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A recalcitrant problem in the physics of turbulence is the representation of the tendency of large-scale
anisotropic eddies to redistribute their energy content with decreasing scales, a phenomenon referred to as
return to isotropy. An unprecedented dataset of atmospheric turbulence measurements covering flat to
mountainous terrain, stratification spanning convective to very stable conditions, surface roughness ranging
over several orders of magnitude, and Reynolds numbers that far exceed the limits of direct numerical
simulations and laboratory experiments was assembled for the first time and used to explore the scalewise
return to isotropy. The multiple routes to energy equipartitioning among velocity components are shown to
be universal once the initial anisotropy at large scales, linked to turbulence generation, is accounted for.
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One of the universal characteristics of all turbulent flows
is the tendency to return to isotropy at small scales. In
inhomogeneous flows, this tendency is forced by the lack
of equipartitioning of turbulence kinetic energy (TKE)
among the three velocity components at large scales. The
return to isotropy is the outcome of one of the least
understood mechanisms in the Navier-Stokes equations:
the interaction between the turbulent pressure and velocity
gradients (i.e., pressure-strain interaction). In 1951, Rotta
proposed the now celebrated model that assumes a linear
relation between the degree of anisotropy (of large eddies)
and the rate at which the flow returns to an equipartitioned
energy state through the energy cascade [1], nowadays
broadly accepted in all turbulence modeling, be it for
engineering or geophysical applications [2], including
numerical weather predictions [3]. This work, marking a
major departure from the eddy viscosity theories of
Boussinesq [4] and the mixing length hypothesis of
Prandtl [5], considered a statistical equilibrium of TKE
and its components for the first time. Atmospheric surface
layer (ASL) flows are a quintessential example of high
Reynolds number turbulence that is anisotropic in eddy
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sizes, the distribution of TKE among its three velocity
components and finite stresses. The anisotropy is sustained
by multiple mechanisms that include injection (or removal)
of energy along a given velocity component (shear in the
horizontal, buoyancy in the vertical), and external distor-
tions due to advection and mean pressure gradients
encountered in flow over topography. Formulating the
route taken to achieve energy redistribution among velocity
components as the energy cascade progresses down scale
(i.e., tendency to return to isotropy) remains a formidable
challenge. An unprecedented ensemble of ASL turbulence
measurements is assembled here for the first time to explore
the scalewise route of return to isotropy for atmospheric
turbulence at the crossover from large to inertial scales. The
datasets differ vastly in terrain type (flat to mountainous),
measurement heights (near vegetation top to above ASL),
surface roughness, and thermal stratification (convective to
strongly stably stratified), thus representing an exhaustive
range of real-world conditions (datasets and post-process-
ing methods are described in Supplemental Material,
Sec. A [6]). The results demonstrate that for a given
anisotropic state at scales larger than the integral length
scale, turbulent eddies follow a universal route when
relaxing towards an approximate equipartition of energy
at smaller scales, and that this route is independent of
external sources of heterogeneity affecting the flow. This
finding is remarkable when considering the associated
degrees of freedom in the energy cascade exceeding
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10'3, the extensive range of surface roughnesses and
thermal stratifications, as well as cases where terrain-
induced mean pressure gradients and flow distortions by
mean advection and flow separation significantly affect the
TKE budget.

Return to isotropy trajectories across scales.—For any
statistical state of turbulence it is possible to construct a

Reynolds stress tensor defined by its components Wu;,
where the turbulent velocity component u) acting along
direction x; (i =1, 2, 3 being longitudinal, lateral, and
surface normal) is defined as an excursion from the time-

averaged state u;, and the coordinate axes are transformed
so that ; = u3 = 0. The trace of w;u’; is twice the TKE

(k = O.Sm), indicating turbulence intensity, while the oft-
diagonal terms (i.e., turbulent shear stresses) are respon-
sible for transporting momentum [21]. According to
Lumley and Newman [22], a state in which all stresses
are zero and k is equipartitioned between the three velocity
components is labeled as isotropic at a point.

The degree of anisotropy at a point can be characterized
by two anisotropy invariants (&,7) [21,22]:
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where A;, A,, A3 are the three eigenvalues of the
anisotropy stress tensor defined by its components

bij = (uju;/uju;) — (1/3)d;;. This representation of ani-
sotropy allows a unique mapping of any realizable state of
turbulence onto a two-dimensional nonlinear map spanned
by the two invariants, the so-called anisotropy invariant
map (AIM). The highly distorted nature of AIM, however,
impedes clear interpretation of the trajectories within it,
thus, we choose a transformation onto an alternative set of
invariants (xg, ygz) [23] defined as
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as it yields a linear representation of anisotropy on an
equilateral triangle called the barycentric map (BAM,
Fig. 1). A unique mapping between the different sets of
invariants ensures that our choice does not affect the key
findings here. Based on the corresponding contribution of
each of the eigenvalues, the topological structure of
turbulence can be classified into three limiting states found
at the vertices of the triangle (Fig. 1): one-component (one
eigenvalue larger than zero), two-component axisymmetric
(two eigenvalues larger than zero and equal), or isotropic
(three eigenvalues larger than zero and equal) [21]. The in-
between states found at the sides of the triangle correspond
to two-component, prolate spheroid, and oblate spheroid,
while the state in which at least one eigenvalue is zero
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FIG. 1. Example average scalewise return-to-isotropy trajectory
in barycentric coordinates for METCRAX II NEAR tower data
[24] with two-component axisymmetric bulk anisotropy. Circles
represent the value of nondimensional timescale z/7,. The
limiting states of anisotropy (blue text) and their respective
ranges used for clustering (blue kites and a square emanating
from the pure states) are indicated. Solid black line is the PSL.

corresponds to plane-strain limit (PSL) defined as
Yps = 6(xps - 1/2) + 1 [23].

The scalewise path turbulence takes while relaxing to
isotropy constitutes a return-to-isotropy trajectory and
represents a sequence of anisotropic states at decreasing
scales [25,26] (Fig. 1). To obtain a trajectory for each
averaging period (i.e., run), we calculate the scalewise
anisotropy invariants from the cospectra of the elements of
the Reynolds stress tensor, using multiresolution flux
decomposition (MRD) [27]. MRD is an orthonormal
decomposition based on Haar wavelet transform that
decomposes the measured time series into dyadic time-
scales 7 (see Supplemental Material, Sec. A.3 [6]). The
scalewise anisotropy tensor can therefore be defined as

b;i(t — 7N o
i) Auj(r)Auj(z) 3

where Au) (7) = u; — u; () are velocity increments at scale
7. For large 7, the original anisotropy stress tensor is
recovered and we refer to anisotropy at that scale as bulk
anisotropy. However, at finer scales where local isotropy
may be fully attained, b;;(z) = 0 is not precisely congruent
with isotropic turbulence theories [28], although it is also
not far from them (see Supplemental Material, Sec. C [6]).
Thus, b;;(7) — 0 with decreasing 7 must only be viewed as
a tendency to extinguish bulk anisotropy by scalewise
energy redistribution as originally conceived by Rotta (thus
the label return-to-isotropy is adopted here). In keeping
with common turbulence models, 7 was normalized using a
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FIG.2. Two-dimensional density plots of the scalewise anisotropy for (a) all data, and data clustered according to bulk anisotropy into
(b) one-component, (c) two-component, (d) two-component axisymmetric, and (e) isotropic, for unstable (top) and stable (bottom)
stratification. Colored circles show ensemble trajectories for each cluster.

dissipation time scale T, = k/e [21], where ¢ is the TKE
dissipation rate (see Supplemental Material, Sec. A.2 [6]).

The trajectories obtained from each dataset were clus-
tered based on atmospheric stratification and bulk
anisotropy. The stratification was determined by the sign
of the buoyancy flux and labeled as unstable (stable) for
buoyancy flux directed away from (towards) the surface.
The bulk anisotropy was separated into isotropic, two-
component axisymmetric, two-component and one-
component by imposing distance thresholds from the pure
states of anisotropy (70% of half the side of BAM from
each vertex) (cf. Fig. 1) as described in Ref. [29]. This
clustering determines the starting point of the trajectory for
each run. An ensemble trajectory for each cluster was
calculated from all datasets using bin medians at logarith-
mically spaced nondimensional timescales 7/7 . (cf. Figs. 1
and 2). We used random sampling with replacement in each
cluster to ensure that each dataset is given equal weight in
the final ensemble trajectory for that cluster despite
originally having different record lengths.

Results.—According to the classical picture of linear
relaxation towards isotropy [1], the return-to-isotropy
trajectories are straight lines in AIM and BAM that
converge towards the isotropic vertex. In contrast, trajec-
tories in nonlinear return-to-isotropy models [30-33] are
curved in ways that depend on bulk anisotropy and
converge in regions of the anisotropy map that are far
from the isotropic vertex. The divergence between the
shapes of trajectories of different datasets can thus indicate
whether relaxation to isotropy is dictated by the boundary
conditions or whether their effect is fully contained in the
bulk anisotropy and has minor impact on the trajectories
(shapes of trajectories agree) thus implying the existence of
universal pathways towards isotropy (the main conjec-
ture here).

The cumulative two dimensional probability density
plots [Fig. 2(a)] show that irrespective of stratification,

ASL turbulence can attain almost all permissible states of
anisotropy. The likelihood for scalewise anisotropy is
highest in the upper near-isotropic part of BAM close to
the oblate side, but more diffuse in the lower more
anisotropic part, and especially small on the prolate side.
Because of random sampling used here, the information on
the anisotropy climatology for each dataset is, nonetheless,
hidden. When the data are clustered according to their bulk
anisotropy unique regions with highest likelihood emerge,
suggesting the existence of preferential pathways towards
isotropy, despite vastly different characteristics of each of the
datasets. Unique ensemble trajectories [Figs. 2(b)-2(e)],
representing these different pathways, are clearly determined
by bulk anisotropy (i.e., anisotropy at trajectory origin) and
its position relative to PSL, as previously noted by Klipp [26].
Thus one-component and two-component trajectories origi-
nating to the right of PSL follow a right-turning “boomerang-
shape” path [Figs. 2(b),2(c)] converging towards and then
following PSL at smaller scales. Of all the cases, the highly
anisotropic one-component trajectories take the longest to
reach isotropy both in terms of distance in BAM and scale.
They enter the near-isotropic region in Fig. 1 only at average
scales of /T, = 0.02-0.04. Although similarly shaped,
two-component trajectories [Fig. 2(c)] approach PSL sooner
and reach near-isotropy already at /7T, = 0.05-0.07. Two-
component axisymmetric turbulence [Fig. 2(d)] originating
to the left of PSL shows an equally fast approach to near-
isotropy as two-component turbulence. The trajectories,
however, are almost straight (though indicating meandering
for stable stratification) and run parallel to PSL, although at
small scales they veer towards the oblate spheroid side of
BAM. Finally, the trajectories for near-isotropic turbulence
[Fig. 2(e)] follow the shortest path (i.e., straight line at the
center of BAM) towards the isotropic vertex.

The spread around the ensemble trajectories (Figs. 2
and 3) indicates that individual trajectories vary both
between the datasets and within each dataset, particularly
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FIG. 3. Ensemble return-to-isotropy trajectories in (a) BAM

and (b) AIM, for four clusters and two stratifications. Shading
shows interquartile range. Black straight line is PSL, gray straight
line is the line through the center of BAM, and curved gray lines
are nonlinear trajectories of Ref. [30].

for one-component turbulence. Still, the shape of the
trajectories in each cluster uniquely matches the shape
of the corresponding ensemble trajectory, while the spread
of trajectories in each cluster is contained within the spread
of trajectories from flat and horizontally homogeneous
terrain (see Supplemental Material, Sec. B [6]). This
suggests that large disparity in surface conditions does
not affect the uniqueness of identified pathways of return to
isotropy.

The question still remains whether stratification, a

mechanism that produces or destroys TKE via the u?
budget, influences the return to isotropy in the ASL.
Contrary to expectations that stratification persistently
maintains anisotropy well beyond the integral length scale
and that the behavior in stable and unstable stratification is
asymmetric, the ensemble trajectories (Fig. 3) show a
minimal variation in shape between the two stratifications,
although stable trajectories show a tendency to be more
curved and more attracted towards PSL. Indeed, the value
of median absolute deviation (MAD) between stable and
unstable trajectories for one-component (0.03), two-
component (0.02) and two-component axisymmetric tur-
bulence (0.01) is significantly smaller than MAD between
the anisotropy types (0.12 between two-component axi-
symmetric and one-component, and 0.05 between two-
component axisymmetric and two-component). Therefore,
once boundary conditions acting on the flow (forcing
mechanisms and stratification) set the anisotropic state
of the large-scale turbulence (i.e., origin of the trajectory),
the corresponding b;;(z) will follow one of the identified
mean routes towards isotropy. As the equipartitioned state
is approached, the return-to-isotropy mechanism becomes
less efficient at energy redistribution, and conventional
mechanisms describing local isotropy for two-point sta-
tistics [28] become more dominant.

Similar results are obtained for ensemble trajectories in
AIM [Fig. 3(b)]. This representation allows comparing our
results to known nonlinear return-to-isotropy models of
homogeneous turbulence, such as the widely used model of

Sarkar and Speziale [30]. All anisotropic ASL trajectories
significantly depart from those of Ref. [30]. In particular,
trajectories for two-component and one-component turbu-
lence are perpendicular to those of Ref. [30], and diverge
from the right prolate side of AIM where all the trajectories
from Ref. [30] converge. This difference might stem from
the low Reynolds number of Ref. [30] and the fact that
idealized wind tunnel and DNS results in literature mostly
focus on homogeneous decaying turbulence where trans-
port and shear production are neglected in the component-
wise energy and momentum-flux Reynolds-averaged
budget equations. ASL datasets here do not possess such
“niceties” and none of the budget terms can be a priori
ignored. Still, some similarities to homogeneous and
neutral engineering flows emerge since the exact shape
of return-to-isotropy trajectories is dependent on the
original state of anisotropy, indicative of a nonlinear
behavior [30-33]. This nonlinearity (i.e., trajectory curva-
ture) is a function of distance of bulk anisotropy from PSL
so that trajectories initiated furthest away from PSL have
largest curvature while those close to PSL are almost linear
(see Supplemental Material, Sec. B [6]).

Discussion.—BAM itself suggests immanent constraints
on the trajectories, thus explaining why certain trajectory
shapes are favored once initial anisotropy at the largest
scales is set. Because of the large scale separation character-
izing the trajectories, we introduce a logarithmic dimension-
less timescale 7, = log;(7/T.). Here 7, &~ 1 marks the scale
where the magnitudes of the eigenvalues commence their
decline with decreasing scale and at z,, — —oo approach
Ai(t,) = 0. If xz and yp are functions of 7, and
G(z,) = A(z,) — Xo(z,), then Eq. (2) can be used to
formulate trajectories in BAM and their corresponding
velocities

() =G + il ) =2y w). ()

Here 5(z,,) represents ds(z,,)/dz, of any variable s. In BAM
vg(z,) and yp(z,) are linearly proportional to A5(z,)
and A5(z,).

Figure 4, showing the behavior of the two right-hand
terms in Eqs. (2) and (4), indicates the existence of three
scalewise regions loosely separated by 7, ~ 1 and 7, ~ —2.
In the first region (z,, > 1), trajectories are approximately
stagnant so that G ~0 and I3 ~0 (except for the near-
isotropic cluster). Here xp and yp are entirely set by
G(z,=1)~2/3,1/3 and A3(1) = —1/3 for one-compo-
nent and two-component cases, respectively. In the second
region (-2 < 7, < 1), the approach to isotropy is accom-
panied by the approach of G(z,),4;(z,) — 0. The rate at
which G(z,,) decreases with decreasing scale (G) is a linear
function of the initial value of the largest eigenvalue
Ai(z, = 1) for all four types of trajectories, reminiscent
of Rotta’s linear return to isotropy but differing in the fact

194501-4



PHYSICAL REVIEW LETTERS 126, 194501 (2021)

0.6+ %-c?mpor\entaxl . 2 :
- 2 4 —
& 0.4 isotropic ~ 2 |
~— c3 °
ciii'.l"::'. = 14 HETEL
() 1 (b)o_ T T T T 1
0 4
LK * 3 Y
~ 0.1 W e, =< U
N e 224 4
3 -0.2 N X
200000 ,2’ 14 o ag.
0.3
T T T T T Ot
(C) 302 A1 0 1 2 (d) 8302 A 0 1 2

FIG. 4. Ensemble scalewise eigenvalues corresponding to
trajectories in Fig. 3 for unstable stratification: (a) G(z,) =
Ai(z,) = A2 (z,), and (c) A3(z,), and their scaled values normal-
ized by (b) G"=0541(r, =1)-0.04 and (d) ;=
0.3523(z, = 1) + 0.01. The nondimensional timescale is defined
as 7, = log,o(7/T,).

that the linear behavior here is observed in logo(z/T.)
and is thus exponential. This behavior can be used to
provide a scaling G* = al,(r, = 1) + b that allows G/G*
trajectories to collapse in the region of their largest decrease
[Fig. 4(b)]. Similarly, 4;(z,) and 15(z,) are monotonic
functions [Fig. 4(c)], so that yz(z,) < 0 with decreasing
(and negative) 7, leads to yz(z,) monotonically increasing
towards v/3/2. The largest value of 15(z,) is also pro-
portional to A3(z, = 1) and can be scaled accordingly
[Fig. 4(d)]. In the third region (z, — —o0), the decrease of
all trajectories slows down as they approach PSL and are
forced to follow it towards isotropy. Hence, the larger
the bulk anisotropy (larger 4,), the larger and faster is the
decrease of eigenvalues with decreasing scale and the
convergence of trajectories towards PSL. When G is large,
as for the one-component and two-component initial
conditions, |G| > (1/v/3)|9p| and %z > 0, meaning that
with negative z,, xp is reduced from its initial state and
trajectories move to the left explaining the boomerang path.
Once the trajectories intersect PSL, deviations from it are
prohibited and return to isotropy must follow PSL. For the
two-component axisymmetric cases, found to the left of
PSL, yj is still monotonically approaching v/3/2 but G(z,,)
is small and does not vary appreciably with scale. Hence,
xp follows vz = (3/2)4; (i.e., trajectories move to the
right) until PSL is intersected. Again, the trajectories are
general, provided G(z,) is small for these two regimes.
Finally, for the near-isotropic cases, xz ~ 1/2 and xz ~ 0 so
that the variation in trajectories is contained in the yp
component driven by the finite 45 and the shortest distance
to the upper vertex is followed. Hence, the ASL experi-
ments attribute the universal character of return to isotropy
to the collapse of data onto A3/45 and G/G*. This finding
is, in essence, expanding Rotta’s conjecture to the scalewise
evolution of eigenvalues associated with the stress tensor
cospectrum.

Figures 3 and 4 also show that none of the trajectories
actually attain isotropy (i.e., arrive at the isotropic vertex),
rather the eigenvalues remain finite even after 7, < —2. As
noted earlier and discussed further in Supplemental
Material, Sec. C [6], for homogeneous decaying turbulence
local isotropy does not imply equipartitioning of energy
within the inertial subrange [28] since the longitudinal
structure function is smaller than the lateral and wall-
normal ones (i.e., ratio to the wall-normal structure function
is 3/4, 1, 1 instead of 1, 1, 1). Hence, local isotropy at very
fine (inertial to viscous) scales requires considerations of all
aspects of the two-point statistics not fully captured by
b;;(7). Besides, the limitations of sonic anemometer path
length (10 cm), sampling frequency (20 Hz), and finite
shear at all z,, [34] also explain why full local isotropy (i.e.,
3/4 partitioning) is not attained despite almost one decade
of energy cascading.
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