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00-OPERADS AS ANALYTIC MONADS

DAVID GEPNER, RUNE HAUGSENG, AND JOACHIM KOCK

ABSTRACT. We develop an co-categorical version of the classical theory of polynomial and analytic
functors, initial algebras, and free monads. Using this machinery, we provide a new model for
oo-operads, namely oco-operads as analytic monads. We justify this definition by proving that
the oco-category of analytic monads is equivalent to that of dendroidal Segal spaces, known to be
equivalent to the other existing models for co-operads.
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1. INTRODUCTION

Operads are a powerful formalism for encoding algebraic operations. They were first intro-
duced in the early seventies for the purpose of describing up-to-homotopy algebraic structures on
topological spaces [May72, BV73], and have since become a standard tool also in algebra, geome-
try, combinatorics, and mathematical physics. Operads are closely related to monads, which were
introduced some 10 years earlier, implicitly with Godement’s “standard construction” of flasque
resolutions [God58]," and explicitly by Huber [Hub61]. The notion soon spread from algebraic ge-
ometry and homological algebra to universal algebra, logic, and computer science. The relationship
between operads and monads was exploited from the very beginning of operad theory [May72], and
is a major theme of the present contribution.

Classically, an operad O consists of a sequence O(n) of topological spaces, where O(n) is equipped
with an action of the symmetric group ¥,, (this data is called a symmetric sequence), together with
a unital and associative composition law. The object O(n) describes the n-ary operations of the
operad. Every symmetric sequence O gives rise to an endofunctor

F(X) =]J©O@m) x x*™)s5,;
n
endofunctors of this form are sometimes called analytic functors due to their resemblance to power
series.” When O is an operad, this endofunctor acquires the structure of a monad, and the algebras
for the operad are canonically identified with the algebras for this monad.

From a homotopical viewpoint, these topological operads (and their associated algebras) have
certain shortcomings, analogous to those afflicting topological categories when viewed as a model
for “categories weakly enriched in spaces” (or co-categories). Just as these issues can be avoided by
using a better-behaved model for co-categories, it is often convenient to work with less rigid notions
of “operads weakly enriched in spaces” or oc-operads. Indeed, even for well-known topological
operads there are advantages to viewing them as oco-operads. For example, if E, denotes the oco-
operad corresponding to the classical operad of little n-discs (introduced by May and Boardman—
Vogt to study the algebraic structure of n-fold loop spaces), then Lurie has proved a homotopically
meaningful version of Dunn’s additivity theorem, E, ® E,,, ~ E,,1,,, where ® is the Boardman—Vogt
tensor product of co-operads (which is well behaved, in contrast to the classical Boardman—Vogt
tensor product of topological operads, which is not homotopy-invariant). There are various models
for co-operads, the approach of Lurie [Lurl7] being the most well-developed at the moment.

In this work we introduce a new model for co-operads, in terms of monads, and show that it is
equivalent to the existing models. As a consequence, we shall see that an co-operad can be recovered
from its free algebra monad, and obtain a characterization of the monads that arise in this way.
One such characterization is expressed by the following slogan:

oo-operads are monads cartesian over the symmetric monad.

Here the symmetric monad means the monad Sym associated to the terminal co-operad; its un-
derlying endofunctor on the oo-category of spaces 8 is given by Sym(X) ~ [[, X}y . If T is a
monad over Sym, then evaluating the natural transformation at the point we get a spaée T (x) over
Sym(x) ~ [],, BX,. This is precisely the same data as a symmetric sequence: the fibre of T'(x) at
the point of BY,, gives the space of n-ary operations with its X,,-action. The operad structure on
this symmetric sequence is encoded by the monad structure on the endofunctor.

Being cartesian over Sym means we have a map of monads whose underlying natural transforma-
tion is cartesian, i.e. its naturality squares are pullbacks. It turns out that such a natural transfor-
mation to Sym is unique if it exists, so that being cartesian over Sym is a property of a monad. We
will see that this property has an inherent characterization as the monad being analytic, by which
we mean that it is cartesian (i.e. its multiplication and unit transformations are cartesian) and

lGodement used (co)monads to construct (co)simplicial resolutions, an essential tool for computations in algebra,
geometry and topology.
2This should not be confused with the notion of analytic functor used in the setting of Goodwillie calculus.
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the underlying endofunctor preserves sifted colimits and wide pullbacks (or equivalently all weakly
contractible limits). We can thus reformulate our slogan still more succinctly:

oco-operads are analytic monads.

This generalizes a classical description of operads in sets: by a result of Joyal [Joy86], these are also
equivalent to analytic monads.

So far we have only discussed one-object operads, but it is quite often useful to work with the
more general notion of operads with many objects (commonly called coloured operads or symmetric
multicategories), which generalizes categories by allowing arrows (operations) with multiple inputs
instead of just one input. The term co-operad usually denotes the higher-categorical version of this
more general notion of operad, and our slogan remains true with this interpretation, provided we
consider analytic monads on slices of 8:

oo-operads with space of objects I are analytic monads on 8 ;.

More precisely, in this paper we set up an oo-category of analytic monads (on all slices of 8§ simultane-
ously) and prove that this is equivalent to an existing model of co-operads, namely the dendroidal
Segal spaces of Cisinski and Moerdijk [CM13a]. This model is known to be equivalent to other
models of oco-operads, including those of Lurie [Lurl7] and Barwick [Barl8], as well as to simplicial
operads, thanks to results of Cisinski-Moerdijk [CM13a,CM13b], Heuts—Hinich-Moerdijk [HHM16],
Barwick [Bar18], and Chu-Haugseng—Heuts [CHH18].

In order to study analytic monads, we first develop a theory of analytic functors between slices
of 8, which can be viewed as a categorification of power series in many variables. In fact, these
analytic functors turn out to be a special case of a more general notion of polynomial functors, and
our first task is to set up an oco-categorical framework for polynomial functors. This is in contrast
to the situation in ordinary categories, where analytic functors are not in general polynomial.

To make sense of this, let us explain what we actually mean by a polynomial functor. To any
map of spaces f: I — J there is associated a string of three adjoint functors fi 4 f* - f,

fi
Ty
S/] — S/J,
N

where f; is given by composition with f and f* by pullback along f.? Alternatively, we may identify
§,; with Fun(I,8); then f* is given by precomposition with f, and fi and f. are respectively the
left and right Kan extension functors along f. A polynomial functor® is a functor that is built
as a composite of functors of these three kinds. The terminology “polynomial functor” has some
drawbacks, such as the odd fact that “analytic” is a special case of “polynomial”, but we keep this
terminology due to its long history in logic, computer science and category theory (see §1.2 for some
pointers).

The description of polynomial functors in terms of these fundamental adjoints can be formulated
as a representability property: a polynomial functor P: 8,; — 8,; has a unique description as
tipss* for a diagram of spaces

ISELBYL g,
moreover, P is analytic precisely when the homotopy fibres of the map p are finite discrete spaces.
Many questions about polynomial functors can be handled by manipulating these representing
diagrams, and our description of co-operads as analytic monads allows us to leverage this calculus
of polynomial functors in the setting of co-operads. This combinatorial interpretation of co-operads
does not have a direct analogue in the 1-categorical setting. In sets, the endofunctors corresponding

3The fundamental nature of these three operations is witnessed by the fact that they correspond precisely to
substitution, dependent sums, and dependent products, the most basic building blocks of type theory [HoTT].

4The notion of “polynomial functor” we consider here should not be confused with the notion of “polynomial
functor” introduced by Eilenberg and Mac Lane and subsequently used in the study of functor homology, nor with
the notion occurring in Goodwillie’s calculus of functors.
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to most operads are not polynomial — this is only true for the so-called X-free operads, i.e. those
for which the actions of the symmetric groups are all free.

In this paper, for the sake of emphasizing the key ideas, we consider polynomial and analytic
monads over (slices of) 8 only, but it is an attractive feature of the polynomial formalism that it is
readily adaptable to more general contexts. In particular, it would seem to be a natural setting for
notions of operads with non-discrete arities, as required in certain situations beyond spaces.

1.1. Overview of Results.

Polynomial Functors. To carry out our programme, we first develop the higher-categorical ver-
sion of the basic theory of polynomial functors, roughly corresponding to the results of Gambino—
Kock [GK13] in the case of ordinary categories. In view of the broad spectrum of applications of
ordinary polynomial functors, we expect that this theory will be of independent interest, and hope
that it can serve as a starting point for further developments.

Our first main result is the following classification of polynomial functors:

Theorem. The following are equivalent for a functor F': 8,1 — 8,;:
(i) F is a polynomial functor.
(i1) F is of the form tip.s* for a diagram of spaces

ISEL B

(iii) F is accessible and preserves weakly contractible limits.
(iv) F is a local right adjoint.

Here a weakly contractible limit means a limit of a diagram indexed by an oo-category whose
classifying space is contractible, and a local right adjoint functor is a functor F': € — D such that
for every object x € € the induced functor €,, — D, p, is a right adjoint.

This characterization is the higher-categorical version of classical theorems due to Lamarche,
Taylor, Johnstone—Carboni, and Weber (as synthesized in [GK13]). Its proof takes up §2.1-§2.2.

For our purposes, the relevant morphisms between polynomial functors 8,7 — 8, are the carte-
sian natural transformations. We show in §2.3 that these are represented by diagrams of the form

AT,
NN

EF—— B

I

The interplay between the polynomial functors and the diagrams that represent them (called
polynomial diagrams) is a key aspect of the theory: some features are most easily handled in terms
of functors and some more easily in terms of representing diagrams. To exploit this fully we need
to describe polynomial functors with varying source and target in terms of diagrams. To define
such a general co-category of polynomial functors we start by constructing a double co-category of
“colax squares” in which the vertical arrows are right adjoints. We have delegated its definition, in
terms of lax natural transformations as studied in [Hau20], to Appendix A, where we also discuss
the naturality of the procedure of taking “mates”; the aim is to ensure coherence of all the Beck-
Chevalley transformations once and for all in a uniform way. With this in place, we can define an
oo-category PolyFun of polynomial functors and cartesian transformations, and a (much simpler)
oo-category Poly of polynomial diagrams (a subcategory of the co-category of diagrams in 8 of shape
e — o — o — o). The main result of §2.4 is then that there is an equivalence of co-categories

Poly = PolyFun

over the source and target projections to 8 x 8.
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In §2.5 we exploit this equivalence to show that the colimit of a diagram of polynomial functors
and cartesian transformations is a polynomial functor, corresponding to the (pointwise) colimit of the
corresponding diagrams (Proposition 2.5.4). We end the section in §2.6 by studying slices PolyFun /P
for P a polynomial functor; we prove that these oco-categories are all co-topoi (Theorem 2.6.1). Note
that PolyFun itself is not even accessible (see Remark 3.1.15).

Analytic Functors. In §3 we study the special case of analytic functors, which we characterize by
the equivalent conditions of the following theorem:

Theorem. Let E: 8 — § denote the polynomial functor X w— ] thznn; represented by the

diagram
* 4— thgn — HBEn — X,
n n

The following are equivalent for a functor F': 8,1 — 8;:

(i) F is a polynomial functor with a morphism to E (which is unique if it exists).
(ii) F is a polynomial functor, represented by a diagram

ISEL BT
where the map p has finite discrete fibres.
(iii) F preserves sifted colimits and weakly contractible limits.

We are mostly interested in endofunctors. For a functor F: § — 8, condition (ii) implies that F
is of the form

X = [[(Bn x X*™is,,

so our notion of analytic functors does indeed generalize the standard definition for endofunctors
of Set. We observe that analytic endofunctors of § are equivalent to symmetric sequences, and
that they can also be characterized as the left Kan extensions of homotopical species, meaning
functors (Fin — 8 where (Fin denotes the groupoid of finite sets and bijections — this is an oco-
categorical version of a theorem of Joyal. More generally, analytic endofunctors of 8 ; are equivalent
to I-coloured symmetric sequences (or symmetric I-collections), defined as functors E(I) x I — 8.

The combinatorics of trees enter all approaches to operads, explicitly or otherwise. In the poly-
nomial formalism, the interplay between trees and operads is particularly intimate, since following
[Kocll] we can define trees as certain polynomial endofunctors

A+ N = N = A,

where A is the set of edges, N is the set of nodes, and N’ is the set of nodes with a marked
incoming edge. We thus have a full subcategory Qiy: of trees inside the oo-category AnEnd of
analytic endofunctors. In §3.3 we use this to show that analytic endofunctors can be described in
terms of trees — more precisely, we prove that the restricted Yoneda embeddings give equivalences
of co-categories
AnEnd ~ T(Qel) >~ ?Seg(nint)-

Here Qg is the full subcategory of elementary trees, which are the corollas and the trivial tree (the
edge without nodes), and Pgeg(Qing) is the full subcategory of presheaves on iy that satisfy a
Segal condition, which can be interpreted as a sheaf condition for the covers of trees by elementary
subtrees.

Initial Algebras and Free Monads. Our comparison result relies on understanding the free monad
on an analytic endofunctor. As a first step, we need to know that these free monads actually exist,
which is the main result of §4. We follow the classical approach using initial Lambek algebras,
which goes back to Addmek [Ad474]; a standard reference for the classical case is Kelly [Kel80]. For
a finitary endofunctor P, i.e. an endofunctor that preserves filtered colimits, we show in §4.1 that
the oo-category of Lambek algebras has an initial object, constructed inductively; we present the
construction in terms of a bar-cobar adjunction for Lambek algebras, which appears to be new.
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In §4.2 we use the initial algebra construction to exhibit a left adjoint to the forgetful functor
algp(C) — C, where algp(€) is the co-category of Lambek algebras for P, and show that the resulting
adjunction is monadic (Proposition 4.2.4). The monad induced by the adjunction is the free monad
on P, i.e. characterized by a universal property (see Proposition 4.2.8). The forgetful functor from
finitary monads on € to finitary endofunctors thus has a left adjoint, taking an endofunctor to its
free monad. We observe that, at least if we restrict to endofunctors that preserve sifted colimits,
this adjunction is itself monadic (Corollary 4.2.15).

Then, in §4.3 we give a more explicit description of the underlying endofunctor of the free monad
as the colimit of a sequence of functors, which we will later exploit to understand the free monad
on an analytic endofunctor in terms of trees.

In §4.4 we extend our results to obtain a monadic left adjoint to the forgetful functor from monads
that preserve sifted colimits to endofunctors of varying oo-categories. This requires an co-category
of monads over varying oo-categories, which is studied in [Hau20]; we recall the results we need from
there in §A.5.

Analytic Monads. In §5 we apply our results on free monads in the special case of analytic monads.
In §5.1 we show that the free monad on an analytic endofunctor exists and is again analytic, and
the natural transformations of the monad structure are cartesian. In §5.2 we then show that the
free monad on an analytic endofunctor has an explicit description in terms of trees, giving:

Theorem. The forgetful functor AnMnd — AnEnd from analytic monads to analytic endofunctors
has a left adjoint, taking an analytic endofunctor to its free monad, and the resulting adjunction is
monadic. If P is an analytic endofunctor given by the diagram

I+~ FE—+B—=1
then the underlying endofunctor of the free monad on P is represented by
I+ tr'(P) = tr(P) — I,

where tr(P) is the co-groupoid of P-trees, i.e. trees with a morphism to P in AnEnd, and tr'(P) is
the co-groupoid of P-trees with a marked leaf.

This is an oo-categorical version of a result from [Kocl1].

Comparison with co-Operads. We are now ready to establish the main result of the paper, namely
the equivalence between analytic monads and oo-operads.

Let © be the full subcategory of AnMnd on the free monads on trees; this is the polynomial
description (cf. [Koc11]) of the dendroidal category of Moerdijk and Weiss [MWO7].

Theorem. The restricted Yoneda functor AnMnd — P(Q) is fully faithful, and its essential image
is Pseg(§2). We thus have an equivalence of co-categories

AnMnd ~ Pgeq ().

Here Pgcg(£2) is the co-category of presheaves whose restriction to Qing lies in Pgeg(2int); these are
precisely the dendroidal Segal spaces.

The proof is inspired by the Nerve Theorem of Weber [Web(07]. The main ingredients are the
monadicity of the free monad adjunction, the interpretation of analytic endofunctors as presheaves
on (2], and the explicit description of the free monad in terms of trees.

1.2. Related Work.

Operads. A number of categorical descriptions exist for operads in Set. While it is well known that
non-symmetric operads are equivalent to monads cartesian over the free-monoid monad (and are
hence automatically polynomial), it is not true that a non-symmetric operad can be recovered from is
monad alone [Lei04] — the cartesian natural transformation is a structure, not a property. Leinster
took this as the starting point for a theory of generalized operads, defined as monads cartesian over
a fixed cartesian monad. Symmetric operads are not an instance of this notion, though: they ought
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to be cartesian over the free-commutative-monoid monad Sym, but while the free-algebra monad of
a symmetric operad does admit a canonical monad map to Sym, neither the monads nor the map
are cartesian in general.

The symmetric case can be handled with the notion of weakly cartesian natural transformation,
introduced by Joyal [Joy86]; see Weber [Web04] for a systematic treatment. Joyal proved that an
endofunctor is analytic if and only if it admits a weakly cartesian natural transformation to Sym,
and showed that the category of analytic functors and weakly cartesian natural transformations is
equivalent to that of symmetric sequences (or species). This equivalence is monoidal: composition
of analytic functors corresponds to the composition product of symmetric sequences, which goes
back to Kelly [Kel05]. Kelly had observed that operads are monoids in symmetric sequences, so it
follows that operads are analytic monads. The characterization of operads as weakly cartesian over
Sym also follows.

An alternative way of overcoming the subtleties consists in observing that while Sym is not carte-
sian on Set, it is cartesian as a 2-monad on Cat, as is important in Kelly’s theory of clubs [Kel74].
This was exploited by Weber [Web15b] to give a characterization of symmetric Set-operads as poly-
nomial monads cartesian over Sym in a certain 2-categorical sense. Weber’s work was an important
starting point for us.

It is a pleasant feature of the oo-categorical setting that these various approaches are unified
in clean statements, as expressed in the slogans of the introduction. These hold true already over
1-groupoids, but to get a good description of analytic functors in 1-groupoids one is forced to pass
to 2-groupoids, etc., giving the usual infinite ladder — only for oo-groupoids do we get a nice
self-contained theory.

0o-Operads. As we mentioned above, our description of oco-operads as analytic monads can be
interpreted as an oo-categorical version of the classical description of (I-coloured) operads as as-
sociative algebras in (I-coloured) symmetric sequences. Another version of such a description of
oo-operads, which also works for enriched oo-operads, was recently obtained by the second author
[Haul9] by describing the composition product using an extension of Day convolution to double
oo-categories. Alternatively, the composition product can be constructed using free symmetric
monoidal oo-categories (extending to oo-categories the construction of [Tri]); this approach is im-
plemented in the thesis of Brantner [Bral7], though it has not yet been compared to other models
for oco-operads.

Polynomial Functors. The theory of polynomial functors has roots in topology, representation the-
ory, combinatorics, logic and computer science. For instance, the 1-categorical version of our Theo-
rem 2.2.3 grew out of work on Girard’s linear logic and domain theory, and some of the basic results
on polynomial functors were first established in connection with semantics for generic data types
and polymorphic functions [AAGO03] (see [GK13] for further background and references, and [Koc12]
for analytic functors in that context). Moerdijk and Palmgren [MPO0O0] showed that initial algebras
for polynomial functors are semantics for W-types in (extensional) Martin-Lof type theory, the fun-
damental example being the natural numbers as initial algebra for X — 14 X, cf. [Law64, Lam68].
With the homotopy interpretation of type theory [HoTT], a full-blown intentional interpretation has
recently been given by Awodey—Gambino—Sojakova [AGS17] as homotopy initial algebras. (Gener-
alized) oo-operads are expected to serve as semantics for the so-called higher inductive types (see
[LS20]). The polynomial approach to co-operads might play some role in fleshing out the semantics
side of those ideas.

For their role in encoding both substitution and induction/recursion, polynomial functors have
also become an important tool for handling the intricate combinatorial structures that arise in higher
category theory. For example, polynomial monads were used to give a purely combinatorial descrip-
tion of opetopes [KJBM10], and Batanin and Berger [BB17] have exploited polynomial monads to
give unified constructions of Quillen model structures on categories of algebras. Their paper has
many references to related developments.
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2. POLYNOMIAL FUNCTORS

2.1. Polynomial Functors. We write 8 for the oo-category of spaces (also known as oo-groupoids
or homotopy types); in the model of co-categories as quasicategories this can be explicitly defined
as the coherent nerve of the simplicial category of Kan complexes.

If f: 1 — J is a map of spaces, then f induces three adjoint functors between the slice co-
categories 8, and 8,;: Composition with f gives a functor

fi:8r =85

which is left adjoint to the functor
f* : S/J — 8/[

given by pullback along f. The functor f* also has a right adjoint
J«: 81— 85

since 8 is locally cartesian closed. If we interpret the slice co-categories 8,7 as functor co-categories
Fun(I,8) using the straightening equivalence, then the functor f*: Fun(J,8) — Fun(l,8) is given
by precomposition with f, and f, and f. are given by left and right Kan extension along f.

Definition 2.1.1. A polynomial functor is a functor 8,; — 8, of the form #p.s* corresponding
to a diagram of spaces

ISELBYL T

Remark 2.1.2. In this paper we only consider polynomial functors in the context of the co-category
of spaces, since this is the appropriate setting for co-operads. It is possible to consider polynomial
functors in the more general setting of an arbitrary oo-topos (or a locally cartesian closed oo-
category, as treated in [GK17]), and we expect that most of our results can be generalized to this
context. However, this would require working in the setting of internal co-categories, which has not
yet been sufficiently developed. For example, instead of natural transformations between polynomial
functors we must use the analogue of so-called strong natural transformations (cf. [GK13]), or
equivalently fibred natural transformations (cf. [KK13]). In ordinary category theory, polynomial
functors have also been considered [Webl5a] in general categories with pullbacks, at the price of
having to impose an exponentiability condition separately on the middle maps in the diagrams.

A Dbasic fact about polynomial functors is that they compose (cf. Theorem 2.1.8 below). This
result amounts to being able to rewrite any composite of upper-star, lower-star and lower-shriek
functors in the normal form of the definition. This is achieved through Beck-Chevalley transforma-
tions and distributivity, which we proceed to discuss. This works essentially as in the 1-categorical
case [GK13]. Our treatment follows [Weblba, §2.2].

Definition 2.1.3. A natural transformation ¢: F' — G of functors F,G: C — D is cartesian if for
every morphism f: C' — C’ in € the commutative square

Ff
FC —— FC’

o e

GC —— G’
Gf

is cartesian.
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Remark 2.1.4. If C has a terminal object *, then by the 2-of-3 property of pullback squares a
natural transformation ¢ as above is cartesian if and only if for every object ¢ € € the naturality
square

Fe—— Fx

o e

Ge —— G

is cartesian.

Lemma 2.1.5. Suppose C is an oo-category with pullbacks. For any morphism f: S — T in C we
have a functor fi: €,5 — C,r given by composition with f, with right adjoint f* giwen by pullback
along f. The counit and unit transformations fif* — id and id — f*f, for the adjunction fy 4 f*
are cartestan.

Proof. 1t suffices to check that the naturality squares for the map to the terminal object is cartesian
in both cases. For the counit transformation at ¢g: Y — T this is obvious, since the naturality square
is

SxrYy —Y

|

STT.

For p: X — S in €/g, consider the diagram

= . .

X—=— = 8Sx0 X — X

| | |

S —— Sxr 8§ —— S

N b

SﬁT.

Here the top left square is the naturality square for the unit at p. In the right column the bottom
square and the composite square are cartesian, hence so is the top right square. The composite in
the top row is also cartesian, whence the top left square is cartesian, as required. O

Lemma 2.1.6. For a commutative diagram of spaces

A—"5B

the following are equivalent:

(i) The square is cartesian.
(i) The Beck-Chevalley transformation

wg* — wg v o =~ wut o — o

is an equivalence.
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(iii) The Beck-Chevalley transformation
U fo = gug" 0" fu = g [ fi = gau”
18 an equivalence.

Proof. (i)<(ii): To see that the Beck-Chevalley transformation in (ii) is cartesian we use Lemma 2.1.5:
this implies that the unit id — v*v; and counit wyu* — id are cartesian transformations, and the
functors w;, g*, f*,u all preserve pullbacks (for the left adjoints this follows for instance from
Lemma 2.2.7). By Remark 2.1.4 it is therefore a natural equivalence if and ounly if the map
wg*(ide) — f*u(ide) in 8,p is an equivalence. Here wig*(ide) ~ wi(ida) ~ u and f*v(idc) ~
f*(v), and the map u — f*v is given by the natural map from A to the pullback of v along f. Since
the forgetful functor 8,5 — 8 is conservative, we see that the square is indeed cartesian if and only
if this map is an equivalence.

(i)« (iil) follows since the two transformations are mates: (iii) is obtained from (ii) by taking
right adjoints, and (ii) from (iii) by taking left adjoints. O

Proposition 2.1.7. Given maps of spaces f: X - Y and g: E — X, put r := f,g: E' =Y and
h:= f*r: B — X, to get a commutative diagram

B 4q E

X ——Y,

where € is the counit for the adjunction f* = f. and q is the pullback of f along r. Then the natural
transformation §: riq.€* — f.q, defined as the composite

rgee’ = rgee gt g 2 g h g <= mrt fugr — fign

is an equivalence.

Proof. The natural transformation ¢ is cartesian, since by Lemma 2.1.5 it is a composite of cartesian
transformations. It therefore suffices to show that the component of § at idg is an equivalence. We
have rig.e*(idg) ~ r(idg/) ~ r (since g.e* preserves the terminal object) and f.gi(idg) ~ fi(g)
which by definition is also r. Tracing through the maps constituting the transformation reveals that
the actual map from r to r is the diagonal followed by a projection, which is the identity. O

We can now give an explicit description of the composite of polynomial functors:

Theorem 2.1.8. Suppose P: 8,1 — 8,5 and Q: 8,; — 8,k are polynomial functors, represented
by diagrams of spaces
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respectively. Consider the commutative diagram of spaces

w

T

G D

ol /
q g BQ*
C

Yy "  Bx,F

AN

Y T RN

1 K

q

where € is the counit map q*q.m — 7 for the adjunction ¢* - q., and the squares are all pullbacks.
Then the composite Qo P: 8,1 — 8, is the polynomial functor represented by the diagram

1I£6% DS K.

Proof. We have natural equivalences

VNG tpes™ ~ ngemu p,s* (using the Beck-Chevalley equivalence u*t ~ m(u')*)
~ v (g1 qgi € U pys* (using the distributivity equivalence q.m =~ (q.7)iq.e*)
~ oq.p! e u"*s* (using the Beck-Chevalley equivalence e¢*u'*p, ~ p//e¢"*u’™*)
~ TwLr”. O
Corollary 2.1.9. The composite of two polynomial functors is again a polynomial functor. O

Remark 2.1.10. This corollary also follows from the characterization of polynomial functors we
will prove below in Theorem 2.2.3, but we will also need the explicit formula for the composition
given by Theorem 2.1.8.

2.2. Local Right Adjoints. In this subsection we will prove an alternative characterization of
polynomial functors. To state this we must first introduce some terminology:

Definition 2.2.1. A functor F': € — D between oco-categories is a local right adjoint if for every
x € € the induced functor €/, — D, p, is a right adjoint.

Definition 2.2.2. The inclusion 8 — Cat,, of spaces into the co-category of small co-categories
has a left adjoint, which takes an oo-category € to the space obtained by inverting all morphisms
in C, which we denote ||C||. We say that C is weakly contractible if ||C]| is a contractible space.

Theorem 2.2.3. The following are equivalent for a functor F': 8,1 — 8, :
(i) F is a polynomial functor.
(i1) F is accessible and preserves weakly contractible limits.
(iii) F is a local right adjoint.

Remark 2.2.4. Theorem 2.2.3 is specific to the oco-category 8§ (and its truncations, such as the
category of sets). Even over a presheaf topos it is not true in general that a local right adjoint
is always polynomial, as exemplified by the free-category monad on directed graphs [Web07]. The
corresponding theorem in ordinary category theory has a long history, see [GK13]. It can be extended
to general locally cartesian closed categories with a terminal object by considering local fibred right
adjoints instead of just local right adjoints, cf. [KK13]. Presumably the fibred viewpoint can be
upgraded to the oo-categorical setting to get a version of Theorem 2.2.3 for presentable locally
cartesian closed oo-categories, but we will not pursue this here.

Before proving Theorem 2.2.3, we need some observations on weakly contractible limits.
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Definition 2.2.5. A conical limit is a limit indexed by an oo-category of the form J> for some
oo-category J.

Lemma 2.2.6. Suppose C has a terminal object. Then a functor F': € — D preserves conical limits
if and only if it preserves all weakly contractible limits.

Proof. Conical limits are in particular indexed by weakly contractible co-categories, so suppose F'
preserves conical limits and let ¢: J — € be a diagram with J weakly contractible. Since € has a
terminal object, the right Kan extension ¢’ of ¢ along the inclusion i: J < J* exists, and ¢ ~ ¢'|5.
Moreover, if ¢ has a limit then so does ¢’ and the limit of ¢ is equivalent to that of ¢’. Since J*
is conical, F' preserves the limit of ¢'. But as J is weakly contractible, the inclusion 4 is coinitial,
hence the limit of F' o ¢ exists and is equivalent to the limit of F' o ¢/. In other words, F' preserves
the limit of ¢, as required. O

Lemma 2.2.7. For any object x in an oo-category C, the forgetful functor P: €,, — C preserves
and reflects weakly contractible limits.

Proof. The limit of a diagram f:J — C/, is the limit of the corresponding diagram f’: J> — €. If
J is weakly contractible, then the inclusion J < J* is coinitial, so the limit of f’ is the same as the
limit of f’|y, which is the image of f under the forgetful functor. O

Lemma 2.2.8. In the oco-category S, weakly contractible limits commute with colimits indexed by
00-groupoids.

Proof. For X € 8§ we have the straightening equivalence Fun(X, 8) ~ 8 /x> under which the constant
diagram functor § — Fun(X, 8) corresponds to taking products with X. Passing to left adjoints, this
means that taking X-indexed colimits corresponds under the equivalence to the forgetful functor
8,x — 8, which preserves weakly contractible limits by Lemma 2.2.7. 0

Proposition 2.2.9. Suppose F': C — D is an accessible functor between presentable oo-categories.
Then F is a local right adjoint if and only if it preserves weakly contractible limits.

Proof. For every x € €, the induced functor Fy,: €,, — D,p(,) is accessible, so by the adjoint
functor theorem it is a right adjoint if and only if it preserves limits. A limit of a diagram J — €/,
is the limit in C of the associated diagram J* — €, so the functors F, preserve limits for all z if
and only if F' preserves all conical limits. By Lemma 2.2.6 this is equivalent to F' preserving weakly
contractible limits, since € has a terminal object. g

Lemma 2.2.10. For any map f: S — T in an oo-category €, the functor fi: C;s — C,p preserves
and reflects weakly contractible limits.

Proof. In the commutative triangle

C/s e /T
¢,
both forgetful functors to C preserve and reflect weakly contractible limits. Therefore so does fi. 0O

Lemma 2.2.11. Suppose F': 8,1 — 8,; is a functor that preserves colimits (equivalently, by the
adjoint functor theorem, it is a left adjoint). Then F is of the form sip* for some span

I1&EU ST
Proof. Using equivalences of the form §,; ~ Fun(/, §) we get an equivalence

FunL(S/I,S/J) ~ Fun®™(P(I), P(J)) ~ Fun(I,Fun(J,8)) ~ Fun(I x J,8) ~ 8 /.
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Thus every colimit-preserving functor corresponds to a span, and under this equivalence the span
12U 5T
is sent to sip*. O

Proof of Theorem 2.2.3. The equivalence of (ii) and (iii) is a special case of Proposition 2.2.9. To
see that (i) implies (ii), suppose F ~ t\p.s*. The functors ¢, p, and s* are all accessible, and p.
and s* preserve all limits, being right adjoints; by Lemma 2.2.10 the functor ¢, also preserves weakly
contractible limits, which gives (ii). Finally we show that (iii) implies (i). Observe that F' factors
as

Fr t
S/ == 8/p(y = 85

where ¢ is the map F'(I) — J. By assumption F); is a right adjoint, so it follows from Lemma 2.2.11
that it is of the form p.s* for some span

I1EU S F. O

2.3. Morphisms of Polynomial Functors. For our purposes the appropriate type of morphism
between polynomial functors is a cartesian natural transformation, so we make the following defini-
tion:

Definition 2.3.1. The oo-category PolyFun(I,.J) of polynomial functors is the subcategory of
Fun(8,7,8,;) with objects the polynomial functors and morphisms the cartesian natural transfor-
mations between them.

We now wish to identify the cartesian natural transformations with certain diagrams.

Definition 2.3.2. Suppose given a commutative diagram of spaces

BB

AR
I J

€ B

BN A

ET>B,

where the middle square is cartesian. Let F’ := ¢{p,s"* and F := tip.s* denote the corresponding

polynomial functors. Then we define a cartesian natural transformation ¢: F’ — F as the composite
tiph s ~ tple* st =t B pus® =t B pust — tipus”

using the Beck-Chevalley transformation for the cartesian square and the counit for g 4 §*. Observe

that the component of ¢ on the terminal object id; is essentially g itself (as follows since right

adjoints preserve terminal objects): ¢iq,: F'(id;) — F(idy) is canonically identified with 3: B’ — B

as maps over J.

Our goal in this subsection is to show that in the co-category of spaces, this construction gives
an equivalence between the space of such diagrams and the mapping space Mappqypun(r,.s) (£’ F).
(Later, we will show that this extends to an equivalence of co-categories.) We first prove that every
cartesian natural transformation is of this form, which is a consequence of the following observation:

Lemma 2.3.3. Suppose C is an co-category with a terminal object x and D is an oco-category with
pullbacks. Then the functor
ev,: Fun(€,D) —» D

18 a cartesian fibration, and the cartesian morphisms are precisely the cartesian natural transforma-
tions.
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Proof. Observe that ev, has a right adjoint r, taking d € D to the constant functor r(d): € — D
with value d. Let n denote the unit and € the counit. We can apply the criterion of (the dual of)
[Haul7, Corollary 4.52]: ev, is cartesian if and only if for every functor F' € Fun(C, D) and every
morphism d — F(x) in D, in the pullback square

3
w
=

the composite
F'(x) — r(d)(x) % d

is an equivalence. But this is obvious since pullbacks in Fun(C, D) are computed objectwise, so we
have a pullback square

£ |

Moreover, by [Haul7, Proposition 4.51] a morphism ¢: F — G in Fun(C, D) is ev,-cartesian if and
only if the commutative square

F G
rF(x) mr (*)

is cartesian, i.e. if and only if for every x € C the square

is cartesian, which is equivalent to ¢ being cartesian by Remark 2.1.4. 0

Definition 2.3.4. Let Fun(€, D)®* denote the subcategory of Fun(€, D) containing only the carte-
sian natural transformations.

Remark 2.3.5. By Lemma 2.3.3 the oco-category Fun(C, D)@ * is precisely the subcategory of
Fun(C, D) containing only the cartesian morphisms for the cartesian fibration ev,. The restriction
of this to functor ev,: Fun(€, D)°*"* — D is hence a right fibration.

Lemma 2.3.6. Suppose F': 8,1 — 8,5 is a polynomial functor, represented by a diagram

IEELBL T
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If ¢: F' — F is a cartesian natural transformation, then F' is also a polynomial functor, and ¢ is
equivalent to the natural transformation associated to a diagram

Y. p

SRR
J

I € B

BN A

E —— B

Proof. Let (t': B' — J) := F’(idy), then the map ¢q, gives a map 5: B’ — B over J. We can
then define € as the pullback of 8 along p and put s’ := s o€ to get a diagram of this form. The
construction of Definition 2.3.2 then gives a natural transformation ¢': F” — F. Thus we have two
cartesian natural transformations to F' with the same image in §,; under evaluation at the terminal
object. Thus by Lemma 2.3.3, ¢ and ¢’ are both cartesian morphisms to F' with the same image
in §,;, and so they must be equivalent — in particular I ~ F", which implies that [ is indeed
polynomial. O

As a consequence, we get:
Lemma 2.3.7. The projection eviq, : PolyFun(l, J) — 8,; is a right fibration. O

It remains to understand the fibres of this fibration. Note that, for € and D oo-categories where
€ has a terminal object *, the fibre of ev,: Fun(C, D) — D at d € D is the oo-category Fun. (€, D )
of functors that preserve the terminal object. Restricting to polynomial functors from 8,; to 8,

(with all natural transformations allowed), the fibre at ¢: B — J is Fun™(8 /1,8/m), since polynomial
functors are local right adjoints by Theorem 2.2.3. This fibre can be described explicitly:

Lemma 2.3.8. There is a natural equivalence

(8/1x5)°® = Fun™(8,1,85),

which sends a span I < X 2 B to the functor p.s*, and sends a map of spans

to the natural transformation
/I

Pes”™ = DL fe T8 = pus
induced by the unit of the adjunction f* 4 f,.
Proof. This is a reformulation of Lemma 2.2.11, using the natural equivalence
Fun™(8,7,8,5) ~ Fun®™(8,5,8,7)°P. O
Remark 2.3.9. Restricting to cartesian natural transformations, we see that the fibre of
eviq, : PolyFun(Z,J) — §,;

at B — J is equivalent to the core co-groupoid of 874 .
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2.4. The oo-Category of Polynomial Functors. We now wish to construct an co-category of
all polynomial functors, i.e. to put the oo-categories PolyFun([, J) for varying I and J together into
a single oo-category PolyFun, fibred over 8§ x 8 (by returning I and J). We will define this using a
double oco-category of colax squares of co-categories, constructed in §A.2. We then define a functor
from polynomials to polynomial functors with varying source and target, and prove that this is an
equivalence.

Definition 2.4.1. In §A.2 we define a double co-category ch"la”x(C/A\TOO)V:radj where

e the objects are co-categories,

e the vertical morphisms are right adjoints,

e the horizontal morphisms are arbitrary functors,

e the squares (or 2-cells) are colax squares, i.e. diagrams in the (oo, 2)-category of co-categories
of shape

«— o
« — e
— . —rad]
We can pull Sq°'*(CAT ., )v="2div-oP hack along the functor 8?7: 8P — Catoz ! taking a space I

to 8,y and amap f: I — J to f*: 8,5 — 8,1, to obtain a double co-category where

the objects are spaces

the vertical morphisms are maps of spaces,

the horizontal morphisms are arbitrary functors between slices,

the squares (or 2-cells) are colax squares using the (—)*-functors for maps of spaces.

We define the double oco-category POLYFUN to be the sub-double oco-category of this pullback
where the horizontal morphisms are polynomial functors. Thus POLYFUN has

(1) spaces as objects,

(2) maps of spaces as vertical morphisms,

(3) polynomial functors as horizontal morphisms,
(4) diagrams of the form

81 —L— 8;

AN T

8/]/ T} S/J/

as squares.

Remark 2.4.2. Taking mates in the vertical direction should give an equivalence of double co-
categories

cholax(C/A\Too)v:radj,v—op o~y Sqlax (C/A\TOO)VZIadj.

Assuming this, our definition of POLYFUN is equivalent to the alternative, and perhaps more
standard, definition where the vertical morphisms are the left adjoint functors fi: 8,7 — 8,;. We
have chosen our convention to match with the correct convention for polynomial monads, where we
really do want lax transformations (cf. Remark A.5.8) with direction reversed (which are not the
same as colax morphisms of monads) — we thereby avoid unnecessarily using the above-mentioned
equivalence of lax and colax squares via mates, which we do not prove here.

Proposition 2.4.3. The double oco-category POLYFUN is framed, in the sense of Definition A.J.5.

Proof. In Proposition A.4.5 we prove that the double co-category ch"la”x(C/A\TOO)V:radj is framed.
But for a vertical morphism of the form f* the four squares of the framing live in the sub-double

oo-category POLYFUN since the unit and counit transformations for f; 4 f* are cartesian. Thus
POLYFUN is also framed. 0
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Definition 2.4.4. We write PolyFun for the co-category of horizontal morphisms in POLYFUN),
i.e. POLYFUNyy, if we view POLYFUN as a cocartesian fibration over A°P.

Applying Proposition A.4.4, we get:

Corollary 2.4.5. The source-and-target projection PolyFun — 8 X 8 is both cartesian and cocarte-
siamn. O

Remark 2.4.6. For morphisms f: I — I', g: J — J’, the cocartesian pushforward of F €
PolyFun(1, J) along (f, g) is the composite g F' f*, while the cartesian pullback of G € PolyFun(I’, J')
is g*F fi. Note that if F' corresponds to the diagram

ISELBL
then the pushforward ¢\ F' f* corresponds to
r&espe g
while the cartesian pullback is more complicated to describe diagrammatically.

Definition 2.4.7. Let II denote the category e <— ¢ — e — e  which decomposes as a colimit
(AN)°P TTp0 Al TIx0 Al in Cato,. We define Poly to be the subcategory of Fun(Il,§) containing
only those morphisms where the middle commuting square is cartesian. In other words, we have a
natural equivalence

Poly ~ Fun((A')°P,8) xs Fun(A!, 8)°** x5 Fun(A', ).

We now define a functor ®: Poly — PolyFun; we do this by defining three functors to PolyFun
and then combining them using the horizontal composition in POLYFUN.

Definition 2.4.8. Let 877 denote the functor 8§°P — 62;500 taking I € 8 to 8,y and f: I — J to
J*: 8,7 — 8,r. This induces a functor

®;: Fun((A1)°P,8) = Map(A® x (A1)°P,8) — Sq, ; (Cate) " =UV0P 5 §qeolax(CAT ) ¥ =radiv-op,

which clearly passes through PolyFun.
Combining 8?7 instead with the functor

Sq(Catm)h:Iadj N Sqlax(CAToo)h:radj,h—op

of Proposition A.3.1, which takes mates in the horizontal direction (replacing f* with f.), we get a
functor

Fun(A',8) — S¢'™ (CAT )} =Y.
Restricting to Fun(A?, 8)a* this actually lands in commuting squares, giving

®y: Fun(A!,8)°™ — Sq(CAT)y Y,

which factors through PolyFun.
Finally, combining Sﬂ with the functor

Sq(catoo)h:radj N SQCOlaX(CATOO)h:ladj’h_op,

of Proposition A.3.1, which also takes mates in the horizontal direction (replacing f* with fi), we
get a functor

@3: Fun(Al, S) N SqCOIaX(CATOO)If:Iadj.
This again factors through PolyFun.
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Remark 2.4.9. More explicitly, ®; is given by

J 27

L b N T

L« K S)L —= S/K-

Similarly, the functor ®, is given by

I —25J 81 ——8,;
fl - lg = AN Tg*
K — L S/K *>b* S/L.

Finally, ®3 is given by
I—2—J
R I
K — L 8K — 8L

Definition 2.4.10. The functors ®; agree appropriately under restriction to § to determine a
functor

Poly = Fun((A')°P,8) xs Fun(A', 8)°* x s Fun(A',8) — PolyFun x s PolyFun x s PolyFun.
Combining this with the horizontal composition in POLYFUN,
PolyFun x g PolyFun xg PolyFun <~ POLYFUN, 3 — PolyFun,
we get the required functor ®: Poly — PolyFun.
Theorem 2.4.11. The functor ®: Poly — PolyFun is an equivalence.
The following lemma shows that it is enough to prove this fibrewise:

Lemma 2.4.12. The projection evgs: Poly — 8 X § is a cocartesian fibration, and ®: Poly —
PolyFun preserves cocartesian morphisms.

Proof. For a polynomial P given by I < E % B % J and a morphism (f:I—=1T,9:J—J)out
of evg 3(P), a cocartesian lift is given by

I« FE-23yB—t,J
A D
I'e5— B —> B — = J"

the cocartesian property is readily checked. Such a diagram is sent by ® to the colax square
81— 8,
f T N Tg*

8/1/ E—— S/J/

g Pf”
with the natural transformation given by the unit transformation Pf* — g¢g*g/Pf*. But this is
precisely the form of the cocartesian edges in PolyFun, as noted in Remark 2.4.6. O

Proposition 2.4.13. For fized spaces I and J, the functor ® gives an equivalence
Poly(I, J) — PolyFun(1, J)
when restricted to the fibre over (I,.J).
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Proof. Both sides are right fibrations over §,;, so it suffices to show that we get an equivalence on
fibres over every B — J in §,;. The fibre of Poly(I, J) is the co-groupoid of spans I <~ M — B,
and the fibre of PolyFun([,.J) is the oo-groupoid Map®™ (8 /1,8/8). The functor restricts precisely
to the functor in Lemma 2.3.8, shown there to be an equivalence. 0

Proof of Theorem 2.4.11. By Lemma 2.4.12 the functor ® is a map between cocartesian fibrations
and preserves cocartesian edges. It therefore suffices to show that the induced map on fibres
Poly(I, J) — PolyFun(7, J) is an equivalence, which is Proposition 2.4.13. O

2.5. Colimits of Polynomial Functors. In this subsection we will give two descriptions of colimits
of polynomial functors: First, we will see that colimits in Poly can be computed in Fun(IL, §), i.e.
pointwise in the diagram. We will also show that colimits in PolyFun(7,.J) can be computed in
FHH(S/[, S/])

Proposition 2.5.1. Let C be a small co-category and let X be an oco-topos. The forgetful functor
Fun(€, X)°* — Fun(C, X) preserves and reflects all limits and colimits.

Proof. We first consider the case of colimits. Given a diagram ¢: J — Fun(€, X)°**, let ¢: J> —
Fun(€, X) be a colimit diagram extending the image of ¢ in Fun(C, X). We claim that this colimiting
cocone in Fun(€, X) is also a colimiting cocone in the subcategory Fun(€, X)ct.

To show this we must first prove that the commutative squares

')

)L (c

o0)(c)

¢(i)(c) —— o(i
— o(

¢(o0)(¢)

are cartesian, for all maps ¢ — ¢ in €. Since colimits in functor oo-categories are computed
objectwise, this is true by descent for the oco-topos X, using [Lur09, Theorem 6.1.3.9(4)].

Second, we must check that for any cocone ¢’: J> — Fun(C,X)®* the canonical map ¢ —
¢ in Fun(€,X) actually belongs to Fun(C,X)®'®, i.e. it is a cartesian transformation. Since the
transformations ¢(i) — ¢’(00) are cartesian, we have pullback squares

$(i)(¢) — ¢(i)(¢)
¢'(00)(c) —— ¢'(0)(¢).

Colimits in X are universal, so this induces a pullback square of colimits

¢'(00)(c) —— ¢'(0)(¢).

as required.
The proof for limits is the same, but simpler, using that limits commute and pullbacks preserve
limits, which is true in any oo-category. O

Corollary 2.5.2. Colimits in Poly are constructed in Fun(IL,§), and colimits in Poly(I,J) are
constructed in Fun(Al,8) for all spaces I,J. In particular, the co-categories Poly and Poly(I,J)
are cocomplete.
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Proof. By definition, the co-category Poly is the fibre product Fun(A°P 8§) xg Fun(Al, §)cart x g
Fun(At, 8). The projections to 8 all preserve colimits (using Proposition 2.5.1 for the middle term),
so by [Lur09, Lemma 5.4.5.5] a diagram in Poly is a colimit if and only if its composition with
the projections to the terms in this fibre product are colimits. Now Proposition 2.5.1 implies that
colimits are computed in

Fun(Ab°P 8) xs Fun(A',8) xs Fun(A', 8) ~ Fun(II, §).
By the same argument, a diagram in
Poly(I,J) ~= 8,1 xs Fun(A',8)“™" x5 §,;

is a colimit if and only if its images in §;, Fun(A',8), and §,; are colimits. But colimits in these
over-categories are computed in 8, so a diagram in Poly (I, J) is a colimit if and only if its image in
Fun(Al,8) is a colimit.

Since Fun(IL, 8) and Fun(A?, 8) are cocomplete, it follows that so are the oo-categories Poly and
Poly(Z, J). O

Remark 2.5.3. Note that the corresponding result does not hold in the classical 1-categorical
setting of [GK13] (such as in Set), since a 1-topos does not have descent in general. In the 1-
categorical setting, only colimits of diagrams of monomorphisms can be computed pointwise, as
exemplified by grafting of trees [Kocl1], as will be important below (cf. Remark 3.3.4).

Proposition 2.5.4. The forgetful functor PolyFun(I,J) — Fun(8,;,8,;) preserves colimits. In
particular, the colimit of a diagram of polynomial functors and cartesian transformations is again
a polynomial functor.

Proof. Consider a diagram ¢: I — PolyFun(I, J), where the functor ¢, corresponds to the diagram
IEE B(x) 22 Bx) 25 .
By Corollary 2.5.2 and Theorem 2.4.11 the colimit of ¢ in PolyFun(7, J) corresponds to the diagram
ISELBL

where F := colimgeg F(x) and B := colimgeg B(z). On the other hand, since colimits in functor
oo-categories are computed pointwise, the colimit of the diagram in Fun(8,,8,;) is the functor

¢ (K —=1) »—)COleign¢x(K~>I).

Let us view ¢, as a functor Fun(7,8) — Fun(J, 8); then evaluating at «: I — 8 and j € J we have

+(a)(j) = colim lim «a(s.e).
¢x(a)(j) ol dim (sze)
Let B — J be the left fibration corresponding to the functor B(—). This has a map to J, and the
fibre B; — J is the left fibration for the functor B(—);. Since iterated colimits are colimits over
cocartesian fibrations, we get
a)(j) = colim lim «fsze).
¢(a)(5) (fSolim - lim (sze)
Now we observe that the functor (b,z) +— lim.cp(a), ®(sz€) takes every morphism in B; to an
equivalence of spaces: Since B; — J is a left fibration it suffices to consider morphisms of the form
(b,z) — (B(f)b,2') over f: x — 2’ in J. Then as ¢(f) is a cartesian natural transformation the
map E(f)y: E(x), — E(2'), is an equivalence and we have
lim o(sze)~ lim a(sgE(f)e)~ lim af(sge’).
e€E(z)y ( ) e€E(z)y ( (f) ) e'eE(z)y ( )
Thus this functor from B; factors through the space obtained by inverting all morphisms in B;.
This space is precisely B;j ~ colimzeg B(z); by [Lur09, Corollary 3.3.4.6]. Since B; — B, is cofinal
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by [Lur09, Corollary 4.1.2.6], this means we can replace the colimit over B; by a colimit over the
space B;. Moreover, since we have pullbacks

E(z) =+ FE

S
B(z) 5 B

by [Lur09, Theorem 6.1.3.9], for b € B(x); we can identify lim.cp(y), ®(sz€) with limee g, a(se).
Thus we have produced a natural equivalence

~ colim li
Pe) = ol g, o)

where the right-hand side is the formula for the polynomial functor corresponding to the diagram
ISELBL
as required. O

2.6. Slices over Polynomial Functors. In this subsection we consider slices of PolyFun, i.e.
overcategories PolyFun . We will show that these oo-categories are very well-behaved; specifically,
we will prove:

Theorem 2.6.1. For any polynomial functor P, the slice co-category PolyFun, p is an co-topos; in
particular, this co-category is presentable. Furthermore, the full inclusion

PolyFun,p ~ Poly,p — Fun(I1, §8) /p
preserves all limits and colimits; it is thus the inverse-image part of a geometric morphism.

Remark 2.6.2. This theorem is also true in the 1-categorical case of Set, although we are not
aware of a reference. This is a consequence of the observation that the maps in Poly form a class
of standard étale maps in P(II), in the axiomatic sense of Joyal-Moerdijk [JM94]. The result now
follows from their Corollary 2.3.

Lemma 2.6.3. For any morphism p: E — B in S, the functor
evy: Fun(Al, S);Zrt — S/B
is an equivalence.

Proof. The 2-of-3 property for pullback squares implies that Fun(A!, S)j’?ft can be identified with

the full subcategory of Fun(Al, 8) /p Spanned by cartesian squares. We can thus identify the map to
8,p with a pullback of the forgetful functor from the full subcategory of Fun(A! x A'8) spanned
by cartesian squares to the co-category of functors from Al x A\ {(0,0)} to spaces. The latter is

an equivalence by [Lur09, Proposition 4.3.2.15], since it is the forgetful functor from squares that
are right Kan extended from A x A\ {(0,0)}. ]

The main point of the proof of the theorem is the following general lemma.
Lemma 2.6.4. For any map of spaces p: E — B, the full inclusion
Jp: 8B~ Fun(Al,S)%‘grt —s Fun(A1,8) ),
has both a left and a right adjoint. The left adjoint of j, takes a square
X —Y
1o b
E —— B

toy € 8,p and the right adjoint of j, takes it to p.x Xp, pry Y.
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Proof. The functor evy: Fun(Al,8) — 8 has as right adjoint the constant diagram functor (which
is also given by right Kan extension). By [Lur09, Proposition 5.2.5.1] this induces for p: E — B an
adjunction on slice categories

evy ! Fun(Al,S)/p = S/B “9p,
where the right adjoint g, takes y: ¥ — B to the pullback

ExgY — Y

I

E—F>F—B
induced by the unit map. We can thus identify the right adjoint g, with j,, so j, has a left adjoint
with the stated description.

It follows from Proposition 2.5.1 that j, preserves limits and colimits, so since 8,5 and Fun(Al,8) /p
are presentable the adjoint functor theorem implies that j, also has a right adjoint. To show the
right adjoint has the claimed description, for f in 8,5 and a square a as above, we must establish
the equivalence

Map/B(f,p*x Xp.pry Y) = MapFun(Al,S)/p (pf, ).
But the mapping space on the right is the pullback

Map 5 (p* f, z) X Map,5(f,y)
Map , g (p1p* f,y)

which is naturally equivalent to

Map,5(f, p+) X Map,5(f,y) =~ Map,g(f, Pt Xp.pry Y)
Map, g (f,p«P*y)

as required. 0

Proof of Theorem 2.6.1. Suppose P is represented by I & E 5 B LI By Lemma 2.6.3 we have
an equivalence

Fun(A', S);Zrt ~8/p.
Using this equivalence, we have (via Theorem 2.4.11 and Definition 2.4.7):
PolyFun,p ~ Poly ,p =~ (Fun((Al)OP, S) x Fun(A', 8)ct X Fun(A', S)>
/(s:p:t)
~ Fum((Al)(’p,S)/S X ]F‘un(Al,S)%‘ft x Fun(A', 8) 1t

/e S5
~ Fum((Al)(’p,S)/S S>< 8/B SX Fun(Al,S)/t.
/E /B

This is a double pullback of oco-categories which are oo-topoi, and the functors involved in the
pullbacks are left exact left adjoints. Hence the result is again an co-topos by [Lur09, Proposi-
tion 6.3.2.2]. In detail, the four functors involved are

Fun((A1)0p78)/s Fun(Al,S)/t

S/B
S/E S/B

where f; and f4 are slices of restriction functors along appropriate A° — Al hence have both
adjoints by [Lur09, Proposition 5.2.5.1] and its dual. (The pullbacks are pullbacks in Catoo, or
equivalently, pushouts in the co-category of co-topoi and geometric morphisms, cf. [Lur09, 6.3.1.5].)

The functor Poly,p — Fun(IL, 8),p is given by id xs,, jp Xs,,, id, where j, : 8,5 — Fun(Al, 8)/p
is from Lemma 2.6.4. We know from Proposition 2.5.1 that this functor preserves all limits and
colimits. g
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Corollary 2.6.5. For a fixed polynomial functor P represented by I +— E — B — J, we have
PolyFun(I,J),p ~ §,p.
In particular, the oco-category PolyFun([l,J),p is an co-topos. O

Definition 2.6.6. We define the co-category PolyEnd of polynomial endofunctors by the pullback
square

PolyEnd —— PolyFun
-
§ —— §x 8.
Since PolyFun is cocomplete and the projection to 8§ x 8 preserves colimits by Corollary 2.5.2; it

follows from [Lur09, Lemma 5.4.5.5] that PolyEnd is also cocomplete.

Proposition 2.6.7. For a fized polynomial endofunctor P, the co-category PolyEnd,p is an oo-
topos.

Proof. In the pullback diagram

PolyEnd,p —— PolyFun p

| w0

S/] T> S/I X S/I,
both A and ev 3 are left exact left adjoints. The former because it is pullback along the codiagonal
I'T T — I, the latter because it is the composite Poly,p — P(II),p — 8,7 x 8, and here the
first functor is a left exact left adjoint by Theorem 2.6.1 and the second is clear. Since the three
oo-categories are co-topoi, the pullback is again an co-topos by [Lur09, Proposition 6.3.2.2]. 0

3. ANALYTIC FUNCTORS

3.1. Analytic Functors and x-Accessible Polynomial Functors.

Definition 3.1.1. A functor §,; — 8,5 is analytic if it preserves weakly contractible limits and
sifted colimits.

Warning 3.1.2. This definition of analytic would not be correct if working over the category of
sets instead of the category of spaces. See Remark 3.2.11 for further discussion of this subtle issue.

From this definition it is immediate (using Theorem 2.2.3) that an analytic functor is poly-
nomial. We write AnFun for the full subcategory of PolyFun spanned by the analytic functors,
and AnFun([Z, J) for the corresponding subcategory of PolyFun(1,J). Similarly, we define the oo-
category AnEnd of analytic endofunctors as the pullback

AnEnd —— AnFun
J
| |
§ — 8§ x 8.

We now wish to characterize the analytic functors (and also the k-accessible polynomial functors)
in terms of their representing diagrams.

Definition 3.1.3. Let C be a cocomplete co-category, and let x be a regular cardinal. Recall that an
object z is called k-compact when Mape(z,—): € — 8 preserves k-filtered colimits [Lur09, 5.3.4.5],
and that it is called projective when Mape(z,—) preserves geometric realizations [Lur09, 5.5.8.18].
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Remark 3.1.4. By [Lur09, Corollary 5.5.8.17] if € is cocomplete then a functor F': € — D preserves
filtered colimits and geometric realizations if and only if it preserves sifted colimits. In particular,
x € € is compact and projective if and only if Mape(x,—): € — 8 preserves sifted colimits. If C is
not assumed to be cocomplete, we still say that an object x is compact projective if mapping out of
it preserves sifted colimits.

Lemma 3.1.5. Let C be an co-category with finite products. Then f: x — y is a projective or
k-compact object in C,,, if x is a projective or k-compact object of C. If C is cartesian closed, then
the converse is also true.

Proof. Consider a diagram p: J — €/, that has a colimit. Since this colimit is preserved by the
forgetful functor to €, we have a commutative diagram

colim Map ,, (x,p) — Map, (z, colimp) ———— {f}

| l J

colim Map(z,p) ——— Map(x, colimp) —— Map(z, y).

Here the right square is clearly cartesian, and the composite square is cartesian since colimits are
universal in 8. Therefore the left square is also cartesian, so if the lower left horizontal morphism is
an equivalence, so is the top left horizontal morphism.

If C is cartesian closed, then Mape (z, colim p) ~ Map/y(z, y x colimp) ~ Map,, (z, colimy X p),
which gives the converse. O

Proposition 3.1.6. Consider an adjunction

F:c=2D:G.
If G and Mape(xz,—) both preserve J-shaped colimits, then also Mapq, (Fx,—) preserves J-shaped
colimits. Conwversely, if equivalences in C are detected by mapping out of a collection of objects x

such that the functors Mape(x,—) and Mapq, (Fz,—) both preserve J-shaped colimits, then also G
preserves J-shaped colimits.

Proof. Consider a diagram p: J — D that has a colimit. If G and Mape(x,—) both preserve J-shaped
colimits, then we have

Map, (Fz, colim p) ~ Mape (2, colim Gp) ~ colim Mape (z, Gp) ~ colim Map, (Fz, p),

and so Map, (Fz,—) also preserves J-shaped colimits. Conversely, for an object x in the collection
we have equivalences

Mape(z, G(colim p)) ~ Map,, (Fz, colim p) ~ colim Map, (Fz, p) ~ Mape(x, colim Gp),
and thus colim Gp — G(colim p) is an equivalence. |
Three special cases of this result are listed in the following corollary:

Corollary 3.1.7. Consider an adjunction
F:e=2D:G.
(i) If G preserves k-filtered colimits, then F preserves k-compact objects. If equivalences in C are
detected by mapping out of k-compact objects, then the converse is true.
(ii) If G preserves geometric realizations, then F preserves projective objects. If equivalences in
C are detected by mapping out of projective objects, then the converse is true.

(iii) If G preserves sifted colimits, then F preserves compact projective objects. If equivalences in
C are detected by mapping out of compact projective objects, then the converse is true.

Lemma 3.1.8. Consider a span of spaces I L X % s The functor q.f* preserves k-filtered
colimits if and only if X is k-compact, and sifted colimits if and only if X is compact projective, i.e.
s a finite set.
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Proof. Since equivalences in 8 are detected by maps out of *, and Map(,—) preserves all colimits,
Corollary 3.1.7 implies that g, f* preserves k-filtered colimits if and only if fig* preserves k-compact
objects, and sifted colimits if and only if fig* preserves compact projective objects. By Lemma 3.1.5
this is equivalent to ¢* preserving k-compact or compact projective objects, respectively. Once again
using that these are detected in 8, this is equivalent to X x Y being k-compact or compact projective
for all k-compact or compact projective Y. Thus in particular (taking Y = %) X is k-compact or
compact projective, but this is enough since if X and Y are k-compact or compact projective and
p:J — 8 is a k-filtered or sifted diagram, then

Map(X xY, colim p) ~ Map(X, Map(Y, colim p)) ~ Map(X, colim Map(Y, p)) ~ colim Map(X xY, p),

so X x Y is also k-compact or compact projective. O

Proposition 3.1.9. Suppose F': 8,1 — 8,5 is a polynomial functor represented by a diagram
ISELBL

(i) F is k-accessible if and only if the fibres of p are k-compact spaces.
(ii) F is analytic if and only if the fibres of p are finite sets.

Proof. We first prove (i): Since t; preserves and reflects colimits, F is x-accessible if and only if
the functor p.s* preserves r-filtered colimits. Using the equivalence 8,5 ~ Fun(B,8), we see that
p«s™ preserves k-filtered colimits if and only if the same holds for b*p,s* for every point b: * — B.
Consider the pullback square

E, —— {b}

4
I
E T} B.
We have a Beck-Chevalley equivalence b*p.s* ~ ¢.(si)*. By Lemma 3.1.8 this preserves s-filtered

colimits if and only if Ej is k-compact. The proof of (ii) is the same, using sifted colimits instead
of r-filtered colimits. O

Remark 3.1.10. Let X be an oo-topos and F a collection of morphisms in X that is stable under
pullback. Then J determines a functor X°P — 62;500 taking X to the full subcategory DC;F x € X/x
spanned by the morphisms in ¥, and given on morphisms by taking pullbacks. The class F is
called local if this functor preserves limits (i.e. is a sheaf on X); see also [Lur09, Lemma 6.1.3.7] for
alternative characterizations. Following [GK17] we say that F is a bounded local class if in addition
the oo-categories DC;JFX are all essentially small. By [Lur09, Proposition 6.1.6.3] these are exactly the
classes of morphisms in X for which there exists a classifier U — Ug, meaning a terminal object
in the subcategory Of(xg) of Fun(A',X) with objects the morphisms in F and cartesian squares as
morphisms.

Proposition 3.1.11. Let F be a bounded local class of morphisms in 8, with classifier UL — Ug,
and let F' be the polynomial functor represented by x <— Uy — Ug — *. Then the forgetful functor

PolyFun ,, — PolyFun

is fully faithful, and its image is the full subcategory PolyFung spanned by the polynomial functors
with “middle map” in F.

Proof. A morphism P — F' in PolyFun is represented by a diagram

I E—".B J

o]

/
* Us‘“ Ugf *.
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Since Uy is the classifier for maps in the class &, such a morphism exists if and only if p belongs to
F, and the morphism is unique if it exists. Thus the forgetful functor from PolyFun,r to PolyFun
is fully faithful, and its image is precisely the full subcategory PolyFun.. O

Combining this with Theorem 2.6.1, we get:

Corollary 3.1.12. Let F be a bounded local class in 8. Then the oo-category PolyFung is an
00-10pos.

Specializing to k-accessible and analytic functors, this gives:

Corollary 3.1.13. Let k be a reqular cardinal.

(i) Let U], — U, be the classifying morphism for maps whose fibres are k-compact spaces, and let
P, be the polynomial functor represented by

x < Ul — Uy — *.

Then the co-category PolyFun,, of k-accessible polynomial functors is equivalent to PolyFun p .
Moreover, PolyFun,, is an co-topos.
(ii) Let E be the polynomial functor represented by

* < tFin, — (Fin — *,

where the middle map is the classifier for morphisms with finite discrete fibres. Then AnFun
s equivalent to PolyFun /E- Moreover, the oo-category AnFun is an oco-topos.

Proof. By Proposition 3.1.9, the k-accessible polynomial functors are those whose “middle map”
belong to the bounded local class F,; of maps with x-compact fibres. This is equivalent to PolyFun /P,
by Proposition 3.1.11, and is an co-topos by Corollary 3.1.12. This proves (i), and (ii) follows
similarly since analytic functors are characterized by having “middle map” in the bounded local
class of maps with finite discrete fibres. O

Remark 3.1.14. Note that Corollary 3.1.13 does not have an analogue in ordinary category theory,
because of the lack of classifiers.

Remark 3.1.15. The whole co-category PolyFun (without cardinal bounds on the middle represent-
ing maps) is cocomplete by Corollary 2.5.2, but it is not accessible, since neither is Fun(A?, §)cart,
(In particular, PolyFun does not admit a terminal object.) In the k-bounded case, the minimal
generating set for Fun(Al!,§)%t ~ § U, is the set of isomorphism classes of k-compact spaces.
Without the cardinal bound, Fun(A?, 8)¢2* is the union of all these, and a generating set would
have to exhaust |J,, Ux ~ ¢8, which is too big to form a set.

3.2. Analytic Endofunctors, Symmetric Sequences, and Homotopical Species. In this
subsection we will relate analytic endofunctors to (coloured) symmetric sequences and the homo-
topical analogue of Joyal’s species.

We saw in Corollary 3.1.13 that the co-category AnFun of analytic functors is equivalent to the
slice PolyFun /. Combining this with Corollary 2.6.5, we get:

Corollary 3.2.1. We have

AnEnd(x) ~ 8,pn ~ Fun(¢Fin,§) ~ HFun(BEn,S).

n=0

Remark 3.2.2. In the corollary, HZOZO Fun(BX,,, 8) is the oo-category of symmetric sequences in 8.
The canonical monoidal structure on AnEnd(*) given by composition thus carries over to a monoidal
structure on the co-category of symmetric sequences. Unravelling the formula for composition from
Theorem 2.1.8, we see that this is an oo-categorical version of the substitution product on symmetric
sequences, introduced by Kelly [Kel05] to exhibit operads as monoids therein.
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Definition 3.2.3. More generally, for a space I, we can consider I-coloured symmetric sequences
(or I-collections): these are by definition presheaves on E(I) x I. (We shall see a tree interpretation
later on in Definition 3.3.7.)

Proposition 3.2.4. The oo-category AnEnd(I) of analytic endofunctors of 81 is equivalent to that
of I-coloured symmetric sequences.

Proof. Let E; be the cartesian pullback (in the fibration AnEnd — 8) of E to an endofunctor of I,
i.e. the pullback along (i,) for i: I — x; by Remark 2.4.6 this is the composite i*E¢;. Then AnEnd([)
is equivalent to PolyEnd([),g,. By Corollary 2.6.5 this means that AnEnd([) is equivalent to
S/E](idj)' But here

E;(id;) ~ *Ei(id;) ~ i*E(I) ~ I x E(I). O

Lemma 3.2.5. We have the following explicit formula for evaluation of E on a space X :

_ : _ Xk
E(X) = colim Map(k, X) = gxhzk. O

The relationship with E leads to a useful explicit formula for evaluation of analytic endofunctors:

Proposition 3.2.6. Suppose P is an analytic endofunctor, represented by the diagram

I+ p—?2 yp_—t g
e

* —— (Fin, 7 Fin *.

Then for every map f: X — I there is a natural pullback square

Y —— E(X)

P*s*fJ/ B J{E(f)

B —— E(I),

where 5: B — q.u*l = E(I) corresponds to wq*B = FE S I under the adjunction wq* 4 q.u*.

Proof. By Lemma 2.1.5 we have a cartesian natural transformation p.s* — p.s*7* ) ~ p.e*u*y,
and using Lemma 2.1.6 we have a Beck-Chevalley equivalence that identifies this with a natural
transformation n: p.s* — B*q.u* . Consider the diagram

Y — f'qu* X —— qutX

| l |

B —— f*qu*l —— qu*l

| |

B T> (Fin.

Here the bottom right square and the composite square in the right column are cartesian by definition
of 8*, hence the top right square is also cartesian. The top left square is cartesian since 7 is a
cartesian natural transformation, so the composite square in the top row is cartesian. 0

Corollary 3.2.7. For P: § — 8 an analytic endofunctor as in Proposition 3.2.6, we have
P(X)~ ] Bn xs, X*".
neN

where B, is the fibre of B — (Fin at an n-element set.
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Proof. We calculate, using Proposition 3.2.6 and Lemma 3.2.5:

P(X) 2 B %,pin B(X) ~ B xmin [ [(X*™)nz, = [[(Bn x X" )i, O
neN neN

Remark 3.2.8. The formula in Corollary 3.2.7 is the origin of the terminology “analytic”: the
spaces B, are the coefficients of the “Taylor expansion” of P. Joyal [Joy86] introduced analytic
functors as a categorical analogue of exponential generating functions of species, defining them as left
Kan extensions of species (which are functors (Fin — Set). He characterized analytic endofunctors
of the category of sets as those endofunctors that preserve filtered colimits and weakly preserve wide
pullbacks. In our approach we have defined analytic functors in terms of exactness properties, but
can state an co-version of Joyal’s theorem as follows:

Definition 3.2.9. We call a functor F': (Fin — 8§ a homotopical species. By left Kan extension
along the (non-full) inclusion (Fin — 8, it defines an endofunctor F': § — 8, described explicitly by
the formula
F(X) ~ Sg}g}ﬁﬁ}l&nF[n] o~ Sg}gﬁF[n] X X"~ H(F[n] X X" s, -
neN

On the other hand, by unstraightening, it corresponds to a map B — (Fin, and hence to an ana-
lytic functor (via Corollary 3.2.1). This analytic endofunctor is canonically identified with F': § — 8,
by Corollary 3.2.7, giving:

Proposition 3.2.10 (“Joyal’s theorem for homotopical species”). An endofunctor P: 8§ — 8 is
analytic (i.e. preserves filtered colimits and weakly contractible limits) if and only if it is the left
Kan extension of a “homotopical species” (i.e. a functor F: (Fin — §). O

Remark 3.2.11. From the viewpoint of species, analytic functors over sets are actually not the
optimal notion, since it is not true in general that the exponential generating function of a species
agrees with the cardinality of its associated analytic functor. This is true over spaces (and in fact
already over groupoids, as first observed by Baez and Dolan [BD01] who introduced groupoid-valued
species under the name stuff types). What goes wrong in the set case is the behaviour of quotients
of group actions, which is also responsible for the mere weak preservation of connected limits in
Joyal’s original theorem.

3.3. Trees and Analytic Endofunctors. In this subsection we will describe analytic endofunctors
in terms of trees. This uses the interpretation of trees as polynomial endofunctors from [Koc11]:

Definition 3.3.1. A tree is by definition a polynomial
AEMEB NS A
for which:

(1) The spaces A, M, and N are all finite sets.

(2) The function ¢t is injective.

(3) The function s is injective, with a unique element R (the root) in the complement of its image.

(4) Define a successor function o: A — A as follows: First, set o(R) = R. For e € s(M) (which is
the complement of R in A), take ¢/ in M with s(e’) = e and set o(e) = t(p(e’)). Then for every
e there exists some k € N such that o*(e) = R.

Remark 3.3.2. The intuition behind this notion of “tree” is as follows: we think of A as the set
of edges of the tree, N as the set of nodes (our trees do not have nodes at their leaves or root), and
M as the set of pairs (v, e) where v is a node and e is an incoming edge of v. The function s is the
projection s(v,e) = e, the function p is the projection p(v,e) = v, and the function ¢ assigns to each
node its unique outgoing edge.
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Definition 3.3.3. The elements of a tree are its edges and nodes, and a tree can be constructed
by gluing edges and nodes, as will be formalized below. Let n denote the tree

¥ 0—0—x
consisting of an edge without nodes; it is called the trivial tree. For n =0,1,... let C,, denote
n+ln—x—n+l1,

where the first and last morphisms are disjoint inclusions of 1 and n elements in n+1; it is the corolla
(one-node tree) with n incoming edges. We refer to the trivial tree and the corollas as elementary
trees.

We define Q2 and €y to be the full subcategories of AnEnd spanned by the elementary trees
and all the trees, respectively.

Remark 3.3.4. Since trees correspond to diagrams of sets, 2 and i, are ordinary categories,
and they are equivalent to those considered by Kock [Kocll] (where they are denoted elTr and
tEmb, respectively). It is a consequence of the tree axioms (see [Kocll, Proposition 1.1.3]) that
the morphisms in Q¢ are tree embeddings, meaning injective on nodes and edges. The subscript
“int” stands for inert; in §5.3 we will embed €;,; into a bigger category of trees €2, where the inert
morphisms become the right class of an (active, inert) factorization system.

The category iyt admits certain pushouts (and colimits built from them), namely ones corre-
sponding to grafting of trees: if n — S picks out the root and n — R picks out a leaf, then the
pushout S II, R calculated in AnEnd (where it exists since colimits in AnEnd can be calculated in
Fun(II, 8)) is again a tree T, in which R and S are naturally subtrees — T is “S grafted onto R”.
Hence the pushout is also a pushout in €2;,¢. Furthermore, since the spaces involved in the colimit
are just sets and since the maps are injections, the colimit can actually be calculated in Set. The
details can be found in [Kocl1].

For a tree T' € Qiyng, we write el(T') = Qy/p for the category Qe Xq,,, (2int)/7, and call it the
category of elements of T'. (Seeing T' as a presheaf on €2 given by E +— Mapg,  (FE,T), this really
is its category of elements.)

The grafting construction can readily be iterated to establish the following result, which is intu-
itively clear:

Lemma 3.3.5. Every tree T is canonically the colimit in Qin, and in AnEnd, of its elementary
subtrees:

T ~ colim FE.
Eecel(T)

Proof. This is a reformulation of [Kocll, Corollary 1.1.24]. |

Lemma 3.3.6. Given an analytic endofunctor P represented by a diagram

[+*—F—" B 11T
J

| |

* <—— (Fin, (Fin *,

there are natural equivalences
Map(n, P) ~ I, Map(Ch, P) ~ By,
where B, is the fibre of B at an n-element set.

Proof. Tt is clear that a map n — P is uniquely determined by the map * — I, so Map(n, P) ~ I.
For C,, observe that since n + 1 is the disjoint union of the images of * and n, the space of maps
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C,, — P is equivalent to the space of cartesian squares
n *

ET>B.

_u
-

More formally, this space is described as the pullback
Map(C’n, P) =~ MapFuncm(Alvs)(u,p) — B

I’ I
LFinn/ W} (Fin.

But «Fin,,, is contractible, so the pullback is By, as asserted. O
Definition 3.3.7. A coloured collection or coloured symmetric sequence is a presheaf on 2.

Remark 3.3.8. The intuition is that the inclusion {n} — Qg defines a projection P(Qe) — 8§,
which can be interpreted as assigning to a coloured collection its space of colours, and that the value
of a presheaf on the corolla C,, is the space of n-ary operations of the coloured collection. The n+1
different maps of trees n — C,, then extract from an n-ary operation its n input colours and its
output colour.

Definition 3.3.9. The inclusion i: £, — AnEnd extends to a unique colimit-preserving functor
ir: P(Qe1) — AnEnd with right adjoint i*: AnEnd — P(Q) given by the restricted Yoneda functor,
i.e.

P MapAnEnd(i(7)7 P)

Proposition 3.3.10. The functor i*: AnEnd — P() is an equivalence.
To prove this, we shall use the following general criterion.

Lemma 3.3.11. Suppose C is a cocomplete and locally small co-category and i: Co — C is the
inclusion of an essentially small full subcategory Cqo of C such that

(i) the objects of Cy are completely compact, i.e. for C € Cqy the functor Mape(C,—) preserves
colimits,

(i1) the functors Mape(C,—) for C' € €y are jointly conservative, i.e. if a map f: X =Y in C
is such that f.: Mape(C, X) — Mape(C,Y) is an equivalence for all C € Co, then f is an
equivalence.

Then the adjunction
ir: P(Cy) = C: "

is an adjoint equivalence.

Proof. The functor i* preserves colimits since the objects of Cy are completely compact, and detects
equivalences since they are jointly conservative. The composite i*i: P(Cy) — P(Cp) is thus a
colimit-preserving functor that restricts to the Yoneda embedding on Cp; it must therefore be
the identity, and so the unit transformation id — *4y is an equivalence. To see that the counit
transformation #;5* — id is also an equivalence, it suffices to show that it is an equivalence after
applying the conservative functor *, which now follows from the invertibility of the unit and one of
the adjunction identities. O

Proof of Proposition 3.3.10. By Lemma 3.3.11 it suffices to check that the objects in €2 jointly
detect equivalences and are completely compact. A morphism

1 E B 1

I

r E B’ r
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in AnEnd is an equivalence if and only if the maps I — I’ and B — B’ are equivalences. The
latter map is an equivalence if and only if for every n the map on fibres B,, — B], is an equivalence.
It thus follows from Lemma 3.3.6 that the objects in €2 detect equivalences. Similarly, mapping
out of them preserves colimits since these are computed levelwise by Corollary 2.5.2 and pullbacks
preserve colimits. O

Having described analytic functors in terms of elementary trees, we now describe them in terms
of general trees.

Definition 3.3.12. The inclusion u: Q¢ — Qiy induces a geometric morphism wu,: P(Qq) —
P(Qins), fully faithful since w is, hence identifying P(£2q1) as a left exact localization of P(Qiyt). We
denote the image by Tseg(ﬂmt) and call its objects Segal presheaves:

iP(5191) :> iPSeg(S]im) C ﬂ)(nint)

A presheaf ® € P(yy,) is thus a Segal presheaf if it is a right Kan extension of its restriction to
Q.. This right Kan extension is calculated in the standard way using limits: A presheaf ® is Segal
when the natural map ®(7') — limgeeyr)or P(F) is an equivalence. (Recall that el(T) = Q¢ is
the category of elements of T'.)

Definition 3.3.13. Let iy denote the inclusion €2;,; — AnEnd. This extends to a unique colimit-
preserving functor ig: P(Qiny) — AnEnd with right adjoint i§ given by the restricted Yoneda
embedding.

The commutative triangle of inclusion functors

AnEnd

i

el ? ant

induces a commutative diagram of right adjoint functors

AnEnd

VAN

P(Qe1) Y P(Qint)-
The functor u* given by composition with u also has a right adjoint u., given by right Kan extension
along u°P.
Lemma 3.3.14. The natural transformation
R R TR AL RSN VI
induced by the unit for the adjunction u* = u., is an equivalence.

Proof. For P € AnEnd and T € Qi,;, we have

ioP)(T) ~ Map(igT, P) ~ M i li E|,P|~M li E,P li M E,P
(iP)(T') = Map(ioT, P) ~ Map <10 < <olim u ) > ap < <olim dou ) peim ap(iE, P),
since T is the colimit of its elementary subtrees in €2, and this colimit is preserved by the inclusion

19 by Lemma 3.3.5. But this gives precisely the limit formula for the right Kan extension u,:*P. O

Proposition 3.3.15. The functor if: AnEnd — P(Qine) s fully faithful with image the Segal
presheaves. In other words, it induces an equivalence

AnEnd = Pseg(Qint ).
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Proof. By Lemma 3.3.14, 4§ factors as ¢* followed by u.. But ¢* is an equivalence by Proposi-
tion 3.3.10, so 4 is fully faithful because u, is, and has the same image as u,, which is Pgeg(int)
by definition. O

4. INITIAL ALGEBRAS AND FREE MONADS

4.1. Initial Lambek Algebras. In this subsection we prove an co-categorical version of the exis-
tence theorem for initial Lambek algebras. In ordinary category theory, the study of initial algebras
for endofunctors goes back to Lambek [Lam68], while the existence result is due to Addmek [Ada74].
In the present account, we establish the initial-algebra theorem via a lightweight version of bar-cobar
duality.

Definition 4.1.1. Let P : € — € be any endofunctor. Recall that a Lambek P-algebra is a pair
(A, a) where A is an object of € and a: PA — A is a morphism of €. Dually, a Lambek P-coalgebra
is a pair (C,c¢) where C' is an object and ¢: C' — PC' is a morphism. (We shall omit the attribute
‘Lambek’ for the rest of this subsection.) Formally, the co-categories of P-algebras and P-coalgebras
are defined as pullbacks

algp(C) —— €A

l - l(evmevl) l - l(evo,evl)

GWGXG, GWGXG

Definition 4.1.2. If (4, a) is a P-algebra and (C, ¢) is a P-coalgebra, then a P-twisting morphism
is a morphism f: C'— A in € together with a commutative square

c C
P
Pfl f
PA
a\) A.

We define the space Twp(C, A) of P-twisting morphisms from C to A as the equalizer
TWP(Ca A) - Map(cv A) = Map(ca A)v
where the two maps Map(C, A) — Map(C, A) are the identity and f + a o Pf oc. (The equation

f~aoPfof may be viewed as the analogue of the Maurer—Cartan equation in this context.)

It will be useful to note that a P-twisting morphism may also be seen as a Tw(P)-algebra in the
twisted arrow oco-category Tw(C), as we proceed to establish.

Definition 4.1.3. Recall that, for € an co-category, the twisted arrow oco-category Tw(C) has as
objects the morphisms in €, and a morphism in Tw(€) from f': X’ - Y  to f: X - Y is a
commutative diagram

X
—

X/
fl f
y!

See [Barl7] or [Lurl7, §5.2.1] for a more formal definition. Note that in our convention it is the
codomain component that determines the direction of the morphism. (Lurie [Lurl?, §5.2.1] uses the
opposite convention.)
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There is a canonical left fibration
(dom, codom): Tw(€) — C°P x €,
corresponding to the functor Map(—, —): €°P x € — 8.

Proposition 4.1.4. The endofunctor P: C — € induces an endofunctor Tw(P): Tw(C) — Tw(C)
and a morphism of endofunctors

Tw(P)
Tw(C) —— Tw(C)

|

CP x C—— CB°P x C.
poP x P

This induces a functor
algry(p) (Tw(€C)) — algpop» p(C x €) = algpo, (CP) x algp(C) =~ coalgp(C)°” x algp(C)
which is a left fibration such that the fibre over (C, A) € coalgp(€)°P xalgp(C) is the space Twp(C, A)
of P-twisting morphism from C to A.
Before we prove this, we make some simple observations:

Lemma 4.1.5. Consider a commutative diagram of co-categories

& — s & —— ¢

Ll

B —— B +——— B”

where the vertical maps are cocartesian fibrations and the upper horizontal maps preserve cocartesian
morphisms. Then the induced functor

& xeg " = B x5 B

s again a cocartesian fibration, and the canonical functors to &', &, and & all preserve cocartesian
morphisms. Moreover, if the vertical maps are actually left fibrations, then so is this new map.

Proof. Given a morphism f in B’ x5 B” it is easy to see that the morphism in & x ¢ &” corresponding
to a compatible choice of cocartesian morphisms over the images of f in B’, B, and B” is cocartesian.
O

Lemma 4.1.6. Suppose C and D are co-categories equipped with endofunctors P: € — C and
Q:D =D, and F: D — C is a cocartesian fibration which is compatible with P and Q in the sense
that there is a commutative square

%,

F

B!
13

7 G

and Q) preserves F'-cocartesian morphisms. Then the resulting functor algy (D) — algp(C) is a
cocartesian fibration. Furthermore, if F' is actually a left fibration, then algy (D) — algp(C) is itself
a left fibration.

Proof. The functor F' induces morphisms of cocartesian (respectively, left) fibrations

1

pA __, poa’ p 2N p oy p
| | ] |
e

GA eaA m}exe
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(note that this second square commutes by virtue of our assumption on F'). Taking pullbacks,
we obtain the natural map algg (D) — algp(C) which is therefore a cocartesian (respectively, left)
fibration by Lemma 4.1.5. 0

Proof of Proposition /.1.4. It follows from Lemma 4.1.6 applied to the left fibration F': Tw(C) —
C°P x C that the induced map

algry(p) (Tw(C)) — coalgp(€)°P x algp(C)

is a left fibration. It remains to see that the fibre over (C, A) € coalgp(€)°P x algp(€) is the space
of P-twisting morphisms. By construction, this fibre is obtained as the pullback of fibres of the
induced left fibrations. The fibre of F over the object (C, A) is the space Map(C, A), and the fibre

of FA": Tw(@)A" — (€°P)A" x A" is computed as Map(C, A)A" ~ Map(C, A). Hence the pullback
M of the fibres fits into the commutative square

M Map(C, A)

| Jove

Map(C, A) m) Map(C, A) X Map(O, A)

But this M is just a pullback reformulation of the equalizer definition of Twp(C, A). O

Lemma 4.1.7. A P-coalgebra morphism (C,c¢) — (C’, ") induces a map Twp(C’, A) — Twp(C, A)
by pre-composition. Similarly, a P-algebra morphism (A’,a’) — (A, a) induces a map Twp(C, A") —
Twp(C, A) by post-composition.

Proof. This is immediate from the description of these spaces as fibres of a left fibration. O

If (C,c) is a P-coalgebra, then (PC, Pc) is a P-coalgebra, and c: (C,¢) — (PC, Pc) is a P-
coalgebra morphism. The following is the key property of twisting morphisms:

Lemma 4.1.8. For a P-coalgebra (C, c) and a P-algebra (A, a), the map Twp(PC,A) — Twp(C, A)
which sends g to g o c, is an equivalence, with inverse the map Twp(C, A) — Twp(PC, A) which
sends f toao Pf.

Proof. We first detail the inverse. If f: C — A is a twisting morphism with square

apply P and paste with a trivial square like this:

PPC +£< pC

Pry |pr

PPA —5a PA

Pa| o

PA—— A

The left vertical composition is Pao PPf ~ P(a o Pf), so the composite square exhibits ao Pf as
a twisting morphism, as required.

To see that the two constructions are inverse, we check that the respective composites are natu-
rally equivalent to the respective identity functors. Starting with the square for f: C' — A, going
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left and then back right gives

PA —— A,

but this is homotopic to the original square for f since f is twisting. On the other hand, starting
with the square for g: PC' — A, going right and then back left gives

PPC +f<  pC
PPCJ, J,PC

pppC £E< ppc

- [

PPA —— PA
Pa
W
PA—— A
which is also homotopic to the original square for g since g is twisting. O

Definition 4.1.9. Assume C has filtered colimits and that P: € — € preserves them. Then for a
P-coalgebra C we have a diagram

cSprectspios.
Let I := colim,_,~, P™"C be the colimit of this sequence. Then there is a canonical map
Ic ~ colim P""'C — P(colim P"C) ~ Plg.

Since P preserves filtered colimits, this map is an equivalence. If u denotes its inverse, the pair
(Ic,u) is a P-algebra. We denote this P-algebra QC and refer to it as the cobar construction of C.

We will now establish a universal property of the cobar construction, which in particular implies
that it determines a functor Q: coalgp(€C) — algp(C). Under further assumptions, we will see that
it is left adjoint to a dual bar construction, which gives a P-coalgebra from a P-algebra.

Lemma 4.1.10. If (U,u) is a P-coalgebra for which u is an equivalence, with inverse v giving a
P-algebra (U, v), then for any P-algebra (A,a) we have

Map,, (U, A) =~ Twp(U, A).
Proof. Consider the diagram
Mapalgp((?) ((U7 U): (Aa a)) e — Ma‘p@Al (U, G,)
L !

f=(Pf.f)

Mape(U, A) ——————— Mape(PU, PA) x Mape (U, A)
fHaonouufo gHaogufoov
Mape (U, A) 7o Mape(PU, A)

The top square is a pullback by definition of alg »(€) as a pullback. The bottom map is an equivalence
since v is an equivalence. Since the right fork is an equalizer, it follows (by a standard argument,
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for example by expressing equalizers as pullbacks) that also the left fork is an equalizer, hence
Map,y, , (U, A) =~ Twp(U, A) as required. O

Definition 4.1.11. Assume that C has filtered colimits and that P: € — € preserves them. Given
a P-coalgebra (C, ¢), the universal P-twisting morphism (C,c) — (QC,u) is the canonical map

C — colim P""C,

n—oo

which is P-twisting by virtue of the diagram
C

PC/

|

P(QC)

“\’LQC

(where all the morphisms are the canonical ones from the colimit diagram defining QC').

Proposition 4.1.12. For a P-coalgebra (C,c) and a P-algebra (A,a) there is a canonical equiva-
lence

Map,, , (QC,A) ~ Twp(C, A)
given by precomposing with the universal P-twisting morphism.
Proof. By Lemma 4.1.10, we have

Map,y, , (2C; A) ~ TWP(CO}Lim P"C, A),

and the latter space is described as an equalizer
Twp(colim P"C, A) — Mape(colim P"C, A) = Mape (colim P"C, A).

The mapping spaces are in turn limits. Altogether we can write down a big commutative diagram

Map(P2C, A) ——— Map(P2C, A)

J{ aoP(i)oP2(c) J{

id

Map(PC, A) ————— Map(PC, A)

aoP(—)oP(c)
| |

Map(C, A) ?ﬁ)oﬁ Map(C, A)

(It is clear that it commutes, both for the identity maps and for the other horizontal maps.)
We calculate the limit of this diagram in two ways. First we calculate the limit of each column,
yielding the parallel pair of maps

Mape (colim P"C, A) = Mape(colim P"C, A),

and then we take the equalizer of this to obtain Twp(colim,, P*C,A). On the other hand, we
can calculate the limit by first taking the equalizer of each row. That gives in each row the space
Twp(P"C, A), and then we can calculate the sequential limit of this new column. Now note that
all the maps in the new column are equivalences: this follows from Lemma 4.1.8. So the limit is
equivalent to just the zeroth space Twp(C, A) as claimed. O
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Proposition 4.1.13. If € is an co-category with filtered colimits and an initial object O, and P: € —
C is a filtered-colimit-preserving endofunctor, then the co-category algp(C) has an initial object, given
by Q0.

Proof. () has a unique coalgebra structure, and Proposition 4.1.12 gives, for any P-algebra A,

Map,, (20, A) ~ Twp(D, A).

Since the latter space is clearly contractible, it follows that Q is an initial P-algebra. 0
Remark 4.1.14. The constructions, results and proofs go through more generally when C has
k-filtered colimits and P: € — C preserves them. The important point is that even if P does not
preserve w-filtered colimits, there is still a transition map I — PI at each colimit step, so that I is
again a P-coalgebra. P can now be applied iteratively again, the next colimit can be taken, and so
on, until the resulting chain is longer than x, and P will preserve the colimit to yield an invertible
structure map for the resulting P-coalgebra, and hence a P-algebra. Accepting notation such as

colim,, <, P"C for transfinite application of P alternated with taking colimits, all the subsequent
constructions go through.

Remark 4.1.15. All the constructions, results and proofs can be dualized: assume that € has
cofiltered limits, and that P preserves them. Then there is a functor

B: algp — coalgp
taking a P-algebra (4, a) to the limit of the chain A & PA LP2A (This is called the bar
construction.)
The notion of P-twisting morphism is still the same, but now the results are about applying P to

A instead of C. Lemma 4.1.8 becomes the statement that the following maps are inverse homotopy
equivalences:

Twp(C,PA) — Twp(C,A)
g —— aog
Pfoc «+— f
Assuming that C has cofiltered limits and P preserves them, we get
Map,, ,(C, BA) ~ Twp(C, A).
Putting together the two sides of duality, we get:

Theorem 4.1.16. If C has filtered colimits and cofiltered limits, and if P: € — C preserves them,
then Q is left adjoint to B. Altogether

Mapalgp (QC, A) ~Twp (Ca A) = MapcoalgP (Ca BA)

In the case of interest here, € will be presentable, and P will be analytic. In particular P then
preserves filtered colimits, and also preserves cofiltered limits (since these are weakly contractible),
so the theorem applies.

4.2. Free Monads.

Definition 4.2.1. Let € be an co-category with binary coproducts, let P: € — € be an endofunctor,
and let X be an object of €. Define a new endofunctor Px: Cx, — Cx, as the composite

Cx; 25 e e ey,
where ux is the forgetful functor, with left adjoint ax = X IT ().
Lemma 4.2.2. In the situation of the previous definition, there is a canonical equivalence

algp,, (GX/) = algP(e)X/a
where algp(C)x, 1= algp(C) xe C/x.
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Proof. Both oco-categories are defined as pullbacks:

algp, (Cx/) —— (Cx))™ algp(€)x) — algp(€) —— €&
l N l(evo,evl) l - l - J(evo,evl)
Cx/ o Cx/ * Cxy Cx/ ——x— €~ CX €.

The bottom functors can be factored into three steps, respectively:

ex/ (ﬁx,id) G x ex/ *>P><id G x ex/ ﬁxxi ex/ X GX/,

CX/ G
The first two steps are the same, and for the last step we have an equivalence of pullbacks

Cxex/mexex/mexe.

1 1
O | J
Cx, x Cx/ m@x@x/ m@x@
since ax is left adjoint to ux. O

Lemma 4.2.3. Suppose C has colimits of shape K and P: C — C preserves them. Then algp(C)
has colimits of shape K and the forgetful functor U: algp(C) — C preserves and reflects them.

Proof. The oo-category algp(€) is defined as a pullback

algp(C) —— eal

J
U[ (evo,evi)

C —Ea CxC.
Here the oco-categories GAI, C, and € x € have colimits of shape K, and the functors (evg,ev;) and
(P,id) preserve them. It therefore follows from [Lur09, Lemma 5.4.5.5] that algp(€) has colimits of
shape K, and that a diagram K” — algp(€) is a colimit if and only if its images in € and G2 are
colimits. Since the functor (evg, evy) preserves and reflects colimits, this is equivalent to the image
under U being a colimit. O

Proposition 4.2.4. Suppose C is an oo-category with filtered colimits and binary coproducts, and
P: € — Cis an endofunctor that preserves filtered colimits. Then the forgetful functor U: algp(C) —
C has a left adjoint, and the resulting adjunction is monadic.

Proof. To see that U has a left adjoint, it suffices by [GK17, Corollary 2.3] to show that for every
X € € the co-category
algp(C)x/ := algp(C) xe Cx/

has an initial object. But algp(C)x, can be identified with algp, (Cx,) by Lemma 4.2.2, where Px =
ax o Poux as in Definition 4.2.1. Moreover, the functor Px preserves filtered colimits (indeed wux
preserves filtered colimits by the dual of Lemma 2.2.7, P preserves filtered colimits by assumption,
and ax is a left adjoint). Therefore algp, (Cx/) has an initial object by Proposition 4.1.13 since
Cx, obviously has an initial object, and has filtered colimits by the dual of Lemma 2.2.7.

To show that the resulting adjunction is monadic, we apply the Lurie-Barr-Beck monadicity
theorem [Lurl7, Theorem 4.7.3.5]. For this we must show that U detects equivalences, which is
clear, and that algp(€) has colimits of U-split simplicial diagrams, and U preserves these. Consider
a U-split simplicial diagram Ae: A°? — algp(€). By (the proof of) [Lur09, Lemma 5.4.5.5] it is
enough to show that the images of A, in € and €A have colimits, and these are preserved by
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the functors (P,id): € — € x € and (evg,evy): G2 — € x C. Since A, is U-split, it follows from
[Lurl?7, Remark 4.7.2.3] that U(As) has a colimit C' € €, and this is preserved by any functor, in
particular by P. Thus the map PC ~ colim PU(A,) — colimU(A,.) ~ C induced by the algebra

structure maps in A, is a colimit in 2", Thus A, has a colimit in alg p(€) and U preserves it. [

Notation 4.2.5. For any co-category € we write Mnd(C) for the co-category of monads on €, defined
as the oco-category Alg(End(C)) of associative algebras in End(€) with respect to the monoidal
structure given by composition, as in [Lurl?, §4.7.1]. If T € Mnd(€) is a monad on C, we write
Alg,(€) for the co-category of T-algebras in € (which can be defined as the oco-category LModr(C)
of left T-modules via the action of End(€) on €). Note that we write lowercase alg for Lambek
algebras for an endofunctor and uppercase Alg for algebras for a monad.

Definition 4.2.6. If C is an oo-category with filtered colimits and binary coproducts, and P €
End(@) is a filtered-colimit-preserving endofunctor on C, we write P € Mnd(C) for the monad
associated to the monadic adjunction

C = algp(C)
of Proposition 4.2.4; this exists by [Lurl7, Proposition 4.7.3.3].
With this notation, we have:
Corollary 4.2.7. There is a canonical equivalence
algp(€) = Algp(€)
over C. O
The following result shows that P is the free monad on P:

Proposition 4.2.8. Suppose C is an oo-category with filtered colimits and binary coproducts, and
P: C — C is an endofunctor that preserves filtered colimits. Then for every monad T on C the
morphism

Mapynaee) (P, T) — Mapgyq(e) (P, T)
induced by the natural transformation P — P is an equivalence.
The final ingredient needed for the proof of Proposition 4.2.8 is the following observation:
Proposition 4.2.9. For any endofunctor P: € — C and any adjunction
L:C=D:R
there is a natural equivalence
Map (D, algp(€)) ~ Mapg,qe) (P, RL).
Proof. 1t is enough to establish
Map,¢(D, algp(€)) ~ Mapg,y(p,e) (PR, R),

because the latter space is equivalent to MapEnd(e)(P, RL) by adjunction: precomposing with the
adjunction L 4 R we get for any oco-category X an adjunction

R* : Fun(D, X) = Fun(C,X) : L™,
with R* left adjoint to L*, and hence a natural equivalence of mapping spaces

Mapgyn(p,x)(F R, G) =~ Mappyye,x) (£, GL).
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Consider the diagram

Since algp(C) is defined as a pullback, we see that giving ® € Map ¢(D,algp(C)) is equivalent to
giving ¥, which amounts precisely to giving a natural transformation from PR to R, as required. [

Proof of Proposition 4.2.8. Combine the equivalences of Proposition 4.2.9, Corollary 4.2.7, and
Corollary A.5.11. O

Definition 4.2.10. Let € be an oco-category with filtered colimits. We write End”(€) for the full
subcategory of End(€) spanned by the endofunctors that preserve filtered colimits. These are closed
under composition, and so we get an oo-category Mnd“(€) := Alg(End”(€)), the full subcategory
of Mnd(€) spanned by the monads that preserve filtered colimits.

Corollary 4.2.11. Suppose C is an oo-category with filtered colimits and binary coproducts. Then
the forgetful functor Mnd”(€) — End”(C) has a left adjoint.

Proof. By Proposition 4.2.8, for each P € End”(€) the oo-category Mnd“(€) p, has an initial object,
namely the free monad P on P. This implies _that the forgetful functor has a left adjoint, which
assigns to every endofunctor P its free monad P. O

Our next goal is to prove that this free monad adjunction is itself monadic, at least if we impose
further restrictions on the monads:

Definition 4.2.12. Suppose C is an oco-category with sifted colimits. We write End? (€) for the full
subcategory of End(€) spanned by the endofunctors that preserve sifted colimits, and let Mnd?(€)
denote the full subcategory of Mnd(€) of monads whose underlying endofunctors preserve sifted
colimits.

Lemma 4.2.13. Suppose € is an oo-category with sifted colimits and binary coproducts. If P: € — C
preserves sifted colimits, then the underlying endofunctor of the free monad P on P also preserves
sifted colimits.

Proof. Tt suffices to show that the forgetful functor U: algp(€C) — € preserves sifted colimits, but
this is a special case of Lemma 4.2.3. g

Thus if € is an oo-category with sifted colimits and binary coproducts, then the free monad
functor restricts to give an adjunction

F :End?(C) = Mnd?(C) : U.

Proposition 4.2.14. Suppose C is an oo-category with sifted colimits. Then Mnd?(C) has sifted
colimits, and these are preserved by U.

Proof. Mnd’ (@) is the oo-category of associative algebras in the monoidal co-category End’ (@),
where the tensor product, i.e. composition, commutes with sifted colimits in each variable (since we
are considering endofunctors that preserve these colimits). The result is therefore a special case of
[Lurl7, Proposition 3.2.3.1]. O

Corollary 4.2.15. Suppose C is an oco-category with sifted colimits and binary coproducts. Then
the adjunction
F :End’(€) = Mnd?(C) : U.

is monadic.
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Proof. We already know from Proposition 4.2.14 that Mnd? (€) has all sifted colimits and that U
preserves these. It therefore suffices by [Lurl7, Theorem 4.7.3.5] to show that U detects equivalences,
which follows from [Lurl?7, Lemma 3.2.2.6]. O

We end this subsection by noting that, under rather restrictive hypotheses on €, this implies that
Mnd?(C) is presentable:

Definition 4.2.16. Let us say that an oo-category C is compact projectively generated if it is
of the form Px(Cp) for some small oo-category €y with finite coproducts, using the notation of
[Lur09, §5.5.8].

Remark 4.2.17. The only reason for introducing this notion is that it implies that End?(C) is
presentable. We believe this should be true for any presentable co-category €, but we will not
attempt to prove this as it is not needed for our purposes.

Corollary 4.2.18. Suppose C is a compact projectively generated co-category. Then Mnd”(C) is a
presentable co-category.

Proof. Since C is compact projectively generated, the co-category End? (C) is equivalent to Fun(Cy, C)
where € is a small co-category, and so this co-category is presentable. Moreover, the co-category
Mnd? (@) has sifted colimits by Proposition 4.2.14 and these are preserved by the forgetful functor
to End?(€). Applying [GH15, Lemma A.5.8, Proposition A.5.9] to the adjunction

F :End?(€) 2 Mnd?(C) : U,
which is monadic by Corollary 4.2.15, it follows that Mnd?(C) is presentable. O

4.3. An Explicit Description of the Free Monad. We will now give a more explicit description
of the free monad P as the colimit of a sequence of functors.

Definition 4.3.1. For € an co-category with filtered colimits and binary coproducts, and P: € — C
an endofunctor that preserves filtered colimits, we will recursively define endofunctors P,, and natural

transformations

f1 f2 f3

B Py P

Here Py := ide, and recursively P,y :=ide IT (P o P,,). For the natural transformations, f; is the
coproduct inclusion, and f, 1 :=ide IT P(f,).

Proposition 4.3.2. With notation as above, we have a natural equivalence

colim P, = P.

n—oo

Lemma 4.3.3. Let F': C — algp(C) be the left adjoint to the forgetful functor U: algp(C) — €. The
composite of F with the forgetful functor algp(€) — ea’l corresponds to a natural transformation
¢: PP — P. The induced transformation

ide 11 PP 1% P,

where 1 is the unit for the adjunction F 4 U and n|¢ means n on the first summand and ¢ on the
second summand, is an equivalence.

Proof. Evaluating at X € € the map X II PP(X) — P(X) is the structure map Px PX — PX
exhibiting PX as the initial Px-algebra, which we know is an equivalence. 0

Proof of Proposition 4.3.2. To define a natural transformation colimy, e P, — P we recursively
define natural transformations 7, : P, — P and equivalences 7, o f, ~ m,_1.
We start by setting mp :=7n: ide — P, and then given 7, we define 7,41 as the composite

Poyy = id 11 PP, S92 g 11 pP 1% P,
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We then have a commutative diagram
id N

i

which gives an equivalence 7 o f1 >~ m. For n > 0, the composite 7,41 © f,41 is equivalent to the
composite
P fr 1 i o — —
id11 PP,y <t g 11 pp, AP g 11 PP 2, P

We can rewrite this as

n|¢poP(mn fn
e d

i1l PP, , ), P,

which is equivalent to 7|¢m,—; — this is the same as 7, by definition, giving the required equivalence
Tn41 © fn+1 = Tn. _

It remains to show that the induced map colim, P, X — PX is an equivalence for all X €
€. By definition, P(X) is the underlying object in € of the initial Px-algebra (notation as in
Definition 4.2.1), in turn described in Proposition 4.1.13 as the colimit of P%(idx) as n — co. But
on underlying objects we clearly have P, X ~ P¥(id), and under this identification, the transition
maps fn: P,_1X — P, X are the iterated Px-coalgebra structure maps ¢, : P;_l(id) — PY(id), as
in Definition 4.1.9. Hence P ~ colim,_ oo P, as required. O

Lemma 4.3.4. For (A,a) a P-algebra, the underlying map of the counit, Uea: UFUA — UA s
naturally identified with the colimit of the sequence of maps e,: P,A — A, defined recursively with
eo: A — A the identity, and e,+1 defined as the composite

1dIIP(en) id|a

Py A= AL PP,A ) a1 pA 99 4,

Proof. We know that FUA is the underlying object in algp(C) of colim, o, P4 (id4), the initial
Py-algebra. Since (A4, a) is a P-algebra, the morphism id4 becomes naturally a P4-algebra, hence
there is a unique homomorphism of P4-algebras colim,,_,o, P4 (id4) — id4. The image under the
forgetful functor algp, (C4/) — algp(C) is the counit e4. By Proposition 4.1.12, this corresponds
to the unique Pa-twisting morphism idy — id4. By (the proof of) Lemma 4.1.8, the counit
€a: colim, o PY(ida) — id4 is induced by the sequence of twisting morphisms

€en: PX(idA) — idA,
where eg: id4 — id4 is the identity map, and recursively e, 41 is defined as the composite

id|a

AP, 411 pya) e

(AL P)" " (ida) ~ (AT P)(ATI P)"(id4) A.

The forgetful functor U: algp, (C4,) — C preserves filtered colimits by Lemma 4.2.3, so under the
identifications P, A ~ P%(id4), valid in €, this is precisely the sequence of maps of the statement. [

Construction 4.3.5. We define natural transformations, for m,n > 0
Pmn: Pno Py — Poyn

recursively as follows. For the base case n = 0 (all m > 0) we take pm o: ide © P, — Py, to be the
identity natural transformation. Assuming fim, n: P, © P — Pptpn defined, define fiy, 41 to be the
composite

idHP(/"wn,n)
ST

Pn-l-lOPm:PmH(POPnOPm) PmHPOPm+n_>PmHPm+n+1_>Pm+n+1-

Here the second arrow is the sum inclusion P o P,y — ide I (P o Pyyn) = Prgnt1 and the third
adds the natural transformation P,;, — P,,4+n+1 which is a composite of fi in the defining chain.
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Lemma 4.3.6. The natural transformations [y, , are compatible with the transition maps fi, in
both variables. More precisely, we have commutative diagrams for all m,n >0

Hm,n Hm ,n

PyoP, M s po . PooP, — M Py
fﬂr+1PmJ/ (1) J/f‘m.-}—n-}—l Pn(f7n+1)J/ (2) J/f’m,+1+n
Pn+10Pmum+n+17 PnOPm+1um+l+n~

Proof. For both statements, the proof is by induction on n, the n = 0 cases being trivial. Assuming
we have the square (1), we also have

P77.+1 o Pm — Pm 11 P(Pnpm) idITP (pm,n)

f7z+2P7nl idHP(fn«l»le)J/ (3) J/idHP(fm-Pn-FI) l J/fm,+ﬂ,+2

Pn+20Pm = PmHP(PnJrle) W)PMHPPM+R+1 — PmHPm+n+2 — Pm+n+2
1 m,n+1

PmHPPm+n %Pmﬂpm-&-n—&-l *>Pm+n+1

Indeed, square (3) commutes by induction (the right summand is P applied to the square (1) of the
induction hypothesis) and the two following squares obviously commute. The horizontal composites

are precisely iy, n+1 and iy, nio.
Assuming that square (2) commutes, we also have

P10 Py ——— Py 11 P(PyPyy) — P ltimir)

Pn(fm#»l)l fm+1HPPn(fm+1)l (4) J{ferlHP(fnlern) J{ J{fernJrz
Pn+1 o Pm+1 = Pm+1 I P(Pnpm+1)

PmHPPm+n 4>PmHPm+n+l H-PernJrl

T Pm+1 I PPm+1+n — Pm+1 I Pm+n+2 — Pm+n+2
idUP(pm+41,n)

Indeed, the square (4) commutes by induction (the right summand is P applied to the square (2)
of the induction hypothesis) and the two following squares obviously commute. The horizontal
composites are precisely ftm n+1 and fmi1,nt1- O

Lemma 4.3.7. The colimit of the sequence of natural transformations
Pmn: Pno Py — Poyn
for m — oo is naturally identified with the maps
en: P,oP—>P
of Lemma 4.3.4.
Proof. Induction on n. The case n = 0 is clear, as both maps are the identity. Suppose S?Egol tm,n ™

en. Write down pi,, n+1 according to the recursive definition:

Pri1 Py~ Py 11 (PP, P,y) “2 P 0mn),

Take the colimit as m — oo to find

P TI PPty — P 1 Prini1 — Prgns.

PP~ P (PP,P) M) BripoP  PUP - P,
by induction, using that all the functors commute with filtered colimits. But this is precisely the
recursive description of e, 41, given in 4.3.4. O

Proposition 4.3.8. The multiplication p: P o P — P is the colimit, for n — 00, of the natural
transformations pn,: P, o P, — Py, of Construction 4.5.5. The unit n: ide — P is the colimit of
the sequence of natural transformations n,: ide — P,.

Proof. Thanks to the compatibilities with the transition maps of Lemma 4.3.6, we can compute the
colimit first by holding n fixed. Lemma 4.3.7 tells us that for each n fixed, the m — oo colimit
is the map e,: P,P — P, and Lemma 4.3.4 then tells us that the n — oo colimit of those is the
monad multiplication. O
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4.4. Free Monads in Families. In this section we will extend our results on free monads to the
setting of monads and endofunctors on varying base oco-categories. In §A.5, we review results of
[Hau20] that lead to a commutative triangle

MHd(CATOQ)laX End(CATOO)laX

\ /

Cateo,

where Mnd(CATw )1ax is an oco-category of monads and lax morphisms, End(CAT )jax is an oo-
category of endofunctors and lax morphisms, and the functors to Cats, send monads and end-
ofunctors to the co-category they are defined on. This is given fibrewise by the forgetful functor
Alg(End(€))°P — End(C)°P. We then show in Corollary A.5.14 that if we restrict to the subcategory
Catffgdj where the morphisms are right adjoint functors, we get a commutative diagram

Mnd(CAT o, )12 End(CAT )[4

lax lax

\ /

radj
Cat 7,

where the two downward functors are cocartesian fibrations, the horizontal functor preserves co-
cartesian morphisms, and the right-hand functor is also a cartesian fibration. We need to introduce
notation for a restricted version of these co-categories:

—o,radj
Definition 4.4.1. Let Catzora " be the oo-category of compact projectively generated oo-categories
(in the sense of Definition 4.2.16 — but see Remark 4.2.17), with morphisms the functors that are
_—— o,radj
right adjoints and preserve sifted colimits. Then we define End;,:1 " to be the full subcategory of
— — o, radj
the pullback of End(CATw)iax — Cate to Cautzora ! spanned by the endofunctors that preserve

—o,radj
sifted colimits; we also define Mnd,,,, ~ similarly.

Proposition 4.4.2. There is a commuting diagram

— o,radj — o,radj
Mndlax Endlax

~

—o,radj

at

(oo} ’

where the two downward functors are cocartesian fibrations and the horizontal functor preserves
cocartesian morphisms. Moreover, both the downward functors are also cartesian fibrations.

Proof. 1t is immediate from Corollary A.5.14 that the downward functors are cocartesian fibrations
and the horizontal functor preserves cocartesian morphisms: from the description of the cocartesian
morphisms there it follows that these full subcategories contain the cocartesian morphisms whose
sources lie in the subcategories. Similarly, the right-hand functor is a cartesian fibration.

o,radj ——o,rad,

It remains to prove that the functor l\mlax — Cat,_ ' is a cartesian fibration. Since we know
it is a cocartesian fibration, this is equivalent to showing that the functor ¢, : Mnd”(€) — Mnd’ (D)
corresponding to the cocartesian pushforward along a map ¢: € — D has a left adjoint. Since the

—o,radj — o,radj . . :
forgetful functor Mnd — End,,, = preserves cocartesian morphisms we have a commutative

lax
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square
op

s
Mnd? (€) —— Mnd’ (D)

| ]

Enda(e) W EndU(D)

Here we know that Mnd”(€) and Mnd’ (D) are presentable oo-categories by Corollary 4.2.18. By the
adjoint functor theorem it therefore suffices to show that the functor ¢* is accessible and preserves
limits. But the forgetful functor Mnd? (D) — End’ (D) is a monadic right adjoint by Corollary 4.2.15
and preserves sifted colimits by Proposition 4.2.14. Thus limits and sifted colimits are computed
in End? (D), so it suffices to show that the composite Mnd?(€) — End”(D) preserves limits and
is accessible. The same observations apply to the forgetful functor Mnd?(€) — End’(€), so in
the end it is enough to prove that ¢/*: End?(€) — End? (D) preserves limits and is accessible, or

,rad]j — dj
equivalently that this is a right adjoint. But this follows from the projection Endl dxd 'L C t(7 e
being a cartesian and cocartesian fibration (or from the explicit description of the cocartesian
morphisms). O

O'Td

Proposition 4.4.3. The forgel.ﬁful functor I\Zadil; — End,, has a Tight adjoint that commutes
with the projections to @c;radj, which takes an endofunctor to its free monad.

Proof. By (the dual of) [Lurl7, Proposition 7.3.2.6] it suffices to show that the functor on fibres
over each C € @u;radj has a right adjoint. But this functor can be identified with the forgetful
functor Mnd”(€)°? — End’(€)°P, so this follows from Corollary 4.2.11. O

We now wish to prove that this free monad adjunction is in fact monadic (which we saw fibrewise
in Corollary 4.2.15):

Theorem 4.4.4. The forgetful functor l\fn\dfdid g ETIEi;;r(d has a right adjoint that commutes
——o,radj
with the projections to Catzora J, and the resulting adjunction is comonadic.

To prove this we will use the following general observation:

Proposition 4.4.5. Suppose we have a diagram

ce—Y D

N

where

(1) p and q are cocartesian fibrations,

(2) for b € B the co-category Cp has geometric realizations,

(8) for f: b — b in B, the cocartesian pushforward functor fi: C, — Cu preserves geometric
realizations,

(4) U has a left adjoint F: D — C such that pF ~ q,

(5) the adjunction F 4 U restricts in each fibre to an adjunction Fy 4 Uy,

(6) Up: Cy, — Dy preserves geometric realizations,

(7) Uy detects equivalences for every b € B.

Then the adjunction F 4 U is monadic.

Remark 4.4.6. It follows from these assumptions that each adjunction Fj - Uy is monadic.
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Remark 4.4.7. Our proof of this result follows the argument used to prove monadicity for enriched
categories in [Wol74].

Lemma 4.4.8. Let C be an oo-category with all small colimits, and suppose F': (A°P)”x (AP)> — C
is a diagram such that for every [n] € A the diagrams F|{[n]}X(AoD)D and F|(Aop)>x{[n]} are colimit
diagrams. Then the following are equivalent:

(i) the restriction Fioyxaory> is a colimit diagram,
1) the restriction Fiaorysx (oo} S @ colimit diagram,
(AcP)>x{oo}
(i) the commutative square

F([0], [0]) = F (o0, [0])

|

F([0], 00) — F (00, )

i a pushout,
(iv) F is the left Kan extension of its restriction to AP x A°P.

Proof. Functoriality of left Kan extensions and some easy cofinality arguments. O

Proof of Proposition 4.4.5. By [Lurl7, Theorem 4.7.3.5] it remains to show that C has colimits of
U-split simplicial diagrams, these colimits are preserved by U, and U detects equivalences.
Let us first check that U detects equivalences. Suppose therefore that f: ¢ — ¢’ is a morphism

in € such that Uf is an equivalence in D. Then g := qU f ~ pf is an equivalence in B. We can

factor f as c 2, gic Ly ¢ where ¢ is a p-cocartesian morphism over g and f’ is a morphism in the

fibre Cp(cy. But then ¢ is an equivalence since it is cocartesian over the equivalence g, and f’ is an
equivalence since by assumption (7) U detects equivalences fibrewise over B.

Using assumptions (1), (2), and (3) we see by [Lur09, Corollary 4.3.1.11] that p-colimits of
simplicial diagrams exist in €. Moreover, by [Lur09, Proposition 4.3.1.5] a p-colimit diagram whose
underlying diagram in B is a colimit is a colimit diagram in €. Thus € has colimits for simplicial
diagrams whose underlying diagrams in B have colimits — in particular, this holds for U-split
simplicial diagrams, since by definition their underlying diagrams in B can be extended to split
simplicial diagrams, which are colimit diagrams by [Lur09, Lemma 6.1.3.16].

Moreover, since AP is weakly contractible, it follows from [Lur09, Proposition 4.3.1.10] that if
¢: A°®? — C is a diagram in @, for some b, then its colimit in G, is also a colimit in C.

Suppose then that ¢: AP — € is a U-split diagram. Using the monad T := UF we can extend
this to a diagram ®: A% x (A°?)> — €, where ®|aorx (o0} ~ ¢ and @|aovy[n)} ~ FT"U¢. The
underlying diagram in B of each row ®|acpx {[n]} is split, hence the rows all have colimits in C. Let
D: (A°P)” x (A°P)> — € denote the left Kan extension of ®. Observe that the column ®|{[,]}x(acr)>
is a free resolution of ¢([n]) in the fibre Cp. It is therefore a colimit diagram in Cp, and hence in C.
Thus by Lemma 4.4.8 the last column <I>|{OO}X(AOP)> is also a colimit diagram.

Now consider U®. The rows (U5)|( Acr)ex {[n]} can all be extended to split simplicial diagrams,
and are therefore colimits in D. The columns (U$)|{[n]}x( acr)> can similarly be extended to split
simplicial diagrams (in a single fibre) so they are also colimit diagrams. Finally, the underlying
diagram in B is constant, so the last column (U®)| {oc}x(acpy> lies in a single fibre; it is therefore
a colimit in D since U preserves geometric realizations in each fibre. Applying Lemma 4.4.8 again
we conclude that the last row (U®)|(acp)> x {00} iS also a colimit, i.e. the colimit of ¢ is preserved by
U. O
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Proof of Theorem 4.4.4. We will apply Proposition 4.4.5 to the commutative triangle

—o,radj,op U — o,radj,op
Ndjax Ndjax

e 7

—o,radj,op

oo

From our previous results the required conditions are satisfied here:

(1) p and ¢ are cocartesian fibrations by Proposition 4.4.2.

(2) The cocartesian pushforward functors are left adjoints, since p and ¢ are also cartesian fibrations,
and so preserve all colimits.

(3) U has a left adjoint F' such that pF’ ~ ¢ by Proposition 4.4.3.

(4) This adjunction restricts to an adjunction in each fibre by construction.

(5) The fibrewise right adjoints preserve sifted colimits by Proposition 4.2.14.

(6) The fibrewise right adjoints detect equivalences since they are monadic by Corollary 4.2.15.

O

5. ANALYTIC MONADS AND 0o-OPERADS

5.1. Analytic Monads. An analytic monad is a monad on §,; whose underlying endofunctor is
analytic, and whose unit and multiplication transformations are cartesian. In other words, it is an
associative algebra in AnEnd(I) under composition. We write AnMnd(I) for the oo-category of
analytic monads on 8,7, defined as the subcategory of Mnd(8,;) with analytic monads as objects
and the morphisms of monads whose underlying maps in End(8,;) are cartesian transformations
as morphisms. Similarly, we define an co-category AnMnd over 8 of analytic monads over varying
base spaces as a subcategory of the pullback of l\m;);x — 62;525 along 87 _: 8 — 63?525. We then
get a commutative diagram

AnMnd —— AnEnd
8.

We will now use our results on free monads to show that the forgetful functor AnMnd — AnEnd
has a left adjoint, and the resulting adjunction is monadic.
To prove this, we will first show that the free monad on an analytic endofunctor is analytic:

Proposition 5.1.1. The free morgd_ﬁ on_an analytic endofunctor P is again an analytic endo-
functor, and its structure maps p: PoP — P andn: id — P are cartesian natural transformations.

We will prove this using the colimit description of the free monad
P ~ colim P,
n
from Proposition 4.3.2. The key observation is the following:

Lemma 5.1.2. Fach endofunctor P, is analytic, and the transition maps fpy1: P — Pny1 are
cartestan.

Proof. The case n = 0 is clear since Py ~ id is certainly analytic, and f;:1id — id IT P is cartesian
since for any map s: X — Y over I, the square

X — XIIPX

Y —YIOPY
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is cartesian, as coproducts of cartesian squares are cartesian in an co-topos. If P, is analytic, then
P,y1 ~id I (P o P,) is analytic, as composites and colimits of analytic functors are analytic, and
if f,, is cartesian, then f,, 11 ~ id I P(f,) is cartesian: the squares

XTI P(Py_1X) — X1 P(P,X)

| |

Y1 P(P,_1Y) —— Y1l P(P,Y)

are cartesian since P preserves pullbacks, and coproducts of cartesian squares are cartesian in an
oo-topos. This implies the required result by induction. ([l

Proof of Proposition 5.1.1. We have P ~ colim,, P,. By Proposition 2.5.4, the colimit of any di-
agram of polynomial functors and cartesian transformations is again a polynomial functor (corre-
sponding to the colimit of the associated polynomials). Since analytic endofunctors are a slice of
polynomial endofunctors by Corollary 3.1.13 (or since we know from Lemma 4.2.13 that P preserves
sifted colimits), the endofunctor P is therefore analytic.

According to Proposition 4.3.8, the multiplication u: P o P — P is the colimit of the natural
transformations up: Py o P, — Pop, of Construction 4.3.5. Tracing through the definitions, these
are constructed from sum inclusions (which are cartesian since in slices §,; sums are disjoint),
applying P (which preserves cartesianness since it is itself cartesian), and sums of cartesian natural
transformations, which are again cartesian (since 8,; is locally cartesian closed). So all the natural
transformations pp: Py o P, — Py, are cartesian. Finally, a filtered colimit of cartesian natural
transformations is again cartesian by Proposition 2.5.1, so pu ~ colimy up is also cartesian. As to
the unit 7: id — P, by Proposition 4.3.8 it is the filtered colimit of the natural transformations
Ny : id — P, each being just a sum inclusion and hence cartesian. Thus n is again cartesian. O

Lemma 5.1.3. Ifu: R’ — R is a cartesian natural transformation between polynomial endofunctors
on 8,1, then the induced natural transformation u: R' — R of free monads is again cartesian.

Proof. The natural transformation w is the colimit of the sequence of natural transformations uy, :
R}, — Ry with ug := idjq and upq1 : R}, | — Rpy1 defined as the composite

id 11 (R o R}) id I (R o Rp) "2 id 11 (R o Ry,).

Each uy, is a cartesian natural transformation. Indeed, ug ~ id clearly is, and if uy, is then so is up11
since R’ preserves pullbacks and u is cartesian. Finally, since u is the filtered colimit of cartesian
natural transformations, it is again cartesian (since pullbacks distribute over filtered colimits). O

IR (up,)
-y

Lemma 5.1.4.

(i) If P is an analytic endofunctor, then the unit map P — P is cartesian.
(i) If (T, p,m) is an analytic monad, then the counit map T — T is cartesian.

Proof. The unit map P — P is the sum inclusion P — id II P = P, followed by the colimit map
P, — P. Sum inclusions are cartesian by disjointness of sums, and the colimit map is cartesian by
Proposition 2.5.1, since all the transition maps are cartesian by Lemma 5.1.2.

The counit map is the map of monads corresponding to the forgetful functor ¢: Alg+(8,;) —
algr(8,r). If we denote these two monadic adjunctions by

F:C=Algr(8)): U f:C=algp(8)r) : u,
then this natural transformation T ~ uf — UF ~ T is given as the composite
uf = ufUF ~ufupF — upF ~ UF,

where the first map comes from the unit for ¥ 4 U and the second map from the counit for
f 1 u. Unwinding our description of the counit ufu — u from Lemma 4.3.4, we see that this
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is the colimit of a sequence of natural transformations e : T, — T defined recursively as follows:
€o: Ty = id — T is the unit of the monad, cartesian by assumption. Assuming we have a cartesian
natural transformation €5, : T, — T, the next map ep41: idII (T 0 T},) — T is defined as the sum of
the unit id — 7" and the composite
T
ToTy, "N Tor 45T

But ¢, is cartesian by induction, and 7" preserves cartesian maps since it is analytic, and p is
cartesian by assumption. The colimit of all the &j is the natural transformation 7' — T, which is
then cartesian by descent (Proposition 2.5.1 again). O

Corollary 5.1.5. The forgetful functor AnMnd(I) — AnEnd(I) has a left adjoint, taking an ana-
lytic endofunctor to its free monad, and the resulting adjunction is monadic.

Proof. By Corollary 4.2.15 we have a monadic adjunction
F :End?(8,;) 2 Mnd?(8;) : U.
From Proposition 5.1.1 and Lemma 5.1.3 we know that the composite
AnEnd(I) — End’(8,;) - Mnd?(8,;)

lands in the subcategory AnMnd(I). Moreover, by Lemma 5.1.4 the unit and counit transformations
for FF 4 U restrict to natural transformations valued in AnEnd(I) and AnMnd(I). Since these
restrictions still satisfy the adjunction identities, the adjunction restricts to an adjunction between
AnEnd(J) and AnMnd(7). Identifying AnMnd(/) with Alg(AnEnd([I)), we see by the same proofs
as for Proposition 4.2.14 and Corollary 4.2.15 that AnMnd(I) — AnEnd(]) is a monadic right
adjoint. O

Now, by the exact same argument as in the proof of Theorem 4.4.4, we get:

Corollary 5.1.6. The forgetful functor AnMnd — AnEnd has a left adjoint, compatible with the
projections to 8, and the resulting adjunction is monadic.

5.2. Free Analytic Monads in Terms of Trees. In this section we will obtain an explicit descrip-
tion of the free monad on an analytic endofunctor in terms of trees, thus extending the description
of free analytic monads from [Koc11] to the co-categorical setting.

Definition 5.2.1. We shall need various groupoids derived from Qi,;. First of all let
tr = ot

denote the groupoid of all trees, and let cor C tr denote the subgroupoid of corollas (which is
equivalent to [], ., BEn).

Definition 5.2.2. If T is a tree

ASMEBENS A,
then the leaves of T are the elements of A that are not in the image of ¢t. Morphisms of trees do
not necessarily preserve leaves, but isomorphisms do, yielding a functor leaves: tr — (Fin.

Definition 5.2.3. Suppose P is an analytic endofunctor represented by the diagram
I« ELB—1.
Define spaces tr', tr(P) and tr'(P) by pullback as follows:

tr'(P) —— tr(P) —— AnEnd/p
J{ | i o l
tr’ tr AnEnd

.
l lleaves

Fin, —— (Fin.
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The objects of tr(P) are P-trees, defined as diagrams

SN

where the first row is a tree. The objects of tr’(P) are P-trees with a marked leaf, which amount
to diagrams

J

.

—=2+—=

i
g

~ e
N — %

Here the upper right square being a pullback expresses that the edge is a leaf (cf. [Kocl1]). (Note
that while tr and tr’ are 1-truncated (i.e. ordinary groupoids), tr(P) and tr'(P) are not in general
so. For example, tr(P) contains the space B (cf. 3.3.6).) The map tr(P) — tr corresponds to the
functor Map(—, P): tr — 8, and we have the explicit formula

P) ~ colim M T P)~ M T P
tI’( ) C,Igelgl a‘pAnEnd( ) ) T]E[t a'pAnEmd( ) )hAut(T)a

where we are implicitly identifying the groupoid tr with its opposite.
leaves

The vertical composite tr(P) — tr — ¢Fin factors also through “P-coloured finite sets”, which
could be denoted (Fin(P) or E(I):

tr(P) ' E(I) — (Fin.

There is a canonical map p: tr(P) — I which to a P-tree assigns the colour of its root edge.
Formally, for each tree T consider the inclusion of the root edge n — T. The associated maps
Map(T, P) — Map(n, P) ~ I assemble into tr(P) ~ colimyey, Map(T, P) — Map(n, P) ~ I. Simi-
larly, there is a canonical map A: tr'(P) — I which returns the colour of the marked leaf. Formally,
this is the composite tr'(P) ~ colimret Map(T, P) — Map(n, P) ~ I, where this time  — T picks
out the marked leaf.

Theorem 5.2.4. If P is an analytic endofunctor, then P, the (underlying endofunctor of the) free
monad on P, is represented by the polynomial

I 4/(P) — tr(P) 2 I

Remark 5.2.5. See [Kocl1] for the analogous result in the case of sets, and [Koc17] for the groupoid
case.

To prove this, we use the description of P given in Definition 4.3.1 and Proposition 4.3.2, as the
colimit of the sequence of functors defined by Py ~ id and P41 ~ id II (P o P},), which we shall
describe in terms of trees of bounded height. For this we need some notation.

Definition 5.2.6. For A + M — N — A a tree, the height of e € A is the minimal k € N such
that o¥(e) is the root edge. Here o is the ‘successor’ function (or walk-to-the-root function) from
the definition of tree (3.3.1). The height of the tree T' is the maximal height of its edges. Hence the
trivial tree has height 0 and any corolla has height 1.
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Let tr<j, denote the subgroupoid of tr containing only the trees of height < h. For P an analytic
endofunctor, and for each h € N, define groupoids tr’,, tr<x(P) and tr’c; (P) by pullbacks

tr’gh(P) SRIEN tr<p(P) — AnEnd,p
I
tr/gh —— tr<p, — AnEnd

-
l llcavcs

(Fin, ——— (Fin

We have
tr<p(P) := colim Map, ,gpna(T, P).

Tetr<p,
Let tre <j, denote the subgroupoid containing the trees of height < h that have a root node (i.e. we

exclude 7). We have a forgetful functor bot: tre <; — tre <1 = cor >~ (Fin that takes a tree to its
root corolla.

Lemma 5.2.7. For each fized k € (Fin, we have a pullback square

(tr<n)* —— tre,<nt1

_l
l lbot
* ———— (Fin
Proof. The map (tr<p)*¥ — tro <py1 takes a k-tuple of height-h trees and grafts them onto the

corolla k. It is clear that the fibre of this map is the set of automorphisms of k, just as the fibre of
k:x — (Fin. |

Let P be an analytic endofunctor. Recall from Definition 4.3.1 the sequence of endofunctors P,
defined by Py :=id, and P41 :=1id Il (P o P;). By Lemma 5.1.2, each Py is analytic.

Proposition 5.2.8. If P is represented by the polynomial
I+~ F—B—1I,
then Py, is represented by the polynomial
I8t (P) 22 trep(P) 225 1

Here sy, assigns to a leaf-marked tree the colour of the marked leaf, and ty assigns the colour of the
root edge.

The proof requires a couple of auxiliary results, exploiting that the analytic functor P lives over
E. With notation as in Proposition 3.2.6, we have the diagram

I+ Fp—2 yp_t 4
]l El_‘ L@ lj

* «—— (Fin, 7 (Fin *.

Lemma 5.2.9. With notation as above, there is a natural pullback square

tI‘.7§h+1(P) — E(trgh(P))

J
botJ{ lE(th)

cor(P)~ B ——— E(I),

leaves=3

where §: B — q.u*l = E(I) corresponds to wg*B = FE 2 I under the adjunction wq* = g.u*.
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Unravelling the definitions, this says that giving a P-tree with a bottom node and of height
< h+1 is the same thing as giving the bottom node (a P-corolla) and a P-forest of trees of height
< h whose root edges match the leaves of the bottom node.

Proof. Expanded in colimits, the asserted square reads as follows.

colim Map(T, P) — colim tr<j,(P)**

TGtr.y<h+1L ke(Fin L

lim Map(C, P) —— colim M P)*k,
golim Map(Cy, P) golim Map(r, P)

By Lemma 5.2.7, we can rewrite colimresr, _,,, Map(T, P) as an iterated colimit

colim colim Map(T, P).
kEFin (T;) € (trap ) X *

Since we have natural pushouts T' ~ CY HLU“;l . ]_[f:1 T; this is equivalent to

k
colim  colim  Map(Cy, P X Map(T;, P).
kelFin (T;)€(tr<p)** ( ) ¥, Map(n,P) z];[ ( )

1=1

Since colimits in 8 are universal and products commute with colimits, we can rewrite this as

k

colim | Map(Cy, P X colim Map(T}, P) | ~ colim | Map(C, P X trep(P)<F ) .
ke€.Fin ( p( k ) His:l Map(n,P) Z_];[Tietrgh p( ! )> ke€.Fin < p( k ) Map(n,P)** Sh( )

But colimits over co-groupoids commute with weakly contractible limits by Lemma 2.2.8; so this is
equivalent to

. . k
(colim Map(Ck, P)) X colimye.in Map(n,P) <k (cOlm tr<n(P)™). O

Corollary 5.2.10. P evaluated on the map tp: tr<p(P) — I yields tpy1: tre <p+1(P) — I.

Proof. Proposition 3.2.6 describes p.s*(ty) as the vertical left map in the pullback

Y — E(trgh(P))

-
J o

cor(P) ~ B ———— E(I),

and Lemma 5.2.9 identifies this map as bot: tre <p4+1(P) — B. Applying finally ¢ is to compose
with ¢, yielding ¢;,41 as required. O

Proof of Proposition 5.2.8. This goes by induction on h. First of all, Py := id is represented by
I+ I — 11— 1, but I is also the space of P-trees of height < 0. This establishes the base of the
induction. Assuming we have already established that P, is represented by trees of height < h, we
need to identify the composite P o Py, using the explicit description given in Theorem 2.1.8. We
have already computed the space in the upper right corner (denoted D in the big diagram in 2.1.8):
by Corollary 5.2.10, it is the space tre <p41(P) of trees of height < h + 1 and with a bottom node.
To compute the space in the upper left corner (denoted G in the big diagram in 2.1.8), we need first
to pull back along p : E — B: this gives the same space of trees but with a marked incoming edge
of the bottom node. This space comes with a canonical projection to tr<j(P) given by returning
the tree sitting over that marked edge. Finally we need to pull back along p;, which amounts to
marking a leaf of that marked subtree. Together the two pullbacks amount to marking any leaf,
giving thus the space tr'.7S ne1(P). Finally, the formula for P41 adds in the trivial tree by means
of the summand id. This compensates precisely for the requirement of having a bottom node. [
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Proof of Theorem 5.2.4. We know from Proposition 4.3.2 that the free monad P is the colimit of
the sequence Py, where Py, is represented by

I trl),(P) — trep(P) — I

by Proposition 5.2.8. Tt then follows from Proposition 2.5.4, Theorem 2.4.11, and Corollary 2.5.2
that the colimit P is the polynomial functor corresponding to the pointwise colimit of these diagrams,
which is clearly

I+ tr'(P) — tr(P) — I

as asserted. O

Remark 5.2.11. The monad structure on P is also pleasantly described in terms of trees. The
space of operations of Po P is P(tr(P)), the space of P-trees whose leaves are decorated by P-trees
in a compatible way. More precisely, the objects of P(tr(P)) are tuples

(R leaves(R) N tr(P))

) \ I[p
where R is a P-tree and f assigns to each leaf of R a P-tree whose root edge has the same colour.
The monad multiplication Po P — P now simply takes this configuration and glues those trees onto
the leaves of R. Clearly this construction is just the colimit of the same construction with trees of
height m and n, which is the tree interpretation of the natural transformations P, o P,, — P4
from 4.3.5.

Cartesianness of p can also be established along these lines: the arity of an operation (R, f) as
above is the disjoint union of all the leaves of all the upper trees. Clearly this is the same as the set
of all leaves of the resulting total tree.

Proposition 5.2.12. Let P be an analytic endofunctor on 8,r, and P the free monad on P. Under

the equivalence i*: AnEnd = P(Qe) of Proposition 3.3.10, the underlying endofunctor of P is
identified with the presheaf

C,, — colim Map(T, P).
Ten-tr

(and n — I). Here n-tr is the homotopy fibre over n of the map tr — (Fin that sends a tree to its
set of leaves.

Proof. The equivalence i* sends P to the presheaf C, ~ Map(C,, P). But we know from Theo-
rem 5.2.4 that P is represented by I < tr’(P) — tr(P) — I. Now by 3.3.6, we have Map(C,,, P) ~
n-tr(P), the latter defined as the left composite pullback

n-tr(P) —— tr(P) —— AnEnd,p

Lo

n-tr tr AnEnd
J{ N J{leaves
* ——— (Fin.

From the top composite pullback, we get (in analogy with 5.2.3) n-tr(P) ~ colimrep_t, Map(T, P),
as claimed. In summary:

i*P(Cy,) ~ Map(C,,, P) =~ n-tr(P) ~ %olir{l Map(T, P). O
en-tr
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5.3. Analytic Monads versus Dendroidal Segal Spaces. In this subsection we will prove the
main result of the paper, that analytic monads are equivalent to oo-operads. First, we need to
recall the model of co-operads we will use for the comparison, namely the dendroidal Segal spaces
of Cisinski and Moerdijk [CM13a].

Definition 5.3.1. The dendroidal category €2 is the full subcategory of AnMnd spanned by the
image of ,t, i.e. the free monads on the trees.

Remark 5.3.2. Since trees themselves are polynomials in Set, and since the free monad on a set
polynomial is again a set polynomial, the definition given here agrees with that of [Koc11], which
in turn is just a polynomial reformulation of the original definition of [MWO07]. Recall that €2
has as morphisms the monad maps between free monads on the trees, and that €2 has an active—
inert factorization system (also called the generic—{ree factorization system [BMW12]): The inert
maps are the tree inclusions, defined formally as the morphisms of polynomial functors between
trees, forming the category i, studied so far. The active maps are given by node refinements,
characterized also as the monad maps that preserve leaves and root. This includes the codegeneracy
case where a unary node is “refined” into a nodeless tree. To specify an active map out of a corolla
with set of leaves L amounts to giving a tree with L as set of leaves. The only active map out of the
trivial tree 7 is the identity. A general active map T — T" is specified by giving an active map out
of each node corolla, and then gluing together the resulting trees along roots and leaves, according
to the same recipe that gave T as the colimit of its elementary trees.

Definition 5.3.3. A presheaf F' on (2 is called a Segal presheaf if its restriction j*F along the
inclusion j: Qiny — Q is a Segal presheaf on Qine, as in 3.3.12. We define the co-category Pgeq(£2)
of Segal presheaves to be the pullback

Pges(2) — P(2)

1 ©

Pseg(Qint) —— P(Qint).

Theorem 5.3.4. The restricted Yoneda embedding N: AnMnd — P(Q) is fully faithful, and its
essential image is Pgeg(S2). We thus have an equivalence of co-categories

AnMnd =~ Pge.(£2).

The proof will be based on the following general observation, which is an co-categorical version of
a result of Berger, Mellies and Weber [BMW12]; they use it to give a proof of the “nerve theorem”
for monads (originally due to Weber [Web07]).

Proposition 5.3.5. Suppose given a commutative square of co-categories

81&82

317)32

such that

(1) the functor U; has a left adjoint F; fori=1,2,

(2) the adjunction F; 4 U; is monadic for i = 1,2,

(8) the functor ¢ is fully faithful,

(4) the mate transformation Fop — ¢Fy is a natural equivalence,

Then the functor ¢ is also fully faithful, and its essential image consists of those A € € such that
Us A is in the image of ¢. (In other words, the commutative square above is cartesian.)
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Proof. We first prove that ¢ is fully faithful, i.e. that for all A, B € €; the map
Mapg, (4, B) — Mapg, (pA, ¢ B)

is an equivalence.
First suppose A is free, i.e. of the form F} X for some X € B;. Then we have natural equivalences

Mape (F1X, B) ~ Mapg (X,U1B) ~ Mapg, (¢X, U1 B) ~ Mapg, (¢X, UQQBB)
~ Mapg, (F20X, ¢B) ~ MapEZ(q;FlX, QEB)

For a general A, we can choose a U;-split simplicial free resolution A,. Since each A, is free, we
have natural equivalences

Mapg, (A, B) ~ limMapg  (As, B) ~ limMap, (A, $B).

Since A, is Up-split and Us¢p ~ ¢U;, the simplicial diagram ¢A, is Up-split. Since Fy - Uj is
monadic, this implies that the colimit |¢A,| exists and is preserved by Us. There is a canonical map
|pAes| — @(A) and to see that it is an equivalence it suffices to show that it is one after applying Us.
But since the diagram U; A, is split, so is ¢U; Ae =~ UspA, and therefore its colimit is pU; A ~ Usp A,
as required. We thus have a natural equivalence

Mapgl(A, B) ~ lim Mapg, (qBA., QEB) ~ Map£2(|q3A.|, ¢B) ~ Mapgz(qu, éB).

This shows that ¢ is fully faithful; it remains to prove that if A € &, satisfies Uy A ~ ¢X for some
X € By, then A is in the image of ¢. We can view A as the geometric realization of its canonical
free resolution Ae := Fy(UaFy)*UsA. We have UsFo¢ ~ UspFy, ~ U, Fy, so Fy(UyFo)"Ug A ~
¢F (U F1)"X. Since ¢ is fully faithful, the diagram A, factors through &, i.e. we have a simplicial
diagram A, in & such that ¢pA, ~ A,. The diagram A, is also U,-split, and since Uy A ~ ¢X the
extension of Uy A, to a split simplicial diagram factors through B; as ¢ is fully faithful. Thus AJ is
U;-split. Since the adjunction F; - U; is monadic, this implies that A/, has a colimit A’ in &;, and
this colimit is preserved by U;. There is then a canonical map A — ¢A’, and this is an equivalence
since U, detects equivalences. This proves that A is in the essential image of ¢, as required. O

We are going to apply Proposition 5.3.5 to the commutative diagram

AnMnd —Y— P(Q)

[

AnEnd W ?(Qint) .

The vertical functors have left adjoints F' and ji, respectively. A key step (which will be Proposi-
tion 5.3.16 below) is to show that the mate commutes

AnMnd —Y— P(Q)

T

AnEnd T> ?(Qint) .

To establish this, we will need:

e a simplified formula for j*j; in terms of active maps (Lemma 5.3.10 below),

e some results regarding compatibility of Segal presheaves with active maps and colimits of sub-
trees (Corollary 5.3.12 and Lemma 5.3.14),

e the formula for the free monad on an analytic endofunctor in terms of trees, already established
in Proposition 5.2.12, which allows for reduction to the case of elementary trees (Lemma 5.3.15).

Lemma 5.3.6. Let 8: T — T’ be an active map.
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(i) There is an induced functor
Br: Qeryr — Qint 7
which takes an elementary tree E — T to the inert part of the active-inert factorization of
the composite E — T — T, as in

(ii) There is an induced colimit decomposition of T' into subtrees pi(E) C T':

r .
= s P
Proof. (i) is clear. For (ii), note that active maps preserve leaves and root. The colimit T ~
colimpee (1) E is an iterated grafting, i.e. an iterated pushout over trivial trees, each included into
one tree as the root and into another tree as a leaf. Since the only active map out of 7 is the
identity, the colimit asserted in (ii) is again an iterated pushout over trivial trees, and since for each
E € el(T) the active map E — (i E preserves leaves and root, the colimit asserted in (ii) is again an
iterated grafting. Finally, since all the trees 5| E are subtrees of T”, and are disjoint on nodes, the
colimit defines a subtree of T”. Since each node in T’ appears in precisely one of these subtrees, the
colimit must actually be all of T’. (In fact, the whole map § is the colimit of the maps E — 5(E),
cf. [Kocll, 1.3.4 and 1.3.16].) O

Definition 5.3.7. Let Fun®*(Al, Q) C Fun(A!, £2) denote the full subcategory of the arrow cate-
gory of € spanned by the active maps. Thanks to the active—inert factorization system in 2, the
domain projection Fun®*(A', ) — Q is a cartesian fibration: the cartesian arrows are the squares
with codomain arrow inert (see [GCKT18, Lemma 1.3]). The associated right fibration we pull back
to Qint and straighten to get a presheaf Act: (Qin)°? — 8. Thus Act(T) is the oo-groupoid of
active maps T — T in Q2 (actually just a 1-groupoid); for example, Act(C),) is the groupoid n-tr of
trees with n leaves. Note also that Act(n) ~ *, the only active map out of n being the identity.

Remark 5.3.8. As Act: (2i,t)°P — 8 factors through the full subcategory Gpd C 8 of groupoids
(equivalently, 1-truncated spaces), we are really just applying a 1-categorical straightening result
here. One could also directly define Act as an explicit (pseudo)functor, but this would involve making
arbitrary choices, since inert-active factorizations are only defined up to unique isomorphism.

Lemma 5.3.9. The presheaf Act: (Qint)°® — 8 satisfies the Segal condition. More precisely, for
any tree T', we have
Act(T) ~ lim Act(E)~ [ Act(C).

Ecel(T) Cecor(T)

Proof. The second equivalence follows from Act(n) ~ . The map Act(T) — [[oecor(r) Act(C)
sends an active map §: T — T’ to the collection of active maps a: C' — S’ as in Lemma 5.3.6(3).
A map in the other direction is given by gluing together all the subtrees S’ according to the same
recipe as the corollas C' glue together to give T, as in Lemma 5.3.6(ii). This constitutes a bijection at
the level of isomorphism classes by [Kocll, 1.3.16]. Since the spaces involved are just 1-groupoids
it thus remains to check that the automorphism groups match up. But an automorphism of an
active map B: T — T’ is the same as an automorphism of T” that fixes the edges from T, and
this amounts to giving for each C € corT an automorphism of the corresponding tree S’ that fixes

all leaves, which in turn is precisely to give an automorphism of the active map a: C — S’. So
Aut(8) = J] Aut(«) as required. O

Lemma 5.3.10. The active-inert factorization system on €2 induces an equivalence

i* 1) (T) ~ li (T
("1 ®)(T) o golim (77)
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for each Segal presheaf ® and each tree T'.

Proof. Since j: Qine — Q is the identity on objects, (7*1®)(T) ~ (H®)(HT) ~ (7#®P)(T). By the
usual formula for the left Kan extension, we have that

W DY(T) ~ colim @ T/ ’
(1 ®)(T) T—T"€((Qine)7/)°P "

so it suffices to show that the functor Act(7)°P — ((Qint)7,)°P is cofinal. Invoking [Lur09, 4.1.3.1],
it suffices to show that for all f: T'— T" € ((iut)7/), the pullback

Act(T) % (Shne)
( mim)w( /) f

is a weakly contractible oco-category. But this is precisely the co-category of active-inert factoriza-
tions of f: T'— T’, which is contractible by [Lur09, Proposition 5.2.8.17]. O

Proposition 5.3.11. Let ®: Q% — 8 be a Segal presheaf. Let T ~ S1I, R be the tree obtained by
grafting a tree S onto a leaf of another tree R. Then the canonical map

Q(T) — () Xy P(R)
is an equivalence.

Proof. Since ® is Segal, we have ®(T) = limpeer) ®(E). On the other hand, we have el(T) ~
el(S) Hey(y) el(R). It follows that the limit can be computed in steps:

lim ®(E)~ lim ®(E lim ®(E) ~ &(S O(R).
plm, | () plm (E) Xam) plm (E) =~ @(S5) xam) P(R)

O

Corollary 5.3.12. If &: Q8 — 8 is a Segal presheaf, and if T ~ colimg R is a colimit of certain

subtrees grafted to each other, then the canonical map
O(T) — li§n P(R)
is an equivalence.

Proof. This follows by iterated application of Proposition 5.3.11. |

Corollary 5.3.13. For ®: Q% — 8 a Segal presheaf and 3: T — T" an active map, the canonical
map

W) — L (5(E))

18 an equivalence.

Proof. By Lemma 5.3.6(ii) we have T ~ colimpgeqy () Bi(E), and the result follows from Corol-
lary 5.3.12. 0

Lemma 5.3.14. For ®: QP

int

colim  ®(7T') = lim colim  ®(S").
T—T e Act(T) Ecel(T) E—S'€Act(E)

— 8 a Segal presheaf and T a tree, there is a natural equivalence

Proof. Given an active map 8: T — T’ and an elementary subtree f: E — T, we can active-inert
factor the composite as in Lemma 5.3.6:

T

1 17

We now have the map

o1 L o (B E m B
(T) = 2(A )—>E—>g9€11{IC1t(E) (%),
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and letting 8 and f vary, we get altogether the map of the statement. By construction we have a
commutative square of co-groupoids

colim ®(T") —— lim colim  ®(S")
T—T'€Act(T) Eecel(T) E—S'€Act(E)

| |

Act(T) ————— Eéierlr(lT) Act(E).

Since the bottom horizontal map is an equivalence by Lemma 5.3.9, to conclude that the top
horizontal map is an equivalence, it suffices to show that, for any given basepoint 8: T — T" in
Act(T), the map on fibres

(T’ lim (S’
( )HEG{SII?T) (")

is an equivalence. But this is Corollary 5.3.13, since S’ ~ 3(E). O
Lemma 5.3.15. For P an analytic endofunctor, the natural transformation

3* i Nipg P — NinyUF P
is an equivalence on elementary trees.
Proof. The statement is easily seen to be true for the trivial tree n. Consider now a corolla C. On
the left side we compute (using the colimit formula for j; of Lemma 5.3.10)

i* ' Nint P)(C) ~ li NinPT’ ~ 1i M T’,P.
GPNmP)(C) = | colim ~ NuwP(T') 2 _ colim  Map(T", P)

On the right we compute (using the colimit formula for the free-monad monad of Proposition 5.2.12)

NintUFP)(C) ~ Map(C,UFP) ~ (UFP)(C) ~ li P(T") ~ li Map(T’, P). O
(NinUEP)C) = Map(C,UFP) = (UFP)O) > gl ) PT) = o olft o) Mer(T" F)

Proposition 5.3.16. The mate square
AnMnd —— P(Q)

T

AnEnd T)‘ T(Qint)

int
commutes. In other words, the natural transformation
jio N = NoF
is an equivalence.

Proof. Since j* is conservative, it is enough to check that j*ji Ny %_j*NF ~ N, UF is an
equivalence. Let P be an analytic endofunctor, and put ® := NP and P := UFP. For T a tree,
we have:

Fp®(T) ~ T_}g(/)éij{xclt(T)@(T’) by Lemma 5.3.10

lim colim  ®(S") by Lemma 5.3.14
Beel(T) E—S'€Act(E)

12

~ lim j*5®(E) by Lemma 5.3.10
Ecel(T)
~ lim N P(E) by Lemma 5.3.15
Eeel(T)
~ Ny P(T) since Niy of anything is Segal

as required. O
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Proof of Theorem 5.3.4. Proposition 5.3.16 tells us that the square of left adjoints commutes. Since
the adjunction F' 4 U is monadic by Corollary 5.1.6 and Njy is fully faithful (by Proposition 3.3.15),
we are in position to apply Proposition 5.3.5, which now tells us that the square of right adjoints is
a pullback. In particular, the nerve functor N: AnMnd — P(Q) is fully faithful. Furthermore, N
factors through Pgeq(€2), since this was defined as a pullback (5.3.3), as in this diagram:

AnMnd —Y— Pg., (Q) —— P(Q)

v | I

AnEnd —=— Pseg(Qint) —— P(Qint)-

Since the composite square is a pullback, and the right square is a pullback, also the left square is
a pullback, whence the result. O

APPENDIX A. MATES AND MONADS

In this appendix we discuss some (oo, 2)-categorical results needed in order to set up the oo-
categories of polynomial functors and polynomial monads. For most of these the proofs can be
found in the companion paper [Hau20].

A.l. (00,2)-Categories and Lax Transformations. We write Cat(, ) for the oo-category of
(00, 2)-categories. We will not need to use any specific model for these objects, but we will need to
make use of the lax Gray tensor product of (0o, 2)-categories; several versions of this have recently
been constructed [GHL20,Mae20, 0RV20] in different models. On the oo-categorical level all produce
functors

Q. Cat(ooyg) X Cat(ooyg) — Cat(ooyg)

that preserve colimits in each variable.

Remark A.1.1. Let ® C Cat( 2 denote Joyal’s category of 2-dimensional pasting diagrams.
Rezk’s presentation [Rez10] of (oo, 2)-categories as complete Segal ®2-spaces implies that the Gray
tensor product is uniquely determined by its restriction to a functor

@2 X @2 — Cat(oo,g).

This is given by the classical Gray tensor products of pasting diagrams in all the models, and hence
they all produce the same functor of co-categories.”

Our convention is that a lax natural transformation n between functors F,G: X — Y assigns to
every morphism f: X — X' in X a lax square

F(X) 5 G(X)

(
/ Jew
N e,

and that this is given by a functor X ®'** A! — Y. Similarly, a colaz natural transformation between
the same functors assigns to every morphism f: X — X’ in X a colax square

F(f)
F(X

F(X) 5 q(X)

F(f)l / lcm
F(X') 5 GX),

5At one point in [Hau20] we also need to use the further assumption that this Gray tensor product restricts to
the classical one when applied to ordinary 2-categories, or at least for gaunt 2-categories, which are those with no
non-identity invertible morphisms and 2-morphisms.
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and this is given by a functor X @2 A = Y. where
X ®COI&X H — g ®1ax X.

Since ®'** preserves colimits in each variable, we get by adjunction natural (oco,2)-categories
FUN(X, Y)(co)lax determined by natural equivalences

Mapcat(ao’z) (W, FUN(x, g)lax) ~ Mapcat(ao’z) (:X: ®1ax W, H),

Mapcat(ao’z) (W, FUN(DC, y)colax) ~ Ma.pcat(ooﬂ) (x ®COlax W, y) ~ Ma’pcat(m’z) (W ®lax X, g)

We write Fun(X, Y) co)iax for the underlying oo-category of FUN(X, Y) co)iax; this has functors X — Y
as objects and (co)lax natural transformations between them as morphisms.

We also write FUN(X, Y) for the ordinary internal hom in Cat . 2) (adjoint to the cartesian prod-
uct) and Fun(X,Y) for its underlying oo-category. By [Hau20, Corollary 3.15], we can identify this
with the wide sub-(o0, 2)-category of FUN(X, ¥) co)1ax With morphisms those (co)lax transformations
whose (co)lax naturality squares actually commute.

A.2. Double oco-Categories of Squares. We think of double oo-categories as simplicial oco-
categories that satisfy the Segal condition, or (essentially equivalently, using the description of
oo-categories as complete Segal spaces) bisimplicial spaces that satisfy the Segal condition in each
variable. If K,: A°? — Caty, is a double co-category, we think of

the objects of Ky as the objects of the double co-category,
the morphisms of Ky as the vertical morphisms,

the objects of X7 as the horizontal morphisms,

the morphisms of X as the squares in the double co-category.

The corresponding bisimplicial space is given by
Kn,m = Map(A™,XK,,),
so that

the space of objects of X is Kg o,

the space of vertical morphisms is Xy 1,
the space of horizontal morphisms is X g,
the space of squares is Xy ;.

Definition A.2.1. For any (oo, 2)-category X we will define double co-categories Sq'*(X), Sq°°'**(X)
and Sq(X) where

e the objects are the objects of X,
e both the horizontal and vertical morphisms are the morphisms of X,
e the squares are, respectively, lax squares, colax squares, and commuting squares in X.

These can be defined using the (co)lax Gray tensor product and the cartesian product as the
simplicial co-categories

Sqlax(x). — Fun(A., X)colax 6
SO, = Fun(A% X
Sq(X)e = Fun(A®,X).

The Segal condition follows immediately from the assumption that the Gray tensor product preserves
colimits in each variable.

Remark A.2.2. Equivalently, these double co-categories are given by the bisimplicial spaces
(1) Sqlax(X)nﬁm := Map(A™, Fun(A", X)colax) =~ Map(A™ @ A™ ) ~ Map(A™ ®@2% A" X),
(2) SqCOIaX(f)C)mm := Map(A™, Fun(A", X)j.x) =~ Map(A” @!3% A™ X) ~ Map(A™ ®°°ax A? X)),
(3) SA(X)s.m := Map(A™, Fun(A™, X)) ~ Map(A™ x A™, X) ~ Map(A™ x A", X).
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Notation A.2.3. If K is a double oo-category, regarded as a bisimplicial space, we write PP
for the double co-category obtained by reversing direction in the first coordinate, and XY-°P for
that obtained by reversing direction in the second coordinate. We also write K™V for the double
oo-category obtained by reversing the order of the coordinates.

Remark A.2.4. Since there is by definition a natural equivalence X R Y ~ Y @oolax ¥ we have
a natural equivalence

SqlaX(x)rev ~ cholaX(x).
There is also obviously an equivalence Sq(X)™" ~ Sq(X).

Definition A.2.5. Let Sq'**(X)¥='"2di denote the sub-double co-category of Sq'®*(X) containing
only the squares where the vertical maps are left adjoints. (We will apply similar notations with
right adjoints and horizontal morphisms, and other types of squares, without further comment.)

A.3. Naturality of Mates. Given a diagram of co-categories
e—L25D
’Yl % l&
¢ —— D,
R

where « is a natural transformation 6 R — R’~y, and the functors R and R’ have left adjoints L and
L', respectively, then the mate of « is the natural transformation
L'6 - L'6RL — L'R'vL — ~L,

which we can depict as

e+Lt—D p—Le
wl‘\ l& or 5l /’b
G/TDI D’TG’.

We thus pass from a lax square where the horizontal morphisms are right adjoints to a colax square
where they are left adjoints. A dual version of this construction takes a colax square where the
horizontal morphisms are left adjoints to a lax square, and doing both gives back the original
square.

We would like to know that the process of taking mates is natural. The most general form of
this statement would be that for any (oo, 2)-category X, taking mates gives a natural equivalence
of double co-categories

SqlaX(x)h:radj :_> cholaX(x)h:ladj,h-op.

We will not establish such an equivalence here; instead, we will observe that the following weaker
statement, where the squares in the source are required to commute, follows from the results of
[Hau20]:

Proposition A.3.1. There are morphisms of double co-categories
Sq(x)h:ladj %SqlaX(:X»h:radj,h-op,
Sq(x)h:radj %cholax(x)hzladj,h—op’

given by taking mates in the horizontal direction.

Remark A.3.2. Using the equivalence of Remark A.2.4, we can also interpret these as maps
Sq(x)vzladj *}cholaX(x)v:radj,v-op

Sq(x)vzradj N Sqlax (x)vzladj,v—op’

given by taking mates in the vertical direction.
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Proof. By [Hau20, Remark 4.11] taking mates gives a natural functor
FUN(A., x)radj — FUN((A.)OP, x)ladj,lax-

The underlying functor of simplicial co-categories gives precisely a functor of double co-categories
Sq(x)h=radi _, gqeolax(y)h=ladih-op  The other functor is defined in the same way by reversing
2-morphisms (which swaps lax and colax transformations and left and right adjoints). O

A.4. Framed Double co-Categories. We will need to know that the source-and-target projection
for the double oco-category Sq°®*(CAT,,)"="4l is a cartesian and cocartesian fibration. In order
to show this, we will now prove an co-categorical version of a result of Shulman [Shu08] on double
categories. To state this we first introduce some terminology:

Definition A.4.1 (Shulman [Shu08]). A double category is framed if for every vertical edge f: a —
b, there exist horizontal edges fi: a — b and f*: b — a together with four squares (2-cells)

aLb bf**nl a a a a
A I T T Jf
b——=10 b——=10 b?uz aTb
such that the following four equations hold:
a a a a
lf a a fl a a
aTb:fl lf bTa:fl lf
I = T
b——15> b=——=1b
a a1 p a1t A a b a
= [ A
aTb:b 7 b:b?)a bTa,

where on the right-hand side we have the horizontal and vertical identity squares for f, f*, and f.

Remark A.4.2. In [Shu08], this structure is called a framed bicategory rather than a framed double
category.

Definition A.4.3. We say a double co-category is framed if its homotopy double category is framed.
We have the following oo-categorical version of [Shu08, Thm.4.1]:

Proposition A.4.4. Let X be a double co-category, viewed as a functor A°® — Cate, satisfying
the Segal condition

xn = Xy XXo " XX Xy.
Put w:= (d1,dp): X1 — Xo x Xo. Then the following are equivalent:

(i) The double co-category X is framed.
(ii) The functor 7 is a cocartesian fibration.
(iii) The functor m is a cartesian fibration.

Proof. The proof that (ii) and (iii) imply (i) is exactly as in the case of ordinary double categories,
since cartesian (or cocartesian) fibrations induce Grothendieck (op)fibrations on the level of homo-
topy categories, and condition (i) is a statement about the homotopy double category. The more
interesting direction (which is the one we are going to need) is that (i) implies (iii). So assume given
(for each vertical edge) the four squares, and assume given homotopy equivalences representing the
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four equations. Given an object in X1, that is, a horizontal edge M : b — d, and an arrow downstairs
in Xp x Xy with codomain (b, d), that is altogether a configuration

a
L
b

o

we claim that

a b d c

SERI R N T
b:de:d
T Y

is a cartesian lift. Given vertical edges lu and lv , and a horizontal edge N : x — y, the claim is

a c
that the natural map

Mapfxl (Na g*Mf')(u,v) — Mapxl (Na M)(fu,gv)

given by pasting the square a to the bottom edge is a homotopy equivalence. But we can construct
a homotopy inverse by sending a square

to the pasting

u v

f g

Yy

c
f M d g* ¢

These two assignments are homotopy inverses: explicit homotopies are easily constructed from the

homotopy equivalences stipulated in (i).

The proof that (i) implies (ii) is similar. For reference, we note that the cocartesian lifts (of (f, g)
to N) can be taken to be of the form

Proposition A.4.5. The double co-categories Sq™(CAT ) =124 and Sq™**(CAT+)v="24 are
framed.

Proof. We give the proof for Sq'™(CAT,)"=12d, the other case is essentially the same. For each
vertical edge, that is a left adjoint functor ¢: X — Y, with right adjoint : ¥ — X, we have the
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lax squares

X Y Y —"5X  X=—X X—2X
1z |7 l e N
Y Y Y —VY Y =X XY

where the second square is the counit ey, the third square is the unit nx, and the two other
squares are trivial. The four equations required are two trivial ones, and the triangle laws for
adjunctions. O

Combining Proposition A.4.5 with Proposition A.4.4, we get:
Corollary A.4.6. The source-and-target projections
SqlaX(CAT )v ladj N (CatladJ)X2 S colaX(CAT )v radj N (Catradj) ,
are cartesian and cocartesian fibrations.

A.5. Monads. To define the oco-category of polynomial monads we need to have a suitable co-
category of monads on varying base oco-categories. We can define this in terms of lax natural
transformations:

Definition A.5.1. Let mnd denote the universal 2-category containing a monad.” A monad in an
(00, 2)-category X is a functor mnd — X. A laxz morphism of monads (or monad functor in the
terminology of [Str72]) is a lax natural transformation of monads, i.e. a functor mnd @2 Al — X.
Similarly, a colax morphism of monads (or monad opfunctor) is a colax natural transformation
mnd @13 Al — X, We then have (0o, 2)-categories of monads and (co)lax morphisms defined as

MND(x)(co)lax = FUN(mnD, x)(co)lax;
we denote the underlying oo-categories by Mnd(X) co)1ax-

Remark A.5.2. If T is a monad on X € X and S is a monad on Y € X, then

(1) a lax morphism T — S consists of a morphism F: X — Y and a natural transformation
SF — FT — in other words, a lax square

X .y

Tl ,/ls

X — Y,
compatible with multiplication and units through commutative diagrams

SSF —— SF

F SF |
ST

FTT — FT,

and so on for iterated composites of S and T.

TThis is defined in [RV16] as a full sub-2-category of the universal 2-category containing an adjunction; it can also
be described as the one-object 2-category corresponding to the monoidal envelope of the non-symmetric associative
operad.
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(2) a colax morphism T — S consists of a morphism F: X — Y and a natural transformation
FT — SF — in other words, a colax square
x 1ty
Tl / LS
X — Y,
compatible with multiplication and units through commutative diagrams

FTT —— FT

F FT l
ST

SSF —— SF,

and so on for iterated composites of S and T.

For ordinary 2-categories, Street [Str72] showed that the (2-)category of monads and lax mor-
phisms is equivalent to that of monadic right adjoints and commutative squares between them. One
of the main results of [Hau20] uses work of Riehl-Verity [RV16] and Zaganidis [Zagl7] to upgrade
this to an equivalence of (00, 2)-categories, in the case of monads in the (0o, 2)-category CAT» of
oo-categories:

Theorem A.5.3 ([Hau20, Corollary 5.7]). Let FUN(A!, CAT o )mndraaj denote the full sub-(co,2)-
category of FUN(A, CAT.,) spanned by the monadic right adjoints. There is an equivalence of
(00, 2)-categories

MND(CAT o )1ax — FUN(A', CAT o) mndradj
taking a monad to the right adjoint of its monadic adjunction.
Corollary A.5.4 ([Hau20, Corollary 5.10]). The inclusion

Fun(Al, Catoo)mndradj — Fun(Al, Catoo)radj

of the full subcategory of monadic right adjoints into that of all right adjoints in Fun(Al, Cats),
has a left adjoint, which takes a right adjoint functor to the right adjoint of the associated monadic
adjunction.

Definition A.5.5. Let end denote the universal category containing an endomorphism, i.e. the
pushout

OAl —— Al
A — end,
or the delooping BN of the natural numbers under addition. If X is an (oo, 2)-category, we write
END(:X:)(co)lax = FUN(QHD, x)(co)lax

for the (oo, 2)-category of endomorphisms and (co)lax transformations between them; we denote the
underlying oo-categories by End(X) co)iax-

Remark A.5.6. If T: X — X and S: Y — Y are endomorphisms in X, then a laz morphism from
T to S is given by a morphism F: X — Y and a lax square

X .y

| 2 s

XT>Y’
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while a colaxz morphism is again given by a morphism F': X — Y but now with a colax square
X *tsy
Tl A ls
X — Y.
Remark A.5.7. There is an inclusion end — mn0 picking out the underlying endomorphism of the
universal monad, which induces natural functors of (co, 2)-categories
MND(x)(co)lax — END(:X:)(co)lax-

Remark A.5.8. To reduce confusion regarding our conventions for lax vs. colax, let us point out
explicitly that there is a functor

End(X)jayx — Fun(Al, X)jay = Sq<™(X),,

and hence a functor
Mnd(X)1ax — SGE*(X);.

Another key result from [Hau20] identifies the fibres of the underlying functors of co-categories:

Theorem A.5.9 ([Hau20, Corollary 8.9]). For X an (o0, 2)-category and X an object of X, there
are natural identifications

Alg(Endx (X)) —— Mnd(X)colax, x Alg(Endy (X)) —— Mnd(X)iax, x
Endx(X) —= End(x%olax’x, Endx(X)Op —= EHd(:X:)laX’X,

where Endx (X)) is the monoidal co-category of endomorphisms of X in X under composition.
Remark A.5.10. Combining this with Theorem A.5.3, we get equivalences
Alg(End(@))°? = Catg“/‘(‘;adj,

mndradj

where Cat__ /e denotes the full subcategory of Cat, e spanned by the monadic right adjoints.
This equivalence has also been obtained by Heine [Heil7] by a different method.

Together with Corollary A.5.4, we get:

Corollary A.5.11. The functor

Mnd(€)°P — Catiaf,
that takes a monad to the associated right adjoint, is fully faithful, with image the monadic right
adjoints. (Here Cautroztjje denotes the full subcategory of Cato, e spanned by the right adjoints.)

We end by recalling two further results from [Hau20] that we will make use of:

Proposition A.5.12 ([Hau20, Proposition 6.4]).

(i) The projection End(CAT )1ax — Catoo has locally cocartesian morphisms and locally carte-
sitan morphisms over functors that are right adjoints.
(i1) The projection Mnd(CAT o )1ax — Catoo has locally cocartesian morphisms over functors that
are right adjoints.
(ii) The forgetful functor Mnd(CAT o )1ax — End(CAT o )iax preserves these locally cocartesian
morphisms.

Definition A.5.13. Let Catroidj denote the subcategory of Caty, containing only the morphisms
that are right adjoints. Then we define Mnd(CAT )™ and End(CAT. )% by pulling back

lax lax

Mnd(CAT . )1ax and End(CAT « )1ax along the inclusion Catroidj — Cateo.
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Corollary A.5.14 ([Hau20, Corollary 6.6]). There is a commuting diagram

Mnd(CAT o0 ) End(CAT . )j2s’
Catmd,

where the two downward functors are cocartesian fibrations, and the horizontal functor preserves
cocartesian morphisms. Moreover, the right-hand functor is also a cartesian fibration.
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