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Turbulent flows are out-of-equilibrium because the
energy supply at large scales and its dissipation by
viscosity at small scales create a net transfer of energy
among all scales. This energy cascade is modelled
by approximating the spectral energy balance with
a nonlinear Fokker–Planck equation consistent with
accepted phenomenological theories of turbulence.
The steady-state contributions of the drift and
diffusion in the corresponding Langevin equation,
combined with the killing term associated with the
dissipation, induce a stochastic energy transfer across
wavenumbers. The fluctuation theorem is shown
to describe the scale-wise statistics of forward and
backward energy transfer and their connection to
irreversibility and entropy production. The ensuing
turbulence entropy is used to formulate an extended
turbulence thermodynamics.

1. Introduction
It is perhaps not coincidental that one of the most
influential experiments in the history of thermodynamics
is also a turbulence experiment. In 1849, James Prescott
Joule used a stirrer to show that the shaft work on
a fluid ends up increasing its internal energy, thereby
demonstrating the equivalence of heat and work. Dealing

2020 The Author(s) Published by the Royal Society. All rights reserved.
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with the generation of turbulent kinetic energy (K) and its subsequent dissipation rate (ε) by
viscosity, the Joule experiment also offers a modern link between thermodynamics, a theory of
the macroscopic effects of microscopic fluctuations, and non-equilibrium fluctuations, of which
turbulence is a quintessential example.

In turbulence, the thermodynamic fluctuations are typically so small to allow a mathematical
description of fluids as a continuum. For this reason, turbulence is conveniently described by the
Navier–Stokes equations assuming local thermodynamic equilibrium [1]. Turbulent fluctuations
are thus of macroscopic nature and technically outside the scope of traditional thermodynamics
[2]. However, the random-like nature of turbulence [3–5] invites a thermodynamic formalism to
the problem of turbulence; previous attempts along these lines include the eddy thermodynamics
of Richardson [6], Blackadar [7] and others [8,9], as well as the Onsager analysis of 2D turbulence
[10]. An assertion that ‘turbulence can be defined by a statement of impotence reminiscent of
the second law of thermodynamics’ [11] continues to draw research attention. More recently, a
number of studies have argued that the fluctuation theorem (FT) derived for small systems [12,13]
can be partly applied to describe macroscopic fluctuations so as to explore their time reversibility
at multiple scales, including turbulence.

The statistical properties of turbulence differ from systems near thermal equilibrium because
the flux of energy per unit mass is supplied at scales much larger than the scales at which energy
is dissipated by the action of viscosity, resulting in an energy flux (cascade) across all scales. Such
a transport is linked to multiple processes, including vortex stretching, self-amplification of the
strain-rate and viscous diffusion [14,15]. One of the defining features of the turbulence cascade is
that the probability of forward and backward transitions between two energetic states at a given
scale are not identical (i.e. a scale-wise ‘detailed balance’ is not applicable [16,17]).

With these premises, the objective of this work is to illustrate that non-equilibrium
thermodynamics and in particular the FT can be employed to describe the behaviour of the
turbulent energy cascade. While the net transfer of energy from large to small scales is prevalent,
it is shown here that back-scatter of energy, with its connection to time-scale irreversibility, obeys
the statistics predicted by the FT [13,17–21]. To provide a physical context, a turbulent flow
conceptually analogous to Joule’s original experiment is used, where work is done on the fluid
system to generate, in a narrow band of scales, turbulent kinetic energy, which is then dissipated
as heat. Thus a constant power is externally supplied at a pre-selected scale much larger than the
Kolmogorov length scale where viscous effects are significant.

The focus here is on steady-state conditions where the energy cascade develops in a manner in
which the energy injection rate at a large scale is balanced by the viscous dissipation rate at small
scales. The FT is shown to describe the forward and backward probabilities of energy packets
moving scale-wise in time through the energy cascade. For analytical tractability and to illustrate
connections with the FT, simplified closure schemes for the energy transfer rate across scales
are employed. These closure schemes offer plausible expressions for the energy cascade that are
consistent with a wide range of experiments and theories on locally homogeneous and isotropic
turbulence. The resulting stochastic differential equation is analysed within the framework of
stochastic thermodynamics (e.g. [20,22,23]) to link the forward and backward probabilities to
entropy production; this approach may also offer a framework for the interpretation of turbulent
experiments [24,25].

2. Spectral energy balance
For a homogeneous, isotropic turbulent flow of an incompressible Newtonian fluid, the spectral
energy balance per unit mass of fluid is [3,4,26]

∂E(k, t)
∂t

= p(k, t) + ϑ(k, t) − η(k, t), (2.1)
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where E(k, t) is the turbulent kinetic energy per unit wavenumber k, p(k, t) is the production
spectrum, here assumed to be concentrated at k = ki, ϑ(k, t) is the energy transfer spectrum,
η(k, t) is the viscous dissipation spectrum assuming the fluid viscosity ν is constant and k is
the wavenumber or inverse eddy-size. The normalizing property

∫∞
0 E(k, t) dk = K defines the

turbulent kinetic energy K. Equation (2.1) makes no other assumptions about the velocity statistics
other than homogeneity and isotropy. Because ϑ is a scale-wise transport and cannot contribute
to the production or destruction of K, it satisfies the integral constraint

∫∞
0 ϑ dk = 0. It can be

expressed as the gradient of an energy flux J,

ϑ(k, t) = − ∂J
∂k

, (2.2)

while the scale-wise viscous dissipation rate is given by

η(k, t) = 2νk2E(k, t). (2.3)

Integrating equation (2.1) over k yields the energy balance of K,

dK
dt

= w − ε, (2.4)

where w = ∫∞
0 p(k, t) dk is the rate of work done on the fluid to produce turbulence and ε is the

dissipation rate of K,

ε =
∫∞

0
η(k, t) dk. (2.5)

The concomitant balance for internal energy U is then dU/dt = ε − q, where q is the heat loss
to the environment. Because of fluid incompressibility, temperature fluctuations resulting from
dissipation have no feedback on the dynamics of the turbulence, including the energy cascade.
Finally, the entropy balance is given by dS/dt = −q/T + σ , where T is the absolute temperature
and σ = ε/T is the entropy production. It is assumed that q is immediately delivered to a
surrounding environment, acting as a thermal bath at the same temperature, thus ensuring
isothermal conditions.

A closure of minimal complexity for the spectral energy balance that preserves both direct
energy cascade and an inverse cascade (or back-scatter) may be obtained by representing the
contributions to J as a scale-wise drift and a diffusion term, linked by a time scale of eddy
relaxation τ (k, t). A flexible form for such a closure is proposed here as

J = α
kE
τ

− k2

τ

∂E
∂k

, (2.6)

where the coefficient α is to be determined depending on models for τ [27–30]. Substituting J and
η from equations (2.6) and (2.3) into the spectral energy balance in equation (2.1) yields

∂E
∂t

= [p − 2νk2E] − ∂

∂k

(
α

kE
τ

− k2

τ

∂E
∂k

)
. (2.7)

Depending on the choices made about τ , a general class of nonlinear diffusion models for J can
be recovered. Here, a τ (k, t) that is linked to E(k, t) is adopted,

τ (k, t) = [k3E(k, t)]−1/2. (2.8)

Other choices for τ (k, t) that accommodate non-local interactions can also be used in this
framework. One common non-local closure for the energy flux is the so-called Heisenberg model
[31] that can be re-casted to yield an eddy time scale given by [32]

τ (k, t) =
[∫ k

0
p2E(p, t) dp

]−1/2

. (2.9)

However, there are issues with the original Heisenberg model related to the direction of energy
transfer and equipartition of energy that have already been identified and discussed elsewhere
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[33]. For this reason, the focus here is maintained on the use of equation (2.8) for the generic
time scale. For the inertial subrange scales in steady state, the Kolmogorov [34] scaling (hereafter
referred to as K41 scaling) given by E(k) = Coε

2/3k−5/3 is expected to hold resulting in τ (k) =
Co

−1/2ε−1/3k−2/3 (i.e. Onsager’s relaxation time [10]), where Co = 1.55 is the Kolmogorov constant.
Due to the dissipative anomaly [35], the limν→0 ε is finite, so that in this limit ηK = (ν3/ε)1/4 → 0,
(ηK)−1 → ∞. An estimate of the total time for energy to be passed from a finite ki to an infinitely
high wavenumber can be determined using

∫∞

1/ki

τ (k)
dk
k

= 3
2

1√
Co

k2/3
i ε1/3 < ∞. (2.10)

Equation (2.10) implies that the steps in the energy cascade rapidly accelerate such that (if not
interrupted by the action of viscosity at a finite wavenumber) the time for energy to be passed
to an infinitely high wavenumber is finite. This finding, originally put forth by Onsager [10],
foreshadows the finite time singularity in the inviscid limit for such classes of τ (k) models [36].

The time scale in equation (2.8) is also singled out because it recovers the well-studied Leith’s
nonlinear diffusion approximation [33,37,38],

∂

∂k

[
k11/2

√
E
(

α
E
k3 − 1

k2
∂E
∂k

)]
= ∂E

∂t
− [p − 2νk2E]. (2.11)

When α = 2, the conventional form of Leith’s model becomes evident [26,37]. The latter recovers
the so-called warm cascade condition (i.e. a steady equipartitioned energy spectrum, ∀k : E ∝
k2) originally derived by Lee [39] under specific conditions [33,38,40]. Leith’s model was also
derived from the so-called direct-interaction approximation when a number of simplifications are
made [33].

Returning to stationary conditions, which will be the focus of the rest of the paper, and
considering for the moment a range of wavenumbers away from the production and viscous
subranges, the left-hand side of equation (2.11) is equal to zero, and the solution to the spectral
budget reduces to

E(k) =
(

C1k−5/2 + C2k(3/2)α
)2/3

. (2.12)

If p is injected at k = ki, then for k > ki C1 = C3/2
o ε, necessitating C2 = 0 to recover K41 inertial

subrange scaling (also referred to as the cold cascade). For k < ki, C1 = 0 and C2 = C3/2
o εk−11/2

i
is set by the continuity of E(k) at ki to achieve a warm cascade for α = 2 [40]. The E(k) ∼ k+2 is
also compatible with the well-known Saffman spectrum [36,41,42], a scaling law derived from
considerations (continuity and smoothness) of how E(k) is approached as k → 0.

In the presence of viscous dissipation, the spectral budget equation is not analytically solvable;
however, we numerically confirmed that

E∗(k) ≈ (C3/2
o εk−5/2 + C2k3)2/3fη(kηK) (2.13)

reasonably approximates the spectral energy budget, as shown in figure 1. Here, fη(kηK) =
exp[−β(kηK)4/3] is the Pao correction [44] reshaping the k−5/3 spectrum for kηK > 0.1 [45]. The
E∗(k) from equation (2.13) implies that τ (k) in equation (2.8) increases within the viscous sub-
range when kηK > β−3/4, which is not physically plausible. The increase in τ (k) is expected when
E∗(k) decreases faster than k−3 with increasing k. Hence, an amendment proposed by Batchelor
[46] was used in the calculations featured in figure 1 whereby the straining rate (∝ τ (k)−1) at k is
assumed to be uniform beyond wavenumbers commensurate with 1/ηK. This amendment revises
the model for τ (k) as

τ∗(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C−1/2
2 k−5/2fη(kηK)−1/2 kηK < kiηK

C−1/2
o ε−1/3k−2/3fη(kηK)−1/2 kiηK < kηK ≤ β−3/4√
eβ
Co

τK kηK > β−3/4,

(2.14)
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Figure 1. (a) The balance between production p, energy transfer ϑ = −dJ/dk and viscous dissipation η across scale
based on the empirical spectrum in equation (2.13) for ηK ki = 10−4. (b) The energy flux J across scales (note the similarity
with the results in [43]). Here, β = 0.33 results in an acceptable spectral energy balance closure at steady state. This
numerical value of β differs from the original Pao constant because of the choices made when deriving τ . (Online version
in colour.)

where τK = (ν/ε)1/2 is the Kolmogorov time scale. The amendment of the relaxation time scale
at kηK > β−3/4 arrests the tendency towards the finite-time singularity attributed to Onsager’s
relaxation time [10].

3. Fluctuation theorem
The spectral budget in equation (2.7) may be written in symbolic form as F{E} = 0, where F{}
denotes the operator defined by the PDE equation (2.7). The operator F{} corresponds to that
defining a nonlinear Fokker–Planck equation (FPE) with scale-wise separated source/sink terms.
Accordingly, we may represent E(k, t) as a scaled probability density function (PDF), namely
E(k, t) = K〈δ(kt − k)〉, where 〈 〉 denotes an ensemble average over the realizations of the velocity
fluctuations. Here, kt is a time-dependent random variable describing the trajectory of an ‘energy
packet’ that moves in the sample-space defined by the wavenumbers k ∈ [0, ∞), and δ(·) is the
Dirac distribution. This representation in terms of a scaled PDF satisfies the original definition of
E(k, t) as the energy spectrum, with

∫
E(k, t) dk = ∫

K〈δ(kt − k)〉 dk = K, and K〈δ(kt − k)〉 dk denoting
the kinetic energy at wavenumber k. Furthermore, due to the structure of F{}, kt is governed
by a stochastic process [47] involving a deterministic advection term, a diffusion term and a
killing term linked to the action of viscous dissipation. The latter term has the effect of absorbing
(i.e. stopping) the trajectories according to a state-dependent Poisson process with a rate
2νk2

t [48,49].
If the steady-state solution to F{E} is known, as in our case (equation 2.13), the corresponding

drift and diffusion terms defining the stochastic process for kt can be formulated as a function of
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Figure 2. (a) A numerical realization of the stochastic process given by equation (3.1). The trajectories are terminated following
a state-dependent Poisson process with rate 2νk2t and initiated at ηK ki = 10−4. (b) The steady-state PDF from the numerical
simulation and the approximate spectrum in equation (2.13) are compared. For reference, the two lines show k−5/3 (K41 or cold
cascade) and k2 (warm cascade or Saffman spectrum). (Online version in colour.)

k by substituting directly into F{E} the expression for E(k). In particular, the Langevin equation
that ensures that the steady-state form of K〈δ(kt − k)〉 satisfies equation (2.13) is

dkt = kt

τ 2∗ (kt)

(
4τ∗(kt) − kt

dτ∗
dk

(kt)
)

dt + b(kt) dW, (3.1)

where dW is the Wiener increment and b(k) = √
2kτ−1/2

∗ . This equation is subjected to a unit rate
of birth at kt = ki and a state-dependent killing term with rate 2νk2

t [49]. Moreover, since the
FPE operator F{} defined by equation (2.7) is written in the transport form, the interpretation
of the multiplicative term must be in the form of the so-called Hanggi–Klimontovich prescription
[50–52]. With this formal correspondence, the time reversal statistics of equation (3.1) can now be
analysed [20,52] for steady-state homogeneous and isotropic turbulence with energy injected at
ki and transported on average towards higher wavenumbers where dissipation takes place. Since
the drift, diffusion and killing term are obtained only as a function of k using the steady-state
solution of the spectrum, this Langevin equation and its analysis cannot be extended to transient
cases.

For steady-state conditions, however, a tractable illustration of the FT for fully developed
turbulence fluctuations can be constructed. This construction entails linking the turbulent entropy
balance at k to the statistics of the forward and backward energy cascades. Figure 2a shows a
numerical realization of this process in which energy packets are injected at kiηK = 10−4 after
the termination of trajectories by dissipation. It is important to note that, in general, the energy
injection at ki is only related statistically to the dissipation, and that the immediate re-injection
of trajectories after trajectory termination by dissipation is only done here for the convenience of
simulation and visualization. Such a scheme however preserves the steady-state PDF and thus can
be suitably used to obtain the desired turbulent statistics of the problem. Accordingly, as shown
in figure 2b, the steady-state form of the scaled PDF K〈δ(kt − k)〉 corresponds to the empirical
spectrum in equation (2.13).
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The injection of energy at lower k and the dissipation sink at higher k produce a non-zero
average current and a non-equilibrium steady-state (NESS) current of energy towards smaller
scales. A stochastic fluctuating velocity at k corresponding to kt may be defined for dt > 0 as [52]

k̇t|k = (kt+dt/2 − kt−dt/2)|kt=k

dt
, (3.2)

whose mean (the current velocity) is given by [52]

vNESS(k) = J(k)
E(k)

≈ 2kτ−1
∗ − k2E−1

∗ τ−1
∗

dE∗
dk

, (3.3)

and obeying a fundamental FT-type symmetry [20] (figure 3a). The degree of irreversibility of the
NESS resulting from the cascade towards dissipation may be given by the rate of energy transfer
to smaller scales. According to the formalism of stochastic thermodynamics [23,53], the non-zero
current velocity may be associated with a positive ‘turbulent entropy’ production rate Σ [52],

Σ(k) = 2
[

vNESS(k)
b(k)

]2
≈
(

k
dE∗
dk

− 2E∗
)2

E−2
∗ τ−1

∗ . (3.4)

In the inertial subrange, where E(k) = Coε
2/3k−5/3 (i.e. fη(kηK) ≈ 1), J = (11/3)C3/2

o ε (a constant
with ∂J/∂k = 0), vNESS = √

Coε
1/3k5/3 and Σ = (121/9)

√
Coε

1/3k2/3. These scaling laws have
also been confirmed by simulations (figure 3b,c) of the stochastic process in equation (3.1),
equations (3.3) and (3.4) using the model spectrum and relaxation time scale in equations (2.13)
and (2.14).

Figure 4a shows the scale-wise distribution of the normalized (by the Kolmogorov time scale
τK = (ν/ε)1/2) turbulent entropy production rate Σ from equation (3.4) for a range of Re defined
as Re = liu/ν, where li = 1/ki and u = (ε/ki)1/3 is a velocity.

4. An extended turbulence thermodynamics
The term Σ(k) ≥ 0 can be shown to be the source term in the balance equation for the turbulent
entropy [23], St(k) = − ln(E(k)/E0), where E0 is a normalization reference value. Figure 4b shows
the scale-wise distribution of St for a range of Re where the normalization constant is set to E(Ki).
Thus, the asymmetry in the turbulence cascade that transports energy backward contributing
to larger eddies (the so-called back-scatter) is also linked to a turbulent entropy production.
Since St(k) can be interpreted as a scale-wise ‘turbulence entropy’, it may be used to define
an extended turbulence thermodynamics, together with the corresponding portion of TKE at
that scale, thereby completing the program started by Richardson [6]. In this manner, such an
entropy provides a measure of the number of turbulent states at wavenumber k to be linked to
the corresponding portion of energy, E(k). Neglecting momentarily the exponential cut-off at the
viscous subrange while extending K41 up to 1/ηK, the TKE can be linked to the area under the
spectrum given in equation (2.12), namely

K =
∫ 1/ηK

0
E dk = 3

2
Coν

2k2
i Re2

(
11
9

− Re−1/2
)

, (4.1)

where Re = liu/ν is a Reynolds number formed from a characteristic length li = 1/ki and large-
scale velocity u = (ε/ki)1/3. This definition ensures that li/ηK = Re3/4, consistent with expectations
for many turbulent flows [14]. The integrated entropy SI = ∫

St(k) dk can also be obtained as

SI = −
∫ 1/ηK

0
ln (E/E0) dk = 11

3
ki − kiRe3/4

[
5
3

+ ln(Coν
2kiRe3/4)

]
+ const. (4.2)

One objection that can be raised here is that St is not an entropy in the sense of Clausius,
but an extended entropy related to macroscopic turbulent fluctuations. This needs to be borne
in mind and motivates the appellation of extended turbulence thermodynamics. In analogy to
classical thermodynamics, the TKE corresponds to an internal kinetic energy of turbulence, so
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Figure 3. (a) The PDF of the current velocity k̇t|k computed from numerical simulations at two scales defined byηK k, where k̇
is the sample-space variable conjugate to k̇t . The solid and dashed lines correspond to the forward and backward currents. The
current is non-dimensionalized using the Kolmogorov length and time scalesηK andτK . (b) and (c) The average current velocity
vNESS and entropy production Σ from numerical simulation and the solutions in equations (3.3) and (3.4). (Online version
in colour.)

that dSI/dK = 1/TI, with TI being analogous to an effective temperature for the turbulent system.
When such a definition is combined with equation (4.1),

TI = dK
d Re

(
dSI

d Re

)−1
= 18Coν

2ki
Re5/4(Re−1/2 − 44

27 )

8 + 3 ln(Coν2kiRe3/4)
. (4.3)

An integrated positive turbulence-entropy production for the integrated turbulence entropy,
SI, can be obtained assuming that molecular dissipation primarily acts in the neighbourhood of
k = 1/ηK. For k < ki, where E ≈ C2k2 and fη(kηK) ≈ 1, vNESS ≈ 0 and Σ ≈ 0. As a result,

ΣI =
∫ 1/ηK

0
E Σ dk = 121

12
C3/2

o ν3k4
i Re3 ln Re. (4.4)

In the limit of high Re, the above relations approach to K ∝ Re2, ΣI ∝ Re3, SI ∝ Re3/4−α1 and
TI ∝ Re5/4+α2 , where α1 and α2 are deviations due to the logarithmic terms. At Re ≈ 1, the
spectrum within the inertial subrange vanishes with production scales being commensurate to the
Kolmogorov microscale (ηKki ≈ 1). For this case, ΣI ≈ 0 (i.e. the detailed balance holds) although
the cascade still generates small K, SI and TI. The finite values arise due to the approximation
extending a K41 spectrum from 1/ki to 1/ηK. The key quantities in this turbulent thermodynamics
are plotted in figure 5. The fundamental equation, SI = SI(K), shows a downward concavity
that ensures entropy production by ‘combining’ turbulent flows of different TKE, while the
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Figure 4. (a) The scale-wise distribution of the normalized ‘turbulent entropy’ production rateΣ . The Kolmogorov time scale
τK = (ν/ε)1/2 is used to normalizeΣ . (b) The turbulent entropy St with the normalization constant E0 = E(ki). The curves
correspond to Re= 102, 103 and 104, where Re= liu/ν is Reynolds number defined by the characteristic length li = 1/ki and
velocity u= (ε/ki)1/3.
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Figure5. The relationbetweenentropy (SI) (a) and turbulent temperature (TI) (b)with TKE (K). For these results, itwas assumed
that ki = 1 m and ν = 8.95 × 10−7 m2 s−1.

dependence of TI on K shows a turbulent TKE capacity (dTI/dK) that is not constant but decays
with the Reynolds number.

The properties of stochastic diffusion also allow the entropy production to be obtained globally
in k and for a finite time interval. For this, we define the forward PDF Pf (k, t) = 〈δ(kt − k)〉 and
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the backward PDF Pb(k, t) = 〈δ(k−
t − k)〉, where k−

t corresponds to the solution to dkt under time
reversal. Then we may write [52,54]〈

ln
Pf

Pb

∣∣∣∣
k=kt

〉
= 1

K

∫ t

0

∫∞

0
E(k, t′)Σ(k, t′) dk dt′, (4.5)

also in agreement with the FT. Based on this, it should be possible to further extend the former
thermodynamic formalism to finite time intervals.

5. Conclusion
The FT has been used to link analytically the shape of the energy spectrum with the imbalance
between forward and backward probabilities of energy packets moving scale-wise in time
across the energy cascade. The difference between these two aforementioned probabilities is
the main cause why the ‘detailed balance’ or ‘microscopic reversibility’ (i.e. at equilibrium, each
elementary process is in equilibrium with its reverse process) is not applicable to turbulence, and
why turbulent fluctuations are out of equilibrium. The analysis here only considered idealized
conditions and assumed spatial homogeneity. There are several directions in which this work can
be extended, including the analysis of the spatial distribution of forward and backward energy
transfer, which can be studied theoretically or using direct numerical simulations of turbulence
[43].

Notwithstanding these limitations, the results presented here unfold a connection between the
turbulent entropy production rate measuring the effective spreading of energy-packet trajectories
in the cascade, the thermodynamic entropy production, and the Reynolds number Re for an
externally prescribed injection scale 1/ki (often dictated by boundary conditions or geometry). As
first pointed out by Landau & Lifshitz [55] and substantiated in later studies [56], the finite Re is
an indicator of the number of degrees of freedom of the turbulence cascade, Nd ∼ (li/ηK)3 ∼ Re9/4.

An additional foresight from this analysis is that of the shape of the spectrum at low k. It is
shown here that the Saffman spectrum is linked to vNESS = 0 and Σ = 0 (no scale-wise entropy
production and the detailed balance is satisfied as expected for warm cascades). From J in
equation (2.6), the condition for v = J/E �= 0 assuming E(k) ∝ kγ can now be derived for the large
scales (k < ki). With γ > 0, the condition −dJ/dk > 0 imposed by the energy balance necessitates
γ > α (= 2 for the Saffman spectrum and the associated Leith’s model) for k/ki < 1. It also follows
that J < 0 (or vNESS < 0) when γ < α, a state where the current towards larger scales is caused by
the dominance of the back-scatter over the forward drift. From the perspective of α = 2 (i.e. Leith’s
model), the Saffman (γ = 2) spectrum results in −dJ/dk = 0 whereas the Batchelor [57] spectrum
(γ = 4) yields −dJ/dk > 0 (i.e. forward drift still dominates over back-scattering). However, the
Karman spectrum [42,58] often used in reshaping the inertial subrange spectrum at production
scales in boundary-layer turbulence yields a non-monotonic −dJ/dk in the rising limb of E(k)
as k → ki. Recent findings have shown that the inverse energy cascade can indeed exist in 3D
flows [59–61]; in this regard, it will be interesting to explore how our extended thermodynamic
framework can be related to these statistics and to other interesting thermodynamic-related
phenomena such as the turbulent spectral condensation.

These considerations have also led to a new perspective on the turbulence-thermodynamics
formalism, linking the emergence of turbulent modes to store disorderly kinetic energy to key
macroscopic quantities such as the Reynolds number and the turbulence temperature. One of the
main results is the derivation of an effective temperature TI in analogy with the classic Gibbs’
formula. In this regard, it is important to keep in mind that for non-equilibrium macroscopic
systems the role played by this macroscopic energy scale is not as straightforward to interpret
as that of thermal energy in thermodynamics systems at equilibrium (e.g. [22,62] and references
therein).

It will also be of interest to compute SI and TI based on an energy spectrum, including
intermittency corrections, to assess how intermittency might play a role in the proposed extended
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thermodynamics. One might even conjecture the existence of an extended global turbulence
pressure to link flow configurations to kinetic energy and entering as a natural variable in a Gibbs
turbulent free energy to provide a unified criterion for turbulent transition and development.
Future investigations along these lines may offer further elements to the picture of turbulence
as a non-equilibrium phase-transition phenomenon, of which several aspects are beginning to
emerge [63].
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