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Abstract—To overcome the curse of dimensionality in joint
probability learning, recent work has proposed to recover the
joint probability mass function (PMF) of an arbitrary number
of random variables (RVs) from three-dimensional marginals,
exploiting the uniqueness of tensor decomposition and the (un-
known) dependence among the RVs. Nonetheless, accurately
estimating three-dimensional marginals is still costly in terms
of sample complexity. Tensor decomposition also poses a compu-
tationally intensive optimization problem. This work puts forth
a new framework that learns the joint PMF using pairwise
marginals that are relatively easy to acquire. The method is built
upon nonnegative matrix factorization (NMF) theory, and features
a Gram-Schmidt-like economical algorithm that works provably
well under realistic conditions. Theoretical analysis of a recently
proposed expectation maximization (EM) algorithm for joint PMF
recovery is also presented. In particular, the EM algorithm
is shown to provably improve upon the proposed pairwise
marginal-based approach. Synthetic and real-data experiments
are employed to showcase the effectiveness of the proposed
approach.

Index Terms—joint probability learning, nonnegative matrix
factorization, probability tensors, two-dimensional marginals

I. INTRODUCTION

Many learning and inference tasks in high-dimensional
statistics boil down to estimating/approximating the joint prob-
ability of a set of random variables (RVs). However, in the
high-dimensional regime, directly estimating the joint proba-
bility via “structure-free” methods such as sample averaging
is considered not viable—due to the need of a huge amount of
data. Many workarounds, e.g., linear estimators, kernels, and
neural networks, have been proposed for combating this curse
of dimensionality [1]. However, the fundamental challenge of
estimating the joint probability from limited data remains.

Very recently, Kargas et al. proposed a new framework for
blindly estimating the joint probability mass function (PMF)
of N discrete finite-alphabet RVs [2] by modelling the N-
dimensional joint PMF as an Nth-order tensor. The work
in [2] shows that if the RVs are “reasonably dependent”,
the joint PMF can be recovered via jointly decomposing
the three-dimensional marginal PMFs (which are third-order
tensors). The approach does not use any a priori structural
information of the RVs, and the recoverability of the joint
PMF is provably guaranteed [2]. The work in [2] has shown
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promising results, but a couple of major challenges remain.
First, estimating third-order marginals accurately is not a
trivial task, since real-life high-dimensional data are often
very sparse. Second, computing coupled third-order tensor
decomposition poses a challenging and resource-consuming
optimization problem, which in general does not have known
polynomial-time solvers.

Instead of working with a large number of third-order
marginals, a recent work in [3] offers an expectation maximiza-
tion (EM) algorithm that directly estimates the latent factors
of the Nth-order probabilistic tensor. The EM algorithm is
well-motivated, since it tackles the the maximum likelihood
estimator (MLE). In addition, it admits simple and economical
updates, and thus is quite scalable. However, unlike the tensor-
based approach in [2], it is unclear if the recoverability of
the joint PMF can be guaranteed using EM and the MLE.
In addition, since the ML estimation problem is nonconvex,
convergence properties of the EM algorithm is unclear.

In this work, we propose a new framework that offers
provable recoverability of the joint PMF and at the same
time enjoys low sample and computational complexities. To
be specific, we propose an approach that utilizes only pairwise
marginals to recover the joint PMF of an arbitrary number of
discrete finite-alphabet RVs. This way, the sample complex-
ity is substantially reduced relative to the three-dimensional
marginal-based approach in [2]. We propose a pragmatic and
easy-to-implement joint PMF estimation procedure, which is
based on performing a simple and scalable Gram—Schmidt
(GS)-like algorithm (namely, the successive projection algo-
rithm [4]) on a carefully constructed “virtual nonnegative
matrix factorization (NMF)” model. We also show that the
EM algorithm in [3] can provably recover the joint PMF tensor
if initialized properly, e.g., using our GS-like algorithm. We
illustrate the effectiveness of the proposed approach using a
number of synthetic and real-data experiments.

II. PROBLEM STATEMENT

Consider a set of discrete and finite-alphabet RVs, i.e.,
Zi,...,Zn. We will use Pr(iy,...,iy) as the shorthand
notation to represent Pr(Z; = zgil),...,ZN = zj(\l}N)) in
the sequel, where {z,(ll)7...7z,(f")} denotes the alphabet of
Z.,. The work in [2] shows a connection between joint PMFs

and low-rank tensors under the canonical polyadic decompo-



sition (CPD) model. To be specific, if an N-th order tensor
X e Rlvxl2xxIN hag CP rapk F, it can be written as:
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where A, € R™*F s called the mode-n latent factor.
In the above, A = [A(1),..., A(F)]T with |Allg = F is
employed to “absorb” the norms of columns. The work in [2]
shows that any joint PMF admits a naive Bayes (NB) model
representation. Tt follows that the joint PMF of {Z, }"_, can

always be decomposed as .

N
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where Pr(f) := Pr(H = f) is the prior distribution of a latent
variable H and Pr(i,|f) := Pr(Z, = 2" |H = f) are the
conditional distributions. Consequently, one can represent any
joint PMF as an Nth-order tensor by letting X (i1,...,ix) =
Pr(iy,...,in) and A, (i, f) = Pr(in|f), A(f) = Pr(f) (see
more details in [2]).

The approach in [2] showed that if one has access to three-
dimesional marginals, i.e, Pr(i;,iy,i,) for different j, k,¢,
then the joint PMF can be provably recovered through a
latent factor-coupled tensor decomposition approach—if the
tensor rank F' is small (meaning that if the N RVs are
reasonably dependent). However, estimating Pr(i;, g, 1) is
still not easy, since one needs many co-realizations of three
RVs. In addition, jointly decomposing a large number of third-
order tensors poses a challenging optimization problem, whose
global optimality is not guaranteed. The more recent work
by Yeredor and Haardt in [3] takes an ML perspective and
directly estimates the model parameters in (2) using an EM
algorithm. The algorithm admits economical updates, and is
effective if carefully initialized, e.g., using a coupled tensor
decomposition algorithm. Nonetheless, the ML formulation’s
recoverability properties are unclear. Since the ML estimator
is a nonconvex optimization criterion, it is also unclear if the
EM algorithm converges to the desired latent factors or not.

ITI. PROPOSED APPROACH

Our idea is to utilize pairwise marginals instead of the
three-dimensional marginals. Under the naive Bayes model,
the pairwise marginals can be expressed as Pr(i;, i) =

Zf:l Pr(f)Pr(i;|f)Pr(ix|f), or, equivalently,
X, = A;D(N)Ay, Xji(ij, i) = Pr(ij,ir),

where D(\) = Diag(\) and {A,,}_, and X are defined as
before. It is readily seen that if A,,’s and A can be identified
from the marginals, Pr(i1,...,7y5) can be recovered by (2).

In practice, the pairwise marginals X j;,’s are estimated from
realizations of the joint PMF. Consider a set of realizations
(data samples) of Pr(Zy, ..., Zy), denoted as {ds € RN}5_,.
Assuming that there is no missing observations, the following
sample averaging estimator can employed:

—
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where dg(n) denotes the realization of Z, in the s-th data
sample and [[E] = 1 if the event E happens and [[E] = 0
otherwise. Note that using such sample averaging schemes,
the pair-wise marginals can be estimated to a much higher
accuracy compared to the three-dimensional ones, under the
same amount of data sample; see, e.g., [5].

However, recoverability of the joint PMF using pairwise
marginals is nontrivial to establish. The marginal distributions,
ie, X;x = A;D(X)A] for all j, k, are matrices, and low-
rank matrix decomposition is in general nonunique—while
uniqueness of the employed factorization model was the key
stepping stone in [2] to establish recoverability for the joint
PMF from the three-dimensional marginals. A natural thought
to handle the identifiability problem would be employing
certain NMF tools [6], [7], since the latent factors are all
nonnegative, per their physical interpretations. However, the
identifiability of NMF models holds only if F' < min{l;, I}
(and preferably F' < min{l;,I}). The pairs X, =
A;D(MN)A] € RL*Iv inherit the inner dimension F' (i.e.,
the column dimension of A;) from the joint PMF of all the
variables, which is the tensor rank of an Nth-order tensor.
Note that the tensor rank F' could be much larger than the
I;’s [8]. Hence, one may not directly use the available NMF
uniqueness results on individual X;;’s to argue for joint PMF
recoverability.

A. A Virtual NMF-based Approach

To see how we approach these challenges, consider a split-
ting of the indices of the N variables, i.e., S; = {{1,...,¢n}
and Sy = {(]\/[Jrl, R ,EN} such that S; U Sy = {1,. ..,N}
and S; NSy = 0, where () denotes the empty set. Then, we
construct the following matrix:

N Xt1trrin Xoien
X — =WH', (3)
Xonrtari Xonrtn
where W = [A),... A} ' € RM™F and H =
D[A};MH,...,A};N]T e RW=M)IxF respectively, if I; =

. = Iy = I. Note that W and H are both non-negative
and thus (3) is an NMF model. By constructing X such that
F < min{MI,(N — M)I}, the identifiability of W and H
can be established using certain NMF tools. One celebrated
condition is the so-called separability [6]:

Definition 1 (Separability) If H > 0, and A = {l1,...,lr}
such that H(A,:) = X holds, where 3 = Diag(a,...,ap)
and oy > 0, then, H satisfies the separability condition.

Under the exact separability condition on H, we have
H(A,:) = ¥ = Diag(ay,...,ar) and WX = X(A,:).
Hence, the coupled NMF task boils down to identifying the
index set A. The successive projection algorithm (SPA) from
the NMF literature [4] can be employed for this purpose.
Notably, this algorithm admits Gram—Schmidt-like economical
and scalable updates and is provably robust to noise.



Once W is identified, we can recover Ay, € Rt *F for
¢, € S1 up to identical column permutations, by extracting the
corresponding rows of W. Unlike general NMF models, since
we know every column of A,, is a conditional PMF, there is
no scaling ambiguity. The H matrix can be estimated using
(constrained) least squares, and Ay, for ¢, € Sy can then be
extracted in the similar way. Denote (3) as X = WD(A\)H T,

where H = [AZTM . ...AZN]T. Then, the PMF of the latent

variable can be estimated via A = (H © W)Tvec(NE(/ ) where
we have used the fact that the Khatri-Rao product H ©W has
full column rank since both W and H have full column rank.
Note that the permutation ambiguity across A,’s and A are
identical. Hence, the existence of column permutations does
not affect the “assembling” of Pr(i,|f) and Pr(f) to recover
Pr(ii,...,in). We refer to this procedure as coupled NMF
via SPA (CNMF-SPA); see Algorithm 1.

Algorithm 1: CNMF-SPA

input : data samples {d SS:1 and M

estimate second order statistics )/EJ ks

2 split {1,...,N}into St = {1,..., M} and
So={M+1,...,N}

Construct kv ;

Estimate W using the SPA algorithm [4] to select A;

forn =1to M do

A\n — V/‘\f((n —DIp+1:nly,,:);

normalize columns of A\n with respect to £; norm;

end
H <« arg min | X — WHT||%;
>0

e ® 9 o v e W

H>
10 forn=M+1to N do

A, « H((n— DI, +1:nl,,);
normalize columns of A,, with respect to ¢1 norm;

13 end

u W'« [AT,...,A],] :

— 4T
15 HT<—{AL_H...A; H
6 X< (ﬁ@ W)TVCC(X);

output: estimates {A, }_,, X.

n=1>

B. Performance Analysis

The CNMF -SPA procedure looks simple, but several caveats
exist. First, SPA only works if one can construct S; and S
such that H in (3) satisfies the separability condition. Testing
all combinations of S; and Sy gives a rise to a combinitorial
problem, which is apparently impossible. Second, the pairwise
marginals X;; are estimated through a finite number of data
samples, and typically there are many missing values in differ-
ent data samples (i.e., not all the realizations of 71, ..., Z,, are
observed in any ds)—which both make the estimated pairwise
marginals very noisy. It is unclear how the performance of
CNMF-SPA is affected.

In practice, we observe that using the “naive” construction
S ={1,...,M}and So = {M +1,...,N} seems to work
reasonably well, even if the number of samples is finite and
many missing values exist. To understand such effectiveness,
we assume that .S realizations of Pr(Z1, ..., Zy) are available.
In each realization, every variable is observed with probability

p—which determines how much is missing in the dataset. For
simplicity, we also assume that I,, = I for all n and utilize
the following generative model for the nonnegative A,,’s:

Assumption 1 Assume that the rows of A,,’s are generated
from the (F —1)-probability simplex uniformly at random and
then positively scaled, so that 1" A,,, = 1 is respected.

Under the above settings, we show that the following holds:
Theorem 1 Assume that H)/(\ij(:,q)Hl >mn > 0 for any q,1, j.
Also, assume that M > F/I, p > (% 1og(4/5))1/2,

G M2Iog(1/6)
R (W)np2e?p? )

—2(F-1) F
JVImin(z\/%,i

IF
S (W (11 80R2 (W) Then, uniier the defined S, p
and Assumption 1, CNMF—-SPA outputs A,,’s such that

where ¢ =

min
I1: permuation

|AnTL = Aplls = O ((WIVEC) )

for m € 81 with a probability greater than or equal to 1 — 6,
where ¢ = max(omax(W)e, M\/T10s(1/6)/npy/3).

The proof can be found in a long version of the paper in the
appendix. Note that if A,, for all m € &; can be accurately
estimated, the estimation accuracy of A,, for all n € Sy and
A can also be guaranteed and quantified, following standard
sensitivity analyses of least squares. We leave this part out of
the work for conciseness.

Remark 1 Theorem 1 is not entirely surprising. The insight
behind is to model the finite sample-induced noise and the
violation of separability as combined virtual noise, and then
utilize the robustness of SPA [4]. The challenge lies in quan-
tifying this virtual noise, for which we leverage concentration
theorems and Assumption 1. We would like to remark that
Assumption 1 is a working assumption for us to understand
the effectiveness of CNMF—SPA under the naive S; and S.
The key fact is that when |Sa| grows, H in (3) has a good
chance to attain the separability condition approximately [9]
under Assumption 1. In principle, this fact holds if the rows
of A, are drawn from any joint continuous distribution, but
using the uniform distribution assumed in Assumption 1 helps
simplify the analysis.

C. Refinement via EM and Optimality Guarantees

In [3], Yeredor and Haardt proposed an EM algorithm to
handle the ML estimator for the naive Bayes model in (2).
Using MLE exhibits promising performance for joint PMF
recovery—after all the MLE is a “gold standard” for statistical
learning. However, the EM algorithm often converges to
undesired solutions, if randomly initialized. This is perhaps
due to the nonconvex nature of the MLE problem. As observed



in [3], using good initialization may improve the performance
of EM. However, quantification for the required quality of the
initial estimates has been elusive.

In this work, we offer theoretical supports for the EM
algorithm in [3]. To be specific, we show that, with good initial
estimations for A,, and A (e.g., those output by CNMF-SPA),
the EM algorithm improves the solution towards the groud
truth. To proceed, we make the following assumption:

Assumption 2 Define D, and Dy as follows:

N
E1 = min % ZPDKL(An(:7f)>An(:a f/))a
n=1

Dy = < min log(A(/)/A("):

and Ef (?1 +D2)/2, Assume that A, A\ and the initial esti-
mates A% AV satisfy |A% (i, f) — A, (i, f)| < 61 :=

An(inf) 2 p D) = A < 62 == s
AX(f) = pa for all n,i, f.

Note that D; characterizes the “conditioning” of A, under
the Kullback-Leibler (KL) divergence (denoted by Dk, (-, +))
sense, and | D| measures how far A is away from the uniform
distribution. Under the above assumption, we show that the
EM algorithm improves upon the initialization:

_ 4
p1(4+D)’
and

Theorem 2 Let 6,5, = min(d1, d2). Assume that the follow-
ing hold:

N > max <33 log(8SF/yu) 4log(4SF?/ (3pp2u))> |
p1D1 D
192F2 log(12NFI /i) — 42 8 a2
5 > 19272 log(12 /F‘),ngax{SQ”l,Sf?}
p p25min P1 Np2

Then, under Assumption 2, the EM algorithm in [3] outputs
A, (i, [),A(f) that satisfy the following with a probability
greater than or equal to 1 — u:

= . 481og(12NFI /1)
|AL (i, f) — An(i, f)? < SoA() <62,
() - A < 192F2X(f) log(12NFI/p) <8

S

The proof of the theorem can be found in a longer version
of the paper in the appendix. Our proof extends the analysis
of a different EM algorithm proposed in [10] that is designed
for learning the Dawid-Skene model in crowdsourcing. The
EM algorithm there effectively learns a naive Bayes model
when the latent variable is uniform. Our analysis covers the
more recent EM algorithm in [3] that can handle A’s who have
general PMFs beyond the uniform distribution.

Since CNMF-SPA is a natural economical initialization for
Yeredor and Haardt’s EM, we combine the two algorithms
together and refer to this procedure as CNMF-SPA-EM.

IV. EXPERIMENTS

In this section, we present experiments to showcase the
effectiveness of the proposed framework.

TABLE I: MSE & MRE for N =5,F =5, =10,p = 0.5

Algorithms Metric | S=10° | S=10T | S=10° | S=10°
CNME-SPA [Proposed] MSE 0.0702 0.0257 0.0211 0.0204
CNME-SPA-EM [Proposed] MSE 0.0560 0.0230 0.0207 0.0204
RAND-EM |[3] MSE 0.0855 0.0405 0.0298 0.0502
CTD [2] MSE 0.1589 0.0260 0.0211 0.0205
CTD-EM [3] MSE 0.1196 0.0233 0.0208 0.0204
CNMEF-SPA [Proposed] MRE 0.8084 0.3228 0.1137 0.0356
CNME-SPA-EM [Proposed] MRE 0.6922 0.2077 0.0682 0.0219
RAND-EM |[3] MRE 0.8285 0.3399 0.2226 0.3931
CTD [2] MRE 0.9237 0.3081 0.0955 0.0309
CTD-EM [3] MRE 0.8312 0.2180 0.0681 0.0220
TABLE II: MovieLens Action Movies set
Algorithm RMSE MAE Time (s)
CNMF-SPA [Proposed] 0.853640.0071 | 0.6679+0.0061 0.029
CNMF-SPA-EM [Proposed] | 0.7761£0.0039 | 0.5936-+0.0039 2.554
CTD [2] 0.879240.0137 | 0.66401+0.0104 17.808
CTD-EM [3] 0.787240.0053 | 0.603840.0076 20.578
BMEF [11] 0.802040.0015 | 0.6268+-0.0017 45.967
Global Average 0.947140.0010 | 0.69544-0.0010 -
User Average 0.8960+0.0012 | 0.683440.0007 -
Movie Average 0.884440.0009 | 0.6979+0.0008 -

A. Synthetic Data

We consider N = 5 RV’s where each variable takes
I = 10 discrete values. The columns of the conditional
PMF matrices (factor matrices) A, € R*F and the prior
probability vector A € R are generated with F' = 5. The
so-called e-separability condition on H in (3) holds with
€ = 0.1; see the definition of e-separability in [9]. We generate
S realizations of the joint PMF and randomly hide each
variable’s realization with probability p = 0.5. We fix M = 3.
The mean squared error (MSE) of the factors and the mean
relative error (MRE) of the recovered joint PMFs (see [2])
are evaluated. MRE is more preferred for evaluation, but it
is hard to compute (due to memory issues) for large IN. The
results are averaged from 20 random trials. We benchmark our

- method using the EM algorithm by Yeredor and Haardt [3]

initialized by random guesses (denoted as RAND-EM) and an
alternating optimization (AO) algorithm-based coupled tensor
decomposition (CTD) (denoted as CTD—EM), respectively.

Table I shows that the proposed approaches CNMF-SPA and
CNMF-SPA-EM exhibit promising performance. In particular,
CNMF-SPA is effective for initializing the EM algorithm
whereas RAND-EM sometimes struggles to attain good per-
formance. CTD-EM also works well when S is large, perhaps
because the CTD stage needs a large S to estimate the three-
dimensional marginals accurately.

B. Real Data : Recommender Systems

We test the approaches using the MovieLens 20M dataset
[12], which has many missing values. We first round the
ratings to the closest integers so that every movie’s rating
resides in {1,2,...,5}. We choose select a subset of movies
from the action movie genre. This way, Z; for i = 1,...,30
represent the ratings of movie ¢, and all Z;’s alphabets are
{1,2,...,5}. We predict the rating for a movie (e.g., movie
N) by user k via computing E[in|rg(1),...,rx(N — 1)]
(i.e., using the MMSE estimator), where r(¢) denotes the
rating of movie ¢ by user k. This can be done via estimating
Pr(z’l, ce ,iN).



TABLE III: UCI Dataset Car

Algorithm Accuracy (%) | Time (s)
CNME-SPA [Proposed] 69.2642.28 0.007
CNMEF-SPA-EM [Proposed] 86.61+1.76 0.018
CTD [2] 83.474+2.34 0.845
CTD-EM [3] 85.724+1.88 0.955
SVM 83.65+1.58 0.147
Linear Regression 80.68+1.61 0.029
Neural Net 85.0043.22 0.193
SVM-RBF 76.2243.93 0.793
Naive Bayes 83.4242.15 0.026

We create the validation and testing sets by randomly hiding
20% and 30% of the dataset for each trial. The remianing 50%
is used for training (learning joint PMF in our approach). In
this task, we also use one of the popular recommender system
algorithms, biased matrix factorization (BMF) method [11] as
a baseline. The rank F' for all the methods (ranging from 5 to
25) and the number of iterations needed for EM are chosen
using the validation set. The results are taken from 20 random
trials. We report the root mean squared error (RMSE) and
mean absolute error (MAE) of the predicted ratings.

From Table II, one can see that the proposed methods
are promising in terms of prediction accuracy and runtime.
Note BMF is specialized for recommender systems, while
the proposed approaches are for generic joint PMF recovery.
The fact that our methods perform better suggests that the
underlying joint PMF is well captured by the proposed CNMF
approach. Another important observation is that the CPD
method in [2] does not perform as well compared to the pro-
posed pairwise marginals based methods. This may be because
of the noisy estimation for three-dimensional marginals, due
to the sparse nature of the user-movie datasets. In particular,
CNMF-SPA is fast with acceptable prediction accuracy. In
addition, CNMF-SPA~EM presents a good accuracy and speed
tradeoff—it exhibits the lowest RMSEs and MAEs, and is 8
times faster than the state-of-the-art algorithm, i.e., CTD-EM.

C. Real Data : Data Classification

We consider UCI datasets for classification tasks. We split
each dataset into training, validation and testing sets in the
ratio of 50 : 20 : 30. For our approach, we estimate the joint
PMF of the features and the label using the training set, and
then predict the labels on the testing data by constructing a
Maximum A Posterior (MAP) predictor (i.e., predicting the la-
bels conditioned on the features). For each dataset, we perform
20 trials with randomly partitioned training/testing/validation
sets and take average of the results.

Tables III and IV show results on the UCI datasets Car and
Mushroom. Car has 1,728 data samples from 4 classes, and
Mushroom has 8,124 data samples belonging to two classes.
We have N = 7 and N = 22 for the two datasets, respectively,
and the average I’s are 4 and 6, respectively. We set M = 5 in
all experiments, and select rank F' as before. In all the cases,
one can see that the proposed combination CNMF-SPA-EM
gives the most promising results. In particular, the solely using
CNMF—-SPA is not as promising, perhaps because the N and
I are not large enough to ensure a high-accuracy performance

TABLE IV: UCI Dataset Mushroom

Algorithm Accuracy (%) | Time (sec.)
CNMF-SPA [Proposed] 92.23+4/-6.15 0.025
CNMF-SPA-EM [Proposed] 99.47+/-0.80 0.242
CTD [2] 96.40+/-0.59 13.695
CTD-EM [3] 97.18+/-1.21 13.931
SVM 97.47+/-0.46 37.213
Linear Regression 93.38+/-0.59 0.040
Neural Net 98.98+/-1.97 1.036
SVM-RBF 98.89+/-0.34 2.291
Naive Bayes 94.84+/-0.55 0.048

of the CNMF-SPA stage. However, when initialized using
CNMF-SPA, the CNMF-SPA-EM outputs the best classifica-
tion accuracy and is at least 50 times faster than CTD-EM
that is suggested in [3]. This suggests that even under critical
scenarios, CNMF —-SPA still offers useful initialization for EM.

V. CONCLUSION

We proposed a new framework for recovering joint PMF
of any number of discrete RVs from marginal distributions.
Unlike a recent approach that relies on three-dimensional
marginals, our approach only uses two-dimensional marginals,
which naturally has reduced-sample complexity and lighter
computational burden. We proposed a virtual NMF frame-
work and employed a Gram-Schmidt-like scalable algorithm
for handling our formulation. We showed that the proposed
framework is effectiveness under realistic conditions, e.g.,
finite samples. We also showed that an existing EM algorithm
can provably improve the output of our NMF approach,
using theoretical analysis and experimental validation. The
combined NMF and EM approach admits economical updates
and exhibits appealing joint PMF recovery accuracy.
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APPENDIX A
PROOF OF THEOREM 1

Consider the noisy matrix factorization model as below:
X =WH' +N, (5)
where W € RIXF H ¢ RE*XF, W > 0 and H > 0, and N € R*K represents the noise. Also assume that rank(W) = I/
and H1 =1 H =11 I{IF* where I is the identity matrix of size F' and II is the permutation matrix. This implies that
H satisfies seperability condition and that there exists A = {l,...,lr} such that H(A,:) = Ir. Gillis and Vavasis [4] have
shown that under the model in (5), SPA is provably robust to noise in estimating the factor matrix W (see Theorem 3).
First, we characterize the noise in our data model given by (3) by re-expressing it as a ‘virtual’ separable NMF as in (5).
Then, we utilize Theorem 3 to characterize the error in estimating W via SPA algorithm.
Consider the pairwise marginals X ;;’s used to construct the matrix X in (3). X;’s are estimated by sample averaging of
a finite number of realizations and thus the estimated X j;, (denoted as X ;) is always noisy; i.e., we have
Xk = Xk + Njk, (6)

where the noise matrix N, € RI*/, assuming I, = I for all n € {1,...,N}.
In order to characterize the estimation accuracy of X j;, using finite number of realizations, we have the following proposition:

Proposition 1 Let p € (0,1] be the probability that an RV is observed. Let S be the number of available realizations of N
RVs. Assume that p > (3 log(2/6))Y/2. Then, with probability at least 1 — §,

Xk — Xjklle = [[Njellr < o,

holds for any distinct j, k where ¢ = \/5(1-21)— V\l};g)(w.

The proof of Proposition 1 is given in Sec. C.
By the definition of the Frobenius norm, we have

I
Y ING G Oll5 = N3 E < ¢°.

c=1

Applying norm equivalence w <INy (5 0)||2, we get

I
S ING ol < 1o (7)
c=1

Eq. (7) implies that, for all ¢ € {1,...,1} and any i, where i # j,
ING G o)l < 167,

— [INi;(;, 01 < VI ®)
By using the estimates )/(\jk, the model given by (3) can be represented as
—'/X\ZIZM+1 s 5(\@151\1
X = : : :
_X€M€M+1 s XEMKN
A . ©)
=| : | DNVIAL,,,,.-- AL J+N
_AZM HT
w
=X+ N.

Note that X, X and N all have the same size of L x K. Assuming I,, = I for all n € {1,...,N}, we have L = M and
K = (N — M)I. Also note that W has a size of L X F' and H has a size of K x F.



Since any column of N formed from the columns of M number of N;;’s, we have
INC, @)l < MV, (10)

where the last inequality is obtained by using triangle inequality and (8). .
Next, we consider estimating W given in (9) using SPA algorithm. Before performing SPA to the data matrix X, the
columns of X are normalized with respect to the /1-norm. Let us denote the normalized data model as follows:

X-WH +N, (11)

where X and W are column normalized versions (with respect to the ¢; norm) of X and W, respectively, and H is row
normalized version of H. N

_Since the matrix X' is noisy, the effect of normalization on N can be characterized by Lemma 6. From the assumption
| X (:,e)|lr > n for any ¢ # j and ¢ € {1,...,I}, we get | X (:,q)|l1 > Mn for any ¢q. Combining Lemma 6 and Eq. (10),
we get

- 2V1
ING ol < 222, (12)
n
Applying norm equivalence, we further have | IN(:,q)|l2 < [[IN(:,¢)||1 and hence we get
_ 2T
NGl < 202 (13)

Lemma 1 Assume that | N (:,q)|2 < ¢ for any q and that H satisfies e-separability assumption in the model (11). Suppose

1 1
WF—-14

-1

(G (W)e + ) < 0rmgn (W )min ( ) (1 + 8052(W))

Then, SPA identifies an index set A = {ly,...1p} such that

; T (- _xX( 1. 8V, 74 23
11Snfa§XFllfnér/lTHW(’f) X(.,lf)H2 < (omax(W)e + ¢) (1 + 80K%(W)), (14)

where k(W) = % is the condition number of W.
The proof of Lemma 1 is given in Sec. D.
The right hand side of (14) can be written as

2

. N7 -, & 1 U . 2
max _min HW(,f) - X(.,lf)H2 i Z_:llrgr}aé(F%?el%

Ar, () = Au (1)

ISFSFTen 2
! A A :
> — i : - :
= erﬁnfaSXFlAI?eH/li’ Zn),(’f) fm(7f)‘27 (15)
forany m € {1,..., M}, where the first equality is due to W = [A[ ,..., A/ ]T /M, in which Ay, denotes the corresponding
estimate of Ay, . o
Since |W(:, f)||1 = M for any f, W = W /M. Therefore, we have
_ — = UmaX(W)
Umax(W) = Umax(W)/Mv Umin(W) - amin(W)/M7 K(W) - T = = "{(W) (16)
Umill(W)
Therefore, by combining (13),(15),(16) and Lemma 1, SPA estimates for any m € {1,..., M} such that
~ 2MV1¢
in || A, G f) — Ap, (., H< max(W)e + 22 ) (1 4 80K2(W)) 17
1%‘%?52% 0 (3 f) = Ag,, ( f)2_<0r (W)e + , )( +80x*(W)) (17)
if the below condition is satisfied:
Omax(W)  2V/I¢ , ( 1 1) 9 -1
€+ < opn(W)min | ————, - ] (1 4+ 80x*(W . 18
M y S omn(Wmin (55— 7 ) ( W) (18)



Mmin( —A— ,l
Letting ¢ = 2K(W)((11V8%;§(;2)) , from (18), we get the condition on ¢ as follows:

Nomax(W)e
AMNT

From Proposition 1, we have ¢ = V20 ” log G Gith probability greater than 1 — §. By substituting ¢ on the left had
side of (19), we get the number of reahzatlons S required to get the estimation error bound (17) as below:

. 32M21(1 + /1og(2/5))?

Thnax(W)ne?p?

_ Note that Lemma 1 holds if H satisfies e-separability condition. By combining Assumption 1 and Lemma 7, we get that
H satisfies e-separability assumption with probability greater than 1 — p, if

6_2(F_1) F

By substituting ¢ in (17) and using the fact that for any matrix A € RI*¥, the matrix 2-norm || Al|» < \/Flr<nfa<xF||A(:, 1))

¢ < 19)

2,
we get the result (4) in the theorem.

Finally, we combine the probabilities involved in the results used in our proof. For the concentration bound in Proposition
1 and e-separability condition on H given by Lemma 7 to jointly occur with probability greater than 1 — 25, we can assign
p =9 in (20).

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The EM algorithm proposed in [3] is as follows. Let d, € RY be the s-th joint realization of N RVs. Let f, € {1,..., F}

be the realization of the ‘latent variable’ H in the sth realization. Suppose {27(11 ,zr(f), ey zr({r”)} denotes the alphabet set of
n-th RV, then n-th entry in d, denoted as ds(n) € {ZT(Ll), z,(?), R sz")}. The expectation maximization algorithm proposed

in [3] has the following E-step and M-step which are executed alternatively until convergence:
E-step: The parameter g, ; is updated for all s,f using the current estimates of A,’s and A

n @ ~ .
Gog = exp(log(A(f ))+Zn 12 L (ds(n) = 2z )10)g(An(Z7f))) on

by exp(logA(f) + S0y S0 1(ds(n) = 2) log(An (i, 1))

M-step: Using the estimated g, f, A,, and X are updated as:

o S5 G s l(ds(n) = 2 .
A, (i, f) + =L ——, Vi, f (22a)
S Y Gasl(ds(n) = 2)
() « Yo o VL (22b)
Zf’ 125 1, f’

The proof of convergence for the above defined iterates is inspired by the convergence proof of an EM algorithm handling
the crowdsourcing problem in [10]. There, the EM algorithm assumes a uniform latent distribution, i.e., A(f) = 1/F while
formulating the maximum likelihood function. In our case, we do not assume uniform prior for A.

First, we define certain events as below:

&1 ZZﬂ(ds(n) = Zy(zi))k’g ( 3 ((Z J;:;) > ND;/2, forallsand f# f,
n=1i=1 n\%
s
¢ |S Uy = fNds(n) = 20) — SA)PAW(i, f)| < Stusg,  for all n.i, f,
s=1

Ex: [P Ufs = Uds(n) #0) = SA(f)p

< Stpip, for all n,i, f,

< Scy, forall f,

S
Ev: DW= 1) = SA(S)




where d(n) # 0 represents that n-th RV is observed with any value from its alphabet set in the s-th sample, and t,;; >
0,cy > 0 are scalars which will be assigned specific value later in the proof.
First, we consider the E-step update given in (21). The parameter g ¢ can be bounded using the following lemma:

Lemma 2 Assume that the event/\gl happens and also assume that A,, X and the initial estimates satisfy |‘Zl\n(z, f) -
A4, )] < 61, An(i, f) > p1, [A(f) — A()] < 02 and X(f) > po for all n,i, f. Then, if Gs ¢ is updated by (21), the
below holds:

. B (s 1 B 1
|@s,y — U(fs = f)| < exp ( (ND +1 e ) + N (1 PP 51)» + 10g(F)> , Vf,s. (23)

The proof of Lemma 2 is given in Sec. E Next lemma shows that once g5 ¢ updated in E-step is bounded, the subsequent
M-step updates to A,,’s and A are bounded.

Lemma 3 Assume that 5 () Es () Ex holds. Suppose Gs 5 updated by (21) satisfies the following:
‘E]\S,f_l](fszf”éﬂv Vfasv (24)

where 3 > 0 is a scalar. Then fin and X updated by (22) are bounded by:

< 2ty +255
= SA(f)p — Stoiy — 9B’
- Scy + S8+ SFB

A =A< — 5553

|A\n(7’vf) _An(zvf) (25&)

(25b)

The proof of Lemma 3 is given in Sec. F
Next, we show that the estimation accuracy bounds for A, and A given in Lemma 3 are less than or equal to the initial
estimation accuracy. For this, we have the following lemma:

Lemma 4 Assume that & (€2 (€3 € happens. Also assume that A, X and the initial estimates satisfy |Kn i, f)

AV

An (i, f)] ? o1 = ﬁ, An(i, f) = pr [A(f) = A()] < 02 = m . A(f) = p2 for all n,i, f and D
max { 8;4;1, 8]7:;2 } Suppose that the following holds ¥g € {{tnif}n.i . {cr}s}
ND oy ( 4 4 )
2exp(——— +log(F)) < g < —=min —, — | . (26)
P eF) <9 8F p1(4+ D) p2(4+ ND)

Then, by updating the parameters using (21) and (22) at least once (i.e., after runing the EM algorithm for at least one
iteration), we have the following:

A1)~ 406D < 5 <0 7
‘X(f) - )\(f)‘ < 8Fcy < 0. (27b)

The proof of Lemma 4 is given in Sec G.

Next step is to find out the probabilities that the bounds in (27) hold true. Specifically, we need to characterize the probability
for the event & (&2 (€3[4 to happen and the conditions under which (26) holds . Theorem 4 in [10] characterizes the
probabilities of the occurrence of events £, & and &3. Specifically, we get the following results:

Pr(&) >1— SFexp (%) , (28a)

Pr(&) >1— ZN:ZF: In 2exp ( Sy ) (28b)
v s 3pA(f)

Pr(&s) > 1— ZN: ZF: In 2 exp (- Sy ) . (28¢)
v e 3pA(f)



In order to characterize Pr(€,), we observe that Zle 0(fs = f) is sum of i.i.d. Bernoulli random variables with mean SA(f).
Therefore, using the Chernoff bound, we have

!

By taking the union bound over all f € {1,..., F'}, we obtain

S

D U(fs = f) = SA(f)

s=1

> Scf) < 2exp(—Sc}/(3A(f))), V. (29)

F

Pr(€4) > 1—)_ 2exp(—Sc}/(3A(f))). (30)
f=1

Summing the probability bounds for &;,E&s, 5 given by (28) and for &4 given by (30), one can see that & [ E2()E3() Es
holds with probability at least

ND, In 2, il Sec2
st (i) <33 Y e (i) 3 (-5 ).

n=1 f=1i=1 f=1

To ensure that the estimation error bounds for A,, and A given by (27) hold with probability greater than 1 — ¢, the following
conditions has to be satisfied simultaneously:

33 log(1/p1)log(3SF/€)

(€29
D,
A(f)log(12NFI
S > 3p (f) OgQ( /6) (32)
tnzj
1 F
o5 P og(6F/e) o)
c2
f
We can assign specific values to ¢,;¢ and cy such that the above conditions are satisfied. Let
3pA(f)log(12NFI
g 1= || XD R NFI) )
A(f)log(12NFI
cf = \/3 ) Og(S /). (34b)

By this selection of %,;r and cy, the conditions in (32) and (33) hold. To enforce the condition (26), the following equalities
have to hold:

\/Sp)\( f) logél2NFI/e) > exp (_ ND log (F)>
\/3)\(f) log(12NF'I /e) < pmmin( 4 4 ) _ PP20min
S ~8F p1(4+ D)’ p2(4+ ND) 8F

where i, = min(dq,d2). The above can be implied by the following:
41log(2SF?/(3pp2 log(12N FI [¢)))
D
192F2log(12NF1/¢)
p p2512nm ’

N>

(35)

S>

(36)

where we have used 1 > A(f) > po.
Using the inequality logz > 1 — ;1,, x > 0, we can express the condition (35) as

410g(25F2/(3ppa(1 — ¢/(12NF1I))))
D
Using the fact that 1 — ¢/(12NFI) > €/2, we can further write the above condition as follows:

410g(4SF?/(3ppac))
~ |

N>

N>

(37



Combing the two conditions (31) and (37), we have

331log(3SF/e) 4log(4SF?/(3ppae))
( 0151 , D ) ’
where we have used the fact that log(1/p1) < (1/p1) — 1 < 1/p1.

To summarize, if (36) and (38) hold and ?,;; and cy are chosen to be as in (34), then, with probability at least 1 — ¢, the
following inequalities hold by Lemma 4:

|A\n(la f) - An(% f)|2 S

N > max

(38)

16t2, . 48log(12NFI/e)

PAE S T SpAl)
Y 192F?X(f) log(12NF1 /e
IA() = A(f)P < 64F3c} < (f) > ( /€)
This completes the proof.
APPENDIX C

PROOF PROPOSITION 1
Let d;, € RY denote the sth realization of the joint PMF Pr(Zy, ..., Zx). Recall that p is the probability of an RV being
observed in any realization. Let {zy(Ll), ey ZT(LI")} denote the alphabet set of Z,. For simplicity, we assume that O does not
belong to the alphabets of Z1,...,Zy, and we use the notation ds(j) = 0 to represent that ‘Z; is not observed in the sth
realization’.
For S realizations of the joint PMF, i.e., {d,}3_;, the sample averaging expressions for estimating X jk 18 defined as follows:
Xjk(Zj,Zk |S | Z (7 ) d (k) = Z](:k)L
ik sESjk
where the indicator function [[E] is one if the event E happens and zero otherwise; e.g.,
Lo dy(j) =2 dy(k) = 5
0, o.w.

M@@=#ﬂ¢@=£%={

In addition, S = {s | I[ds(j) # 0, ds(k) # 0]}.
Let us construct a random variable V; ;, where V; ; = 1 if Z; is observed in d; otherwise V} ; = 0. With this definition,
we can see that the parameter S, in Lemma 5 is the sum of .S i.i.d. Bernoulli random variable given by

S
Sik = > _MVjs=1and Vi, = 1], (39)
s=1

with mean E[S;x] = Sp?, since V; s and Vj 5 are independent.
In order to characterize the random variable S}, we can use Chernoff lower tail bound such that for 0 < ¢ < 1,

Pr(S;, < (1—1)Sp?) < e 5P7F°/2, (40)
Eq. (40) also implies that
Pr(Sjr > (1 —1)Sp?)) > 1 — e SP°0/2, 1)
Combining Lemma 5 and (41), we have

Pr{11 X — Xjelle < WJW}

(1—1)5p?

— 1 log(1/6
= Pr| 1% - Xyl < FEOECD 5, > (1 52
Jk

—Sp?t?/2
>1—-§—e°P /,

where we have applied the De Morgan’s law and the union bound to obtain the last inequality.

Setting ¢ = 1/2, we have
- V2(1 + /log(1/3))
Pr[[ Xk — Xkllr <
pV/'S
S O (42)
It follows that if p? > £ log(1/4), the right hand side of (42) is greater than 1 — 24.




APPENDIX D
PROOF OF LEMMA 1

From the assumption that H satisfies e-separability, there exists a set of indices A = {l1,...,lr} such that
H(A,I) = IF +E,

E € RF*F is the error matrix with ||E(l,:)|2 < e. and I is the identity matrix of size F x F
Now we can write the normalized data model given in (11) as

X=WH +N

=W[Ir+E",(H)' |+ N

=WlIp, (H")']+[WE',0]+ N,
where the zero matrix 0 has the same dimension as that of H*. By defining the noise matrix N € REXE such that N :=
WET,0]+ N, we have X = W[Irp (H*)"]+ N. Then, for any ¢ € {1,..., K}, the following inequality holds:

INCG @)z < [[Wl21E(g, )2 + [IN(:, 0)ll2
< omax(W)e + ¢, (43)

where the first inequality is by the Cauchy-Schwartz inequality and by the assumptions in the lemma.

Then, we invoke Lemma 3 to characterize the estimation accuracy of W. Combining (43) and Lemma 3, we get the final
result of the lemma given by (14) if

1 1
WF 14

APPENDIX E
PROOF OF LEMMA 2

-1

(O'max(W)E + gp) < Omin(W)min ( ) (1 + 80k2 (W))

Consider the update to gy ¢ in the E-step given by (21). For any f # f,

o < eplos (A + X0y 10y Hd(n) = 20 log(An (i, 1))
~ exp(log(\(f,)) + Xoly X% Uy (n) = 27) log(An (i, £,)))
( DI T i )90
TIo T (A, £)) (=22

fs)

I s(n)=25")
AU T ( f))”(d”
)H fs)

N
= 1/exp <1og (RUGIAW) + D23 Uda(m) = =) log (A, i £:)/ An(i f>)> . (44)

A, G, f)
)]



To proceed, we can bound all the terms in (45). First we have

o (iﬁjii) ~log (%) > log (p2 — 82) + log (p2)

= log (p2(p2 — 02))

1
S P 46
- p2(p2 — 02) (46)

where the first inequality uses the results X( f) = pa— 2, A(f) > p2 and the facts 3\( ), A(f) < 1. The last inequality is due
to the fact that log(z) > 1 — X for z > 0.

Similarly, we can bound
A, (i, 1) An(i, f)
10 — < — 10 —
g <An(z,fs>> © (An(z,f)

Assuming that £ happens, we have

1
> - ——mMm——. 47
) — pilpr —61) @7

NDs 1 ND; ( 1 )
B > +1- + +N|(1l—-——
! 2 p2(p2 — 02) 2 p1(p1 — d1)
N(D; + D
2 p2(p2 — 02) pi(p1 —01)
where the first inequality is obtained by using the definitions of D and event £, equations (46) and(47). Defining D := @,
we can have
— 1
By>ND+1————~+N|1-—~|. (48)
! p2(p2 — 02) ( pi(p1 — 51))
Combining (48) with (44), we have for every f # fs,
— 1 1
Gs.f <1/exp By <exp | — ND+1—+N(1—>)>. (49)
G <1/ 0 By P < ( p2(p2 — b2) p1(p1 — 61)
Using (49) and Z?Zl gs,r =1, we have
_ 1 1
gs.5. =1— gs,f >1—Fexp|—-(ND+1- —— < +N|1- ——— . (50)
oed f; g p( ( p2(p2 — d2) ( Pl(P1—51))>)
The inequalities in (49) and (50) can be summarized as follows:
— 1 1
Gs.t — I(fs = <exp|-|ND+1-—F——+N|1———— +log(F) |, Vf,s, 51)
@55 = W/ = f p( ( 2 (o2 — 5] ( p1(p151)>> 8( )) f (

where we have used the fact that exp(-) is an increasing function.

APPENDIX F
PROOF OF LEMMA 3

The first result given in (27a) follows similar steps as in Lemma 9 from [10] which is detailed below using the notations in
our case:
According to the M-step update (22), we can write

~ A
An(zaf) Ea

where A =37 G fU(ds(n) = 2) and B = 30, 25 G pl(ds(n) = 247).
Assuming that the event £ holds true, we can have

|A— SA(f)pA |<|Z dy(n) = 2{) — SA(f)pALG, f)]

S
IS o) = ) — 305 = () = 40
=1

< Stnip + 5B, (52)



where the last result is obtained from the definition of £ and (24).
Assuming that the event £ holds true, we can have

s
|B = SA(f Z (n) # 0) = SA(f)p)
- ) )
+|ZZq:,fu(d n )= 0(fs (n) #0)|
i'=1s=1 s=1
< Sty + 5B (53)
where the last inequality is obtained by assuming that event £ holds true and using (24).
Combining the bounds for A and B, we can get
~ A )
An(zvf) - An(za f) = E - An(zvf)
SA Ay (i, f) +A—=SA(f )
_SApALGL ) JpAw(, >_An(z,f)‘

(f
SX(f)p+ B - S/\( )P
_ A= SAN)pAR(, f) — An(i, [)(B = SA(f)p )‘
SX(f)p+ B = SA(f)p

< [A=SANIPALG, ) + An(is [) [(B = SA(f)p)|
- ISA(f)p+ B — SA(f)p
28t + 250

= SX(f)p — Stpif —SB’

where the last inequality is by the fact that A,, (¢, f) <1 and the bounds from (52) and (53).
For the second result, consider the M-step update for A given by (22). One can write A(f) = C/D where

C= qup D= qusﬂ

f=1s=1

Assume that the event £, happens, using (24), we have

S S
C=SAHI< D Wfs=F)— + Zas,f—ZMfs:f)‘
s=1 s=1 s=1
< Scy + SpB.

In addition, we have

F S F S F S
D8] < ZZ P =8|+ D23 aay = D D Wfs=f)| < SFB.
1=1s=1 fr=1s=1 fr=1s=1
Combining the bounds for C' and D, we obtain
~ C
() = A= |5~ A)
(C = SA(f)) + SAM)
(D-S)+5S )‘(f)‘
(C = SA(fs)) = ANH(D = S)
(D-S)+S
. Scy+ SB+ SFp
- S — SFj ’

where the last inequality is by using triangle inequality and the fact that A(f) < 1.



APPENDIX G
PROOF OF LEMMA 4
Consider the below term in (23) from Lemma 2:

_ 1 1
ND+1—+N<1—):
P2(P2—52) P(

1\p1 — 51)
D 1 ND 1
N|—+1- + +1—- .
2 p1(p1 — 1) 2 p2(p2 — 02)
E F
In order to bound the term E as below
D 1 D
E=—+1- > —,
2 pi(p1 —01) — 4
01 has to be bounded such that
4
01 < P1 —
p1(4+ D)
4p2 + Dp? — 4
pl + pl (54)
p1(4+ D)
Similarly, in order to bound F' as below
ND 1 ND
Fi=—+ ,
2 p2(p2 —02) — 4
0o has to be bounded such that
4
0y < pp — ———
p2(4+ ND)

_ 4p3+ NDp3 — 4

p2(4+ ND)
Since D > max

8—dp] 8—4p3
2

(55)
Without loss of generality, we can fix values to J; and J5 such that the conditions (54) and (55) get satisfied respectively.
i 7 Npj

, 4p3 + Dp? > 8 and 4p3 + NDp3 > 8 hold true. Therefore

4
1:=

by = 4 (56)
p(@+D) 7 py(4+ ND)
satisfy the conditions (54) and (55). Note that since D > 8_;” ?, 5 = —2 oL
1
. 4 P2
we can observe that ds := @IND) <Z

) = 2 < 1 and is a valid assignment. Similarly,
1
< 1. Therefore, using the assigned values of §; and Jo, we have

_ 1 ND
ND+1-——+N|l————— | > —. 57
p2(p2 — d2) < ,01(P1—51))_ 2 ©
Then, we have
— 1 1
Gor —1(fs = f)| < —(ND+1-—— 4+ N(1-——)) +1log(F
9n.s =1Fe = P eXp(( p2(p2 — 62) ( Pl(P151)>> ol ))
ND
< exp (—2 + log(F))

S tmin/27

(58)
where tmin = min{{t,;s}, {cy}} and the first inequality is by Lemma 2, the second inequality is by using (57) and the third
inequality is from the condition (26).

From (26), we have t,;; < 262 < PA(

Sf ), Combining this with Lemma 3, we get

At f) — An(i, ) < 2Stnip + 258

(T/8)SA(f)p =SB’




where [ is defined such that |gs ¢ — I(fs = f)| < B, Vf,s.
From (58), the scalar 8 can be assigned a value such that § = ¢,,;,,/2. Then,

~ . . 2Stnif + Stmin
A, (i, ) — A, (4, <
(1) = A DS G8ISA i = St /2
3Stnif

< 7
where the last step is obtained by using t,in, < ¢y,;¢. By using the condition #y,;, < % <
n(l»f)‘ < ! > L
(T/8)SA(f)p — SA(f)p/16 — A(f)p

pA(f)
B

from (26), we get

Since

ey Y 1 . 4 4 4
< < — min —, — | < — =61,
A(f)p pp2 2F P1 (4 + D) p2(4+ ND) P1 (4 + D)
the estimation error of the newly updated A,, as given in (22) is at least no worse than the initial estimation error ;.

Next, consider the result (27b) from Lemma 3. Assigning 5 = tmin/2,
Scr+ S+ SFpB < Scy 4+ Stmin/2 + SFtmin/2

IA(f) = A <

S—SFB S — SFtmin/2
< QSCf + Stmin + SFtmin < QSCf + SCf + SFCf
- 25 — SFtmin - 28 — SFtmin
4SFcy 4SFcy
< < 8F
= 25— SFtpin — S — SFtgm —
where we have used the fact that ¢,,;, < 1/2F according to (26).
The above inequality also implies that
~ 4 4 4
X(f) - A(f)] < 8Fe Sppzmin< _ _ ) < ___s,
! p(4+D) a4+ ND)) = pa(d + ND)
That is, the estimation error of the newly updated A as given in (22) is at least no worse than the initial estimation error Js.
APPENDIX H
LEMMATA

In this section, we present a collection of lemmata that are used in our proofs.

Lemma 5 [13] Let § € (0,1] and let )/(\jk be the empirical average of S;j independent co-occurrences of random variables
Z; and Zy. Then the following holds

— 1+ +/log(1/6
Pr[||Xjk — Xjikllr < Sg( / )} >1-9, (59
ik

NG

Theorem 3 [4] Under the described NMF model in Eq. (5), assume that |N (:,q)||2 < € for all g € {1,..., K}, if the below

holds:
1

1
WF—-14

then SPA identifies an index set A = {l,,...1p} such that

1

€ < Opmin(W)min ( ) (1+80K2(W)) ™,

3 . _ .7 2
1§mfanFg16H/1THW(.,f) X(.,lf)H2 < e(1+80k*(W)), (60)

where k(W) = ‘;‘:::((V“‘;)) is the condition number of W.

Lemma 6 [9] Consider a vector x € RY and the corresponding estimate of the vector T such that © = x + n where n
represents the noise vector and x,x > 0. Assume that |||y > n where n > 0 and ||n||; < ||x||1. Suppose, the vector T is
normalized with respect to its {1 norm. The normalized version can be represented as

T T ~

— =T tn
1zl Mzl



where |n||; < %

Lemma 7 [9] Let p > 0,e > 0, and assume that the rows of H € RE*F are generated within the (F — 1)-probability
simplex uniformly at random (and then nonnegatively scaled). If the number of rows satisfies

E—Z(F—l) F

then, with probability greater than or equal to 1 — p, there exist rows of H indexed by ly,...lp such that

|H(lf,:) —€eflla <e, f=1,....F.



