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ABSTRACT

In this paper we develop methods for classifying Baker, Richter, and Szymik’s Azumaya
algebras over a commutative ring spectrum, especially in the largely inaccessible case
where the ring is nonconnective. We give obstruction-theoretic tools, constructing and
classifying these algebras and their automorphisms with Goerss—Hopkins obstruction
theory, and give descent-theoretic tools, applying Lurie’s work on co-categories to show
that a finite Galois extension of rings in the sense of Rognes becomes a homotopy
fixed-point equivalence on Brauer spaces. For even-periodic ring spectra E, we find
that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed
by the Brauer—Wall group of m(F), recovering a result of Baker, Richter, and Szymik.
This allows us to calculate many examples. For example, we find that the algebraic
Azumaya algebras over Lubin—Tate spectra have either four or two Morita equivalence
classes, depending on whether the prime is odd or even, that all algebraic Azumaya
algebras over the complex K-theory spectrum KU are Morita trivial, and that the
group of the Morita classes of algebraic Azumaya algebras over the localization KU|[1/2]
is Z/8 x Z/2. Using our descent results and an obstruction theory spectral sequence,
we also study Azumaya algebras over the real K-theory spectrum KO which become
Morita-trivial KU-algebras. We show that there exist exactly two Morita equivalence
classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ KO-
algebra with the same coefficient ring as Endxo(KU). This requires a careful analysis
of what happens in the homotopy fixed-point spectral sequence for the Picard space of
KU, previously studied by Mathew and Stojanoska.
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1. Introduction

The Brauer group of a field F', classifying central simple algebras over F', plays a critical role in
class field theory. The definition was generalized by Auslander and Goldman [AG60] to the case
of a commutative ring: the Brauer group of R consists of Morita equivalence classes of Azumaya
algebras over R.

In recent years these concepts have been extended to derived algebraic geometry [Toél2],
to homotopy theory [BRS12], to more general categorical frameworks [Joh14], and generalized
to the Morita theory of E,-algebras [Haul7]. Associated to a commutative ring spectrum R,
there is a category of Azumaya algebras over R and a Brauer space Br(R) classifying Morita
equivalence classes of such R. Joint work of Antieau with the first author gave an in-depth study
of these Brauer spaces when R is connective [AG14], and in particular found that the set of
Morita equivalence classes could be calculated cohomologically.

There are two important tools developed in [AG14] which make this cohomological identifi-
cation possible. First, Azumaya algebras A over connective R are étale-locally trivial: there exist
enough ‘m.-étale’ maps R — S such that S ®r A is Morita trivial. Second, generators descend:
an R-linear category which is étale-locally a category of modules over an Azumaya algebra is a
category of modules over a global Azumaya algebra. The goal of this paper is to calculate the
Brauer group of nonconnective ring spectra R, and these tools are absent in the case when R
is nonconnective. Moreover, the first outright fails: there exist Azumaya algebras which are not
m4-étale-locally trivial.

This should not necessarily be surprising: detecting étale extensions on the level of 7, is
fundamentally not adequate for nonconnective ring spectra. For example, the homotopy pullback
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of the diagram of Eilenberg—-Mac Lane spectra

R > Clz, y*!]

V |

Cla*!,y] — Clz®!,y*]

has a map C[z,y] — R which is not m.-étale. On the level of module categories, however,
R-modules are equivalent to C[x,y]-modules supported away from the origin, and so this gives
an ‘affine’ but nonconnective model for the open immersion A%\ {0} — A? [Lurlla, 2.4.4]. In
this and other quasi-affine cases, the coeflicient ring does not exhibit all of the useful properties
of this map [Mat17, §8|.

Our first tool for calculations will be obstruction theory. We show that the homotopy category
of those Azumaya algebras over R whose underlying graded coefficient ring is a projective module
over m,R form a category equivalent to the category of Azumaya m,R-algebras in the graded
sense (a result of Baker, Richter, and Szymik [BRS12]). Moreover, we show that there exist
natural exact sequences that calculate the homotopy groups of the space of automorphisms of
such an Azumaya algebra. For example, the space of automorphisms of the matrix algebra M, (R)
is an extension of a discrete group of ‘outer automorphisms’ by a group which might be called
PGL, (R). With an eye towards future applications, we have developed our obstruction theory so
that one may extend from a Z-grading to general families I" of elements of the Picard groupoid
of R.

Our second tool for calculations will be descent theory. For a Galois extension of ring spectra
R — S with Galois group G in the sense of Rognes [Rog08] we develop descent-theoretic methods
for lifting Azumaya algebras and Morita equivalences from S to R. In particular, there are
maps B Pic(9)" — Br(S)"“ = Br(R). The first map is an equivalence above degree 0 and an
injection on g, with image consisting of those Morita equivalence classes of R-algebras which
become Morita trivial S-algebras. This allows us to use calculations with the homotopy fixed-
point spectrum of the Picard spectrum pic(S) from [MS16] to detect interesting Brauer classes,
and employ an obstruction theory for cosimplicial spaces due to Bousfield [Bou89] to lift Azumaya
algebras. In order to carry this out we need to connect the space of autoequivalences of a module
to the space of autoequivalences of its endomorphism algebra. We will make heavy use of the
machinery of co-categories to make this possible.

In §7 we will collect these together and apply them to calculations. For even-periodic ring
spectra F, we find that the algebraic Azumaya algebras (as defined and studied in §3.3) are
governed by the Brauer—Wall group [Sma71] and are generated by three phenomena: ordinary
Azumaya algebras over moE, 7Z/2-graded ‘quaternion’ algebras over F, and (if 2 is invertible)
associated 1-periodic ring spectra.

THEOREM 1.1. Suppose that E is even-periodic and that mgE possesses no idempotents. Then
the subgroup of the Brauer group of E generated by algebraic Azumaya algebras is contained in
a short exact sequence

0 — Br(myE) — mo Br(E)¥® — Qa(mE) — 0,
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D. GEPNER AND T. LAWSON

where the subgroup is generated by algebraic Azumaya algebras with homotopy concentrated
in even degrees. In Qo(moE), the elements of HY,(moE,Z/2) detect the algebras of Example 7.1,
while the map to Z/2 detects any of the ‘half-quaternion’ algebras of Example 7.2.

In particular, all algebraic Azumaya algebras over KU are Morita trivial, and the algebraic
Azumaya algebras over Lubin—Tate spectra have either four or two Morita equivalence classes,
depending on whether 2 is invertible or not.

Finally, our most difficult calculation studies Azumaya K O-algebras which become Morita-
trivial KU-algebras; we show that there exist exactly two Morita equivalence classes of these.
The nontrivial Morita equivalence class is realized by an ‘exotic’ KO-algebra lifting My (KU)
which we construct by finding a path through an obstruction theory spectral sequence.

THEOREM 1.2. There exists a unique equivalence class of quaternion algebra @ over KO such
that

o KU ®xo Q ~ My(KU), and
e there is no KO-module M such that Q) # Endgo(M) as KO-algebras.

This algebra has homotopy groups isomorphic, as a KO,-algebra, to the homotopy groups of a
twisted group algebra:

m:Q = m KU (Co) = 7, Endgo KU.

The proof of this result requires a careful analysis of what happens near the bottom of the

homotopy fixed-point spectral sequence for B Pic(KU)"C2.

2. Homological algebra

In this section we will recall some important results on categories of graded objects, their algebras,
and their homological algebra.

2.1 Graded objects

In applications it is often convenient to consider gradings by objects more general than the
integers, or even arbitrary abelian groups. This is because abstract stable homotopy theories
(by which, following [Mat16, 2.1], we mean presentable stable symmetric monoidal co-categories
in which the tensor product commutes with colimits in each variable) are naturally ‘graded’
by their subcategories of invertible objects, their so-called Picard oco-groupoids. Equivalence
classes of objects in the Picard oo-groupoid is the Picard groupoid, an object which naturally
grades the homotopy category of the homotopy theory (that is, the latter is the oo-category,
and the former is its homotopy category). For instance, while the Picard groupoid of the sta-
ble homotopy category has an object S™ for each integer n € Z, with automorphisms Z*, the
K (n)-local homotopy categories have much larger Picard groupoids, including families of ‘exotic
spheres’.

DEFINITION 2.1. A Picard groupoid I is a symmetric monoidal groupoid such that the monoidal
operation makes m(I') into a group. A homomorphism of Picard groupoids is a symmetric
monoidal functor I' — I".
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Given a symmetric monoidal category €, the Picard groupoid Pic(€) is the groupoid of
objects in € which have an inverse under the monoidal product, with maps being isomorphisms
between them.

We will abusively use the symbol + to denote the symmetric monoidal structure on a Picard
groupoid I'; and write 0 for the unit object.

Ezxample 2.2. Suppose that A and G are abelian groups. We can then define a groupoid I' with
object set A by declaring that Homr(a, b) is the monoid G if a = b and empty otherwise. This
category has a natural monoidal structure: we define the monoidal operation + on objects to be
the abelian group structure of A, and on morphisms to be the abelian group structure of G. As
a category, I' = A x BG. The monoidal structure is split, in the sense that it is the product of
the abelian group structures on A and BG.

Now suppose that ¢ is a pairing A x A — G. Then, for any a and b, e, € G = Aut(a + b)
can be interpreted as an isomorphism 7,;: a + b — b+ a, natural in a and b. This symmetry
isomorphism makes I' into a braided monoidal category precisely if ¢ is bilinear, and it makes
I' into a Picard groupoid precisely if it is bilinear and satisfies €4 4ep, = 1 for all a,b € A. In
particular, the splitting of A x BG usually does not respect the symmetry isomorphism.

DEFINITION 2.3. For an ordinary category C, we define the category Cr of I'-graded objects
to be the category of contravariant functors M, : I'? — €, and for v € I' we write M, for the
image.

Suppose € is cocomplete and symmetric monoidal under an operation ® with unit I. If ®
preserves colimits in each variable separately, then Cr has a symmetric monoidal closed structure
given by the Day convolution product. Specifically, its values are given by

(M X N),y = COlimcH_g_wMa X N@,

and the unit is given by the functor v +— HHom(%O) I. Making choices of representatives for all
isomorphism classes [y] € mpI" gives rise to a noncanonical isomorphism

(M®N)ry = H Ma ®Autp(0) NB
{([ed,[8]) [ a+B=}

DEFINITION 2.4. A T'-graded commutative ring R, is a commutative monoid object in Abr. The
unit of R, is the induced map Z[Autr(0)] — Rp.

PROPOSITION 2.5. The category Modpg, of I'-graded R,-modules is a symmetric monoidal closed
abelian category, with tensor product ®pg,, internal Hom objects Fg,(—,—), and arbitrary
products and coproducts which are exact.

Example 2.6. We now return to the situation of Example 2.2, where I' = A x BG has a
symmetric monoidal structure determined by a bilinear pairing ¢ satisfying €, ep,, = 1.

A T'-graded commutative ring then determines an A-indexed collection R, of abelian groups
and multiplication maps Ry ® Rg — Ra4p, as well as a homomorphism i: G — R. These are
required to satisfy associativity and unitality conditions. In fact, the homomorphism ¢ determines
the effect of the functor R on morphisms: for any g € G, the isomorphism g: o — « in I is sent
to the multiplication-by-i(g) map Ry — Rq.
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The commutativity condition takes the form z -y = ¢, 3(y - ) for € Ry, y € Rg. The cat-
egory of graded R-modules then inherits a symmetric monoidal structure using € to describe
a ‘Koszul sign convention’ for the tensor product. We thus recover the framework of [CGO73,
Tka99] without the assumption that R is concentrated in degree 0.

Ezample 2.7. Let I' = Z x B{+£1}, with symmetric monoidal structure determined by the bilin-
ear pairing e, , = (—1)"". We can construct a I'-graded commutative ring Z by defining Z, = Z
as rings, letting Z,, = 0 for n # 0, and setting the map i: {£1} — Z; to be the natural inclusion.
The category of graded Z-modules is then equivalent to the category of Z-graded abelian groups,
with symmetric monoidal structure being the standard graded tensor product using the Koszul
sign convention.

For v eI, write Z7 for the I'-graded abelian group obtained from the I'-graded set
Homr (—, ) by taking the free group levelwise. We have natural isomorphisms Z* @ Z°# — 72+58
that determine a functor I' — Pic(Abr). Let the suspension operator ¥7 be the tensor prod-
uct with Z7, an automorphism of the category of R,-modules. There is an isomorphism
Ms = (XYM )45, and this extends to isomorphisms

M, = Hompg, (X" R,, M,).

DEFINITION 2.8. A finite I'-graded set is a functor I : I'°P — Set such that

I = [[Homr(—,7)
=1

is isomorphic to a finite coproduct of representable functors Homp(—,7;), 1 < i < n. We write
|[I| = {1,...,n} for the underlying finite set of I.

DEFINITION 2.9. Given a finite I'-graded set I, a free I'-graded R,-module on I, written R., is
any ['-graded R,-module which is isomorphic to the tensor product of R, with the free I'-graded
abelian group on I.

DEFINITION 2.10. Suppose A, is an algebra in the category Modpg,. We call a right A,-module
P, a graded generator if {¥7P,}cr is a set of compact projective generators of Mody, .

For example, R, is always a graded generator of Modg,. It is unlikely to be a generator of
Modpg, in the ordinary sense unless the I'-graded ring R, contains units in R, for each v € I'.

Let #: T' — I'" be a homomorphism of Picard groupoids and let R, be a I'-graded commuta-
tive ring. The pullback functor #* from I"'-graded modules to I'-graded modules has a left adjoint
0y, given by left Kan extension along 6.

ProPOSITION 2.11. Suppose € is cocomplete and symmetric monoidal, and that the symmet-
ric monoidal structure preserves colimits in each variable. Then the functor 6,: Cr — G% is
symmetric monoidal.

Proof. This is a special case of left Kan extension being symmetric monoidal for the Day con-
volution product, but we give a brief indication of the proof below. For M, N objects of Cr, we
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consider the following square.

+
[oP x [°P4 rop

| l

(F/)Op X (F/>0p T) (F/)op

The object 6;(M ® N) is obtained by starting with M ® N: I'P x ' — € and taking Kan
extension along the two functors in the upper-right portion of the square. Because the tensor
product preserves colimits in each variable, the composite Kan extension of M ® N along the
lower-left portion of the square is canonically isomorphic to (iM) ® (6iN). The natural iso-
morphism making the square commute determines a natural isomorphism between these two
composites. Similar diagrams show that when 6 preserves the unit and is compatible with the
associativity, symmetry, and unit isomorphisms, 6 does the same. ]

In particular, the ring R, gives rise to a I"-graded ring (6 R), defined by the formula

(iR)y = colim,/_g(,y Ry.

Moreover, an R,-module M, determines an (6, R),-module (6,M),.
We also have the notion of a #-graded ring map R, — R., which is just a I''-graded ring map
0| R, — R. Given a f-graded ring map R, — R., we obtain a functor

(=) ®r, R,: Modgr, — Modpg,
which sends the R,-module M, to the R,-module M, := M, ®p, R, defined by
M' = (0:M). ®o,r), R
Here the tensor product on the right is the usual base-change along a I''-graded ring map.

PROPOSITION 2.12. For a map 6: I' =TV and a 60-graded map R, — R/, the functor
(=) ®r, R,: Modgr, — Modpg; is symmetric monoidal. In particular, it extends to a functor
(—) ®r, R,: Alggp, — Algpg, between categories of algebra objects.

As in Definition 2.1, if A is a symmetric monoidal category, we write Pic(A) for the maximal
subgroupoid of A and refer to Pic(A) as the Picard groupoid of A.

PROPOSITION 2.13. Suppose A is an additive symmetric monoidal category with unit I such
that the monoidal product is additive in each variable, and that we have a symmetric monoidal
functor I' — Pic(A) given by v — A?Y. Then there is a canonical additive, lax symmetric monoidal
functor ¢: A — Abr, sending M to the object M, with

M, = Hom(A”, M).
In particular, 1, is a I'-graded commutative ring, and ¢ lifts to the category of I -modules.

Proof. Since A is additive, the set Hom(M, N) of maps from M to N admits an abelian group
structure such that composition is bilinear. This determines the functor ¢. It remains to show
that ¢ is lax symmetric monoidal.

1217

Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 16 Aug 2021 at 19:21:47, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007065


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007065
https://www.cambridge.org/core

D. GEPNER AND T. LAWSON

The lax monoidal structure map sends a pair (A% — M) in M, and (4° — N) in Nj to the
composite determined by

AP A AP - M@ N,

an element in (M ® N)q4g. The natural associativity and commutativity diagrams

A @ AP — AB g A° (A% © AP) @ A7 —= A% (AP @ A7)
M®N —>= NoM (M@N)®P ——> M®(N®P)

(together with a similar unitality diagram) reduce the proof that ¢ is a lax symmetric monoidal
functor to the fact that I' — Pic(A) is symmetric monoidal. O

DEFINITION 2.14. Suppose A is an additive symmetric monoidal category such that the
monoidal product is additive in each variable, and that we have a symmetric monoidal functor
I' — Pic(A) given by v — A7. The shift operator ¥7: A — A is defined by

YTM = A" ® M.
We then define
Hom(M, N) := Hom(X"M, N).

The notation is compatible with the shift notation for I'-graded abelian groups, because there
is a natural isomorphism (X7M), = X7(M,).

PRrROPOSITION 2.15. In the situation of the previous definition, the I'-graded abelian groups
Hom(—, —), make A into a category enriched in I,-modules. Moreover, this enrichment is
compatible with the symmetric monoidal structure.

Proof. There are canonical isomorphisms X8 = 2%, Using this, we may define composi-
tion of graded maps by

Hom(X*M, N) ® Hom(X°L, M) — Hom(X*M, N) ® Hom(X*SP L, M)
— Hom(X**PL, N).

This composition is associative, and the unit I, — Hom (M, M), sends f: AY — [to f ®@idy,. O
Remark 2.16. In [HS99, §14], a group cohomology element in H?(mol';m ') is described which
obstructs our ability to make I'-grading monoidal, in the sense of the functor ® inducing an asso-
ciative exterior product ®: 7, (X) @ m3(Y) — ma43(X ® Y'). This group cohomology element is
the unique k-invariant of the classifying space BT

Since I' is assumed symmetric monoidal, BI' admits an infinite delooping and one can

calculate that this k-invariant must vanish. This removes the obstruction to ® inducing a
monoidal pairing. However, this becomes replaced by a spectrum k-invariant

e € H*(Hmol', mI") = Hom(moI", 7, T)[2]

which classifies the ‘sign rule’.
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More specifically, the sign rule is equivalent to a bilinear pairing mol" X mpI" — m " sending
a, 3 € mol" to the element €, 3 € mI'. For X and Y with twist isomorphism7: X @Y - Y ® X,
remeX,andy € 1Y, 7(x ® y) = €4, 3(y ® ). (The elements e, g are not invariant under equiv-
alence; the isomorphism with the group of 2-torsion homomorphisms indicates that such Picard
groupoids are determined completely by the €, o, together describing a 2-torsion homomorphism
mol' — m I [JO12].)

Remark 2.17. One needs to be extremely cautious with isomorphisms between I'-graded objects
due to the sign rule. For example, a casual expression like

Fr, (M, ,%°N,) = ©P~“Fg_(M,, N,)

hides several implicit isomorphisms [Ada84].

2.2 Graded Azumaya algebras
We continue to fix a Picard groupoid I' and let R, be a I'-graded commutative ring with module
category Modp, .

DEeFINITION 2.18. If A, is an algebra in Modg, with multiplication u, the opposite algebra
AP is the algebra with the same underlying object and unit, but with multiplication po 7
precomposed with the twist isomorphism 7.

DEFINITION 2.19. A T'-graded Azumaya R,-algebra is an associative algebra A, in the category
Modg, such that

e the underlying module A, is a graded projective generator of the category Modpg,, and
e the natural map of algebras A, @p, AP — Endpg, (A), adjoint to the left action

(A, ©r, AP) 0p. A, E7 A, op. A, @p, AP M1, 4

* 9

is an isomorphism.

PRrROPOSITION 2.20. If P, is a graded generator of the category Modpg, , then the endomorphism
algebra Endg, (Py) is an Azumaya R,-algebra.

DEFINITION 2.21. Let Catp, be the 2-category of Grothendieck abelian categories which
are left-tensored over the monoidal category Modpg,: abelian categories A with a func-
tor ®: Modg, xA — A which preserves colimits in each variable, together with a natural
isomorphism

IAS A

and
(Mep, NY@A S M®(N®A)

that respects the unit and pentagon axioms.

Morphisms in Catg, are Modg,-linear: colimit-preserving functors F': A — A’ together
with natural isomorphisms M ® F(A) — F(M ® A) that respect associativity and the unit iso-
morphisms. The 2-morphisms in Catg, are natural isomorphisms of functors which commute
with the tensor structure.
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D. GEPNER AND T. LAWSON

Remark 2.22. In particular, a left-tensored category A inherits suspension operators by defining
XYM = (¥7R) ® M via the left action. This allows us to define graded function objects by

Fa(M,N), = Hom4(£"M, N).

This definition makes a Modg, -linear category into a category enriched in R,-modules in such
a way that Modpg, -linear functors preserve this enrichment.

DEeFINITION 2.23. The functor

Mod: Alggp, — Catp,
sends an R,-algebra A, to the category Mody, of right A,-modules in Modg,, viewed as left-
tensored over R, via the tensor product in the underlying category Modg,. A map A, — B,
is sent to the functor Mod4, — Modp, given by extension of scalars. (Composite ring maps
have natural isomorphisms of composite functors which satisfy a coherence condition: Mod is a
pseudofunctor.)

The following theorems have proofs which are essentially identical to their classical
counterparts; for example, see [Ika99]. We will sketch the main points below.

THEOREM 2.24 (Graded Eilenberg-Watts). The map sending an A,-B.-bimodule L, to the
functor

N, — N, ®Aa, L,

determines a canonical equivalence of categories from the category 4, Modp, of A.-B,-bimodules
to the category of Modg, -linear functors Mod 4, — Modp, .

Proof. Functors of the form (—)®a, L, are colimit-preserving and come with a natural
associativity isomorphism

M*®R* (N*®A*L*) - (M*®R*N*) ®Aa, L*7

making them maps Mody, — Modp, in Catp,. This produces the desired functor. Conversely,
any Modg, -linear functor G: Mod4, — Modp, preserves the shift operators X7 and extends to
a [-graded functor. In particular, the action map

A ®g, G(AL) — G(A, ®g, Ay) — G(AL)

induced by the multiplication is adjoint to a ring map A, — Fp, (G(A.), G(A,)) making G(A,)
into an A,-B,-bimodule. Given the canonical presentation

N, 2 colim ( @ SOA, = @ EWA*)
S0A, -SVA,—N, YYA,— N,

the two colimit-preserving functors G and (—) ®4, G(A4) both give us naturally isomorphic

presentations
G(N,) = colim ( P 2GA) = P EVG(A*))
S0A, —-YVA, —N, Ay— Ny
Therefore, these two functors are canonically equivalent. O
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THEOREM 2.25 (Graded Morita theory). Let A, be an R,-algebra, and Modzg* be the full sub-
category of Mod,, spanned by the graded generators P,. Then there are canonical pullback
diagrams of categories

Pic(4,Moda,) —= (Mod} )™ —— {Mody, }

| | |

{A*} (AlgR*): _— CatR*

in which {A,} and {Mod 4, } denote categories with a single object and (identity) arrow, viewed
as subcategories of Algp and Catp,, respectively, and the middle vertical arrow is the functor
which sends the graded generator P, to the R,-algebra End 4, (P,). More generally, the fiber of
(Mod§ )™ — (Algg, )™ over an algebra B, is either empty or a principal torsor for the Picard
groupoid Pic(4,Mod 4, ) of the category of bimodules.

Proof. We will first identify Modiﬁ with the right-hand fiber product. The pullback of the
diagram Algp — Catg, < {Mody, } is the category of pairs (B, ¢), where B, is an R,-algebra
and ¢ is an equivalence Modp, — Mod 4, in Catpg, . Such a functor is colimit-preserving, so by the
graded Eilenberg—Watts theorem such a functor is represented by a certain type of pair (B, Pk).
For this functor to be an equivalence, the graded generator B, must map to a graded generator
P,, and we must have B, = Endy4, (P,). It remains to show that any such P, determines an
equivalence of categories.

Given a right A,-module P, as in the statement, we obtain an R,-algebra B, = Fa, (Px, Py)
and a functor (—) ®p, P.: Modp, — Mod4,. This functor is colimit-preserving. It also has a
colimit-preserving right adjoint F, (Ps, —) because P, is finitely generated projective.

The unit map

M, — FA*(P*,P* ®B* M*)

is an isomorphism when M, = Y7 B,. Both sides preserve colimits, and so applying this unit to a
resolution F; — Fy — M, — 0 where F; are (graded) free modules shows that the unit is always
an isomorphism.

The counit map

FA*(P*,N*) ®B* P* - N*

is an isomorphism when N, = P,. Because the set of objects X7 P, is a set of generators there
always exists a resolution Fy — Fy — N, — 0 where F; are direct sums of shifts of P,. Again, as
the functors in question preserve colimits, the counit is always an isomorphism.

We now consider the left-hand square. As pullbacks can be calculated iteratively, the pullback
of a diagram B, — Algp «— (Mod’} )™ is equivalent to the pullback of the diagram {Modp, } —
Catp, < {Mody4, }. If these categories are inequivalent as R,-linear categories, this is empty. If
these categories are equivalent, then composition with any chosen equivalence makes the groupoid
of R,-linear equivalences {Modpg, } — {Mod 4, } isomorphic to the groupoid of self-equivalences of
Mod 4, : without making such a choice, it is a principal torsor for the groupoid of self-equivalences
of Modpy, .

Equivalences of Mod 4, are given up to unique isomorphism by tensoring with an A,-bimodule
P,, and there must exist an inverse given by tensoring with an A,-bimodule Q. For these to be
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inverse to each other, we must have isomorphisms of A,-bimodules
P* ®A* Q*%Q* ®A* P*%A*‘

Such a @, exists if and only if P, is an invertible element in the category of bimodules. O

The following is a graded analogue of results of [RZ61], relating outer automorphisms to
the Picard group. In the classical case of ungraded algebras over a field k, the Picard group of
k-modules is trivial and so it reduces to the Noether—Skolem theorem: all automorphisms of an
algebra are inner.

COROLLARY 2.26 (Graded Rosenberg—Zelinsky exact sequence). For an Azumaya R,-algebra
A,, there is an exact sequence of groups

1— (Ro)X — (Ao)X — AutAlgR* (A*) — T PiC(MOdR*).

The group Pic(Modg, ) acts on the set of isomorphism classes of compact generators of Mod 4,
with quotient the set of isomorphism classes of Azumaya R,-algebras B, such that Mod,, ~
Modgp, . The stabilizer of A, viewed as a right A,-module, is the image of the outer automorphism
group in Pic(Modg, ).

Proof. We consider the pullback diagram of categories

Pic(4,Mody,) —— (Modiﬁ )=

| |

{As} (Algg, )~

obtained from graded Morita theory. This is a homotopy pullback diagram of groupoids, and so
we may take the nerve and obtain a long exact sequence in homotopy groups at the basepoint
A, of Pic. Put together, this gives an exact sequence

1— AutPic(A*ModA*)(A*) — AUtModA* (A,) — AUtAlgR* (A,) — mo Pic(4,Mod 4, ).

Moreover, the category of A,-bimodules is equivalent to the category of modules over A, ®pg, AP,
which is Morita equivalent to R,. This gives us an equivalence of categories Pic(4, Mody4, ) ~
Pic(R,) that carries A, to R,. The desired description of this exact sequence follows by identifying
Autyod,, (Ax) with Af and Autpic(g,)(R.) with Rj.

Similarly, the description of the action of Pic follows by identifying this fiber square with the
principal fibration associated to the map (Algg, )~ — (Catg,)~. O

Remark 2.27. In the exact sequence above, suppose v € A, is a unit in the graded ring A,. Then
conjugation by v determines an element in Autalg, (As) whose image in Pic(Modg, ) is [X7AJ.

2.3 Matrix algebras over graded commutative rings
DEFINITION 2.28. Let R, be aI'-graded commutative ring. An R,-algebra is a matrix R,-algebra
if it is isomorphic to the endomorphism R,-algebra

Endg, (M, ) = Fr, (M., M,)

of an R,-module of the form M, = R! for some I'-graded set I (Definition 2.3).
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In general, we write Mat;(R,) for the T-graded matrix algebra Endg, (R,!) and GL;(R,) for
the group [Autg, (R.)] of automorphisms of the graded R,-module R,

ProprosITION 2.29. If R, = 0 for v # 0 then there is an isomorphism of groups

GL;(R) = [ GLy, (Ro),
yel’

where the groups on the right are the usual general linear groups of the commutative ring Ry.

PROPOSITION 2.30. If I is a finite I'-graded set with underlying finite set |I|, meaning that
I = J1;e;) Hom(—, ;) for some |I|-indexed collection of objects ~; of I, then there is a canonical
isomorphism of R,-modules

Endg, (Rf) = €D % R,

i,5€|1]

In particular, there is a natural I-graded set I such that it is of the form RI'.

ProproOSITION 2.31. The formation of matrix algebras is compatible with base-change. That is,
for any homomorphism 6: T' — TV of abelian groups, any 0-graded ring map R, — R., and any
finite T'-graded set I, the canonical R)-algebra map

Mat;(R,) ®g, R; — Matg!](R;)
is an isomorphism.

Proof. Write OI for the I'-graded set as in the previous proposition. First, let us assume that 6

is the identity of T', so that R, — R is just a I'-graded ring map. Then 6,01 = JI and the map

R @p, R. — (R,)? is an equivalence between free R/-modules on the same I'-graded set.
Now suppose instead that 6 is arbitrary and R, = 6 R,. Then the desired map is a composite

R @, R, = 0(RY) = (R,).

Finally, an arbitrary 6-graded ring map R — R’ is a composite of ring maps of the type treated
above, so the result follows. ]

2.4 Derivations and Hochschild cohomology
The following recalls some of Quillen’s work on cohomology for associative rings [Qui70]. We
suppose for simplicity that we are working in a setting in which the relevant derived functors
exist, such as the case in which there are enough projectives and the tensor product of projective
objects is again projective.

In a symmetric monoidal abelian category in which the symmetric monoidal ‘tensor product’
operation ® preserves colimits (separately in each variable), any algebra A sits in a short exact
sequence

0—-0y — AR AP - A -0

of A-bimodules, split (as left modules) by the unit. If A is the tensor algebra on a projective
object P, then 24 can be identified with the projective bimodule A ® P ® A°P. Moreover, for any
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A-bimodule M with associated square-zero extension M x A — A in Alg,, there are canonical
isomorphisms

Der(A, M) = Hompjg , ja(A, M x A) = Hom , Mod , (24, M).

This allows us to relate the derived functors of derivations, in the sense of [Qui70], to Hochschild
cohomology in this category. The André—Quillen cohomology groups of A with coefficients in M
may be identified with the nonabelian derived functors Der®(A, M). Applying the right derived
functors of Hom , vod, (—, M) to the exact sequence defining 24 gives us isomorphisms

Der®(A, M) — HH*T (A, M)
for s > 0 and an exact sequence
0— HH°(A,M) — M — Der(A, M) — HH"(A, M) — 0.

PROPOSITION 2.32. Suppose A, is an Azumaya R,-algebra. For any A,-bimodule M, in the
category of I'-graded R,-modules, we have a short exact sequence

0 — HH°(A,, M,) — M, — Der(A,, M,) — 0.

Both the Hochschild cohomology groups H H, (A, M,) and the derived functors Derp, (A, M,)
vanish for s > 0.

Proof. Consider the short exact sequence
0—Q4, = A ®p, AP - A, —0
of bimodules. The center bimodule is free, hence projective. Moreover, under the chain of Morita

equivalences

MOdR* ~ MOdEndR*(A*) >~ MOdA*®R*Agp,

the image of the projective Ry-module R, is Ay, and hence A, is also projective. Therefore, the
sequence splits and )4, is projective too. O

3. Obstruction theory

3.1 Gradings for ring spectra

DEFINITION 3.1. Let R be an E-ring spectrum, with I'p the algebraic Picard groupoid of
invertible R-modules and homotopy classes of equivalences; similarly, let I's be the Picard
groupoid of the sphere spectrum. A grading for R is a Picard groupoid I' together with a

/\

I's —— 7T

commutative diagram

of Picard groupoids.

1224

Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 16 Aug 2021 at 19:21:47, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007065


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007065
https://www.cambridge.org/core

BRAUER GROUPS AND (GALOIS COHOMOLOGY OF COMMUTATIVE RING SPECTRA

The period of the grading is the minimum of the set
{n>0|v[S"]=0in 7'} U{oo},
where [S™] € mol's is the equivalence class of the n-sphere.

A grading provides a chosen lift of the suspension X R to I' such that the twist on ¥R ® ¥R
lifts the automorphism —1 € (mpR)*; it also provides an action I's xI' = T', (n,7y) — n+1,
compatible with that on I'p. The minimal and maximal options are I's-grading (usually referred
to as ‘Z-grading’) and I'g-grading (usually referred to as ‘Picard grading’). If R is connective
(and nontrivial) then moI's — moI'g is a monomorphism, and so R has period oo (usually referred
to as ‘not being periodic’).

Throughout this section we will assume that we have chosen a grading for R. This produces
elements RY € Modg for v € I' and gives the category of R-modules I'-graded homotopy groups
M as in §5.1. These homotopy groups preserve coproducts and filtered colimits, as well as
take cofiber sequences to long exact sequences. The fact that weak equivalences are detected on
Z-graded homotopy groups implies the following propositions.

ProrosiTION 3.2. If R has a grading by I', a map X — Y of R-modules is an equivalence if
and only if the map m, X — m,Y is an isomorphism of m, R-modules.

ProrosITION 3.3. If A is an R-algebra, the I'-graded groups m,A form a m,R-algebra. If A is a
commutative R-algebra, m, A is a graded commutative m, R-algebra.

3.2 Picard-graded model structures

In this section we describe model structures on categories of R-modules and R-algebras based
on using elements of Pic(R) as basic cells. The structure of this section is based on Goerss and
Hopkins’ work on obstruction theory for algebras over an operad [GHO04], which in turn is based
on Bousfield’s work [Bou03]. We carry this out under the simplifying assumptions that we are not
using an auxiliary homology theory, and that the operad in question is the associative operad.
However, we will remove the assumption that the base category is the stable homotopy category,
and allow ourselves the use of homotopy groups graded by a Picard groupoid I' rather than
integer-graded homotopy groups.

In this section we work in the flat stable model category structure on symmetric spectra (the
S-model structure of [Shi04]). Fix a commutative model for our Ey-ring spectrum R, and let
Mod% denote the (ordinary) category of R-module objects in symmetric spectra (which should
not be confused with its underlying oco-category Modp). We also fix a grading I' for R as in the
previous section, giving any R-module M natural I'-graded homotopy groups m, M.

According to [Shi04, 2.6-2.7], the category Mod% is a cofibrantly generated, proper, stable
model category with generating sets of cofibrations and acyclic cofibrations with cofibrant source;
it is also, compatibly, a simplicial model category (see, for example, [DL14] for references in
this direction). The smash product A and function object Fr(—,—) give Mod% a symmetric
monoidal closed structure under which Mod% is a monoidal model category, and the category
Alg% of associative R-algebras is a cofibrantly generated simplicial model category with fibrations
and weak equivalences detected in Mod% [SS00]. We let T denote the monad taking M to the
free R-algebra T(M) = \/ M"R™; algebras over T are associative R-algebras.
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The following definitions are dual to those in Bousfield [Bou03], taking the category I' as
generating a class P of cogroup objects.

DEFINITION 3.4. Let Dg denote the homotopy category of Mod%.

1. Amap p: X — Y in Dg is Pic-epi if the map 7, X — 7Y is surjective.

2. An object A € Dy is Pic-projective if the map p.: [A, X]| — [A,Y] is surjective whenever
p: X — Y is Pic-epi.

3. A morphism A — B in Mod% is a Pic-projective cofibration if it has the left lifting property
with respect to all Pic-epi fibrations in Mod%.

Remark 3.5. Technically speaking, we should include the group I' in the notation, but we do
not.

Any object P € Pic(R) with a lift to an element v € I' is automatically Pic-projective, and
the class of projective cofibrations is closed under coproducts, suspensions, and desuspensions.
There are enough Pic-projective objects: to construct a Pic-projective P and a map P — X
inducing a surjection m,P — m,X, we can choose generators {z, € 7y, X} of 7, X which are
represented by a map \/, R’ — X. We can then describe a model structure on the category
sMod4 of simplicial R-modules.

DEFINITION 3.6. Let f: X, — Y, be a map of simplicial R-modules.

1. The map f is a Pic-equivalence if the map w, f: m, X, — m,Y, is a weak equivalence of
simplicial abelian groups for all v € T'.

2. The map f is a Pic-fibration if it is a Reedy fibration and the map 7 f: m, Xq — 7Y, is a
fibration of simplicial abelian groups for all v € T.

3. The map f is a Pic-cofibration if the latching maps

X, ]_[ LYY =Y,
L,X

are Pic-projective cofibrations for n > 0.

THEOREM 3.7 [Bou03]. These definitions give the category s Mod% of simplicial R-modules the
structure of a simplicial model category, which we call the Pic-resolution model structure. This
model structure is cofibrantly generated, and has generating sets of cofibrations and acyclic
cofibrations with cofibrant source. The forgetful functor to simplicial R-modules (with the Reedy
model structure) creates fibrations.

As in [GHO04, § 3], for a simplicial R-module X and v € T" we have ‘natural’ homotopy groups
7TE¢(X ;7). On geometric realization there is a homotopy spectral sequence with Fa-term

TpTy (X)) = iy [ X

The FE>-term of this spectral sequence comes from an exact couple, the spiral exact sequence
[GHO4, Lemma 3.9]:

o (X)) = T(XG ) — T (X) — mh_y(X5) — e
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As applications of the Pic-resolution model structure, we obtain Pic-graded Kiinneth and
universal coefficient spectral sequences.

THEOREM 3.8. For X,Y € Dp, there are spectral sequences of I'-graded R,.-modules:

Tor[ (m X, 1Y) = mpin (X AR Y),
Exty (m X, 1Y) = 7+ Fp(X,Y).

Proof. Lift X and Y to Mod%, cofibrant or fibrant as appropriate. Then choose a cofibrant
replacement P — X, where X is viewed as a constant simplicial object in the Pic-resolution
model category structure. The result is a simplicial R-module, augmented over X, such that
the map |P| — X is a weak equivalence and such that the associated simplicial object m, P is
levelwise projective as a I'-graded m, R-module. The spectral sequences in question are associated
to the geometric realization of P A Y and the totalization of Fr(P,Y'), which are equivalent to
the derived smash X Ar Y and derived function object Fr(X,Y'), respectively. U

COROLLARY 3.9. Suppose P is a cofibrant R-module such that m, P is a projective m, R-module.
Then 7, T(P) is isomorphic to the free m, R-algebra on m,P.

Proof. This follows by first observing that the Kiinneth formula degenerates to isomorphisms
W*(P/\R-"/\RP) = 7T*P®W*R"'®W*R7T*Pa
and then applying 7, to the identification

T(P) = \/ P"=*
k>0

of R-modules. O

The Pic-resolution model structure on simplicial R-modules now lifts to R-algebras. The
following results are originally due to Bousfield (cf. [Bou03, Bou89]) and Goerss and Hopkins
(cf. [GHO4, GH]), respectively; see also [PV19] for a more recent treatment.

THEOREM 3.10. There is a simplicial model category structure on sAlg% such that the for-

getful functor sAlg% — SMod% creates weak equivalences and fibrations. We call this the

Pic-resolution model structure on simplicial R-algebras. This model structure is cofibrantly

generated, and has generating sets of cofibrations and acyclic cofibrations with cofibrant source.
For each X € s Alg}%, there is a Pic-equivalence Y — X with the following properties.

1. The simplicial object Y is cofibrant in the Pic-resolution model category structure on s Alg}%.
2. [GHO04, 3.7] There are objects Z,,, which are wedges of cofibrant R-modules in Pic(R), such
that the underlying degeneracy diagram of Y is of the form

Yn:T< ]_[ Zm>.
¢:[n]—[m]

Given this structure, we can use Goerss and Hopkins’ moduli tower of Postnikov approx-
imations to produce an obstruction theory. This both classifies objects and constructs a
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Bousfield-Kan spectral sequence for spaces of maps between R-algebras using I'-graded homo-
topy groups. In order to describe the resulting obstruction theories, let DerSAlg7r . denote the
derived functors of derivations in the category of I'-graded m,R-algebras as in §2.4.

THEOREM 3.11. 1. There are successively defined obstructions to realizing an algebra A, €
Alg, r by an R-algebra A in the groups

Deryjy (A, Q°A,),

and obstructions to uniqueness in the groups
Derfﬁgﬂ*R (A, Q°A,),

for s > 1.
2. For R-algebras X and Y, there are successively defined obstructions to realizing a map
[ € Hompyg . (m X, mY) in the groups

Derj’:lrgl B (1. X, Q°m,Y),
Tk

and obstructions to uniqueness in the groups
Deryj,  (mX, 0°mY),

for s > 1.
3. Let ¢ € Map Algd (X,Y) be a map of R-algebras. Then there is a fringed, second quadrant
spectral sequence abutting to

Tt—s (MapAlg% (X7 Y)7 ¢)7
with Eo-term given by
ES,O — HomAlgﬂ*R(W*X, YY)

and
E;’t = DerSAlng(ﬂ—*X7 Qtﬂ'*Y) for t > 0.

This theorem is obtained using simplicial resolutions. Given an R-algebra A, we form a
simplicial resolution of A by free R-algebras, which becomes a resolution of m,A by free 7, R-
algebras by Corollary 3.9. We get the spectral sequences for mapping spaces from the associated
homotopy spectral sequence (see [Bou03]). The obstruction theory for the construction of such
A, instead, relies on constructing partial resolutions P, A as simplicial free R-algebras whose
homotopy spectral sequence degenerates in a specific way, and then identifying the obstruction
to extending the construction of P,(A) to P,4+1(A) as lying in an André-Quillen cohomology

group.

3.3 Algebraic Azumaya algebras
We now apply the obstruction theory of the previous section to the algebraic case. We continue
to let R be an E..-ring spectrum with a grading by I', and Dg the homotopy category of left
R-modules.

We recall that an algebra A is an Azumaya R-algebra if A is a compact generator of Dg,
and the left-right action map A Ap A°? — Endr(A) is an equivalence in D [BRS12].
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PROPOSITION 3.12. Suppose A is an R-algebra such that m, A is a projective m, R-module. Then
m.A is an Azumaya m, R-algebra if and only if A is an Azumaya R-algebra.

Proof. The projectivity of m,A makes the Kiinneth and universal coefficient spectral sequences
of Theorem 3.8 degenerate. We find that the action map A Ap A°® — Endgr(A) becomes, on m,,
the map M, A &, g T A? — End,, g(m.A), and so the two conditions are equivalent. O

We have a similar result about Morita triviality.

PrOPOSITION 3.13. Let M be an R-module whose I'-graded homotopy groups m,M form a
finitely generated projective m, R-module. The function spectrum End g (M) has homotopy groups
given by the m,R-algebra Homg, r(m M, m M). The center of this algebra is the image of m, R,
and if m,M is a graded generator this algebra is Morita equivalent to m,R in the category of
I'-graded m,R-algebras.

DEFINITION 3.14. An R-algebra is said to be an algebraic I'-graded Azumaya algebra over R if
the multiplication on 7, A makes it into an Azumaya 7, R-algebra.

We may apply the Goerss—Hopkins obstruction theory to algebraic Azumaya R-algebras.
Much of the following is originally due to Baker, Richter, and Szymik [BRS12, 6.1].

THEOREM 3.15. 1. Any Azumaya 7, R-algebra is isomorphic to m, A for some I'-graded algebraic
Azumaya R-algebra A.

2. Suppose A is a I'-graded algebraic Azumaya R-algebra. For any R-algebra S (not
necessarily Azumaya), the natural map

[A, S]Alg% ﬂ-—*> HOmAlgﬂ_*R (W*A, W*S)

is an isomorphism. For any map ¢: A — S of R-algebras (making .S into a m,A-bimodule)
and any t > 0, we have an isomorphism

Ft(M&pAlg% (A,S),6) = (1;:8)/ HH (1, A, Q'7,.S).

3. If A is a I'-graded algebraic Azumaya R-algebra, the homotopy groups of the space
Aut Algh (A) satisfy

i (Aut pjpa (A), id) = {i‘j?;i?(m@ ZZ i i 8
4. If A is a I'-graded algebraic Azumaya R-algebra, then for t > 0 the sequence
0 — m GL1(R) — m GL1(A) — AutAlg% (A) =0
is exact, and there is an exact sequence of potentially nonabelian groups

1 — mo GL1(R) — 7o GL1(A) — mo AutAlg% (A) — mo Pic(R).

The image in myPic(R) of the last map is the group of outer automorphisms of m, A as a
. R-algebra.
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Proof. The Goerss—Hopkins obstruction groups DersAlng(Tr*A, M) appearing in Theorem 3.11
vanish identically for s > 0 by Proposition 2.32. In particular, the obstructions to existence and
uniqueness vanish, so every Azumaya m,R-algebra lifts to an Azumaya R-algebra. Moreover,
the obstructions to existence and uniqueness for lifting maps also vanish, and so every map of
Azumaya 7, R-algebras lifts uniquely to a map of R-algebras.

We then apply the vanishing and exact sequence of Proposition 2.32 to the spectral sequence
calculating the homotopy groups of Map Algd (A, S). We find that there are short exact sequences

0— HHO(W*A, TeS) — mS — MapAlg%(A,S) —0

for ¢ > 1, and thus obtain the stated results on 7w and 7, once due caution is exercised regarding
basepoints. ]

COROLLARY 3.16. The functor m, restricts to an equivalence from the homotopy category of
algebraic I'-graded Azumaya R-algebras to the category of Azumaya m,R-algebras.

Remark 3.17. There are two very common sources of nonalgebraic Azumaya R-algebras. First,
any compact generator M of Mod% produces an Azumaya R-algebra Endg(M) regardless of
whether m, M is projective or not (for example, the derived endomorphism ring of Z ® Z/p is
a nonalgebraic derived Azumaya algebra over Z). Second, the property of being algebraic also
depends on the grading. If P is an element in Pic(R) which is not a suspension of R, then
Endgr(R @ P) is likely to be exotic for Z-grading but is definitely not exotic for Pic-grading.

4. Presentable symmetric monoidal co-categories

From this section forward, we will switch to an oo-categorical point of view on categories of
Azumaya algebras and their module categories so that we can make use of the results of [AG14,
Lurl7, GH15]. Finding strict model-categorical versions of many of these constructions we will
use seems extremely difficult. For example, it is hard to find point-set constructions that simulta-
neously give a construction of GL,,(R) as a group, M, (R) as an R-algebra, an action of GL,,(R)
on M, (R) by conjugation, and a diagonal embedding GL;(R) — GL,(R) which acts trivially. If
we also want these to be homotopically sensible then it becomes harder still.

Making this switch implicitly requires a translation process, which we will briefly sketch.
Given a commutative symmetric ring spectrum R, its image R in the co-category Sp of spectra
is a commutative algebra object in the sense of [Lurl7, 2.1.3.1].

e [Lurl?7, 4.1.3.10] Associated to Mod% there is a stable presentable symmetric monoidal
oo-category N®(M0d%°), the operadic nerve of the category Mod%O C Mod% of cofibrant-
fibrant R-modules.

e [Lurl7, 4.3.3.17] This oco-category is equivalent to the oo-category of modules over the
associated commutative algebra object R in Sp.

e [Lurl7, 4.1.4.4] The model category of associative algebra objects Alg% has co-category equiv-
alent to the oco-category of associative algebra objects of N®(Mod%°) in the sense of [Lurl?7,
4.1.1.6).

e [Lurl7,4.3.3.17] For such R-algebras, the model categories of left A-modules, right A-modules,
or A-B bimodules in Mod% have associated oo-categories equivalent to the left modules, right
modules, or bimodules over the corresponding associative algebra objects in N ®(Mod%o).
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DEFINITION 4.1. Let Ring := CAlg(Sp) denote the co-category of Eo-ring spectra, or, equiva-
lently, commutative algebra objects in Sp.

4.1 Closed symmetric monoidal co-categories

DEFINITION 4.2 [Lurl7, 4.1.1.7]. A monoidal co-category C® is closed if, for each object A of €,
the functors A® (—): € — Cand (—) ® A: € — € admit right adjoints. A symmetric monoidal
oo-category C% is closed if the underlying monoidal co-category is closed.

Recall [Lurl?7, 4.8] that the oo-category of Prl of presentable co-categories and colimit-
preserving functors [Lur09, 5.5.3.1] admits a symmetric monoidal structure with unit the
oo-category 8 of spaces. We refer to (commutative) algebra objects in this oco-category as
presentable (symmetric) monoidal oco-categories.

PROPOSITION 4.3 [Lurl7, 4.2.1.33]. A presentable monoidal oco-category is closed.

Proof. Let C® be a presentable monoidal oco-category. Then, by definition, the underlying
oo-category € is presentable, and for each object A of € the functors A® (—) and (-)® A4
commute with colimits. It follows from the adjoint functor theorem [Lur09, 5.5.2.2] that both of
these functors admit right adjoints. O

Note that this implies that (the underlying co-category of) a presentable symmetric monoidal
oo-category C% is canonically enriched, tensored and cotensored over itself. If € is stable, then C
is enriched, tensored and cotensored over Sp, the oco-category of spectra. We will not normally
notationally distinguish between the internal mapping object and the mapping spectrum, which
should always be clear from the context.

PROPOSITION 4.4. A symmetric monoidal co-category R is stable and presentable (as a sym-
metric monoidal co-category) if and only if the underlying co-category is stable and presentable
and (any choice of) the tensor bifunctor R x R — R preserves colimits in each variable. In par-
ticular, a closed symmetric monoidal co-category R is stable and presentable if and only if the
underlying oco-category is stable and presentable.

There is also the following multiplicative version of Morita theory.

ProposITION 4.5 ([Lurl7, 7.1.2.7], [AG14, 3.1]). The functor
Mod: CAlg(Sp) — CAlg(Prl),

sending R to the (symmetric monoidal, presentable, stable) co-category of R-modules, is a fully
faithful embedding.

4.2 Structured fibrations
We will write Cat’, for the very large co-category of large oo-categories.

DEFINITION 4.6. Given a (possibly large) co-category € and a functor € — Cat’,, we will say

that a cocartesian fibration X — S admits a C-structure if its classifying functor X — Cat’,
factors through € — Catl.
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We have a cocartesian fibration Mod — Ring [Lurl?7, 4.5.3.6] whose fiber over the Eq-ring
spectrum R is the (large) oo-category Modpg of R-modules.

PROPOSITION 4.7 [Lurl7, 4.5.3.1, 4.5.3.2]. The cocartesian fibration Mod — Ring admits a
canonical symmetric monoidal structure: there is a cocartesian family of co-operads

Mod® — Ring x Comm®

classifying a functor R +— Modp: Ring — CAlg(PrL) from E,-ring spectra to presentable stable
symmetric monoidal co-categories.

We next consider algebra objects. By applying [Lurl7, 4.8.3.13], we similarly find that we
have a cocartesian fibration Alg — Ring whose fiber over the ring R is the (large) oo-category
Algp of R-algebras.

PROPOSITION 4.8. The cocartesian fibration Alg — Ring admits a canonical symmetric
monoidal structure such that the forgetful functor from algebras to modules induces a morphism
of symmetric monoidal cocartesian fibrations

Alg Mod

~N

Ring
over Ring.

Proof. Asin [Lurl7,5.3.1.20], the cocartesian family of co-operads Mod® — Ring x Comm® clas-
sifies a functor Ring — (Op,,)/ Comm® " taking R to the cocartesian fibration Mod% — Comm®.
Applying [Lurl7, 3.4.2.1], we obtain a functor Alg: Ring — (Opoo)/comm®, taking R to a

cocartesian fibration Alg% — Comm® with a forgetful map

Alg® Mod$

~N 7

&

Comm

that preserves cocartesian arrows [Lurl7, 3.2.4.3]. Converting this back, we obtain a diagram

Nl

®

Mod®

Ring x Comm

of cocartesian Ring-families of symmetric monoidal co-operads, lifting the underlying map Alg —
Mod to one compatible with the symmetric monoidal structure. O
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BRAUER GROUPS AND (GALOIS COHOMOLOGY OF COMMUTATIVE RING SPECTRA

Restricting the cocartesian fibration Mod — Ring to the subcategory of cocartesian arrows
between compact modules, we obtain a left fibration

Modw,cocart Rlng

whose fiber over R is the oo-groupoid Mody;~ of compact (or perfect [Lurl7, 7.2.5.2]) R-modules.
More precisely, an arrow (R, M) — (R', M') of Mod“»°°®®" is an arrow (R, M) — (R', M") of Mod
such that M is compact (as an R-module) and the map M ®r R’ — M’ is an equivalence.

Lastly, let AlgP™ — Ring denote the left fibration whose source oo-category is the
subcategory AlgP™P of proper algebras defined by the following pullback.

AlgProP Alg

| |

Modw,cocart — Mod

This time, however, AlngrOlD is not the full subgroupoid of Algp on the compact R-algebras, but
rather the full subgroupoid of Algp consisting of the R-algebras A whose underlying R-module
is compact.

PROPOSITION 4.9. The morphism of symmetric monoidal cocartesian fibrations Alg — Mod
over Ring restricts to a morphism of symmetric monoidal left fibrations AlgP**P — Mod“ccart
over Ring.

Proof. Tensors of compact modules are compact [Lurl7, 5.3.1.17]. ]

4.3 Functoriality of endomorphisms
In order to construct the endomorphism algebra as a functor, we need to extend the results of
[Lurl7, 4.7.2]. In this, Lurie considers the category of tuples (4, M,¢: A® M — M), which has
a forgetful functor p given by p(A, M, ¢) = M. He extends it in such a way as to give this functor
p monoidal fibers; this gives the terminal object End(M) in the fiber over M a canonical monoid
structure. For the reader’s convenience, we will first review some details of Lurie’s construction.
Let LM® denote the co-operad parametrizing pairs of an algebra and a left module [Lurl?,
4.2.1.7]. A cocartesian fibration O® — LM® of co-operads determines a monoidal co-category C
and an oo-category M such that M is left-tensored over C [Lurl7, 4.2.1.19]; in particular, there
exist objects A® M for A € C and M € M. Associated to this there is a category LMod(M) of
left module objects in M [Lurl7, 4.2.1.13]; such an object is determined by an algebra A € €
and a left A-module M € M. There is a forgetful map LMod(M) — M which is a categorical
fibration.

PROPOSITION 4.10. Let Act(M) be the fiber product LMod(M) X M=. The natural map
Act(M) — M= is a cocartesian fibration.

Proof. The map Act(M) — M is a categorical fibration to a Kan complex, and so by [Lur09,
2.4.1.5, 2.4.6.5] it is a cocartesian fibration. O

DEFINITION 4.11 [Lurl7, 4.2.1.28]. Suppose that M is left-tensored over the monoidal
oo-category C. A morphism object for M and N is an object Fj¢(M,N) of € equipped with
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D. GEPNER AND T. LAWSON
a map Fi(M,N)® M — N such that the resulting natural homotopy class of map
Map(‘?(ca FM(M7 N)) - MapM(C ® M7 N)

is a homotopy equivalence for all C' € C. If morphism objects exist for all M and N, we say that
the left-tensor structure gives M a C-enrichment.

PROPOSITION 4.12 [Lurl7, 4.7.2.40]. Suppose that M is left-tensored over C, giving it a
C-enrichment. For any M € M, the fiber LMod(M) x»t{M} has a final object End(M) whose
image under the composite LMod(M) — Alge — € is Fo(M, M).

COROLLARY 4.13. Under these assumptions, there exists a functor End: M~ — Alge sending
M to End(M).

Proof. By [Lur09, 2.4.4.9], the full subcategory of Act(M) spanned by the final objects determines
a trivial Kan fibration End(M) — M~. Choosing a section of this map, we obtain a composite
functor

M= — LMod(M) — Alge

with the desired properties. O

Remark 4.14. It should be sufficient to assume that C is monoidal and M merely C-enriched,
rather than including the stronger assumption that M is left-tensored over €. However, we
require this assumption in order to make use of the results from [Lurl7, 4.7.2].

5. Picard and Brauer spectra

In this section we recall the definitions and some important features of Picard and Brauer groups
of a commutative ring spectrum. These groups are the homotopy groups of associated Picard
and Brauer spectra, which arise as certain nonconnective deloopings of the spectrum of units of
a commutative ring spectrum.

Much of the work in this section is a recapitulation of previous work. Picard spectra have
been widely studied by many authors (far too many to list here), and calculations of the Picard
group (that is, mp of the Picard spectrum) have played an immensely important role in the
development of chromatic homotopy theory. The study of Brauer spectra and the Brauer group,
on the other hand, is significantly newer and less well developed. Foundational work on Brauer
groups in higher categorical and derived algebro-geometric contexts has been carried out by a
number of authors, including Antieau and Gepner [AG14], Baker, Richter, and Szymik [BRS12],
Hopkins and Lurie [HL17], Johnson [Joh14], and Toén [Toél2].

5.1 Picard spectra
In this section we recall the relevant notions and derive a useful long exact sequence (Corollary
5.20), related to the graded Rosenberg—Zelinsky sequence of Corollary 2.26, which generalizes
the short exact sequences of Theorem 3.15.

If € is a small co-category, we write moC for the set of equivalence classes of objects of C. By
definition, myC is an invariant of the underlying oco-groupoid €~ of € (the oo-groupoid obtained
by discarding the noninvertible arrows).
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DEFINITION 5.1. A symmetric monoidal co-category C is grouplike if the monoid 7€ is a group.

A symmetric monoidal oo-category € has a unique maximal grouplike symmetric monoidal
subgroupoid €%, the subcategory C* C € consisting of the invertible objects and the equivalences
thereof. That this is actually a symmetric monoidal subcategory in the oo-categorical sense
follows from the fact that invertibility and equivalence are both detected upon passage to the
symmetric monoidal homotopy category; the grouplike condition is guaranteed by considering
only the invertible objects.

Let Prk c Prl denote the oo-category of stable presentable co-categories and colimit-
preserving functors; by [Lurl7, 4.8.2.18] this is the category Modg, of left modules over the
oo-category of spectra. We have the oo-category CAlg(Modgp,) of commutative ring objects in
Prk; these are the same as commutative Sp-algebras or presentable symmetric monoidal stable
oo-categories.

DEFINITION 5.2. Let R be a commutative Sp-algebra. The Picard oco-groupoid Pic(R) of R is
R*, the maximal subgroupoid of the underlying oco-category of R spanned by the invertible
objects.

By [ABG18, 8.9] Pic(R) is equivalent to a small space, and by [ABG18, 8.10] the functor Pic
commutes with limits.
We have a symmetric monoidal cocartesian fibration

Mod(Modg,) — CAlg(Mods,)

whose fiber over a commutative Sp-algebra R is the symmetric monoidal co-category Catg of
R-linear oco-categories. Writing

Modsp,w C Modsp

for the symmetric monoidal subcategory consisting of the compactly generated Sp-modules and
compact-object-preserving functors, this restricts to a symmetric monoidal cocartesian fibration

Mod(Modgy, .,) — CAlg(Modsy )

over the subcategory CAlg(Modsp,.,) C CAlg(Mods,) of commutative algebra objects in
Modgp, C Modsp,. For a commutative algebra object R € CAlg(Modsp,,), also known as a
compactly generated commutative Sp-algebra, we write Catiw for the full subgroupoid of
the fiber Catg,, over R, the symmetric monoidal oo-category of compactly generated R-linear
oo-categories in the sense of [Lur09, 5.3.5], and note that the map R — Caty, defines a left
fibration Mod~(Modsy ,,) — CAlg(Modsyp ).

PROPOSITION 5.3 (cf. [MS16, 2.1.3]). Let R be a compactly generated commutative Sp-algebra.
Then any invertible object of R is compact.
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Proof. Let I be any invertible object of R and let {M,} be a filtered system of objects of R.
Then there are natural equivalences

Map(1, colim M) ~ Map(1, colim I~ @ M,)
~ colim Map(l,I_1 ® My)
~ colim Map(Z, M,,).

The first equivalence follows because ® commutes with colimits. The second follows because
the monoidal unit 1 (the image of the sphere spectrum under the map Sp — R) is compact by
definition. n

Because Pic(R) is closed under the symmetric monoidal product on R, it is a grouplike
symmetric monoidal co-groupoid, so by the recognition principle for infinite loop spaces we may
regard Pic(R) as having an associated (connective) spectrum pic(R) = K (Pic(R)). Let I'g be the
algebraic Picard groupoid of R: the homotopy category of Pic(R), which is the 1-truncation of
Pic(R). If R is unambiguous, we drop it and simply write I". We will notationally distinguish
between an object v € I' and the associated invertible object RY € R.

PROPOSITION 5.4. The homotopy category of R is canonically enriched in the symmetric
monoidal category of I'-graded abelian groups.

Proof. Since R is stable, the set mo Map(M, N) of homotopy classes of maps from M to N admits
an abelian group structure which is natural in the variables M and N of R, and composition is
bilinear. The result then follows from Proposition 2.15, defining m, Map(M, N) by the rule

7y Map(M, N) := moMap(X7"M, N). O

If R is an Eoo-ring spectrum, then we will typically write Pic(R) in place of Pic(Modpg) and
I'r in place of I'niodp -

5.2 Brauer spectra

The results in this subsection and the next are essentially a summary of some of the results of
Toén [Toél12], in the differential-graded context, and Antieau and Gepner [AG14], in the spectral
context.

DEFINITION 5.5. Let R be a compactly generated commutative Sp-algebra. The Brauer
oco-groupoid Br(R) of R is the full subgroupoid Pic(Catx,) C Catg, of the underlying
oo-groupoid Catiw of Catg, consisting of the invertible R-linear categories which admit a
compact generator.

Remark 5.6. If C is a presentable oco-category, then € ~ Ind,(C") is the k-filtered colimit comple-
tion of the full subcategory €% C € on the k-compact objects for some sufficiently large cardinal
k. If kK can be taken to be countable, then C is said to be compactly generated, and if there
exists a compact object P € € such that € ~ Modgyq(p) as Sp-modules, then € is said to admit
a compact generator. Note that an Sp-module € admits a compact generator P if and only if the
smallest thick subcategory of C“ containing P is C“ itself, in which case C¥ ~ Modﬁnd( P)- Also
observe that there is a distinction between these objects (R-linear oco-categories with a compact
generator) and the compact objects in Catz.

1236

Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 16 Aug 2021 at 19:21:47, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007065


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007065
https://www.cambridge.org/core

BRAUER GROUPS AND (GALOIS COHOMOLOGY OF COMMUTATIVE RING SPECTRA

Because Br(R) is closed under the symmetric monoidal product on Catg, it is a grouplike
symmetric monoidal oo-groupoid, so we may associate to it a connective spectrum br(R).

PROPOSITION 5.7. Let R be a compactly generated stable symmetric monoidal oco-category.
Then there is a canonical equivalence Pic(R) — QBr(R), induced by a spectrum level map
pic(R) — Qbr(R) which is an equivalence on connective covers.

Proof. We first observe that Catg, is a symmetric monoidal oo-category in which the ten-
sor product is induced from the tensor product of (compactly generated) presentable stable
oo-categories [Lurl7, §4.8.1]. Furthermore, this symmetric monoidal structure is compatible with
the tensor product of associative algebra spectra; in particular, there is a canonical equivalence

Mod 4 ® Modp ~ Mod agp -

In particular, Br(R) ~ Pic(Catg,,) (and also Pic(R)) are grouplike symmetric monoidal Eq-
spaces.

Observe that if X is a grouplike Eo-space, regarded as an co-groupoid, then QX ~ Autx (%)
is the space of automorphisms of the distinguished object * of X. Moreover, 2.X is again a group-
like Eo-space, as limits of grouplike E..-spaces are computed in the oco-category of spaces. Hence
QPic(Mod%) ~ Autg(R) ~ Pic(R), where the last equivalence follows from the fact that invert-
ible R-module endomorphisms of R correspond to invertible objects of R under the equivalence
Endg(R) ~ R [Lurl?, 4.8.4]. The spectrum level equivalence pic(R) — Q bt(R) now follows from
the fact that pic(R) and br(R) are the connective spectra associated to the grouplike E-spaces
Pic(R) and Br(R), respectively. O

If R is an Eo-ring spectrum, we will typically write Brg for the co-groupoid Br(Modg).

5.3 Azumaya algebras
DEFINITION 5.8 ([AG14, 3.1.3], [BRS12], [Toél12]). Let R be an E-ring spectrum. An Azu-
maya R-algebra is an R-algebra A such that

e the underlying R-module of A is a compact generator of Modp, in the sense of [Lur09, 5.5.8.23],
and

e the ‘left-and-right’ multiplication map A ®pz A°® — Endgr(A), adjoint to the composite
multiplication map

(A@RAOP)(@RAKA@RA@RAOPiA,

is an R-algebra equivalence.

Remark 5.9. Informally, the ‘left-and-right’ multiplication map is the morphism which sends the
pair (ag,a;) to the endomorphism a — apaa;.

Remark 5.10. In [AG14, 3.15] it is shown that an R-algebra A is Azumaya if and only if the asso-
ciated compactly generated R-linear oo-category Mod, is invertible in the oo-category Catpg,
of all compactly generated R-linear oo-categories and R-linear functors which preserve compact
objects.

Remark 5.11. The notions of Azumaya algebra and Brauer group (of Morita equivalence classes
of Azumaya algebras) make sense more generally in any symmetric monoidal co-category C
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such that € admits geometric realizations of simplicial objects and the tensor product functor
®: € x € — C preserves realizations of simplicial objects in each variable. See [HL17, §2.2] for
details.

PROPOSITION 5.12. If A is an Azumaya R-algebra and R — R’ is a ring map, then A ®r R’ is
an Azumaya R’'-algebra.

We write Az for the full subcategory of Alg determined by pairs (R, A) such that A is
an Azumaya R-algebra. Because Azumaya algebras are stable under base-change, we have a
morphism of cocartesian fibrations

Az Alg

NS

Ring
over Ring.

PROPOSITION 5.13. Let A be an Azumaya R-algebra. Then the category of right A-modules
Mod4 is an invertible Mod g-module with inverse Mod gop.

Proof. We must show that Mod 4 ® Mod 4or ~ Modg, where the tensor is taken in the category
of left Modg-linear categories. Since Mod is symmetric monoidal [Lurl7, 4.8.5.16], we have
an equivalence Mod 4 ®nody, Mod gor ™~ Mod ag 400, and as ‘left-and-right’ multiplication A ® g
A% — Endg(A) is an equivalence of R-algebras we see that Mods ® Modacr =~ Modgyq,(4)-
Finally, because A is a compact generator of Modg, Morita theory gives an equivalence Modp ~
Modgnqy(a) [Lurl7, 8.1.2.1], and the result follows. O

Remark 5.14. We can instead show that the functor Mod itself is symmetric monoidal using the
results of [BGT14]. There it is shown that the category of stable co-categories is the symmetric
monoidal localization of the category of spectral co-categories, obtained by inverting the Morita
equivalences. In particular, regarding ring spectra A and B as one-object spectral oo-categories,
it follows that Mod 4 ®wmod, Modp ~ Mod gog 5. The relative tensors are computed as the geo-
metric realization of two-sided bar constructions B(A, R, B) and B(Mod 4, Modg, Modp) [Lurl?,
4.4.2.8]; the localization functor preserves geometric realization due to being a left adjoint.

PROPOSITION 5.15. The map of co-groupoids Azr — Brg is essentially surjective. Moreover, if
A and B are Azumaya algebras such that the images of A and B become equal in mgBrg, then
A and B are Morita equivalent.

Proof. Let R = Modpg and let J be an invertible object of Catg ,. Then J has a compact generator,
so J >~ Mod4 for some R-algebra A ([SS03], [Lurl7, 7.1.2.1]), and invertibility implies that A is
a compact generator of Modg. It follows that Endr(A) is Morita equivalent to R, and thus that
the R-algebra map A ®r A°®? — Endpr(A) is an equivalence. O

We remark that we can identify the homotopy types of the fibers of the various left fibrations
over Ring.
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PRroOPOSITION 5.16. Let R be an E-ring spectrum. Then

Modgz~ [  BAutg(M)
[M]emo Mod¥,

and

Azp ~ H BAU-tAlgR(A)-
[A]Eﬂ'o Azp

5.4 The conjugation action on endomorphisms
Let R be a symmetric monoidal presentable stable co-category with unit 1, which is therefore

enriched over itself (see [Lurl7, 4.2.1.33] or [GH15, 7.4.10]), and let M be an object of R. In this
section we analyze the fiber of the map

Autgg(M) — AUtAlgR (Endg(M)),

which roughly sends an automorphism « of M to the conjugation automorphism a~! o (=)o«
of the endomorphism algebra End(M). This map arises from the map Endg: R~ — Algg of
Corollary 4.13.

PROPOSITION 5.17. Let R be an E, ring spectrum, A an Azumaya R-algebra, and Modf’ denote
the oo-category of compact generators of Mod 4. Then there are canonical pullback diagrams of
oo-categories as follows.

Pic(R) — Mod} —— {Moda}

b

{A} AZR BI‘R

More generally, the fiber of Mod} — Algp over an R-algebra B is either empty or a principal
torsor for Pic(R).

Remark 5.18. Note that Modf;‘g should not be confused with the larger subcategory Mod% of
compact objects.

Proof. The pullback of the right-hand square is the oco-category of R-algebras equipped with
a Morita equivalence to Mod4. In [Lurl7, 4.8.4] it is shown that the category of functors
Mod 4 — Modp is equivalent to a category of bimodules, and so this pullback category of Morita
equivalences is equivalent to the co-category Modf;‘g of compact generators of Mod 4 via the map
M — Ends(M).

The pullback of the left-hand square is the oo-category of A-bimodules inducing Modg-
linear Morita self-equivalences of Mod4. These are, in particular, invertible bimodules over
A ®p A° ~ Endg(A), and Morita theory implies that the map I — I @ p A makes this equivalent
to Pic(R). O

Taking preimages of the unit component, we obtain the following corollary.
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COROLLARY 5.19. For an E..-ring R, there is a fiber sequence

II BAutr() - Il  BAutag,(4) — BPic(R),
[M]emo Mod [Alemo(AzR)triv

where the middle coproduct is over Azumaya R-algebras Morita equivalent to R.

In particular, this implies that the map Autr(M) — Autayg, (Endg(M)) factors through a
quotient by GLi(R).

COROLLARY 5.20 (cf. Corollary 2.26). For any Azumaya R-algebra A, there is a long exact
sequence of groups

- — mp GL1(R) — 7, GL1(A4) — 7, (Autalg, (A)) — -+
— T GLl(R) — T GLl(A) — WO(AUtAlgR(A)) — T PiC(R).

Moreover, the group my Pic(R) acts on the set of isomorphism classes of compact generators of
Mod 4. The quotient is the set of isomorphism classes of Azumaya algebras A Morita equivalent
to R, and the stabilizer of A is the image of the group of outer automorphisms of m,A as a
. R-algebra.

This long exact sequence generalizes the short exact sequences of Theorem 3.15 for I'-graded
algebraic Azumaya R-algebras.

6. Galois cohomology

6.1 Galois extensions

In this section we will review definitions of Galois extensions of ring spectra, due to Rognes
[Rog08]. Let R be an E.-ring spectrum and let G be an R-dualizable co-group: that is, G is
a grouplike A-space (equivalently, G ~ QX for some pointed connected oco-groupoid X) such
that the associated group ring spectrum R[G] := R ®s 3G is dualizable as an R-module.

DEFINITION 6.1. A Galois extension of R by G is a functor f: BG — Ringp/, sending the
basepoint to a commutative R-algebra S with G-action, such that

e the unit map R — S"¢ =lim f is an equivalence, and
e the map S ®r S — S ®r DrR[G] ~ DgS[G], induced by the action R[G] ®r S — S, is an
equivalence.

A G-Galois extension R — S is faithful if S is a faithful R-module.

We will usually just write f: R — S for the Galois extension without explicitly mentioning
the G-action. All of the Galois extensions that we consider in this paper will be assumed to be

faithful.
We have the following important result.

PROPOSITION 6.2 [Rog08, 6.2.1]. Let R — S be a G-Galois extension. Then the underlying
R-module of S is dualizable.
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In other words, S is a proper R-algebra in the sense of [Lurl7, 4.6.4.2]. Using this, Mathew
has deduced several important consequences.

PROPOSITION 6.3 [Mat16, 3.36]. Let R — S be a faithful G-Galois extension with G a finite
group. Then R — S admits descent in the sense of [Mat16, 3.17].

PROPOSITION 6.4. Let R — S be a faithful G-Galois extension with G a finite group, and M
an R-module. Then several properties of S-modules descend.

e A map M — N of R-modules is an equivalence if and only if S®r M — S ®r N is an
equivalence.

e M is a faithful R-module if and only if S ® g M is a faithful S-module.

e M is a perfect R-module if and only if S @ p M is a perfect S-module.

e M is an invertible R-module if and only if S ® p M is an invertible S-module.

Proof. The first statement is equivalent to the statement that N/M is trivial if and only if
S ®pr N/M 1is, which is the definition of faithfulness. The second statement follows from the
tensor associativity equivalence N ®g (S ®@p M)~ N ®pg M. The third statement is [Mat16,
3.27] and the fourth is [Mat16, 3.29]. O

Associated to a commutative R-algebra S, there is the associated Amitsur complex, a
cosimplicial commutative R-algebra:

5% .= (S 90r S BSOrS®RS S - ).

In degree n this is the (n + 1)-fold tensor power of S over R. More explicitly, the Amitsur complex
is the left Kan extension of the map {[0]} — Ringp, classifying S along the inclusion {[0]} — A.
Composing with the functor Mod: CAlg — Cat.,, we obtain a cosimplicial R-linear oo-category

Modgge := {MOdS = MOdS®RS 3 MOdS®RS®RS § },

a categorification of the Amitsur complex.

PROPOSITION 6.5 (cf. [Lurllb, 6.15, 6.18], [Mat16, 3.21]). Suppose S is a proper commutative
R-algebra and A is an R-algebra. Then the natural map

0: Moda — lim Modgee)s 4
has fully faithful left and right adjoints. If S is faithful as an R-module, then 6 is an equivalence.

Proof. We will prove this result by verifying the two criteria of [Lurl7, 4.7.5.3] (a consequence
of the oo-categorical Barr-Beck theorem) for both this cosimplicial diagram of categories and
the corresponding diagram of opposite categories.

The first criterion asks that colimits of simplicial objects exist in Mod and that the
extension-of-scalars functor S ®g (—): Moda — Modgeeg, 4 preserve them. However, both cat-
egories are cocomplete and the given functor is left adjoint to the forgetful functor, hence
preserves all colimits. The same condition on the opposite category asks that S ®p (—) pre-
serve totalizations of certain cosimplicial objects, but since S is R-dualizable there is a natural

1241

Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 16 Aug 2021 at 19:21:47, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007065


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007065
https://www.cambridge.org/core

D. GEPNER AND T. LAWSON

equivalence
S®pr M ~ Fr(DgrS, M).
This equivalent functor has a left adjoint, given by N +— DgrS ®g M, and so preserves all limits.
The second criterion is a ‘Beck—Chevalley’ condition, as follows. For any a: [m] — [n] in A,
consider the following induced diagram of oco-categories.

dO
MOdS®Rm®RA —_— MOdS®R(1+m)®RA

| |

d0
MOdS®R”®RA e MOdS®R(1+n)®RA

Then we ask that these diagrams are left adjointable and right adjointable [Lurl7, 4.7.5.13]: that
the horizontal arrows admit left and right adjoints, and that the resulting natural transformation
between the composites is an equivalence. In our case, this diagram is generically of the following
form.

Modgp —— MOdS®RB

| |

Modg —— MOdS®RB/

Here the horizontal arrows are extensions of scalars to S, while the vertical arrows are exten-
sions of scalars induced by a map of R-algebras B — B’. The natural transformation between
composed left adjoints is the natural equivalence

(DrS ®s M) ®p B' — DrS ®s (M ®@p B’),
and the one between composed right adjoints is the natural equivalence
N ®sgp (S ®r B') — N @p B,

verifying the Beck—Chevalley condition and its opposite.

Therefore, the map from Mod 4 to the limit category has fully faithful left and right adjoints.
If S is faithful, then the functor Mod4 — Modgg 4 is conservative and [Lurl?7, 4.7.5.3] addition-
ally verifies that Mod 4 is equivalent to the limit, making Mod4 monadic and comonadic over
ModsgpA- O

Remark 6.6. This construction has a stricter lift. If we lift R and S to strictly commutative ring
objects in a model category and G is an honest group acting on .S, the operation of tensoring
with the right R-module S implements a left Quillen functor between the category of R-modules
and the category of modules over the twisted group algebra S(G) ~ Endg(S).

6.2 Group actions

Let G be a finite group. In what follows we will write BG for the Kan complex whose set of
n-simplices is given by the formula Hom (A", BG) = G™, with face and degeneracy maps induced
from the multiplication and unit of the group G, as usual. Notice that BG has a unique vertex
i: A" — BG. For an oo-category €, the category of G-objects in € is the functor category
€BY = Fun(BG, C). Evaluation at the basepoint determines a functor i*: €8¢ — €.
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If € is complete and cocomplete, the functor i* admits left and right adjoints iy : € — G and
iy : @ — CBG respectively, given by left and right Kan extension. These are naturally described
by the colimit and limit of the constant diagram on G with value X, or equivalently the tensor
and cotensor of X with G:

WX~GoX, i.X~XC

PROPOSITION 6.7. If @ is complete and cocomplete, the forgetful functor i* : B¢ — @ exhibits
@BE as being monadic and comonadic over € in the sense of [Lurl7, 4.7.4.4].

Suppose G is equivalent to a finite discrete group and let p: € — D be a functor between
complete and cocomplete oo-categories which preserves finite products, with induced map
pe: CBG — DBG If TC¢ and TP are the induced comonads on € and D, then the resulting
natural transformation p o T® — TP o p between comonads is an equivalence.

Proof. For the first statement it suffices, by [Lurl7, 4.7.4.5] and its dual, to observe that i* is
conservative and preserves all limits and colimits, being both a left and right adjoint.

For the second statement, the natural map is provided by the adjunction in the form of a
composite

DR DD % 771 (=) B
PVl =0 Pile — T Uxl Paly =0 04DV by —— T 14P-

For X € @, this takes the form of the limit natural transformation
p(X) — p(X)“,
which is an equivalence by assumption. [l

COROLLARY 6.8. If G is a finite group, then associated to a (G-equivariant commutative
R-algebra spectrum S there is a cosimplicial commutative R-algebra

T*(S) = {i"S 2 T(*S) ST(T(*9) = -}
induced by the comonad T which computes the homotopy fixed points
Sthlim{Sst = gGxa % }
as the limit in the co-category Ringp, ~ CAlgp.

Given a G-equivariant commutative R-algebra spectrum S € (Ringp /)BG as above, we obtain

G-equivariant oo-categories Modg and Catg, where the action is induced from the composition
G — Autr(S) — Autpmod,(Mods) — Autcat, (Catg),

given successive application of Mod functor. This is meaningful as R — S and Modr — Modg
are morphisms of commutative algebra objects in spectra and Prl, respectively.

COROLLARY 6.9. If G is a finite group, then associated to a G-equivariant commutative
R-algebra spectrum S there is a cosimplicial object

T*(Mods) = {i* Mods = T(i* Modg) = T(T(i* Modg)) = -+ - }
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of Catp induced by the comonad T which computes the homotopy fixed points
Mod¢ ~ lim{ Modg = Mod§ = Mod$*¢ = ...}
as the limit (in the oo-category Catp).

COROLLARY 6.10. If G is a finite group, then associated to a (G-equivariant commutative
R-algebra spectrum S € (Ringp /)BG, there is a cosimplicial object

T*(Cats) = {i* Catg = T(i* Catg) = T(T(i* Cats)) = --- }
in Cat’, induced by the comonad T which computes the homotopy fixed points
CatgG ~ lim{ Catg = Catg = CathG % }

as the limit (in the oco-category Catl, ).

6.3 Descent
PROPOSITION 6.11. For a Galois extension R — S, there is a natural equivalence of cosimpli-

cial R-algebras between the Amitsur complex S®E® and the fixed-point construction T*(S) of
Corollary 6.8.

Proof. The universal property of the left Kan extension implies that the identity map S ~ T%(.5)
extends to a map of cosimplicial objects S®* — T*(.S), unique up to contractible choice. It suffices
to verify that this induces equivalences S®E(+t1) — §G" " which follows by induction from the
case n = 1. ]

COROLLARY 6.12. For a Galois extension R — S, there is a natural equivalence of cosimplicial
R-linear oo-categories Modgee and the fixed-point construction T®(Modg) of Corollary 6.9.

COROLLARY 6.13. For a Galois extension R — S, there is a natural equivalence of cosimplicial
oo-categories Catgz e and the fixed-point construction T®(Catg) of Corollary 6.10.

We now specialize Corollary 6.9 to the case in which R — S is a faithful Galois extension
of R by a stably dualizable group G. Write f: BG — Ringp, for the functor classifying S as a
G-equivariant commutative R-algebra, so that S ~ f(x) and R ~ lim f. By Corollary 6.12, we
have equivalent descriptions

lim{Modgee } ~ (Modg)"® ~ lim Mod

for the ‘fixed points’ of the co-category Mod ¢, the oo-category of G-semilinear S-modules. Lastly,
we write N"@ for the limit of a G-semilinear S-module N, and view it as an R ~ S"“-module.

THEOREM 6.14. Let R — S be a faithful G-Galois extension with G finite, and A € Algg. Then
the canonical map

Mod s — (Modgg,a)"®

is an equivalence of co-categories.
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Proof. Tensoring the equivalence of Proposition 6.11 with A, we obtain maps of cosimplicial
objects

(S®*)@r A = T*(S) @ A — T*(A).
The natural map T(X) ®g Y — T(X ®g Y) is equivalent to the map X% ®@rY — (X @g Y)Y
and is therefore an equivalence, because both sides are a |G|-fold coproduct of copies of X @ Y.

Since S is faithful and dualizable as an R-module, Proposition 6.5 shows that there is an
equivalence

MOdA ~ llm(MOdS®R®RA)
The equivalence of cosimplicial rings shows that this extends to an equivalence

Mod 4 =~ lim Modre 4 ~ (Modgg,,4)". O

COROLLARY 6.15. Let R — S be a faithful G-Galois extension with GG finite, associated to a
functor f: BG — Ringp/, and consider the following diagram.

Mod
Sf )
BG —— Ring

Then the map
MOdR — Fun/ Ring (BG, MOd),

which sends the R-module M to the G-Galois module S @r M, is an equivalence.

Proof. The oco-category of sections from BG to the pullback of Mod — Ring is equivalent to the
limit of the functor Mody: BG — Catl, it classifies [Lur09, 3.3.3.2], which in turn is equivalent
to Modg by Theorem 6.14. ]

LEMMA 6.16. For an co-operad O, the oco-category of O-monoidal co-categories has limits which
are computed in Caty.

Proof. In [Lurl7, 2.4.2.6] it is shown that there is an equivalence between O-monoidal
oo-categories and O-algebra objects in Caty, and so [Lurl7, 3.2.2.1] shows that limits of the
underlying oo-categories lift uniquely to limits of O-monoidal oco-categories. The same proof
applies within the category of large oco-categories. O

COROLLARY 6.17. Let f: I — Catgo be a diagram of O-monoidal co-categories and O-monoidal
functors. Then the canonical map

Algo(lim f) — lim(Alg o f)

is an equivalence.

Proof. The oco-category Alg/o(e®) of O-algebra objects in an O-monoidal co-category p: C% —
0% is the oo-category of functors Fun g (0%, €%), and Fun ge (09, —): Cat, — Cats evi-
dently preserves limits in the target. O
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PROPOSITION 6.18. Let R — S be the G-Galois extension associated to a functor f: BG —
Ringp,, and consider the following diagram.

Alg

f
BG —— Ring

Then the map Algp — Fun/gin, (BG, Alg), which sends the R-algebra A to the G-equivariant
S-algebra S ® g A, is an equivalence.

Proof. This follows from the corresponding statement for modules, by noting that f is comes from
a diagram BG — CAlg(Cato,) of symmetric monoidal oo-categories and symmetric monoidal
functors, together with Corollary 6.17. g

We now consider the diagram of oco-categories

Pic — Mod®® — Az — Br

oS

BGT Ring

where the bottom map describes R as the limit of the G-action on S. For each of the vertical
maps we may take spaces of sections over the cone point or over B(G, recovering fixed-point
objects for the action of G on Picg, Modgg, Azg, and Brg, respectively.

6.4 Monogenic linear co-categories

We now consider the question of Galois descent for linear co-categories. Since faithful G-Galois
extensions of commutative ring spectra are examples of universal descent morphisms in the sense
of [Mat16, 3.18] and [Lurl8, D.3.1.1], we have the following foundational result of Mathew and
Lurie.

THEOREM 6.19 [Lurl8, D.3.6.2]. The functor Ring — C/Ja\too, which on objects sends the com-
mutative ring R to Catrp and on morphisms is given by base-change, is a sheaf with respect to
the universal descent topology. In particular, if f : R — S is a faithful G-Galois extension, then
the augmented cosimplicial co-category

Catgp — Catg = Catsg,s = -
is a limit diagram.
COROLLARY 6.20. There is a canonical equivalence Catg ~ lim T*(Catg).
Proof. Using Corollary 6.13, this is immediate from the above theorem. O

To ease the notation somewhat, we will sometimes write Cat}}g in place of Catg, for the
oo-category of Modz-module objects of Prl. Equivalently, these are the compactly generated R-
linear co-categories, and morphisms are those R-linear colimit-preserving functors which preserve
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compact objects. We will be especially interested in the monogenic case; that is, the case in which
the R-linear oo-category C is of the form Mod 4 for some R-algebra A.

PropoOSITION 6.21. Let R be a commutative ring spectrum. Then Cat(;%g is a symmetric monoidal
presentable oo-category. Moreover, if A is an associative R-algebra spectrum, then Mod,4 is a
dualizable object of Modp if and only if A is smooth and proper over R, in which case Mod gop
is dual to Mod 4 in Catp.

PROPOSITION 6.22. Let f : R — S be a faithful G-Galois extension. Then Modg is a dualizable
object of CatS.

Proof. Since S is a proper R-algebra, it suffices to show that S is a smooth R-algebra
[AG14, §3.2]. Using the Galois condition, we see that S ®@p S ~ ngG S splits as a product as
S-bimodules, so that S is a retract of the compact S-bimodule S ® g S. Hence S itself is compact
as an S-bimodule. O

DEFINITION 6.23. Let R be a commutative ring spectrum. The oo-category Catzlg - Cat%g of
monogenic R-linear co-categories is defined to be the full subcategory of Cat‘jég consisting of those
compactly generated R-linear co-categories which admit a compact generator.

Remark 6.24. By definition, any object € of Cat(j%g is in particular a compactly generated
oo-category, meaning that C admits a set of compact generators. However, C lies in the full
subcategory Catp® C Cat}¥ if and only if this set can be taken to be finite, in which case the
coproduct of these objects is again compact and a generator.

Using the Morita theory of Schwede and Shipley [SS03], an object € of Cat} lies in the full
subcategory Cat?g if and only if € ~ LMod 4 for some R-algebra spectrum A. That is, the full
subcategory Catrlgg C Cat(j%g is the essential image of the functor Algp — Cat(;{g which associates
to the R-algebra A the R-linear oco-category of LMody of left A-module spectra, and to a
morphism A — B of R-algebras the base-change functor f* : LMod4 — LModpg. This morphism
lies in the oo-category Cat}y; indeed, f*M ~ B ®4 M is a compact left B-module whenever M
is a compact left A-module.

LEMMA 6.25. Let f: R— S be a faithful G-Galois extension and let C be an R-linear
oo-category. Then C admits a compact generator if and only if

Modg ®MOdRG ~ Modg(C)

admits a compact generator.

Proof. This is essentially the same argument as in [AG14, 6.15]. Clearly, if € admits a compact
generator P, then f*P ~ P ®pr S is a compact generator of Modg(C), so suppose that Modg(C)
admits a compact generator @). Since S is compact (equivalently, dualizable) as an R-module,
the forgetful functor f. : Modg — Modp admits a right adjoint f' : Modgr — Modg, given by the
formula

(M) ~ Fr(S, M).

Again by compactness, f' preserves colimits; equivalently, f. : Modg — Modp preserves compact
objects. Hence the forgetful functor f, : Modg(€) — € admits a right adjoint, namely the functor
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obtained by tensoring € with f': Modr — Modg, which we will also denote f'. Consequently,
f« : Modg(€) — € preserves compact objects; in particular, f.(Q) is a compact object of C.

We claim that f,(Q) is in fact a generator of €. To see this, suppose that Fr(f.(Q), M) ~ 0.
It follows by adjunction that F(Q, f'(M)) ~ 0, and therefore that f'(M) ~ 0, as Q was chosen
to be a compact generator of Modg(C). But f, : Modg(C) — € is conservative, and f, f'(M) ~
DgrS ®pr M, which is also conservative since S (and hence DgS as well) is a faithful R-module.
It follows that f': € — Modg(C) is conservative, and consequently that M ~ 0. Therefore f.(Q)
is a compact generator of C. U

In order to establish Galois descent for the Brauer space, we will show more generally that
the functor Cat]én_g) : Ring — Cat,, satisfies Galois descent, and then restrict to the invertible
objects.

LEMMA 6.26. Let f: R — S be a faithful G-Galois extension. Then the induced functors f* :
Catr — Catg and f* : Caty® — Catg® are conservative.

Proof. This follows immediately from the fact that Catg is comonadic over Catgr, as f is a
universal descent morphism [Lurl§]. O

PROPOSITION 6.27. Let f: R — S be a morphism of commutative ring spectra. Then the free
S-linear co-category functor

F = (—) ®Mody Modg: Catp — Catg

preserves compactly generated (respectively, monogenic) linear oo-categories and compact-
object-preserving morphisms. If additionally S is a compact as an R-module, then the right
adjoint U : Catg — Catr of F also preserves compactly generated (respectively, monogenic)
linear co-categories and compact-object-preserving morphisms.

THEOREM 6.28. Let f: R — S be a faithful G-Galois extension. Then the canonical map
Cat¥ — (Cat)"“ is an equivalence of co-categories.

Proof. We verify the two criteria of [Lurl7, 4.7.5.3]. As a presentable oco-category, col-
imits of simplicial objects exist in Cat}¥, and the extension-of-scalars functor f* ~
Modg ®modp(—): Caty — Caty preserves them. For the Beck-Chevalley condition, given a
map «: [m] — [n] in A, the fact that the induced diagram of oo-categories

dO
cg cg
CatS®Rm — CatS®R<1+m)

L,

d
Catg%Rn - Catg%R(Hn)
is left adjointable follows from the fact that the left adjoint of the horizontal arrows exist because,
according to Proposition 6.22, Modg is a dualizable object of Cat%g with dual Dyiod, Modg (self-
dual, actually, but we do not need this here). It follows that the functor from Catg to the limit

of the simplicial co-category n Cat‘é%ml . has a fully faithful left adjoint. Since S is faithful,
the functor Catj¥ — Catg is conservative, so that Cat} is equivalent to the limit. O
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THEOREM 6.29. Let f: R — S be a faithful G-Galois extension. Then the resulting augmented
cosimplicial co-category

Catpp® —— Caty® —x Catgl ¢ —= -
is a limit diagram.
Proof. Consider the morphism of augmented cosimplicial co-categories

CatR — Cat me H CatS®RS —_

L

Catfy — Cat$ —= Caty, ¢ —= -

in which the vertical maps are inclusions of full subcategories. By Theorem 6.28, the bottom row
of the diagram is a limit cone, and the limit of a diagram of inclusions of full subcategories is
again a full subcategory. Hence the canonical functor
Catp® — lim Cat5®,

is fully faithful, so it remains to show that it is essentially surjective. An object of lim Cat'ss g&e 18
a compatible family of monogenic S®*-linear co-categories, which we may view as an R-linear
oo-category € by virtue of the fully faithful inclusion lim Cat?é. — Cat%?. But f*C e Catfqg lies
in the full subcategory Cat Sg C Cat , so by Lemma 6.25, C admits a compact generator as
well. O

ProprosITION 6.30. Let € be a monogenic R-linear oo-category and f: R — S a faithful
G-Galois extension. Then C is invertible as an object of Cat® if and only if Modg(C) is invertible
as an object of Catglg.

Proof. Each of the functors in the augmented cosimplicial diagram in the statement of
Theorem 6.29 above is symmetric monoidal. It follows from Lemma 6.16 that Catp® is the
limit of Catrsng. as symmetric monoidal co-categories. Moreover, passage to spaces of invertible
objects is a corepresentable functor, so it commutes with limits. Now let € be a monogenic
R-linear oco-category. Clearly if € is invertible then Modg(€) is invertible, so suppose that
Modg(€) is invertible in Catg®. Then for each map [0] — [n] in A, Modgsn+1(€) is invertible in
Cat'ys, .1 It follows that Modges (€) is an object of Pic(Catigs, ), so, taking the limit, we deduce
that € lies in Pic(Catp®). O

THEOREM 6.31. Let R — S be a faithful G-Galois extension with G finite. There is a
commutative diagram of symmetric monoidal co-categories

PiCR 1\/10(31}:;'r AZR BrR Catl;%lg

| | L |

(PHCS)hG s (hdod?%hc 4449-(AZS)hG 4449-(Brs)hG 4449_(Camg%)hG

in which all five vertical arrows are equivalences.
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Proof. We already have equivalences Modg ~ (Modg)"® and Algp ~ (Alge)"“, so for the left
three arrows it suffices to identify the essential images of the oco-categories Picg, Mod(j{g, and
Azpg of invertible modules, compact generators, and Azumaya algebras.

Proposition 6.4 implies that the property of being invertible descends, as do subcategories
of equivalences, so that the essential image of Picg is the subcategory (Picg)" of (Modg)"C.
Similarly, Proposition 6.4 implies that the properties of being dualizable and faithful descend, and
that for a dualizable R-algebra A the map A ®p A°® — Endr(A) ~ DrA ®pr A is an equivalence
if and only if the same is true for the S-algebra S ®pr A. Therefore, the essential image of Azp
is the subcategory (Azg)"“ of (Algg)"C.

Compact generators are taken to compact generators, and so the second vertical arrow is
defined. Further, if M is an R-module whose image in Modg is a compact generator, then M is
compact and Endr(M) is an R-algebra whose image Endg(S ®r M) is an Azumaya S-algebra,
as already shown. Therefore Endg(M) is an Azumaya R-algebra, implying that M is a generator.

Finally, the fact that the right-hand vertical map is an equivalence is precisely the con-
tent of Theorem 6.29, and the equivalence Brp ~ BrgG follows from Proposition 6.30 as
Brp ~ Pic(Catp®). O

In particular, this gives a descent criterion for Morita equivalence.

COROLLARY 6.32. The group my(B Pich) has, as a subgroup, the group of Morita equivalence
classes of R-algebras A such that there exist an S-module M and an equivalence of S-algebras
S®rA~Endg(M).

Proof. The oco-category of such R-algebras is the preimage of the component of Modg in Catg,
and all such algebras are Azumaya R-algebras by the previous result; this component is B Picg
by Proposition 5.17. The maximal subgroupoid in Catp spanned by objects in this preimage
is therefore equivalent to (B Picg)"“, as taking maximal subgroupoids preserves all limits and
colimits. ]

6.5 Spectral sequence tools
For an object X in an oo-category C, we write B Aute(X) for the subgroupoid of €~ spanned
by objects equivalent to X and Aute(X) for the space of self-equivalences.

DEFINITION 6.33. Let G be a group and f: BG — Caty a functor classifying the action of G
on an oo-category C. Write Cr, — BG for the associated fibration (the colimit) and €"“ for the
limit.

Restricting gives us a Kan fibration (Cxg)~ — BG of Kan complexes whose space of sections
is (CPS)™ [Lur09, 3.3.3.2]. The descent diagram in Theorem 6.31 will now allow us to carry out
computations using the Bousfield-Kan spectral sequence for spaces of sections. In our cases of
interest there will be obstruction groups that are annihilated by late differentials, and so we need
to use the more sophisticated obstruction theory due to Bousfield [Bou89]. We will review this
obstruction theory now.

For a cosimplicial object D®: A — Caty, the limits

Tot™(D) = lim Dk
SIAVS)

1250

Downloaded from https://www.cambridge.org/core. Purdue University Libraries, on 16 Aug 2021 at 19:21:47, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X21007065


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X21007065
https://www.cambridge.org/core

BRAUER GROUPS AND (GALOIS COHOMOLOGY OF COMMUTATIVE RING SPECTRA

give a tower of co-categories whose limit is the limit of D°.

PROPOSITION 6.34. Let f: Cpg — BG be a Kan fibration classifying the action of G on a Kan
complex C, viewed as an co-groupoid. Then there is a tower

. — Tot? — Tot! — Tot? = €

of Kan fibrations whose limit is C"“. Given an object X € @, there is an obstruction theory for
existence and uniqueness of lifts of X to an object of @"¢, natural in X and C.

1. An object X € C is in the essential image of Tot! if and only if the equivalence class [X] €
moC is fixed by the action of the group G. Equivalently, this is true if and only if the map

™0 Aut@hG(X) — T Auth(*) =G

is surjective.
2. Given an object X € C with a lift Y € Tot!, consider the surjection of groups

™0 AutehG(X) — G

as above. The obstruction to X being in the essential image of Tot? is whether this map
of groups splits, and the obstruction to uniqueness of lift to Tot? is parametrized by the
choice of splitting.

3. [Bou89, 2.4] If X lifts to'Y € Tot™ for n > 2, we have a fringed spectral sequence (starting
at Fy) with Es-term

H?*(G;m(B Aute X)),

defined for t > 1 or for 0 < s <t < 1. Further pages Ef’t only exist for 2r — 2 < n, and the
E,-page depends on a choice of lift of X to Tot"~!. For r > 2 the E,-page is defined on the
region

{(s,¢) | s>0,t—s >0 U{(s,t) | s >0,t —r>"=2(s—1)}.

4. [Bou89, 5.2] If r > 1 and Y is a lift of X to Tot” which admits a further lift to Tot*", then
there is an obstruction class

2r+1,2r
O2r+1 € B,

which is zero if and only if Y can be lifted to Tot?"*1,

5. [Bou89, 5.2] If r > 2 and Y is a lift of X to Tot” which admits a further lift to Tot* !,
then there is an obstruction class

2r,2r—1
(927~ € ETT T

which is zero if and only if Y can be lifted to Tot>".

6. If Y € @G, the above spectral sequences converge (in the region t—s>0) to
Ti—s(B Autenc Y).

7. If € ~ QD for a Kan complex D with compatible G-action, the spectral sequences for € and
D are compatible. In particular, if the map BG — Sp representing the G-action on € lifts to
a functor from BG to the category of E..-spaces, we can construct an associated K-theory
spectrum K (C) such that the spectral sequence above extends to the homotopy fixed-point
spectral sequence for the action of G on K(C).
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Remark 6.35. The beginning of the obstruction theory may be described as follows. In order for
X to lift to the limit G, a lift to Tot! is determined by choosing equivalences ¢g: 9IX — X for
all g € G. A lift to Tot? is then determined by witnesses for the cocycle condition, in the form
of homotopies from ¢g1, to ¢g 0 9(dp).

Remark 6.36. The user (particularly if they are used to stable work) may benefit from being
explicitly reminded of some of the dangers of the ‘fringe effect’. While the splittings in the
second obstruction can be parametrized by H'(G;mo Aute(X)), this does not occur until an
initial splitting is chosen (indeed, otherwise the action of G on 7, Aute(X) is not even defined).
The structure of the spectral sequence, at arbitrarily large pages, may also depend strongly on
the choices of lift Y.

Because we will be interested in understanding different lifts, it will be useful to be more
systematic about the obstructions to this.

DEFINITION 6.37. For an oo-category C and objects X and Y in C, we write Equive(X,Y) for
the full subcomplex of Mape(X,Y') spanned by the equivalences.

PROPOSITION 6.38. The space Equive(X,Y) is a Kan complex, and composition of functions
gives a left action of the group Aute(Y') on Equive(X,Y). If Equive(X,Y) is nonempty, any
choice of point f € Equive(X,Y') produces an equivalence f*: Aute(Y) — Equive(X,Y).

PROPOSITION 6.39. Let G be a group acting on an oco-category C, let p: C"¢ — € be the limit,
and suppose X and Y are objects in €"“. Then the map

Equivera (X,Y) — Equive(p(X), p(Y))"¢.
is an equivalence of Kan complexes.

Proof. The fixed-point construction, as a limit, commutes with taking maximal subgroupoids,
mapping objects, and pullbacks. ]

We may therefore apply the tower of Tot-objects to both Aute(Y) and Equive(X,Y) to
obtain the following result.

PROPOSITION 6.40. Let f: Cpg — BG be a Kan fibration classifying the action of G on a Kan
complex C, p: C"¢ — @ the limit, and X and Y objects in ChC.

1. There are towers of Kan fibrations:

- — Aut}(Y) — Aut’(Y) — Aut®(Y) = Aute(p(Y)),
- — Bquiv?(X,Y) — Equivl(X,Y) — Equiv’(X,Y) = Equive(p(X), p(Y)).

The limits are Autene (YY) and Equivene (X, YY), respectively.

2. The spaces Aut"(Y) are oo-groups which act on the spaces Equiv™(X,Y).

3. If Equiv"(X,Y") is nonempty, any choice of point produces an equivalence of partial towers
Aut="(Y) — Equiv="(X,Y).
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4. [Bou89, 5.2] If Equiv™(X,Y) is nonempty, there is an obstruction class
9n+1 c E;L—I-l,n—i-l

in the spectral sequence calculating 7. B Autenc (Y'), defined for 2r < n + 1, which is zero if
and only if Equiv"™(X,Y") is nonempty.

7. Calculations

7.1 Algebraic Brauer groups of even-periodic ring spectra
In this section we assume that E is an even-periodic E,-ring spectrum; that is, there is a unit
in moF/, and m E is trivial.

We can describe specific Azumaya algebras for these groups using Theorem 3.15 and the
algebras described in the proof of [Sma71, 7.10].

Ezample 7.1. Let u € moFE be a unit and mgFE — R a quadratic Galois extension with Galois
automorphism o. There is an Azumaya EF-algebra whose coefficient ring is the graded quaternion
algebra

R(S)/(S* —u,Sr —7rS),

where S is in degree 1 and R is concentrated in degree zero.

Ezample 7.2. Suppose 2 is a unit in moE and v € moF' is a unit. There is an Azumaya F-algebra
whose coefficient ring is (perhaps unexpectedly) the 1-periodic graded ring

(meB)[z]/(@* —u) = (nE)[a™],

which is of rank 2 over m,E. If A and B are two such algebras determined by units u and v,
then A Ag B is equivalent to a quaternion algebra from Example 7.1 determined by the unit
u € m(E) and the quadratic Galois extension mo(E) — 7o(E)[y]/(y? + uv™1).

If F is even-periodic and we fix a unit u € mo F, the category of E-modules has Z/2-graded
homotopy groups in the classical sense. Therefore, the set of Morita equivalence classes of
algebraic Azumaya algebras over F is the same as the set of Morita equivalence classes of
Z]2-graded Azumaya algebras over my(E): the Brauer—Wall group BW(mE). This Z/2-graded
Brauer group of a commutative ring has been largely determined (generalizing work of Wall over
a field [Wal64]). In order to state the result, we will need to recall the definition of the group of
Z/2-graded quadratic extensions of a ring R.

DEFINITION 7.3. Suppose R is a commutative ring, viewed as Z/2-graded and concentrated
in degree 0. Then @Q2(R) is the set of isomorphism classes of quadratic graded R-algebras:
Z/2-graded R-algebras whose underlying ungraded R-algebra is commutative, separable, and
projective of rank 2.

In the ungraded case the corresponding set is identified with the étale cohomology group
H},(Spec(R),Z/2); similarly, Q2(R) admits a natural group structure in which the product of
two quadratic graded R-algebras L and M consists of the subset of elements of the graded ten-
sor product L ® g M fixed under the action of the tensor product ¢ ®g 7 of uniquely defined
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order-2 automorphisms o: L — L and 7: M — M with L =R and M"™ = R (see [SmaTl,
Proposition 7.3 and Theorem 7.5] for details).

If Spec(R) is connected, then there are two possible types of element in Q2(R). In a quadratic
graded R-algebra L = (Lg, L1), either L; has rank 0 and we have an ungraded quadratic extension
R — Ly, or Ly has rank 1 and L is of the form (R, L) for some rank-1 projective R-module L.
In the latter case, the multiplication map Iy ® g L1 — R must be an isomorphism. Carrying this
analysis further yields the following result.

PROPOSITION 7.4. When Spec(R) is connected, there is a short exact sequence
0 — Hey(R,Z/2) — Q2(R) — Z/2.

Here the étale cohomology group HY(R,7/2) parametrizes ungraded Z/2-Galois extensions of
R, and the map Q2(R) — Z/2 sends a Z/2-graded quadratic R-algebra (Lo, L1) to the rank
of Ly. The image of Q2(R) in Z/2 is nontrivial if and only if 2 is a unit in R.

THEOREM 7.5 [SmaT7l]. Suppose that R possesses no idempotents. Then the Brauer—Wall group
BW(R) is contained in a short exact sequence

0 — Br(R) — BW(R) — Q2(R) — 0,
where the subgroup is generated by Azumaya algebras concentrated in even degree.

COROLLARY 7.6. Suppose that E is even-periodic and that moE possesses no idempotents. Then
the subgroup of the Brauer group of E generated by algebraic Azumaya algebras is contained in
a short exact sequence

0 — Br(moE) — m Br(E)*8 — Qq(moE) — 0,

where the subgroup is generated by algebraic Azumaya algebras with homotopy concentrated
in even degrees. In Q2(moE), the elements of HY(moE,7Z/2) detect the algebras of Example 7.1,
while the map to Z/2 detects any of the ‘half-quaternion’ algebras of Example 7.2.

Ezxample 7.7. In the case where E is the complex K-theory spectrum KU, with coefficient
ring Z[3*!], the relevant Brauer-Wall group BW(Z) is trivial (this follows from the exact
sequence 0 — Br(Z) — BW(Z) — Q2(Z) — 0 and the classical facts that Br(Z) = 0 and Q2(Z) =
HL(Z,7,/2) = 0 as 2 is not a unit in Z) and all Z/2-graded algebraic Azumaya algebras are Morita
equivalent. Therefore, there are no Z-graded algebraic Azumaya algebras over KU other than
those of the form Endgy (M) for M a coproduct of suspensions of KU.

Ezample 7.8. Suppose that mFE is a Henselian local ring with residue field k. Then exten-
sion of scalars determines isomorphisms H)(moE,Z/2) — HY(k,Z/2) and Br(moE) — Br(k)
([Azu51, 5], [Gro68, 6.1]), and hence an isomorphism BW (7o E) — BW (k). If k is finite (for exam-
ple, when E is a Lubin—Tate spectrum associated to a formal group law over a finite field) the
group Br(k) is trivial and the Galois cohomology group is Z/2, so we find that the Brauer—Wall
group of k is Z/2 if k has characteristic 2 and is of order 4 if k has odd characteristic. The
algebraic Z/2-graded Azumaya E-algebras are generated (up to Morita equivalence) by those of
Examples 7.1 and 7.2.
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Ezample 7.9. If we form the localized ring KU[1/2], we may use global class field theory to
analyze the result. The ordinary Brauer group is Z/2, generated by the Hamilton quaternions over
Z[1/2], and this algebra lifts to an Azumaya algebra as originally shown in [BRS12, 6.3]. The étale
cohomology group is Z/2 x 7 /2, with nonzero elements corresponding to the quadratic extensions
obtained by adjoining i, v/2, or v/—2. Finally, KU[1/2] also has Azumaya algebras given by its
1-periodifications, generating the quotient Z/2 of the Brauer—Wall group BW(Z[1/2]). The full
group has order 16, and one can show that it is isomorphic to Z/8 x Z/2. These can be given
specific generators: the Z/8-factor is generated by an algebra with coefficient ring Z[Bi(l/ 21 /2]
as an algebra over KU,, while the Z/2-factor is generated by an algebra with coefficient ring

KU.[V2,1/2)(8)/(S* - B,5V2 + V25).

Remark 7.10. The short exact sequence of Theorem 7.5 is generalized in [CGO73, §4] for many
more groups, and by applying their results one can compute the Brauer—Wall group classifying
algebraic Azumaya algebras for an overwhelming abundance of examples. For the 4-periodic
localization KO[1/2] we may show that the Brauer—Wall group has 16 elements, combining the
order-2 Brauer group of Z[1/2] with the order-8 collection of Galois extensions of Z[1/2] with
cyclic Galois group of order 4. For the p-complete Adams summand L, at an odd prime p, the
Brauer—Wall group has p — 1 elements if p =1 mod 4 and 2(p — 1) elements if p = 3 mod 4. By
contrast, p-local spectra such as Ky, KO, or L, tend to have much larger Brauer groups
because Z ) and its finite extensions have infinite Brauer groups.

7.2 Homotopy fixed-points of Pic(KU)

In this section we study the Galois extension KO — KU. Most of the structure of the homo-
topy fixed-point spectral sequence for Pic(KU) has been determined in depth by Mathew and
Stojanoska using tools they developed for comparing with the homotopy fixed-point spectral
sequence for KU [MS16, 7.1]. However, for our purposes we will require information about the
behavior of the spectral sequence in small, negative degrees.

We recall the following about the oco-category Fun(BG, Sp) of G-equivariant spectra. These
are ‘very naive’ GG-spectra in the sense that they are simply spectra equipped with a G-action,
and have the equivalent descriptions of spectra parametrized over BG, local systems of spectra
on BG, or modules over the spherical group algebra S[G]. They should not to be confused with
the more sophisticated notions of ‘naive’ or ‘genuine’ G-spectra that carry additional fixed-point
data, which we will not require.

Every G-space Y gives rise to such a G-spectrum X*°Y, and every G-spectrum to a ‘Borel
equivariant’ cohomology theory for G-spaces:

EYY) = [2®Y, X g
=I5 (XY, E)
= 1_F(X®Y, E)"C.
The standard notion of connectivity gives the category of G-spectra a t-structure whose heart
is the category of abelian groups with G-action, or modules over mS[G] = Z|G]. For such a
G-module M with associated Eilenberg—-Mac Lane object HM, there are standard descriptions

of the associated cohomology theory. We can either identify it with the Borel equivariant coho-
mology of Y, or with the cohomology of the Borel construction Y, with coefficients in the local
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system associated to M:
HM'(Y) = HG(Y; M) = H' (Yaa; ).

This allows us to interpret maps HM — »°HN as operations on Borel equivariant cohomology:
such a map, in particular, determines stable cohomology operations

HE(Y; M) — HEP(Y5N).

PROPOSITION 7.11. For a G-equivariant spectrum X such that m;(X) =0 for n <i < m, the
dp—m+1-differential

H (G (X)) — B4 (G (X))
in the homotopy fixed-point spectral sequence for X" is given by an equivariant k-invariant

k¢ € Tpm-1Fsg)(Hrn X, Hrp X)),

which determines a cohomology operation of degree m — n + 1 on Borel equivariant cohomology:.
The forgetful map

Tn-m—-1Fg[q) (Hmp X, Hrpp X) — mpem—1Fs(Hmn X, Hmp X)
sends k@ to the underlying k-invariant of X.

Proof. One derivation of the homotopy fixed-point spectral sequence is from the exact couple
associated to the Postnikov tower X — {P, X} determined by the t-structure, as follows. The
fiber sequences X" Hm,(X) — P, X — P,_1X induce long exact sequences

e = Ty [HTn (X)) — 1, Py (X)) — 1, Py (X)PE — ..
and we can make the Borel equivariant identification
T [Hrn(X)]"Y = H*(G; 1, (X)).

Once we make this identification with an exact couple, the d,_,+1-differential in question is the
composite map

kK¢ S"Hr(X) - P, X & P X... & Py 1 X — Y™ Hr, (X).

of G-spectra.
The statement about compatibility with the underlying k-invariant is determined by
compatibility of the ¢-structure on G-spectra with the t-structure on spectra. O

Using the adjunction
Fyiq)(X,Y) = Fy(S, F5(X,Y)) = Fs(X,Y)"“,
we recover the following computational tool.

ProrosITION 7.12. For functors BG — Sp representing spectra X and Y with G-action, there
exists a spectral sequence with Fo-term

Byt = H*(G;mF5(X,Y)) = m— s Fyie) (X, Y).
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Furthermore, the edge morphism in this spectral sequence recovers the natural map to
T F5(X,Y).

We may then apply this to calculate the possible first two Cs-equivariant k-invariants of
pic(KU), both between degrees 0 and 1 and between degrees 1 and 3.

PROPOSITION 7.13. Let Z~ be Z with the sign action of C5, and
B H*(CyZ)2) — H* YOy Z7)
the Bockstein map associated to the short exact sequence
0—-Z —Z —1Z/2—0.
Let x € H'(G;7Z/2) denote the generator. We have
T2 F5ic,)(HZ/2, HL/2) = (Z/2)?,
generated by the operations Sq*(—), = - Sq*(—), and 22 - (—). We also have
w3 Fsi0y) (HZ/2, HL) = (Z,/2)?,

generated by the operations = o Sq*(—) and B~ (2% - (-)).
The restriction to the group of nonequivariant operations sends the generators involving x
to zero.

Proof. Proposition 7.12 gives us two spectral sequences, pictured in Figure 1:
H*(Cy;mFs(HZ/2,HZ]2
H?(Co;m_sFs(HZ/2, HZ

) = WtstS[CQ](HZ/27 HZ/2)7

)
)) = ﬂtstS[CQ](HZ/27 HZ_)

There is an isomorphism 7_,Fs(HZ/2,HZ/2) = A*, where A* is the mod-2 Steenrod algebra;
this group is isomorphic to Z/2 for —2 < % <0 and is trivial for all other x > —2. Similarly,
there is an isomorphism 7_,Fs(HZ/2, HZ) = Sq* -A* C A*; this group is isomorphic to Z/2
for x = —1,—3 and is trivial for all other * > —3. The associated spectral sequences appear
in Figure 1. These spectral sequences place an upper bound of 8 on the size of the group
T_oF5ic,)(HZ/2,HZ/2) and of 4 on the size of the group m_3Fg|c,|(HZ/2, HZ™). However,
the cohomology operations on Borel equivariant cohomology that we have described in these
groups are linearly independent over Z/2, as can be checked by applying them to the group

T Fs1cy) (B ECy, HZ/2) = H*(BCy;Z,/2).
(These represent elements in different cohomological filtration in this spectral sequence.) g

PROPOSITION 7.14. The first two Cy-equivariant k-invariants of pic(KU) are Sq? 4+ Sq! and
87 Sq?,

Proof. The underlying nonequivariant k-invariants must be the first two k-invariants of pic(KU).
These are Sq” and 3Sq?, where 3 is the nonequivariant Bockstein [Frel2, 1.42]. (As a sketch,
the first k-invariant is determined by noting that the twist map on X KU ®@xy XKU is multipli-
cation by —1 € (moKU)*. The second is detected by the symmetric monoidal structure on the
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FIGURE 1. Spectral sequences for equivariant k-invariants.

2-groupoid of Clifford algebras. The nontriviality of this k-invariant is the source of the addi-
tion rule (A, p)(N, 1) = A+ N, u+ p' + B(\- X)) for twisting cocycles (A, u) € H' x H? when
expressing cup products in graded twisted K-theory [Karl2, §5].)

Moreover, the generating elements in 7y pic(KU) and 1 pic(KU) are the images of the classes
[XKO] and —1 from pic(KO) respectively, and hence must survive the homotopy fixed-point
spectral sequence. These classes would support a nontrivial dy or d3 differential if the cohomology
operation involved a nonzero multiple of 2% or 3~ z2, respectively. This shows that the second
k-invariant can only be 8~ Sq2, and the first k-invariant can only be Sq? or Sq? 4+ Sq'.

Suppose that the second k-invariant were Sq?. This k-invariant is in the image of the map

w_oFs(HZ/2, HL/2) — 7_2Fs5c,) (HZ/2, HZ/2)

induced by the ring map S[C3] — S, and so the resulting Ch-equivariant Postnikov stage
T<1 pic(KU) would be equivalent to one with the trivial Cy-action. We would then have the
equivalence

(r<1 pic(KU))"? =~ F((BCy) 4, 7<1 pic(KU)).
This splits off a copy of 7<ipic(KU) so there could be no hidden extensions from
HY(Co; mo pic(KU)) to H'(Cy;m pic(KU)) in the homotopy fixed-point spectral sequence.
However, there is a hidden extension: the class [EK O] € mppic(KO) has nontrivial image in
HO(Cy; 7o pic(KU)) and twice it is [X2K O], which has nontrivial image in H'(Cy; (moKU)>).
(This reflects the fact that KO is not 2-periodic.) O

PROPOSITION 7.15. The homotopy fixed-point space B Pic(KU)"“2 has homotopy groups

7Tn72GL1(KO) ifn Z 2,
T B Pic(KU)"2 = { 7,/8 ifn=1,
7.)2 ifn=0.

Proof. The homotopy fixed-point spectral sequence
H*(Cy; my pic(KU)) = mp_ pic(KU )2

is pictured in Figure 2; we refer to [MS16] for the portion with ¢ > 3, obtained by comparison
with the homotopy fixed-point spectral sequence for KU. The differentials supported on t =0
and t = 1 are the stable cohomology operations we just determined. The inclusion of Z/8 into
7o pic(KO) = 7o pic(KU)"2 forces the hidden extension in degree 0. O

This recovers the calculation of the Picard group of KO by [HMS92].
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FIGURE 2. Fixed-point spectral sequence for pic(KU) up to Ej.

There are potential further differentials in negative degrees in the homotopy fixed-point
spectral sequence which we have not addressed here. There are potential sources for a
dy-differential when ¢t =0, s =3 mod 4. There are also potential targets for a ds- or ds- or
dg-differential when t = 5, s = 2 mod 4, though the latter would be impossible if the Postnikov
stage pic(KU) — 1<z pic(KU) split off equivariantly. It seems likely that a precise formulation
of the periodic structure in this spectral sequence would be able to address these questions.

7.3 Lifting from KU to KO
In this section we examine those Azumaya K O-algebras whose extension to KU is algebraic. By
Example 7.7, we have the following .

PROPOSITION 7.16. Any algebraic Azumaya KU -algebra is of the form Endgy N, where N is
a finite coproduct of suspensions of KU.

Therefore, by Proposition 7.15 and Corollary 6.32, there are at most two Morita equivalence
classes of Azumaya K O-algebras whose extensions to KU are algebraic.
The following shows that the nontrivial Morita equivalence class is realizable.

PRrROPOSITION 7.17. There exists a unique equivalence class of quaternion algebra ) over KO
such that

o KU ®xo Q ~ My(KU), and
e there is no KO-module M such that Q # Endgo(M) as KO-algebras.

This algebra has homotopy groups isomorphic, as a K O,-algebra, to the homotopy groups of a
twisted group algebra:

7T*Q = W*KU<CQ> = T EndKo KU.

Proof. The KO-algebras A such that KU ®xo A ~ My(KU) are parametrized by the preimage
of the component B Autag, ,, M2(KU) C Azgy. We may therefore apply the obstruction theory
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of §6.5. We know that there is a chain of equivalences

KU ®ko EndKo(KU) ~ EndKU(KU QKO KU)
~ EndKU(KUGB KU) ~ MQ(KU),

and so we may use Endxo(KU) as a basepoint for the purposes of calculations. The obstruction
theory then takes place in a fringed spectral sequence with Es-term

H*(Co; m B Autag,, (M2(KU))).
By Corollary 5.20, we have a long exact sequence

- — 1 GL1 (KU) — m, GL1 (M2(KU)) — mn(Autalg,,, (M2KU)) — - -
— 70 GLl(KU) — 70 GLl(Mg(KU)) — Wo(AutAngU(MQ(KU))) — T PiC(KU).

Since T M2(KU) = Ma(m.(KU)), we find that Autayg,, (M2KU) has trivial homotopy groups
in odd degrees, and that for k > 0 there are short exact sequences

0 — mop KU — mop May(KU) — mog, AutAngU(MQKU) — 0.

Moveover, the Cy-action on 7o (KU ®@ko Endgo(KU)) = Ma(KUsyy) is given in matrix form by

a b Lld ¢

el
We may now use this to calculate group cohomology. We find that for s,¢ > 0, the cohomology
H?(Cq; m My(KU)) vanishes with this action and we have isomorphisms

H*(Co; i Autalg,,, (MaKU)) — H**Y(Cy; m Pic(KU)),

realized by the natural map B Autayg, ,(M2KU) — BPic(KU). We display the spectral
sequence for calculating lifts of My(KU) in Figure 3 through the Es-term. The regions where
the spectral sequence is undefined at Es or E3 are blocked out, and the nonabelian cohomology
H?(C9;PGLy(Z)) is indicated with &®. The first detail we note about this spectral sequence is
that for t — s > —1, the E4-page vanishes entirely for s > 5. There are potential obstructions to
lifting in the column ¢ — s = —1 and to uniqueness in the column ¢ — s = 0; we will now discuss
these obstruction groups using the machinery of §6.5.

Because the groups ES*! and E®® become trivial at Ey for s > 5, there are no obstructions
to existence or uniqueness of lifting algebras beyond Tot’: any Azumaya K U-algebra equivalent
to My(KU) with a lift to Tot® has an essentially unique further lift to an Azumaya K O-algebra.

The group E;l BisZ /2, and this group is a potential home for obstructions for a point in Tot?
which lifts to Tot? to also lift to Tot* (see Remark 7.18 for further elaboration). Since we have
already chosen a lift of My(KU) to the algebra Endgo(KU) in the homotopy limit to govern
the obstruction theory, the obstruction must be zero at this basepoint.

The group E§’5 parametrizes differences between lifts from Tot* to Tot®. This group is Z/2,
and contains only permanent cycles due to the fact that the spectral sequence has a vanishing
region at Ey. Therefore, there are two distinct lifts of KU @ ko Endgo(KU) from Tot? to Tot?,
representing two inequivalent K O-algebras which become equivalent to My(KU) after extending
scalars. One of these is Endxo(KU); we will refer to the other algebra as ().
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FIGURE 3. Fixed-point spectral sequence for B Aut(KU ®ko Endgo(KU)) up to Es.

Moreover, the map B Autayg, , (M2KU) — BPic(KU) induces an isomorphism on homo-
topy fixed-point spectral sequences in the relevant degree. The generator of E§’5 representing @)
therefore maps to the nontrivial element of my(B Pic(KU))"“2 C 7o Br(KO), and so any points
of the fixed-point category with distinct lifts to Tot® are Morita inequivalent.

Hence, there exists precisely one other K O-algebra, Q, whose image in Tot? is the same as
the image of Endgo(KU), and @ is Morita inequivalent to any endomorphism algebra.

Finally, to determine the coefficient ring of ), we use the homotopy fixed-point spectral
sequence H*(Cy; (KU @Ko Q)) = mQ. The action of Cy on the coefficient group Ms(KU) is
the same as that for Endgo(KU), by construction, and we have already established that there
are no higher cohomology contributions, and so we have

7.Q = 1, (KO @ o Endgo(KU))“? = n, Endgo(KU),

as desired. (]

Remark 7.18. The obstruction group E;l 3 deserves some mention. There is an element in
H'(Cy;m B Autpg,., (M2 KU)) whose image in H?(Cy; o B Pic(KU)) is nontrivial. More explic-
itly, m1 B Autayg, (M2 KU) contains PGL2(Z) and this H 1_class is represented by the alternative

action
ab’_)(_l)to 1 [a b| |0 -1
c d -1 0| |ec d|]|1 O
of Cy on o My(KU). One might hope that there is a KO-algebra A such that KU ®ko A is
M>(KU) with this alternative Cs-action on the coefficient ring.
For example, we might imagine finding a self-map ¢: KO — KO representing multiplication

by —1 € mp(KO), and using it to produce an action of Co on KU Qo M2(KO) such that the
generator acts on the KU factor by complex conjugation and on the My (KO)-factor by

A P A R
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In the classical setup, one encounters a sequence of difficulties with carrying this program out.
The spectrum KO cannot be a fibrant-cofibrant K O-module if KO is strictly commutative, so
we require a replacement in order for ¢ to be defined. Then this replacement is not strictly
the unit for the smash product and so we cannot move ¢ across a smash product without an
intervening homotopy. In order to make this a ring homomorphism one either wants ¢> to be
the identity, or one wants to replace ¢ by an automorphism so that we can genuinely replace
this with a conjugation action. And so on. One is left with the feeling that these are technical
details and the tools are just barely inadequate for the job, but this is not the case: this H'-class
cannot be realized by an algebra at all because the image in H?(Cy; mB Pic(KU)) supports a
ds-differential (see Figure 2). These seemingly mild details are fundamental to the situation.
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