *d+ up to sign, by the

commutativity of the above diagrams it suffices to show that the composition

£ dr

Homy (Atp, ms1) — Homp (A2p, ms1) —> Hompg (A®p, 7 1)

Frg1 0
— Hompg (AP, 75.1)
vanishes. This is indeed true because the target Hompg (A%p,7s1) =
Hom s (A%|ar, x1) vanishes. O

3Notice that £ is a gothic k, and denotes the Lie algebra of K.
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B.7. Irreducible representations and the Hodge Laplacian. In this section
we discuss the precise sense in which the decomposition of Matsushima’s Lemma
(Lemma B.8) can be interpreted in terms of the eigenspace decomposition of the
Hodge Laplacian. The main result is the following.

Proposition B.12. Referring to the decomposition of Proposition B.9, each iso-
typic summand Homg (A'p, 75 1) = C corresponds to a one dimensional eigenspace
of the Hodge Laplacian on coclosed 1-forms on' Y with eigenvalue —s* € R=9,

The rest of this subsection is dedicated to its proof.

B.7.1. Killing forms and the hyperbolic metric. We set our notation and conven-
tions for the Killing forms. Recall that the Lie algebra g is gly,(C)/C. We will
consider the basis over C consisting of

1 0 0 1 0 0
=0 0)5=(00)F=(10)
which satisfies the commutation relations
(32) [HvE]:E7 [HvF]:fFv [EaF]:QH

Remark B.6. The element H above is not the standard element used for the
basis of sl3(C). Under the natural identification g = sly(C), it corresponds to

( 12 0 )
0o -1/2 )
In what follows, we consider g as a real Lie algebra; a basis over R is given by
(33) H, iH, E, iE, F, iF.
Consider the Killing form
B(X,Y) := trace(ad(X)r 0 ad(Y)r).

We write the subscript R to emphasize that we must view ad(X), ad(Y") as R-linear
transformations of the complex vector space g. The Killing form B is non-degenerate
(as B is semisimple), and induces a positive-definite inner product on py = T(OJ)H?’:

<X7 Y>0 = _B(Xa Y)

The inner product {-, ) is K-invariant and thus propagates to an invariant metric
on all of H3. We call this metric gKilling. Notice that %gKming equals the standard
curvature —1 metric on H®. Indeed, this is a metric of constant negative curvature
[2, Section 7.G]. Furthermore, one can check the normalization by noticing that
H € po (for which |H||kining = 2) generates the one-parameter family

et 0
SH ( S ) e PSL(2,C)
(see Remark B.6). Via Equation (22), this corresponds in H? = G/K (where again
K is the stabilizer of (0,1)) to the geodesic (0, e?), whose tangent vector at t = 0
has length 1.
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B.7.2. Differential operators and representation theory. Recall that the Lie algebra
g consists of the set of left-invariant vector fields on GG, and can be therefore thought
as the set of left-invariant first order differential operators on G. From this view-
point, the universal enveloping algebra U(g) of g [35, Section III.1] corresponds to
the set of general left invariant differential operators on G. Because g is semisimple,
there is a distinguished element of the center of U(g) called the Casimir element
[35, Section V.4]. Tt is defined as

6
C =) XiX; € Z(U(g)),
i=1
where {X;} is any R-basis of g, and {X,"} is the dual basis with respect to the
Killing form B (which is non-degenerate). Its definition is independent of the choice
of basis. The fact that C is in the center of U(g) has two direct consequences:

e The corresponding left-invariant differential operator on G is in fact bi-
invariant, and descends therefore to a differential operator on ¥ = T'\G/K.

e By Schur’s lemma, C' acts on a given irreducible representation 7 of G by
a scalar. We denote this value by C(7), the Casimir eigenvalue of 7.

The next result puts these two observations together to show that the decompo-
sition from Matsushima’s Lemma B.8 is a refinement of the spectral decomposition
of the Hodge Laplacian on k-forms.

Proposition B.13 (Kuga’s Lemma, [3, Lemme 1.1.1]). Given an irreducible repre-
sentation T = L*(T\G), every A¥p-isotypic vector in  corresponds to a k-eigenform
of the Hodge Laplacian on'Y of eigenvalue A = —C(m), the Casimir eigenvalue of
. Furthermore, every k-eigenform of the Hodge Laplacian on 'Y of eigenvalue X
arises in this way. Here, the Hodge Laplacian is the one corresponding to the metric
IKilling on H3.

Given this, in order to prove Proposition B.12, all we need to do is compute the
Casimir eigenvalue of the representations 7, 1, which can done directly as follows
(we will perform the computation for general (s,n), as it is identical).

Calculating from the definition using the R-basis (33) and the commutation
relations (32), we can write

1 1

(34) C = ZH-Hf ZHf %(ZH)(’LH)*%H‘FE (extra term)+ (iE) - (extra term),

where the extra terms belong to g < U(g). Consider a smooth function f in 7,
with f(1) # 0; recall that this function satisfies

(35) f(bg) = 5(b)1/2xs,n(b)f(g) for all b e B.

By definition, the Casimir eigenvalue satisfies C'f(1) = C(ms,)f(1), so it suffices
to evaluate C'f(1).
Note that for all T € U(g), the equivariance property (35) implies that

(BT 1)(1) = BTA()
= SleolT ()

= Lol =0
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because both § and x;,, are trivial on the one parameter family

etE—(é i), teR.

Similarly, ((¢E)T - f)(1) = 0. By (34) we then compute,

<GH.H_%H_ i(iH)-(iH)) 'f> (1)

1 2 ity _ 10 1

- 4auat|(0,0)f(e 9 at‘of(e ) 4auat|(0,0)f

_ i[@ +1)2 = 2(s + 1) + n2]£(1)

@)

(etiHeuiH)

1
= Z(s2 +n? —1)f(1).

Therefore we conclude that the Casimir eigenvalue equals

(36) Clran) = 3(52 +n?o1),

In particular, by Kuga’s Lemma, the Alp-isotypic vector in 71 corresponds to a
coclosed 1-eigenform on I'\H? of Laplace eigenvalue —is2, when H? is endowed
with the metric giining. In the standard curvature —1 metric on H?3, this eigenvalue

becomes —s?, and Proposition B.12 is proved.

Remark B.7. From Equation (36), by setting n = 0 we also recover the more
classical fact that the relevant spectral parameter for the Laplacian on functions
on a hyperbolic three-manifold is 1 + r2, with 7 € R=? U i[0, 1]; see [58]. Here the
number 1 is the bottom of the L2-spectrum of the Laplacian on functions on H?,
cf. Remark 0.4.

B.8. Choosing test functions to isolate coclosed 1-forms. We are now in
good shape to specialize the trace formula of Corollary B.7 to a formula only in-
volving the spectrum on coclosed 1-forms: we learned from Proposition B.9 that
only representations of the form 75 1, s € R contribute to the coclosed 1-form spec-
trum, and from Proposition B.12 that each copy of this representation corresponds
to a one dimensional eigenspace of eigenvalue —s?. To isolate the contribution of
these representations, the natural candidates are functions of the form

F(u,0) = H(u) cosb,

where H an even, compactly supported, R-valued function on R. In fact, one readily
computes, denoting s = it for t € R,

Fxik) = {

We will now unravel in terms of this function each term of the formula in Corollary
B.7.

A~

H(—t) ifn==l1

otherwise.

(=N

B.8.1. The non-trivial representations. By Proposition B.12 we have

mr(mie1) + mr(m_i1) = mr(t?),
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the multiplicity of ¢? in the spectrum on coclosed 1-forms. Using that H is an even
function, the first term in the formula of Corollary B.7 is therefore

1 ~
5 Smn(P) (),
where the sum runs over the values for which ¢2 is a coclosed eigenvalue on 1-forms.

B.8.2. The trivial representation. Setting as usual, z = e*+* the contribution of
the trivial representation to the geometric trace formula for the test function F
equals

1\(1/2
T J, 1D

1

=3 Z—J-J-|1—z| 1 =271 H(u) - cosf du df because |W| = 2
™

1 1 _
=3 —ff(e“Jre % —2cosf)-cosf- H(u)df du
=——JH ) du
_Lap

2

where we computed |1 — z| - |1 — 27} = e% + e % — 2cosf.

B.8.3. The identity contribution. The identity contribution to the trace formula for
the test function F' is

d? d?
—C~V01(Y)' <@+d >F|(u0) (0,0)

d? d?
=—c-vol(Y) - <@ + W) (H (u) €08 6)|(u,0)=(0,0)

c-vol(Y) - (H(0) — H"(0)),

where c is the constant from Proposition B.3.
B.8.4. The sum over closed geodesics. Finally, setting as usual

u+16
tvz(eo (1)>6T,

where u + 10 = CL(7y), each closed geodesics in the sum contributes
(o) - ID(E T2 F(ty)
=L(7) - (|1 — et — (3_(”+w)|>71 - H(u) cos 8
~t(70) - (11— O] |1 = D)) " B (£()) - cos(hol(7)).
B.9. Conclusion of the proof. Combining all the computations from the pre-

vious subsection, and noticing that coclosed 1-eigenforms with eigenvalue 0 are
harmonic 1-forms, we obtain the following.
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Corollary B.14 (Theorem 2.1, up to a constant ¢ to be determined). Let H be any
smooth, compactly supported, even, R-valued function on R. There is an equality

1 ~ 1 1\ ~
3 e\ - (\//\*) + (51)1 (Y) - —) i(0)
A¥=coexact 1-form eigenvalue

= cvol(Y) - (HO) = H'(O) + 3] £00) - v ey HUE)),

[v]#1

In the above formula, c is the constant from Proposition B.3.

To conclude the proof of Theorem 2.1, we only need to evaluate the missing
constant c. Using Weyl’s law, which we now recall, this can be done by choosing
suitable functions for which the main contribution from the geometric side comes
from the term involving the volume. Denote by Ngx(X) the number of coexact
1-form eigenvalues on Y = D\H? satisfying v/ A* < X (counted with multiplicity).
Recall that the spectrum of the Laplacian on 1-forms is the union of the spectrum
on coclosed 1-forms, and the non-trivial spectrum on functions. Therefore, applying
the general Weyl law for vector bundles [4, Corollary 2.43], we have for X very large

vol(Y') 3 3
Ng=(X)=2- TSEEERE 1)X +0(X?),
where the first coefficient 2 = 3 — 1 is the difference between the dimension of the
bundle of 1-forms and the bundle of functions.

Fix a smooth, compactly supported, real valued even test function H with
H(0) # 0 and positive Fourier transform (see §3 for some concrete examples).
Let H, = H - (e" + e~™*). We integrate the spectral side of the trace formula
from Corollary B.14 for the test function H, over v € [—X, X]. As PAIV(t) =
ﬁ(t —v)+ ﬁ(t +v), a parameter v/A* contributes

1

L J B —v) + B + v)dv
2J)rx.x]

to the sum. This is close to 2rH(0) for X very large compared to v A* by the
Fourier inversion formula

J H(t)dt = 2w H(0).
R

From this, one obtains with some basic estimates the asymptotic for X very large
2-vol(Y)
(4m)3/21(3/2 + 1)

leading term of N 4 (X)

X3 40o(X3).

J spectral side for H, dv = 2rH(0) -
ve[—X,X]

On the other hand, the main contribution from the geometric side clearly comes
from integrating —H/(0) = 2- H(0) - v?, and we compute for X very large

2X3
J geometric side for H, dv = ¢-vol(Y)-2- H(0) - =— +o(X?).
ve[- X, X] 3
§¥ —H{(0)dv

Equating the above two asymptotic expansions yields ¢ = ==, and the proof of

27
Theorem 2.1 is completed.
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APPENDIX C. LIMITING ARGUMENT: PROOF OF THEOREM 2.2

Proof. Let § > 5. Express § = o+ 8 with o > 1 and 8 > 2. Let {¢) := (1 +12)2,
Then

DA )| = |3ttty

< \/Z ’ﬁ[(tn)<tn>°‘+5’2 ()29 - 4 /Z<tn>—25 by Cauchy-Schwarz.

By the local Weyl law (cf. [14, Lemma 2.3] and [56, Lemma 2.2]),
(37) #{t, € [N,N +1]} < DN?

for some D > 0. Since 24 > 3, it follows that the second summand above is
convergent. Say it equals C. We continue:

= Ve @ (At )tre| Gaaye

VO | Y sup |B@ers] (Ve {t e VN + 1))
N0 tE[N.N+1]

O ~ 2
<VCVD- 2 sup ‘H(t)(t}a”” by (37) because a > 1.
N=0 te[N,N+1]

There is also the Sobolev inequality

(33) sup [G(1)* < E - (||GIBagany + 16 B egany)
te[a,b]

for all smooth functions G on [a, b] and some constant F uniform in b—a. Applying
this to G = H(t){t)**?  we have

7y (o3 7y d @
HOE I apy vy + 1H ) <O Pl n

HO)O P ey v + FIH @O N v vy

||GI||2L2[N,N+1] <l

<l

S

for some constant F' > 1 independent of N. We continue
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< VCVDVEVF -

ﬁMé@

o

[[E ()52, NN+1]+Hdt H (£ 22 w113

<VCVDVEVF-

AR aga oy + e OB Ry
0

< VOVDVEVE Iy 91 + | 9]

fMS

< @@@ﬁm\/ f (ﬁf(t)2 + ‘fl’(t)‘z) (125,

Thus, the linear functional
(39) H o Y Hi(ty)

corresponding to the regular spectral contribution to the trace formula for the test
function H, is continuous in the (weighted) Sobolev space S defined by the norm

1Hls —\/j ol o,

It is also readily checked (using again the Sobolev inequalities) that the linear

functionals
H — H(0) — H"(0)
H — H(0)
(40) He Y e H(lm),

1#7,L(v)<R

corresponding respectively to the identity contribution, and the trivial representa-
tion contribution, and the regular geometric contribution to the trace formula for
the test function H, are continuous on S. Indeed,

e To bound the identity contribution in terms of ||H||s, begin by noting that
H(0)— H"(0) = SR )(1 + t2)dt by Fourier inversion. So,

1 ~
[H(0) ~ H'(0)] < o f Bl
T™JRr
<o | 1O
27T R
1 N 1/2 1/2
5= << f |H(t)|2<t>25dt> . (f <t>4_25dt) by Cauchy-Schwarz
Y[8 R R
<C'|H]ls,

where C7 = - (SR<t>4_25dt)1/2. Note that because § > 5/2, the latter
integral converges.
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e To bound the regular geometric contribution in terms of ||H||s-norm, use
Fourier inversion once again: H(¢) = 5§, H(t)e'-*dt. Then

1 .
< it.l
|H@|2mmee\ﬁ

1 A
= — H(t)|dt
= M0)

< C'||H|lw

for the same constant C’ as above by the same argument. Thus,

D e H()| < D||[H|lw,
t()<=R

where D' = C"- 3, _gleyl.

If H is supported on [—R, R], then for every e > 0, there is a sequence H,, of
smooth functions supported on [—(R+¢), R+¢] converging to H in the S-topology.*
Take such a sequence H,, with e chosen so that there are no closed geodesics of
length in (R, R + ¢€). It follows that the trace formula is valid for H by taking the
limit of both sides of the trace formula applied to H,,. O

Remark C.1. It is natural to attempt a limiting argument for test functions more
general than those from the statement of Theorem 2.2. The main difficulty is
controlling the geometric side of the trace formula (40), which has asymptotic to
e?R /2R summands below the length threshold of R [58]. Though we will not pursue
it presently, we expect that the trace formula holds true for every test function H
satisfying

o0

Hmw+f|ﬂummx<w
0

Notably, this class includes Gaussian test functions.
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