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Recovering Joint Probability of Discrete Random
Variables from Pairwise Marginals

Shahana Ibrahim and Xiao Fu

Abstract—Learning the joint probability of random variables
(RVs) is the cornerstone of statistical signal processing and
machine learning. However, direct nonparametric estimation for
high-dimensional joint probability is in general impossible, due
to the curse of dimensionality. Recent work has proposed to
recover the joint probability mass function (PMF) of an arbitrary
number of RVs from three-dimensional marginals, leveraging the
algebraic properties of low-rank tensor decomposition and the
(unknown) dependence among the RVs. Nonetheless, accurately
estimating three-dimensional marginals can still be costly in
terms of sample complexity, affecting the performance of this
line of work in practice in the sample-starved regime. Using
three-dimensional marginals also involves challenging tensor
decomposition problems whose tractability is unclear. This work
puts forth a new framework for learning the joint PMF using
only pairwise marginals, which naturally enjoys a lower sample
complexity relative to the third-order ones. A coupled nonnega-
tive matrix factorization (CNMF) framework is developed, and
its joint PMF recovery guarantees under various conditions are
analyzed. Our method also features a Gram–Schmidt (GS)-like
algorithm that exhibits competitive runtime performance. The
algorithm is shown to provably recover the joint PMF up to
bounded error in finite iterations, under reasonable conditions.
It is also shown that a recently proposed economical expectation
maximization (EM) algorithm guarantees to improve upon the GS-
like algorithm’s output, thereby further lifting up the accuracy
and efficiency. Real-data experiments are employed to showcase
the effectiveness.

Index Terms—joint probability learning, nonnegative matrix
factorization, probability tensors, two-dimensional marginals

I. INTRODUCTION

Estimating the joint probability of random variables (RVs)
from noisy, incomplete and limited observations lies at the
heart of statistical signal processing and machine learning.
Having the joint probability allows us to construct statistically
optimal estimators and detectors under certain metrics. For
example, the maximum a posteriori (MAP) and the minimum
mean squared error (MMSE) principles can be easily carried
out, if the joint probability of the RVs involved has been
estimated [1]. These principles are widely used in tasks
such as speech processing, filter design, symbol detection,
compressive sensing, and remote sensing; see, e.g., [2]–[5]. In
addition, joint probability is the key ingredient for estimating
information-theoretic measures, e.g., mutual information and
entropy [6], which are often integrated into the solutions
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of challenging signal processing problems; see examples in
blind source separation [7], image processing [8] and radar
waveform design [9]. Joint probability estimation is also the
linchpin of data mining, information retrieval, and machine
intelligence [10]. Driven by its critical role across multiple
domains, joint probability learning using both parametric and
nonparametric methods has been a long-term interest in the
signal processing community for decades; see, e.g., [11]–[15].

Joint probability estimation poses a variety of challenges in
both theory and methods. In particular, in the high-dimensional
regime, directly estimating the joint probability via ‘structure-
free’ methods such as sample averaging is considered infeasi-
ble [16]. Suppose that there are N RVs, where each has an I-
dimensional alphabet. To estimate the joint probability reliably,
we generally need S � Ω(IN ) ‘diverse’ N -dimensional
examples (without any entries missing). This is because the
probability of encountering most N -tuples is very low. There-
fore, only a small portion of the empirical distribution will
be non-zero given a reasonable amount of data samples—this
makes the approach considerably inaccurate in most cases.

Many workarounds have been proposed to circumvent
this challenge in the literature. For example, linear approx-
imations have been widely used, e.g., the linear MMSE
(LMMSE) estimator [17]. Logistic regression, kernel methods,
and neural networks can be understood as nonlinear function
approximation-based counterparts [10], [18]. These are effec-
tive surrogates, but do not directly address the fundamental
challenge in estimating high-dimensional joint probability
from limited samples. Another commonly adopted route in
statistical learning is to make use of problem-specific structural
assumptions such as graphical models and prior distributions
to help reduce the model complexity [19]–[21]—but making
these assumptions restricts the methods to specific applica-
tions.

Very recently, Kargas et al. proposed a new framework for
blindly estimating the joint probability mass function (PMF)
of N discrete finite-alphabet RVs [12]. Building upon a link
between high-dimensional joint PMFs and low-rank tensors,
the work in [12] shows that any N -dimensional joint PMF
admits a naive Bayes representation. In addition, if the RVs
are ‘reasonably dependent’, the joint PMF can be recovered
via jointly decomposing the three-dimensional marginal PMFs
(which are third-order tensors).

The work in [12] has shown promising results. However,
many challenges remain. First, accurately estimating three-
dimensional marginal PMFs is not a trivial task, which re-
quires enumerating the co-occurrences of three RVs. This is
particularly hard if the alphabets of the RVs are large and the
data is sparse. Second, tensor decomposition is a challenging
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optimization problem [22]. Factoring a large number of latent
factor-coupled tensors as in [12] also gives rise to scalability
issues. A natural question is: can we use pairwise marginals,
i.e., joint PMFs of two RVs, to achieve the same goal of joint
PMF recovery? Pairwise marginals are much easier to estimate
relative to triple ones. In addition, the pairwise marginals give
rise to probability mass matrices other than tensors—which
may circumvent tensor decomposition in algorithm design and
thus lead to more lightweight solutions.

Notably, a recent work in [11] offers an expectation max-
imization (EM) algorithm that directly estimates the latent
factors of the N th-order probabilistic tensor from the ‘raw
data’, instead of working with a large number of three-
dimensional marginals. The EM algorithm is well-motivated,
since it is associated with the maximum likelihood estimator
(MLE) under the naive Bayes model in [12]. In addition,
it admits simple and economical updates, and thus is much
more scalable relative to the coupled tensor decomposition ap-
proach. However, performance characterizations (e.g., estima-
tion accuracy under finite samples and convergence properties)
of the EM algorithm have been elusive.
Contributions. In this work, we propose a new framework
that utilizes pairwise marginals to recover the joint PMF
of an arbitrary number of discrete finite-alphabet RVs. We
address both the theoretical aspects (e.g., recoverability) and
the algorithmic aspects. Our contributions are as follows:
• A Pairwise Marginal-based Framework. On the theory
side, we offer in-depth analyses for the recoverability of
the joint PMF from pairwise marginals. We show that the
joint PMF can be recovered via jointly factoring the pairwise
marginals under nonnegativity constraints in a latent factor-
coupled manner. Unlike [12] which leverages the uniqueness
of tensor decomposition to establish recoverability, our anal-
ysis utilizes the model identifiability of nonnegative matrix
factorization (NMF)—leading to recoverability conditions that
have a different flavor compared to those in [12]. More
importantly, accurately estimating pariwise marginals is much
easier relative to the three-dimensional counterparts, in terms
of the amount of data samples needed.
• Provable Algorithms. On the algorithm side, we propose to
employ a block coordinate descent (BCD)-based algorithm for
the formulated coupled NMF problem. More importantly, we
propose a pragmatic and easy-to-implement initialization ap-
proach, which is based on performing a Gram–Schmidt (GS)-
like structured algorithm on a carefully constructed ‘virtual
NMF’ model. We show that this approach works provably well
even when there is modeling noise—e.g., noise induced by
finite-sample estimation of the pairwise marginals. This is in
contrast to the method in [12], whose recoverability guarantees
are based on the assumption that the third-order marginals are
perfectly accessible. We also show that the EM algorithm from
[11] can provably improve upon proper initialization (e.g., that
given by the GS-like algorithm) towards the target latent model
parameters that are needed to reconstruct the joint PMF.
• Extensive Validation. We test the proposed approach on a
large variety of synthetic and real-world datasets. In particular,
we validate our theory via performing classification on four
different UCI datasets and three movie recommendation tasks.

Part of the paper was presented at the Asilomar signal
processing conference 2020 [23]. The journal version addition-
ally includes new theoretical results, e.g., the recoverability
analysis for the coupled NMF formulation, and a BCD-
based CNMF algorithm, the detailed proofs for the Gram–
Schmidt-like procedure, and the optimality analysis for the
EM algorithm. More real data experiments are also presented.

Notation. We use x,x,X,X to denote a scalar, vector, matrix
and tensor, respectively. DKL denotes the KL divergence.
κ(X) denotes the condition number of the matrix X and is
given by κ(X) = σmax(X)

σmin(X) where σmax and σmin are the
largest and smallest singular values of X , respectively. ‖x‖0
denotes the ‘zero norm’ of the vector x, i.e., the number of
nonzero elements in x. X ≥ 0 implies that all the elements
of X are nonnegative. cone(X) represents the conic hull
formed by the columns of X and conv(X) denotes the
convex hull formed by the columns of X . ∅ denotes the
empty set. ‖X‖2 represents the 2-norm of matrix X and
‖X‖2 = σmax(X). ‖X‖F denotes the Frobenius norm of
X . ‖x‖2 and ‖x‖1 denote `2 and `1 norm of vector x,
respectively. vec(X) denotes the vectorization operator that
concatenates the columns of X .> and † denote transpose and
pseudo-inverse, respectively. |C| denotes the cardinality of set
C. Diag(x) is a diagonal matrix that holds the entries of x
as its diagonal elements. ‘�’ denotes the Khatri-Rao product.
[T ] denotes {1, . . . , T}, where T is an integer. en denotes
the unit vector with nth element being one. f(x) = O(g(x))
(where f(·) and g(·) are nonnegative) means that there exist a
positive constant C and x0 such that f(x) ≤ Cg(x), ∀x ≥ x0.
Similarly, f(x) = Ω(g(x)) means that there exist a positive
constant c and x0 such that f(x) ≥ cg(x), ∀x ≥ x0.

II. BACKGROUND

Consider a set of discrete and finite-alphabet RVs, i.e.,
Z1, . . . , ZN . We will use Pr(i1, . . . , iN ) as the shorthand
notation to represent

Pr
(
Z1 = z

(i1)
1 , . . . , ZN = z

(iN )
N

)
in the sequel, where {z(1)n , . . . , z

(In)
n } denotes the alphabet

of Zn. Suppose that we do not have access to the joint
PMF Pr(i1, . . . , iN ). Instead, we have access to the lower-
dimensional marginal distributions, e.g., Pr(ij , ik, i`) and
Pr(ij , ik) for different j, k, `. Kargas et al. asked the following
research question [12]:

Can the joint distribution of Z1, . . . , ZN be recovered from
the low-dimensional marginals without knowing any struc-
tural information about the underlying probabilistic model?

Note that estimating a high-dimensional joint distribution
from lower-dimensional marginals is challenging, but not
entirely impossible—if some structural information between
the RVs (e.g., tree or Markov chain) is known; see discussions
in [12]. However, learning the structural information from data
per se is often a hard problem [19].



3

A. Tensor Algebra

The work in [12] utilizes a connection between joint
PMFs and low-rank tensors under the canonical polyadic
decomposition (CPD) model [24], [25]. If an N -way tensor
X ∈ RI1×I2×···×IN has CP rank F , it can be written as:

X(i1, i2, . . . , iN ) =
F∑
f=1

λ(f)
N∏
n=1

An(in, f), (1)

where An ∈ RIn×F is called the mode-n latent factor. In the
above, λ = [λ(1), . . . ,λ(F )]> with ‖λ‖0 = F is employed
to ‘absorb’ the norms of columns (so that the columns of An

can be normalized w.r.t. a certain `q norm for q ≥ 1). We use
the shorthand notation

X = [[λ,A1, . . . ,AN ]]

to denote the CPD in (1). Note that F � In for n = 1, . . . , N
could happen. In fact, the tensor rank can reach O(IN−1) if
I1 = . . . = IN = I [25].

B. Joint PMF Recovery: A Tensor Perspective

A key takeaway in [12] is that any joint PMF admits a naive
Bayes (NB) model representation; i.e., any joint PMF can be
generated from a latent variable model with just one hidden
variable. It follows that the joint PMF of {Zn}Nn=1 can always
be decomposed as

Pr(i1, i2, . . . , iN ) =
F∑
f=1

Pr(f)
N∏
n=1

Pr(in|f), (2)

where Pr(f) := Pr(H = f) is the prior distribution of a
latent variable H and Pr(in|f) := Pr(Zn = z

(in)
n |H = f) are

the conditional distributions. Remarkably, such representation
is universal if one allows the hidden variable to have a
sufficiently rich finite alphabet:

Theorem 1 [12] The maximum F needed in order to de-
scribe an arbitrary PMF using a naive Bayes model is
bounded by F ≤ min

k

∏N
n=1
n6=k

In.

To see this, one can represent any joint PMF as an N th-
order tensor by letting X(i1, . . . , iN ) = Pr(i1, . . . , iN ) and
An(in, f) = Pr(in|f), λ(f) = Pr(f). Since any nonnegative
tensor admits a nonnegative polyadic decomposition with
nonnegative latent factors, any joint PMF admits a naive Bayes
representation with finite latent alphabet.

A relevant question is: what does ‘low tensor rank’ mean for
the joint PMF tensors? In [12], the authors argue that reason-
ably dependent RVs lead to a joint PMF tensor with relatively
small F—which is normally the case in statistical learning
and inference. For example, classification is concerned with
inferring ZN (label) from Z1, . . . , ZN−1 (features), and the
dependence amongs the RVs are leveraged for building up
effective classifiers.

Another key observation in [12] is that the marginal distri-
bution of any subset of RVs is an induced CPD model. From

the law of total probability, if one marginalize the joint PMF
down to Pr(ij , ik, i`) ∀j, k, ` ∈ [N ], the expression is

Pr(ij , ik, i`) =
F∑
f=1

Pr(f)Pr(ij |f)Pr(ik|f)Pr(i`|f).

Let Xjk`(ij , ik, i`) = Pr(ij , ik, i`). Then, we have Xjk` =
[[λ,Aj ,Ak,A`]], where {An}Nn=1 and λ are defined as before.
Another important observation here is that the marginal PMFs
Xjk`’s and the joint PMF X share the same Aj , Ak, A` and
λ. It is readily seen that if the Xjk`’s admit essentially unique
CPD, then An’s and λ can be identified from the marginals—
and thus Pr(i1, . . . , iN ) can be recovered via identifying the
latent factors.

The tensor-based approach in [12] has shown that re-
covering high-dimensional joint PMF from low-dimensional
marginals is possible. However, a couple of major hurdles exist
for applying it in practice. First, estimating three-dimensional
marginals Pr(ij , ik, i`) is still not easy, since one needs
many co-realizations of three RVs. For sparse datasets, this
is particularly hard. Second, tensor decomposition is a hard
computation problem [22]. The coupled tensor decomposition
(CTD) algorithm in [12] that involves many tensors is even
more challenging in practice.

C. Maximum Likelihood Estimation and EM

A recent work in [11] offers an alternative for estimating
Pr(f) and Pr(in|f). Instead of working with third-order
statistics, the model estimation problem is formulated as a
maximum likelihood (ML) estimation problem in [11], and
an EM algorithm is employed to handle the ML estimator
(MLE). The upshot of this approach is that the EM updates
are much more scalable relative to the CTD updates in [12].
However, there are two challenges of applying EM. First, the
recoverability guarantees of the joint PMF using the MLE
framework is unclear under finite number of observations.
Second, as the authors of [11] have noticed, the EM algorithm
sometimes does not converge to a good solution if randomly
initialized. This is perhaps due to the nonconvex nature of the
ML estimation problem.

III. PROPOSED APPROACH

To advance the task of joint PMF recovery from marginal
distributions, we propose a pairwise marginal-based approach.
Note that the pairwise marginal is given by

Pr(ij , ik) =
F∑
f=1

Pr(f)Pr(ij |f)Pr(ik|f)

⇐⇒Xjk = AjD(λ)A>k, Xjk(ij , ik) = Pr(ij , ik),

where D(λ) = Diag(λ).
In practice, the pairwise marginalsXjk’s are estimated from

realizations of the joint PMF. Consider a set of realizations
(data samples) of Pr(Z1, . . . , ZN ), denoted as {ds ∈ RN}Ss=1.
The following sample averaging estimator can be employed:

X̂jk(ij , ik) =
1

|Sjk|
∑
s∈Sjk

I
[
ds(j) = z

(ij)
j ,ds(k) = z

(ik)
k

]
,
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where ds(n) denotes the realization of Zn in the s-th sample,
I[E] = 1 if the event E happens and I[E] = 0 otherwise, S is
the number of co-realizations of Z1, . . . , ZN (i.e., the number
of ‘samples’), and Sjk ⊆ [S] denotes the set of indices of the
data samples in which the realizations of both Zj and Zk are
observed.

Notably, with the same amount of data (i.e., with a fixed
S), the second-order statistics can be estimated to a much
higher accuracy, compared to the third-order ones [26]. This
is particularly articulated when the dataset is sparse. To see
this, assume that every RV has an alphabet size I and is
observed with probability p ∈ (0, 1] (which means that every
entry of ds is observed with probability p—and ds is very
sparse when p is small). Then, on average Sp2 and Sp3 co-
realizations of every pair and triple of RVs, respectively, can be
observed in the samples. Under such cases, Theorem 1 in [26]
shows that the average estimation error (over all possible joint
distributions) for Xjk` in terms of `1 distance is O(

√
I3/Sp3),

while that for Xjk is O(
√
I2/Sp2). One can see that the

difference is particularly significant when p is small—i.e.,
when the dataset is considerably sparse.

A. Challenges

Despite the sample complexity appeal of using pairwise
marginals, the recoverability of the joint PMF under such
settings is nontrivial to establish. The main analytical tool
for proving recoverability in [12] is the essential uniqueness
of tensor decomposition—i.e., the latent factors of low-rank
tensors are identifiable up to resolvable ambiguities under mild
conditions. However, pairwise distributions such as Xjk =
AjD(λ)A>k are matrices, and low-rank matrix decomposition
is in general nonunique. A natural thought to handle the
identifiability problem would be employing certain NMF tools
[27], [28], since the latent factors are all nonnegative, per
their physical interpretations. However, the identifiability of
NMF models holds only if F ≤ min{Ij , Ik} (and preferably
F � min{Ij , Ik}). The pairs Xjk = AjD(λ)A>k ∈ RIj×Ik

inherit the inner dimension F (i.e., the column dimension
of Aj) from the joint PMF of all the variables, which is
the tensor rank of an N th-order tensor. As mentioned, the
tensor rank F could be much larger than the Ij’s. Hence, one
may not directly use the available NMF uniqueness results
on individual Xjk’s to argue for joint PMF recoverability.
Nonetheless, as we will show shortly, NMF identifiability can
be applied onto carefully constructed coupled NMF models to
establish recoverability.

B. Preliminaries: NMF and Model Identifiablility

To see how we approach these challenges, let us first briefly
introduce some pertinent preliminaries of NMF. Consider a
nonnegative data matrix X ∈ RL×K . Assume that the matrix
is generated by X = WH>, where W ∈ RL×F and H ∈
RK×F . Also assume that W ≥ 0 and H ≥ 0 and F ≤
min{L,K}. NMF aims to factor X for identifying W and
H up to certain trivial ambiguities.

C

Fig. 1. Left: an H ∈ R20×3 that satisfies the separability condition. Right:
an H ∈ R20×3 that satisfies the sufficiently scattered condition. The triangle
corresponds to probability simplex ∆3; and the dots correspond to rows of
H rescaled to have unit `1-norm. The inner circle on ∆3 corresponds to the
intersection of the second-order cone C and ∆3; and the shaded region is the
intersection of cone

{
H>
}

and ∆3.

A number of conditions on W and/or H allow us to
establish identifiability of the latent factors. The first one is
the so-called separability condition:

Definition 1 (Separability) [29] If H ≥ 0, and Λ =
{l1, . . . , lF } such that H(Λ, :) = Σ holds, where Σ =
Diag(α1, . . . , αF ) and αf > 0, then, H satisfies the sepa-
rability condition. When Λ = {l1, . . . , lF } satisfies ‖H(lf , :
)− ef‖2 ≤ ε for f = 1, . . . , F , H is called ε-separable.

If one of W and H satisfies the separability condition
and the other has full column rank, there exist polynomial-
time algorithms that can provably identify W and H up to
scaling and permutation ambiguities. Among these algorithms,
a number of Gram–Schmidt-like lightweight algorithms exist;
see, e.g., [30]–[34]. A more relaxed condition is as follows:

Definition 2 (Sufficiently Scattered) [35]–[37] Assume that
H ≥ 0 and C ⊆ cone{H>} where C = {x ∈
RF | x>1 ≥

√
F − 1‖x‖2}. In addition, assume that

cone{H>} 6⊆ cone{Q} for any orthonormal Q ∈ RF×F

except for the permutation matrices. Then, H is called suffi-
ciently scattered.

The sufficiently scattered condition subsumes the separability
condition as a special case. An important result is that if W
and H are both sufficiently scattered, then the model X =
WH> is unique up to scaling and permutation ambiguities
[35]. The two conditions are illustrated in Fig. 1. More detailed
discussions and illustrations can be seen in [27], [38].

In principle, the ‘taller’ H is, the chance that H (ap-
proximately) attains the separability or sufficiently scattered
condition is higher, if H is generated following a certain
continuous distribution. This intuition was formalized in [39],
under the assumption that H(l, :)’s are drawn from the proba-
bility simplex uniformly at random and then positively scaled.
The work in [39] also shows that the sufficiently scattered
condition is easier to satisfy relative to separability, under the
same generative model; see Lemma 6 in Appendix E in the
supplementary materials.
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C. Recoverability Analysis

Our goal is to identifyAn and λ from the available pairwise
marginals Xjk = AjD(λ)A>k’s, so that the joint PMF can
be reconstructed following (2). Note that applying existing
NMF techniques onto Xjk is unlikely to work, since when
F > min{Ij , Ik}, ‘fat’ Aj ∈ RIj×F ’s can never be separable
or sufficiently scattered. To circumvent this, our idea is as
follows. Consider a splitting of the indices of the N variables,
i.e., S1 = {`1, . . . , `M} and S2 = {`M+1, . . . , `N} such that
S1 ∪ S2 = {1, . . . , N} and S1 ∩ S2 = ∅. Then, we construct
the following matrix:

X̃ =

X`1`M+1
. . . X`1`N

...
...

...
X`M `M+1

. . . X`M `N


=

A`1
...

A`M


︸ ︷︷ ︸
W

D(λ)[A>`M+1
, . . . ,A>`N ]︸ ︷︷ ︸

H>

.

(3)

Note that in this ‘virtual NMF’ model, W and H matrices
have sizes of MI × F and (N − M)I × F , respectively,
if I1 = . . . = IN = I . The idea is to construct X̃ such
that F ≤ min{MI, (N − M)I} so that W and H may
satisfy the separability or sufficiently scattered condition—and
thus A1, . . . ,AN can be identified via factoring X̃ . This is a
straightforward application of the NMF identifiability results
introduced in the previous subsection.

The challenge lies in finding a suitable splitting of S1,S2
such that W and H are sufficiently scattered and is highly
nontrivial. Note that even if W and H are given, checking if
these matrices are sufficiently scattered is hard [35]. It is also
impractical to try every possible index splitting. To address this
challenge, we consider the following factorization problem:

find An, n = 1, . . . , N, λ (4a)

subject to Xjk = AjD(λ)A>k, ∀j, k ∈ Ω (4b)

1>Aj = 1>, Aj ≥ 0 (4c)

1>λ = 1, λ ≥ 0, (4d)

where Ω contains the index set of (j, k)’s such that j < k and
the joint PMF Pr(ij , ik) is accessible. Note that the above
can be understood as a latent factor-coupled NMF problem.
Regarding the identifiability of the conditional PMFs and the
latent prior, we have the following result:

Theorem 2 (Recoverability) Assume that that Pr(ij , ik)’s
for j, k ∈ Ω are available and that Pr(f) 6= 0 for f =
1, . . . , F . Suppose that there exists S1 = {`1, . . . , `M} and
S2 = {`M+1, . . . , `Q} such that Q ≤ N and S1 ∪ S2 ⊆
{1, . . . , N}, S1 ∩ S2 = ∅. Also assume the following condi-
tions hold:
(i) the matrices [A>`1 , . . . ,A

>
`M

]> and [A>`M+1
, . . . ,A>`Q ]> are

sufficiently scattered;
(ii) all pairwise marginal distributions Pr(ij , ik)’s for j ∈ S1
and k ∈ S2 are available;
(iii) every T -concatenation of An’s, i.e., [A>n1

, . . . ,A>nT ]>, is

a full column rank matrix, if In1
+ . . .+ InT ≥ F ;

(iv) for every j /∈ S1∪S2 there exists a set of rt ∈ S1∪S2 for
t = 1, . . . , T such that Pr(ij , irt) or Pr(irt , ij) are available.

Then, solving Problem (4) recovers Pr(ij |f) and Pr(f)
for j = 1, . . . , N, f = 1, . . . , F , thereby the joint PMF
Pr(i1, . . . , iN ).

The proof is relegated to Appendix A, which is reminiscent
of identifiability of a similar coupled NMF problem that arises
in crowdsourced data labeling [39], with proper modifications
to handle the cases where F > In (since the crowdsourcing
model always has F = In, which is a simpler case). In
particular, conditions (iii) and (iv) are employed to accom-
modate the more challenging cases. The criterion spares one
the effort for first finding S1 and S2 and then constructing
the matrix X̃ . Instead, under Theorem 2, the goal is simply
finding an approximate solution of (4)—which is much more
approachable in practice.

Remark 1 Under our pairwise marginal based approach, a
key enabler for recovering the joint PMF is the identifiability
of An’s up to an identical column permutation ambiguity.
At first glance, the identifiability of the latent factors seems
to be irrelevant since what we truly care about is the am-
bient joint PMF tensor X ∈ RI1×...×IN . However, since
the tensor is heavily marginalized (i.e., one only observes
pairwise marginals), the identifiability of An’s is leveraged on
to assemble the joint PMF following the model in (2) under
our framework.

IV. ALGORITHMS AND PERFORMANCE ANALYSES

In this section, we develop algorithms under the coupled
NMF framework and analyze performance under realistic
conditions, e.g., cases with finite samples and missing values.

A. BCD for Problem (4)

To handle Problem (4), we employ the standard procedure
based on block coordinate descent (BCD) for handling coupled
tensor/matrix decomposition algorithms in the literature [12],
[39], [40]. To be specific, we cyclically minimize the con-
strained optimization problem w.r.t. Ak, when fixing Aj for
all j 6= k and λ. Consequently, the subproblem is as follows:

minimize
Ak

∑
j∈Ωk

D
(
Xjk,AjD(λ)A>k

)
(5a)

subject to 1>Ak = 1>, Ak ≥ 0, (5b)

where Ωk is the index set of j such that Pr(ij , ik) is available
and D(·, ·) is a certain ‘distance’ measure. Under a number of
D(·, ·)-functions, e.g., the Euclidean distance or the Kullback–
Leibler (KL) divergence, the subproblems are convex and thus
can be solved via off-the-shelf algorithms. In this work, we
employ the KL divergence as the fitting measure since it is
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natural for measuring the similarity of PMFs. Consequently,
the subproblems are

Ak ← arg min
1>Ak=1>

Ak≥0

∑
j∈Ωk

DKL

(
Xjk,AjD(λ)A>k

)
, (6a)

λ← arg min
1>λ=1
λ≥0

∑
j,k∈Ω

DKL

(
Xjk,AjD(λ)A>k

)
. (6b)

We employ the mirror descent algorithm to solve the two
subproblems. Mirror descent admits closed-form updates for
handling KL-divergence based linear model fitting under sim-
plex constraints (which is also known as exponential gradient
in the literature); see, e.g., [32]. The algorithm CNMF-OPT is
described in (1).

Algorithm 1: CNMF-OPT
input : data samples {ds}Ss=1

1 estimate second order statistics X̂jk;
2 get initial estimates {Ân}Nn=1 and λ̂ (e.g., using CNMF-SPA); repeat
3 for n = 1 to N do
4 update Ân ← (6a) using mirror descent;
5 end
6 update λ̂← (6b) using mirror descent;
7 until some stopping criterion is reached;

output: estimates {Ân}Nn=1, λ̂

Notably, the work in [12] also has some experiments (with-
out recoverability analysis) using pairwise marginals to recover
the joint PMF using a similar formulation (using Euclidean
distance). Our rationale for reaching the formulation in (4)
is very different, which is motivated by the NMF theory.
Also, the result using pairwise marginals in [12] seems not
promising. In this work, our analysis in Theorems 2 has
suggested that the reason why pairwise marginals do not work
in [12] is likely due to optimization pitfalls, rather than lack
of recoverability. In the next subsection, we show that with a
carefully designed initialization scheme, accurately recovering
joint PMFs from pairwise marginals is viable.

B. Key Step: Gram–Schmidt-like Initialization

Directly applying the BCD algorithm to the joint PMF
recovery problem has a number of challenges. First, the
CNMF problem is nonconvex, and thus global optimality is not
ensured. Second, the computational complexity grows quickly
with N and I , giving rise to potential scalability issues. In
this subsection, we offer a fast algorithm that can provably
identify Pr(in|f) and Pr(f) up to a certain accuracy—under
more stringent conditions relative to those in Theorem 2. The
algorithm is reminiscent of a Gram–Schmidt-like algorithm
for NMF with careful construction of a ‘virtual NMF model’.

Let us assume that there is a splitting S1 = {`1, . . . , `M}
and S2 = {`M+1, . . . , `N} such that the X̃ = WH> in (3)
admits a full rank W and a separable H . Under the separa-
bility condition, we have H(Λ, :) = Σ = Diag(α1, . . . , αF )

and WΣ = X̃(:,Λ). Hence, the coupled NMF task boils
down to identifying the index set Λ. The so-called successive
projection algorithm (SPA) from the NMF literature [30]–[32],
[34] can be employed for this purpose. A remark is that SPA is

a Gram–Schmidt-like algorithm, which only consists of norm
comparison and orthogonal projection.

Once W is identified, one can recover A`n ∈ RI`n×F for
`n ∈ S1 up to identical column permutations, by extracting
the corresponding rows of W (cf. line 6 in Algorithm 2).
Unlike general NMF models, since every column of An is a
conditional PMF, there is no scaling ambiguity. The H matrix
can be estimated using (constrained) least squares, and A`n

for `n ∈ S2 can then be extracted in a similar way. Denote
(3) as X̃ = WD(λ)H̃>, where H̃ =

[
A>`M+1

. . .A>`N
]>

.
Then, the PMF of the latent variable can be estimated via
λ = (H̃�W )†vec(X̃), where we have used the fact that the
Khatri-Rao product H̃ �W has full column rank since both
W and H̃ have full column rank.

A remark is that the SPA-estimated Â`n is at best the
column-permuted version of A`n [30]. However, since the
permutation ambiguity across all the An’s and the λ are
identical per the above procedure, the existence of column
permutations does not affect the “assembling” of Pr(in|f) and
Pr(f) to recover Pr(i1, . . . , iN ). We refer to this procedure as
coupled NMF via SPA (CNMF-SPA); see Algorithm 2.

From Algorithm 2, one can see that the procedure is rather
simple since SPA is a Gram–Schmidt-like procedure and the
other steps are either convex quadratic programming or least
squares. Hence, CNMF-SPA can be employed for initializing
computationally more intensive algorithms, e.g., CNMF-OPT.

Algorithm 2: CNMF-SPA
input : data samples {ds}Ss=1 and M

1 estimate second order statistics X̂jk;
2 split {1, . . . , N} into S1 = {1, . . . ,M} and S2 = {M + 1, . . . , N};
3 Construct X̃;
4 Estimate Ŵ using the SPA algorithm [30] to select Λ;
5 b← 0;
6 for n = 1 to M do
7 Ân ← Ŵ (b + [1, . . . , In], :);
8 normalize columns of Ân with respect to `1 norm;
9 b← b + In;

10 end
11 Ĥ ← arg min

H≥0
‖X̃ − ŴH>‖2F;

12 b← 0;
13 for n = M + 1 to N do
14 Ân ← Ĥ(b + [1, . . . , In], :);
15 normalize columns of Ân with respect to `1 norm;
16 b← b + In;
17 end
18 W̃>←

[
Â>1, . . . , Â

>
M

]
;

19 H̃>←
[
Â>M+1 . . . Â

>
N

]>
;

20 λ̂← (H̃ � W̃ )†vec(X̃);
output: estimates {Ân}Nn=1, λ̂.

C. Performance Analysis of CNMF-SPA

In principle, to make CNMF-SPA work, one needs to
identify a splitting scheme S1 and S2 such that H in (3)
satisfies the separability condition. It is impossible to know
such a splitting a priori. Testing all combinations of S1 and
S2 gives rise to a hard combinatorial problem. In addition, the
pairwise marginalsXjk are not perfectly estimated in practice.
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In this subsection, we offer performance analysis of CNMF-
SPA by taking the above aspects into consideration.

From our extensive experiments, we observed that using
the ‘naive’ construction S1 = {1, . . . ,M} and S2 = {M +
1, . . . , N} seems to work reasonably well for various tasks.
To establish theoretical understanding to such effectiveness,
recall that we use S and p to denote the number of available
realizations of Pr(Z1, . . . , ZN ) and the probability of observ-
ing each entry of data sample ds, respectively. For simplicity,
we assume that In = I for all n. We impose the following
generative model for Am:

Assumption 1 Assume that every row of An ∈ RIm×F for all
n is generated from the (F −1)-probability simplex uniformly
at random and then positively scaled by a scalar, so that
1>An = 1> is respected1.

Under the above settings, we show that the following holds:

Theorem 3 Assume that ‖X̂jk(:, q)‖1 ≥ η > 0 for any q, j, k.
Also, assume that M ≥ F/I , p ≥

(
8
S log(4/δ)

)1/2
,

S = Ω

(
M2Ilog(1/δ)

σ2
max(W )η2ε2p2

)
,

N = M + Ω

(
ε−2(F−1)

IF
log

(
F

δ

))
,

where 0 < ε ≤
Mmin

(
1

2
√
F−1

, 14

)
2κ(W )(1+80κ2(W )) . Then, under the defined

S, p and Assumption 1, CNMF-SPA outputs Âm’s such that

min
Π: permuation

‖ÂmΠ−Am‖2 = O
(
κ2(W )

√
Fζ
)

(7)

for m ∈ S1 with a probability greater than or equal to 1− δ,
where ζ = max(σmax(W )ε,M

√
I log(1/δ)/ηp

√
S).

The proof is relegated to Appendix B. Theorem 3 asserts that
using CNMF-SPA on the constructed X̃ in (3) approximately
recovers the joint PMF—if the N, I, S are large enough. Note
that if Am for all m ∈ S1 can be accurately estimated, the
estimation accuracy of An for all n ∈ S2 and λ can also be
guaranteed and quantified, following the standard sensitivity
analyses of least squares; see, e.g., [42].

Remark 2 Theorem 3 is not entirely surprising. The insight
behind the proof is to recast the constructed X̃ as an equiva-
lent noisy NMF model with the separability condition holding
exactly on the right latent factor. This way, the noise robustness
analysis for SPA [30] can be applied. The key is to quantify the
noise bound in this equivalent model. Such ‘virtual noise’ is
contributed by the finite sample-induced error for estimating
the pairwise marginals and the violation to the separability
condition. In particular, classical concentration theorems are
leveraged to quantify the former, and Assumption 1 for the
latter. Note that Assumption 1 is more of a working assump-
tion, rather than an exact model for capturing reality—it helps
formalize the fact that H in (3) more likely attains the ε-
separability condition when |S2| grows [39]. In principle, if

1Such scaling exists under mild conditions; see [41, Proposition 1].

Am is drawn from any joint absolutely continuous distribution,
a similar conclusion can be reached—but using the uniform
distribution simplifies the analysis.

D. More Discussions: EM Meets CNMF
As mentioned, a recent work in [11] proposed an EM

algorithm for solving the maximum likelihood estimation
problem under (2). To see the idea, let fs ∈ {1, . . . , F}
be the realization of the ‘latent variable’ H in the sth
realization of Pr(Z1, . . . , ZN ). The joint log-likelihood of
the observed data {ds}Ss=1 and the corresponding latent
variable {fs}Ss=1 as a function of the latent factor θ =[
vec(A1)>, . . . , vec(AN )>,λ>

]>
can be expressed as

L({ds, fs}Ss=1;θ) (8)

= log

(
S∏
s=1

λ(fs)
N∏
n=1

In∏
i=1

An(i, fs)
I(ds(n)=z

(i)
n )

)
.

The EM algorithm estimates θ via attempting to maximize the
log-likelihood. The resulting updates are simple and economi-
cal. However, the optimality of the algorithm is unclear. It was
also observed in [11] that the algorithm sometimes converges
to some undesired solutions if not carefully initialized.

Naturally, our idea is using CNMF-SPA to initialize the
EM algorithm in [11]. As one will see, this combination
oftentimes offers competitive performance.This combination
also features an appealing runtime performance, since both
algorithms consist of lightweight updates. We refer to this
procedure as CNMF-SPA-initialized EM (CNMF-SPA-EM).

In this work, we also present performance characterizations
for the EM algorithm. To proceed, we make the following
assumption:

Assumption 2 Define D1 = minf 6=f ′
1
N

∑N
n=1 pDKL(An(:

, f),An(:, f ′)), D2 = 2
N minf 6=f ′ log(λ(f)/λ(f ′)) and D =

(D1+D2)/2. Assume that An(i, f) ≥ ρ1 and λ(f) ≥ ρ2 for all
n, i, f , and that An,λ and the initial estimates Â0

n, λ̂
0 satisfy

|Â0
n(i, f)−An(i, f)| ≤ δ1 :=

4

ρ1(4 +D)

|λ̂0(f)− λ(f)| ≤ δ2 :=
4

ρ2(4 +ND)
.

Here, D1 can be understood as a measure for the ‘condition-
ing’ of An under the KL divergence—a larger D1 implies
more diverse columns of An, and thus a better ‘condition
number’. In addition, |D2| measures how far λ is away from
the uniform distribution. Using Assumption 2, we show that
the EM algorithm can provably improve upon reasonable
initial guesses (e.g., those given by CNMF-SPA), under some
conditions. To be specific, we have the following theorem:

Theorem 4 Let δmin = min(δ1, δ2). Assume that the follow-
ing hold:

N ≥ max

(
33 log(3SF/µ)

ρ1D1

,
4 log(4SF 2/(3pρ2µ))

D

)
,

S ≥ 192F 2 log(12NFI/µ)

p2ρ22δ
2
min

, D ≥ max

{
8− 4ρ21
ρ21

,
8− 4ρ22
Nρ22

}
.
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Then, under Assumption 2, the EM algorithm in [11] outputs
Ân(i, f), λ̂(f) that satisfy the following with a probability
greater than or equal to 1− µ:

|Ân(i, f)−An(i, f)|2 ≤ 48 log(12NFI/µ)

Spλ(f)
≤ δ21 ,

|λ̂(f)− λ(f)|2 ≤ 192F 2λ(f) log(12NFI/µ)

S
≤ δ22 .

The proof is relegated to Appendix C in the supplementary
materials. Our proof extends the analysis of a different EM
algorithm proposed in [43] that is designed for learning the
Dawid-Skene model in crowdsourcing. The EM algorithm
there effectively learns a naive Bayes model when the latent
variable admits a uniform distribution, i.e., λ(f) = 1/F for
all f . The algorithm in [43] and the EM algorithm in [11]
are closely related, but the analysis in [43] does not cover
the latter—since the EM in [11] does not restrict λ to be
a uniform PMF. Extending the analysis in [43] turns out
to be nontrivial, which requires careful characterization for
the ‘difficulty’ introduced by λ’s deviation from the uniform
distribution. Our definition of D2 and Theorem 4 fill the gap.

V. EXPERIMENTS

In this section, we use synthetic and real data experiments
to showcase the effectiveness of the proposed algorithms.

A. Baselines

We use the CTD based method in [12] and the MLE-based
method in [11] as the major benchmarks, since they are general
joint PMF estimation approaches as the proposed methods.
Since the MLE based EM algorithm in [11] may be sensitive
to initialization, an iterative optimization algorithm designed
for the same MLE formulation (cf. the alternating directions
(AD) algorithm in [11]) is used to initialize the EM in [11].
This baseline is denoted as the MLE-AD-EM method in our
experiments.

For the real data experiments, we test the proposed ap-
proaches on two core tasks in machine learning, namely,
classification and recommender systems. For the classifica-
tion task, we use 4 different classifiers from the MATLAB
Statistics and Machine Learning Toolbox, i.e., linear SVM,
kernel SVM with radial basis function (RBF)), multinomial
logistic regression and naive Bayes classifier. For the user-
item recommender systems, we use the celebrated biased
matrix factorization (BMF) method [44] as a baseline. We
also compare with results obtained by global average of the
ratings, the user average, and the item average for predicting
the missing entries in the user-item matrix.

All the algorithms are implemented in MATLAB 2018b and
run on a desktop machine equipped with i7 3.40 GHZ CPU.
The iterative algorithms used in the experiments are stopped
when the relative change in the objective function value is less
than 10−6.

TABLE I
MSE & MRE PERFORMANCE ON SYNTHETIC DATA WITH

N = 5, F = 5, I = 10, p = 0.5, ε = 0.1.

Algorithms Metric S = 103 S = 104 S = 105 S = 106

CNMF-SPA [Proposed] MSE 0.0669 0.0270 0.0210 0.0204
CNMF-OPT [Proposed] MSE 0.0519 0.0242 0.0210 0.0204

CNMF-SPA-EM [Proposed] MSE 0.0553 0.0247 0.0208 0.0204
RAND-EM MSE 0.0734 0.0317 0.0289 0.0336

CTD[Kargas et al.] MSE 0.1523 0.0256 0.0212 0.0205
MLE-AD-EM [Yeredor & Haardt] MSE 0.0909 0.0368 0.0266 0.0296

CNMF-SPA [Proposed] MRE 0.7965 0.3321 0.1052 0.0346
CNMF-OPT [Proposed] MRE 0.6746 0.2327 0.0721 0.0239

CNMF-SPA-EM [Proposed] MRE 0.6788 0.2341 0.0664 0.0219
RAND-EM MRE 0.8078 0.2820 0.1845 0.2610

CTD [Kargas et al.] MRE 0.9076 0.2920 0.0952 0.0329
MLE-AD-EM [Yeredor & Haardt] MRE 0.8363 0.3552 0.1384 0.1593

TABLE II
MSE & MRE PERFORMANCE ON SYNTHETIC DATA WITH

N = 5, F = 5, I = 10, p = 0.5, ε = 0.3.

Algorithms Metric S = 103 S = 104 S = 105 S = 106

CNMF-SPA [Proposed] MSE 0.0880 0.0288 0.0238 0.0237
CNMF-OPT [Proposed] MSE 0.0810 0.0247 0.0204 0.0210

CNMF-SPA-EM [Proposed] MSE 0.0813 0.0249 0.0206 0.0217
RAND-EM MSE 0.0883 0.0292 0.0216 0.0276

CTD[Kargas et al.] MSE 0.1534 0.0266 0.0204 0.0206
MLE-AD-EM [Yeredor & Haardt] MSE 0.0911 0.0312 0.0313 0.0233

CNMF-SPA [Proposed] MRE 0.8933 0.4395 0.3201 0.3128
CNMF-OPT [Proposed] MRE 0.8010 0.2675 0.1021 0.0784

CNMF-SPA-EM [Proposed] MRE 0.8133 0.2658 0.1132 0.1151
RAND-EM MRE 0.8214 0.3080 0.1390 0.2239

CTD [Kargas et al.] MRE 0.9101 0.3298 0.1017 0.0346
MLE-AD-EM [Yeredor & Haardt] MRE 0.8752 0.3593 0.2666 0.1413

B. Synthetic-data Experiments

We consider N = 5 RV’s where each variable takes I = 10
discrete values. The entries of the conditional PMF matrices
(factor matrices) An ∈ RIn×F and the prior probability vector
λ ∈ RF are randomly generated from a uniform distribution
between 0 and 1 and the columns are rescaled to have unit
`1 norm with rank F = 5. We generate S realizations of
the joint PMF by randomly hiding each variable realization
with observation probability p = 0.5. In particular, to test
the performance of CNMF-SPA under various ε-separability
conditions, we fix M = 3 and manually ensure the ε-
separability condition on H in (3) by fixing ε ∈ {0.1, 0.3}.
To run the proposed algorithms, the low-order marginals are
then estimated from the realizations via sample averaging.
The mean square error (MSE) of the factors (see [35] for
definition) and the mean relative error (MRE) of the recovered
joint PMFs (see [12]) are evaluated. We should mention that,
ideally, MRE is more preferred for evaluation, but it is hard
to compute (due to memory issues) for large N . MSE is
an intermediate metric since it does not directly measure
the recovery performance. Low MSEs imply good joint PMF
recovery performance, but the converse is not necessarily true.
The results are averaged from 20 random trials.

Table I-II present the MSE and MRE results for various val-
ues of ε and S, where we manually control ε when generating
the An’s. One can see that the proposed CNMF-SPA method
works reasonably well for both ε’s under test. It performs
better when ε is small, corroborating our analysis in Sec IV-C.
In addition, CNMF-SPA is quite effective for initializing the
EM algorithm whereas randomly initialized EM (RAND-
EM) and the MLE-AD-EM method from [11] sometimes
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TABLE III
MSE PERFORMANCE ON SYNTHETIC DATA WITH
N = 5, F = 5, I = 10, S = 100000, ε = 0.1.

Algorithms Metric p = 0.1 p = 0.05 p = 0.01 p = 0.005
CNMF-SPA [Proposed] MSE 0.0370 0.1132 0.4674 0.4948
CNMF-OPT [Proposed] MSE 0.0257 0.0564 0.3992 0.7481

CNMF-SPA-EM [Proposed] MSE 0.0311 0.0816 0.2908 0.2046
RAND-EM MSE 0.0703 0.0923 0.0978 0.1014

CTD [Kargas et al.] MSE 0.0606 0.2759 0.4459 0.6922
MLE-AD-EM [Yeredor & Haardt] MSE 0.0697 0.1094 0.0824 0.0862

struggle to attain good performance. Notably, the proposed
pairwise marginals based methods consistently outperform the
three-dimensional marginals based method, i.e., CTD from
[12], especially when S is small. This highlights the sample
complexity benefits of the proposed methods. Another point
is that when CNMF-SPA does not result in good accuracy,
then the follow-up EM stage (i.e., CNMF-SPA-EM) does not
perform well (e.g., when S = 103). However, the proposed
coupled factorization based approach, i.e., CNMF-OPT, still
works well in this ‘sample-starved regime’, showing the power
of recoverability guaranteed problem formulation.

It should be noted that marginal distribution based methods’
performance relies on the estimation accuracy of the marginal
PMFs. Table III presents the MSEs of the algorithms under
various very small p’s, with N = 5, F = 5, I = 10, S =
100, 000 and ε = 0.1. One can see that when p ≤ 0.05, the
triple marginal based method (i.e., the CTD method) does not
produce promising results. This is because triples are rarely
observed when p = 0.05 and thus X̂jk`’s are fairly noisy.
The proposed method works well even when p = 0.05, again
showing the sample complexity advantages of using pairwise
marginals. When p ≤ 0.01, both CTD and the proposed
approach cannot accurately estimate the marginal distributions.
In such cases, the EM algorithm that does not use higher-order
co-occurrences shows its advantages.

Table IV-V show the MSE results of the algorithms tested
on cases where N = 15, I = 10 and F = 10 for various
values of p and S—recall that a small p means the data
has many missing observations. The MRE is not presented
since instantiating 15th-order tensors is prohibitive in terms of
memory. The results for MLE-AD-EM is not presented since
the AD stage consumes a large amount of time under this
high-dimensional PMF setting. We do not manually impose
ε-separability here, with the hope that the H matrix is likely
ε-separable under large N and I , as argued in Theorem
3 and Remark 2. One can see that the proposed CNMF-
based methods exhibit better MSE performance compared
to other baselines. Also, the advantage of CNMF-OPT is
more articulated under challenging settings (e.g., small p and
small S), where one can see that CNMF-OPT almost always
outperforms the other algorithms.

Table VI shows the average runtime of the algorithms under
different problem sizes. One can see that for the smaller case
(cf. the left column), all the methods exhibit good runtime
performance except for MLE-AD-EM. The elongated runtime
of MLE-AD-EM is due to the computationally expensive
AD iterations used for initialization. For the high-dimensional

TABLE IV
MSE PERFORMANCE ON SYNTHETIC DATA WITH

N = 15, F = 10, I = 10, p = 0.5.

Algorithms Metric S = 103 S = 104 S = 105 S = 106

CNMF-SPA [Proposed] MSE 0.1183 0.1030 0.1063 0.1041
CNMF-OPT [Proposed] MSE 0.0218 0.0042 0.0022 0.0020

CNMF-SPA-EM [Proposed] MSE 0.0894 0.0110 0.0056 0.0018
RAND-EM MSE 0.0376 0.0112 0.0149 0.0069

CTD[Kargas et al.] MSE 0.0329 0.0359 0.0404 0.0355

TABLE V
MSE PERFORMANCE ON SYNTHETIC DATA FOR

N = 15, F = 10, I = 10, p = 0.2.

Algorithms Metric S = 103 S = 104 S = 105 S = 106

CNMF-SPA [Proposed] MSE 0.2884 0.1181 0.0987 0.0996
CNMF-OPT [Proposed] MSE 0.2277 0.0423 0.0062 0.0021

CNMF-SPA-EM [Proposed] MSE 0.2274 0.0672 0.0165 0.0070
RAND-EM MSE 0.2333 0.0782 0.0349 0.0313

CTD[Kargas et al.] MSE 0.4015 0.0862 0.0081 0.0260

TABLE VI
AVERAGE RUNTIME (SEC.) OF THE ALGORITHMS ON SYNTHETIC

DATA S = 105 UNDER VARIOUS [N,F, I]’S.

Algorithms [5, 5, 10] [15, 10, 10]
CNMF-SPA [Proposed] 0.139 0.865
CNMF-OPT [Proposed] 1.633 94.931

CNMF-SPA-EM [Proposed] 0.490 4.091
RAND-EM 0.353 3.217

CTD [Kargas et al.] 0.741 50.559
MLE-AD-EM [Yeredor & Haardt] 124.449 12.949× 103 †

† This number is reported from a single trial due to the elongated
runtime of the algorithm under this high-dimensional setting.

case where N = 15, F = I = 10, CNMF-SPA and EM
are much faster due to their computationally economical
updates. Considering the MSE and MRE results in Tables I-V,
CNMF-SPA and CNMF-SPA-EM seem to provide a preferred
good balance between speed and accuracy. Furthermore, the
proposed CNMF-OPT offers the best accuracy for sample-
starved cases—at the expense of higher computational costs.

C. Real-data Experiments: Classification Tasks

We conduct classification tasks on a number of UCI datasets
(see https://archive.ics.uci.edu) using the joint PMF recovery
algorithms and dedicated data classifiers as we detailed in
Sec. V-A. The details of the datasets are given in Table VII.
Note that in the datasets, some of the features are continuous-
valued. To make the joint PMF recovery methods applicable,
we follow the setup in [12] to discretize those continuous fea-
tures. We use Iave = (1/N)

∑N
n=1 In to denote the averaged

alphabet size of the discretized features for each dataset in
Table VII 2. We split each dataset into training, validation
and testing sets with a ratio of 50 : 20 : 30. For our
approach, we estimate the joint PMF of the features and the
label using the training set, and then predict the labels on
the testing data by constructing an MAP predictor following
[12]. The rank F for the joint PMF recovery methods and the
number of iterations needed for the methods involving EM
are chosen using the validation set. We set M = 5 for all
datasets. We perform 20 trials for each dataset with randomly

2The detailed setup and source code are available at https://github.com/
shahanaibrahimosu/joint-probability-estimation.
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TABLE VII
DETAILS OF UCI DATASETS.

Dataset # Samples # Features Iavg # Classes
Votes 435 17 2 2
Car 1728 7 4 4
Nursery 12960 8 4 4
Mushroom 8124 22 6 2

TABLE VIII
CLASSIFICATION RESULTS ON UCI DATASET ‘VOTES’.

Algorithm Accuracy (%) Time (sec.)
CNMF-SPA [Proposed] 90.07±1.30 0.005
CNMF-OPT [Proposed] 94.94±2.13 9.720

CNMF-SPA-EM [Proposed] 92.82±2.17 0.018
CTD [Kargas et al.] 92.37±2.88 6.413

MLE-AD-EM [Yeredor & Haardt] 90.99±4.18 10.556
SVM 94.34±1.68 0.057

Logistic Regression 94.05±1.24 0.301
SVM-RBF 92.21±2.66 0.012

Naive Bayes 90.46±1.98 0.032

TABLE IX
CLASSIFICATION RESULTS ON UCI DATASET ‘CAR’.

Algorithm Accuracy (%) Time (sec.)
CNMF-SPA [Proposed] 70.31±2.17 0.007
CNMF-OPT [Proposed] 85.00±1.80 5.550

CNMF-SPA-EM [Proposed] 87.42±1.12 0.017
CTD [Kargas et al.] 84.21±1.27 3.601

MLE-AD-EM [Yeredor & Haardt] 87.25±1.41 6.321
SVM 84.59±3.21 0.149

Logistic Regression 83.09±2.42 1.528
SVM-RBF 77.13±4.29 0.876

Naive Bayes 83.32±2.23 0.023

partitioned training/testing/validation sets, and report the mean
and standard deviation of the classification accuracy.

Tables VIII-XI show the results for the UCI datasets ‘Votes’,
‘Car’, ‘Nursery’ and ‘Mushroom’, respectively. In all cases,
one can see that the proposed approaches CNMF-SPA, CNMF-
OPT and CNMF-SPA-EM are promising in terms of offering
competitive performance for data classification. We should
remark that our method is not designed for data classification,
but estimating the joint PMF of the features and the label. The
good performance on classification clearly support our theo-
retical analysis and the usefulness of the proposed algorithms.

A key observation is that the CPD method in [12] does not
perform as well compared to the proposed pairwise marginals
based methods, especially when the number of data samples
is small (e.g., the ‘Votes’ dataset in Table VIII). This echos
our motivation for this work—using pairwise marginals is
advantageous over using third-order ones when fewer samples
are available. In terms of runtime, the proposed CNMF-SPA
and CNMF-SPA-EM methods are faster than other methods
by several orders of magnitude.

D. Real-data Experiments: Recommender Systems

We test the approaches using the MovieLens 20M dataset
[45]. Again, following the evaluation strategy in [12], we first
round the ratings to the closest integers so that every movie’s
rating resides in {1, 2, . . . , 5}. We choose different movie
genres, namely, action, animation and romance, and select
a subset of movies from each genre. Each subset contains

TABLE X
CLASSIFICATION RESULTS ON UCI DATASET ‘NURSERY’.

Algorithm Accuracy (%) Time (sec.)
CNMF-SPA [Proposed] 97.48±0.20 0.008
CNMF-OPT [Proposed] 98.16±0.22 6.719

CNMF-SPA-EM [Proposed] 98.04±0.35 0.041
CTD [Kargas et al.] 97.70±0.22 4.318

MLE-AD-EM [Yeredor & Haardt] 98.04±0.33 8.920
SVM 97.42±0.79 0.706

Logistic Regression 98.02±0.15 5.019
SVM-RBF 70.92±4.70 0.738

Naive Bayes 98.03±0.20 0.046

TABLE XI
CLASSIFICATION RESULTS ON UCI DATASET ‘MUSHROOM’.

Algorithm Accuracy (%) Time (sec.)
CNMF-SPA [Proposed] 91.86±6.33 0.025
CNMF-OPT [Proposed] 96.70±0.82 39.349

CNMF-SPA-EM [Proposed] 99.47±0.68 0.210
CTD [Kargas et al.] 96.09±0.46 24.116

SVM 97.60±0.28 34.443
Logistic Regression 96.75±0.62 2.875

SVM-RBF 97.16±0.41 1.523
Naive Bayes 94.60±0.56 0.063

TABLE XII
MOVIE RECOMMENDATION RESULTS ON THE ACTION SET.

Algorithm RMSE MAE Time (s)
CNMF-SPA [Proposed] 0.8497±0.0114 0.6663±0.0059 0.031
CNMF-OPT [Proposed] 0.8167±0.0035 0.6321±0.0040 70.018

CNMF-SPA-EM [Proposed] 0.7840±0.0025 0.5991±0.0031 2.424
CTD [Kargas et al.] 0.8770±0.0088 0.6649±0.0076 52.253

BMF 0.8011±0.0012 0.6260±0.0013 46.637
Global Average 0.9468±0.0018 0.6956±0.0017 –
User Average 0.8950±0.0010 0.6825±0.0010 –

Movie Average 0.8847±0.0018 0.6982±0.0012 –

30 movies. Hence, for every subset, N = 30, Zi represents
the rating of movie i, and Zi’s alphabet is {1, 2, . . . , 5}.
We predict the rating for a movie, say, movie N , by user
k via computing E[iN |rk(1), . . . , rk(N − 1)], where rk(i)
denotes the rating of movie i by user k (i.e., using the MMSE
estimator). This can be done via estimating Pr(i1, . . . , iN ).
Note that we leave out the MLE-AD-EM algorithm for the
MovieLens datasets due to its scalability challenges.

We create the validation and testing sets by randomly hiding
20% and 30% of the dataset for each trial. The remaining
50% is used for training (i.e., learning the joint PMF in our
approach). The results are taken from 20 random trials as
before. In addition to the root MSE (RMSE) performance, we
also report the mean absolute error (MAE) of the predicted
ratings, which is more meaningful in the presence of outlying
trials; see the definitions of RMSE and MAE in [12].

Table XII-XIV present the results for three different subsets,
respectively. One can see that the proposed methods are
promising—their predictions are either comparable or better
than the BMF approach. Note BMF is specialized for recom-
mender systems, while the proposed approaches are for generic
joint PMF recovery. The fact that our methods perform better
suggests that the underlying joint PMF is well captured by the
proposed CNMF approach.
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TABLE XIII
MOVIE RECOMMENDATION RESULTS ON THE ANIMATION SET.

Algorithm RMSE MAE Time (s)
CNMF-SPA [Proposed] 0.8705±0.0095 0.6798±0.0060 0.028
CNMF-OPT [Proposed] 0.8124±0.0031 0.6241±0.0041 61.018

CNMF-SPA-EM [Proposed] 0.8170±0.0075 0.6317±0.0086 2.424
CTD [Kargas et al.] 0.8300±0.0053 0.6335±0.0029 48.253

BMF 0.8408±0.0023 0.6553±0.0015 46.637
Global Average 0.9371±0.0021 0.7042±0.0014 –
User Average 0.8850±0.0009 0.6632±0.0011 –

Movie Average 0.9027±0.0019 0.6900±0.0013 –

TABLE XIV
MOVIE RECOMMENDATION RESULTS ON THE ROMANCE SET.

Algorithm RMSE MAE Time (s)
CNMF-SPA [Proposed] 0.9280±0.0066 0.7376±0.0076 0.032
CNMF-OPT [Proposed] 0.9076±0.0014 0.7123±0.0029 60.762

CNMF-SPA-EM [Proposed] 0.9057±0.0052 0.7106±0.0049 1.881
CTD [Kargas et al.] 0.9498±0.0085 0.7416±0.0054 47.010

BMF 0.9337±0.0007 0.7463±0.0009 31.823
Global Average 1.0019±0.0007 0.8078±0.0008 –
User Average 1.0195±0.0007 0.7862±0.0008 –

Movie Average 0.9482±0.0007 0.7599±0.0007 –

VI. CONCLUSION

We proposed a new framework for recovering joint PMF of
a finite number of discrete RVs from marginal distributions.
Unlike a recent approach that relies on three-dimensional
marginals, our approach only uses two-dimensional marginals,
which naturally has reduced-sample complexity and a lighter
computational burden. We showed that under certain condi-
tions, the recoverability of the joint PMF can be guaranteed—
with only noisy pairwise marginals accessible. We proposed
a coupled NMF formulation as the optimization surrogate
for this task, and proposed to employ a Gram–Schmidt-
like scalable algorithm as its initialization. We showed that
the initialization method is effective even under the finite-
sample case (whereas the existing tensor-based method does
not offer sample-complexity characterization). We also showed
that the Gram–Schmidt-like algorithm can provably enhance
the performance of an EM algorithm that is proposed from
an ML estimation perspective for the joint PMF recovery
problem. We tested the proposed approach on classification
tasks and recommender systems, and the results corroborate
our analyses.

APPENDIX A
PROOF OF THEOREM 2

The first part of the proof is reminiscent of the identifiability
proof of a similar problem in [39]. The difference lies in
how to handle “fat” An’s. In [39], the An’s are all square
nonsingular matrices. In our case, An’s can be ‘fat’ matrices.
This creates some more challenges.

Step 1): Under our assumption, there exists a splitting
denoted by S1 = {`1, . . . , `M}, S2 = {`M+1, . . . , `Q}
S1 ∪ S1 ⊆ [N ], S1 ∩ S2 = ∅ such that

X̃ =

X`1,`M+1
. . . X`1,`Q

...
...

...
X`M ,`M+1

. . . X`M ,`Q

 = WH>, (9)

where W = [A>`1 , . . . ,A
>
`M

]> and H =
[A>`M+1

, . . . ,A>`Q ]>D(λ). Note that Q < N is allowed.

Since we have assumed that W and H are sufficiently
scattered (since ‖λ‖0 = F by the assumption that Pr(f) 6= 0
for all f ). By Theorem 4 in [35], one can see that by solving
(4), we always have Ŵ = WDΠ and Ĥ = HΠD−1,
where Ŵ = [Â>`1 , . . . , Â

>
`M

]> and Ĥ = [Â>`M+1
, . . . , Â>`Q ]>.

Since the column norms of An’s are known, by column
normalization of each Ân with respect to `1-norm, we have

Ân = AnΠ, ∀n ∈ S1 ∪ S2. (10)

Step 2): Now we show that Aj for j /∈ S1 ∪ S2 can also
be identified up to the same permutation ambiguity; i.e., we
hope to show that any Âj that is a solution of (4) satisfies
Âj = AjΠ, with the same Π as in (10).

Let us denote Ân and λ̂ as any optimal solution of
Problem (4). Since there exists a construction (9), and Â`q =
A`qΠ, q ∈ {1, . . . , Q} can be identified by our construction,
it is easy to see that λ̂ = Π>λ. Indeed, from (9), one can see
that any optimal solution of Problem (4) satisfies

X̃ =

 Â`1
...

Â`M


︸ ︷︷ ︸
Z1

D(λ̂) [Â>`M+1
, . . . , Â>`Q ]︸ ︷︷ ︸
Z>2

.
(11)

Again, since Z1 and Z2 are sufficient scattered, we have
rank(Z1) = rank(Z2) = F . Consequently, we have λ̂ =

(Z2 �Z1)
†

vec(X̃) = Π>λ, due to (9) and the fact that
rank(Z2 � Z1) = F, which is a result of rank(Z1) =
rank(Z2) = F [25]. In the above, ‘�’ denotes the Khatri-
Rao product.

Note that by condition iii), we have r1, . . . , rT ∈ S1 ∪ S2
such that Xrtj = ÂrtD(λ̂)Â>j , for t = 1, . . . , T . These
equalities can be re-expressed as followsXr1j

...
XrT j

 =

Ar1
...

ArT

D(λ)A>j =

Âr1
...

ÂrT

D(λ̂)Â>j (12)

Note that D(λ̂) = Π>D(λ)Π>, since λ̂ = Π>λ. By the
assumption that any T -concatenation ofAn’s have full column
rank and Ârt = ArtΠ, one can see that Âj = AjΠ, j /∈ S1∪
S2. Since we have assumed that for every j /∈ S1 ∪ S2, there
exists a set of r1, . . . , rT such that condition iii) is satisfied.

Once An’s and λ are estimated, the joint probability
Pr(i1, i2, . . . , iN ), in ∈ {1, . . . , In} can be estimated by

P̂r(i1, i2, . . . , iN ) =
F∑
f=1

λ̂(f)
N∏
n=1

Ân(in, f)

=
F∑
f=1

λ(f)
N∏
n=1

An(in, f).

(13)

The last equality holds because the unified permutation ambi-
guity across An’s and λ does not affect the reconstruction of
P̂r(i1, i2, . . . , iN ).



12

APPENDIX B
PROOF OF THEOREM 3

Consider a matrix factorization model as below:

X̃ = WH>, (14)

where W ∈ RL×F , H ∈ RK×F , W ≥ 0 and H ≥ 0.
The SPA algorithm for factoring X̃ into W and H consists

of two key steps:

1) Normalize the columns of X̃ w.r.t. their `1 norms.
2) Apply an F step Gram-Schmidt-like procedure to

pick up Λ = {l1, . . . , lF }.

Note that X̃(:,Λ) = WΣ; i.e., W can be identified up to a
column scaling ambiguity through this simple procedure. Gillis
and Vavasis [30] have shown that under the model in (14), SPA
is provably robust to noise in estimating the factor matrix W
(see Lemma 4 in Appendix E from [30]). To proceed, first
characterize the “noise” in our virtual NMF model.

Consider the pairwise marginals Xjk’s which are used to
construct the matrix X̃ in (3). Xjk’s are estimated by sample
averaging of a finite number of realizations and thus the
estimated Xjk (denoted as X̂jk) is always noisy; i.e., we have

X̂jk = Xjk +Njk, (15)

where the noise matrix Njk ∈ RI×I , assuming In = I for all
n ∈ {1, . . . , N}. We have the following proposition:

Proposition 1 Let p ∈ (0, 1] be the probability that an RV is
observed. Let S be the number of available realizations of N
RVs. Assume that p ≥ ( 8

S log(2/δ))1/2. Then, with probability
at least 1− δ, ‖Xjk − X̂jk‖F = ‖Njk‖F ≤ φ, holds for any

distinct j, k where φ =
√
2(1+
√

log(2/δ))

(p
√
S)

.

The proof of Proposition 1 is given in Sec. B-A.
By the definition of the Frobenius norm, we have∑I
c=1 ‖Nij(:, c)‖22 = ‖Nij‖2F ≤ φ2. Applying norm equiv-

alence ‖Nij(:,c)‖1√
I

≤ ‖Nij(:, c)‖2, we get

‖Nij(:, c)‖21 ≤ Iφ2 =⇒ ‖Nij(:, c)‖1 ≤
√
Iφ. (16)

By using the estimates X̂jk, the model given by (3) can be
represented as

X̂ = X̃ + Ñ , (17)

where the (i, j)th block of Ñ is Nij . Note that X̂, X̃ and
Ñ all have the same size of L×K. Assuming In = I for
all n ∈ {1, . . . , N}, we have L = MI and K = (N −M)I .
Also note that W has a size of L× F and H has a size of
K × F .

Since any column of Ñ is formed from the columns of M
number of Nij’s, we have

‖Ñ(:, q)‖1 ≤M
√
Iφ, (18)

by the triangle inequality and (16).

As mentioned, before performing SPA, the columns of X̂
are normalized with respect to the `1-norm. In the noiseless
case, let us denote X(:, q) = X̃(:,q)

‖X̃(:,q)‖1
. Then, we have

X(:, q) =
F∑
f=1

W (:, f)

‖W (:, f)‖1
‖W (:, f)‖1H(q, f)

‖
∑F
f=1W (:, f)H(q, f)‖1

,

or equivalently X = WH
>

, where W (:, f) = W (:,f)
‖W (:,f)‖1

and H(q, r) = ‖W (:,f)‖1H(q,f)

‖
∑F
f=1W (:,f)H(q,f)‖1

. One can verify that

H1 = 1>, which is critical for applying SPA. When the data is
noisy, i.e., X̂ = X̃+Ñ , we hope to show that the normalized
data can be represented as follows:

X = WH
>

+N , (19)

where X is the column normalized version (with respect to
the `1 norm) of X̂ , and W and H are defined as above.

From the assumption ‖X̂ij(:, c)‖1 ≥ η for any i 6= j

and c ∈ {1, . . . , I}, we get ‖X̂(:, q)‖1 ≥ Mη for any q.
Combining Lemma 5 and Eq. (18), we get

‖N(:, q)‖1 ≤
2
√
Iφ

η
. (20)

Applying norm equivalence, we further have ‖N(:, q)‖2 ≤
‖N(:, q)‖1 and hence we get

‖N(:, q)‖2 ≤
2
√
Iφ

η
. (21)

Fact 1 Assume that ‖N(:, q)‖2 ≤ ϕ for any q and that H
satisfies ε-separability assumption in the model (19). Suppose(

σmax(W )ε+ ϕ
)
≤ σmin(W )%κ̃−1,

where κ̃ =
(
1 + 80κ2(W )

)
and % = min

(
1

2
√
F−1 ,

1
4

)
. Then,

SPA identifies an index set Λ̂ = {l̂1, . . . l̂F } such that

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥W (:, f)−X(:, l̂f )
∥∥∥
2
≤
(
σmax(W )ε+ ϕ

)
κ̃,

(22)

Proof: From the assumption that H satisfies ε-
separability, there exists a set of indices Λ = {l1, . . . , lF }
such that H(Λ, :) = IF +E, E ∈ RF×F is the error matrix
with ‖E(l, :)‖2 ≤ ε. and IF is the identity matrix of size
F×F . Without loss of generality, we assume Λ = {1, . . . , F}.
Hence, one can write the normalized model given in (19) as

X = WH
>

+N = W [IF +E>, (H∗)>] +N

= W [IF , (H
∗)>] + [WE>,0] +N ,

where the zero matrix 0 has the same dimension as that of
H∗. By defining the noise matrix N ∈ RL×K such that N :=
[WE>,0] +N , we have X = W [IF (H∗)>] +N . Then,
for any q ∈ {1, . . . ,K}, the following inequality holds:

‖N(:, q)‖2 ≤ ‖W ‖2‖E(q, :)‖2 + ‖N(:, q)‖2
≤ σmax(W )ε+ ϕ. (23)
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Combining (23) and Lemma 4 (see Appendix E), we obtain
(22) if

(
σmax(W )ε+ ϕ

)
≤ σmin(W )%κ̃−1.

The square of the left hand side of (22) can be written as

1

M2

M∑
m=1

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥A`m(:, f)− Â`m(:, f)
∥∥∥2
2

≥ 1

M2
max

1≤f≤F
min
l̂f∈Λ̂

∥∥∥A`m(:, f)− Â`m(:, f)
∥∥∥2
2
, (24)

for any m ∈ {1, . . . ,M}, where the first equality is due
to W = [A>`1 , . . . ,A

>
`M

]>/M , in which Â`m denotes the
corresponding estimate of A`m .

Since ‖W (:, f)‖1 = M for any f , we have W = W /M .
Therefore, we have σmax(W ) = σmax(W )/M , σmin(W ) =
σmin(W )/M,

κ(W ) =
σmax(W )

σmin(W )
= κ(W ). (25)

Therefore, by combining (21), (24), (25) and Fact 1, SPA
estimates A`m for any m ∈ {1, . . . ,M} such that

max
1≤f≤F

min
l̂f∈Λ̂

∥∥∥A`m(:, f)− Â`m(:, f)
∥∥∥
2

≤

(
σmax(W )ε+

2M
√
Iφ

η

)
κ̃, (26)

if the below condition holds:

σmax(W )

M
ε+

2
√
Iφ

η
≤ σmin(W )%κ̃−1. (27)

Letting ε = M%
2κ(W )κ̃ , from (27), we get the condition on φ

as follows:

φ ≤ ησmax(W )ε

4M
√
I

. (28)

From Proposition 1, we have φ ≤
√
2(1+
√

log(2/δ))

p
√
S

with
probability greater than or equal to 1 − δ. Combining with
(28), we get the number of realizations S required to get the
estimation error bound (26) as below:

S ≥
32M2I(1 +

√
log(2/δ))2

σ2
max(W )η2ε2p2

.

Note that Lemma 1 holds if H satisfies ε-separability
condition. By combining Assumption 1 and Lemma 6, we
get that H satisfies ε-separability assumption with probability
greater than 1− ρ, if

(N −M)I = Ω

(
ε−2(F−1)

F
log

(
F

ρ

))
. (29)

By substituting φ in (26) and using the fact that for any matrix
A ∈ RI×F , the matrix 2-norm ‖A‖2 ≤

√
F max

1≤f≤F
‖A(:, f)‖2,

we get the result (7) in the theorem. Letting ρ = δ
2 in (29),

the proof is completed.

A. Proof Proposition 1

Recall ds ∈ RN denotes the sth realization of the joint
PMF Pr(Z1, . . . , ZN ). For simplicity, we assume that 0 does
not belong to the alphabets of Z1, . . . , ZN , and we use the
notation ds(j) = 0 to represent that ‘Zj is not observed in
the sth realization’.

For S realizations of the joint PMF, i.e., {ds}Ss=1, the
sample averaging expressions for estimating Xjk is defined
as follows:

X̂jk(ij , ik) =
1

|Sjk|
∑
s∈Sjk

I
[
ds(j) = z

(ij)
j ,ds(k) = z

(ik)
k

]
,

where Sjk = {s | I[ds(j) 6= 0,ds(k) 6= 0]}.
Let us construct a random variable Vj,s, where Vj,s = 1 if

Zj is observed in ds; otherwise Vj,s = 0. With this definition,
we can construct a derived RV Sjk that is sum of S i.i.d.
Bernoulli random variables such that Sjk =

∑S
s=1 I[Vj,s =

1 and Vk,s = 1], where we have E[Sjk] = Sp2.
In order to characterize the random variable Sjk, we can

use Chernoff lower tail bound such that for 0 < t < 1,

Pr
[
Sjk ≥ (1− t)Sp2

]
≥ 1− e−Sp

2t2/2. (30)

Combining Lemma 19 in [43] and (30), we have

Pr

[
‖X̂jk −Xjk‖F ≤

(1 +
√

log(1/δ))√
(1− t)Sp2

]
= Pr

[
‖X̂jk −Xjk‖F ≤

(1 +
√

log(1/δ))√
Sjk

, Sjk ≥ (1− t)Sp2
]

≥ 1− δ − e−Sp
2t2/2, (31)

where we have applied the De Morgan’s law and the union
bound to obtain the last inequality.

Since (31) holds for any t ∈ (0, 1), we set t = 1/2 for
expression simplicity. Then, we have

Pr

[
‖X̂jk −Xjk‖F ≤

√
2(1 +

√
log(1/δ))

p
√
S

]
≥ 1− δ − e−Sp

2/8. (32)

It follows that if p2 ≥ 8
S log(1/δ), the right hand side of

(32) is greater than 1− 2δ.

APPENDIX C
PROOF OF THEOREM 4

We first introduce the EM algorithm in [11]. Then, we will
show that the EM algorithm improves upon good initializations
(e.g., those given by the CNMF-SPA).

A. An EM Algorithm for Joint PMF Learning [11]

The EM algorithm proposed in [11] for handling maximiz-
ing the log-likelihood in (8) has the following E-step and M-
step:

E-step: The posterior of the latent variable qs,f =

Pr(fs = f | d1, . . . ,dS , θ̂) is estimated via q̂s,f =
exp(log(λ̂(f))+

∑N
n=1

∑In
i=1 I(ds(n)=z

(i)
n ) log(Ân(i,f)))∑F

f′=1
exp(log(λ̂(f ′))+

∑N
n=1

∑In
i=1 I(ds(n)=z

(i)
n ) log(Ân(i,f ′)))

.
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M-step: Using the estimated q̂s,f , Ân and λ̂ that maximize
the likelihood function are computed using the following:

Ân(i, f)←
∑S
s=1 q̂s,f I(ds(n) = z

(i)
n )∑In

i′=1

∑S
s=1 q̂s,f I(ds(n) = z

(i′)
n )

, (33a)

λ̂(f)←
∑S
s=1 q̂s,f∑F

f ′=1

∑S
s=1 q̂s,f ′

. (33b)

B. Performance Analysis for EM

We employ the paradigm in [43] for proving the optimality
of an EM algorithm. There, the EM algorithm learns a
naive Bayes model as in (2) but assuming a uniform latent
distribution, i.e., λ(f) = 1/F . In our case, we do not assume
uniform prior for λ and thus our proof covers more general
cases. To begin with, we follow the idea in [43] to define a
number of events as below:

E1 :
N∑
n=1

In∑
i=1

I(ds(n) = z(i)n ) log

(
An(i, fs)

An(i, f)

)
≥ ND1/2,

E2 :

∣∣∣∣∣
S∑
s=1

I(fs = f)I(ds(n) = z(i)n )− Sλ(f)pAn(i, f)

∣∣∣∣∣ ≤ Stnif ,
E3 :

∣∣∣∣∣
S∑
s=1

I(fs = f)I(ds(n) 6= 0)− Sλ(f)p

∣∣∣∣∣ ≤ Stnif ,
E4 :

∣∣∣∣∣
S∑
s=1

I(fs = f)− Sλ(f)

∣∣∣∣∣ ≤ Scf ,
where the events are defined for all f, n, i, fs, ds(n) 6= 0
represents that n-th RV is observed with any value from its
alphabet set in the s-th sample, and tnif > 0, cf > 0 are
scalars. Note that E1, E2 and E3 are the same as those defined
in [43], while E4 is introduced in our proof to accommodate
the general λ.

First, we consider the E-step. The parameter q̂s,f can be
bounded using the following lemma:

Lemma 1 Assume that the event E1 happens and also as-
sume that An,λ and the initial estimates satisfy |Ân(i, f)−
An(i, f)| ≤ δ1, An(i, f) ≥ ρ1, |λ̂(f) − λ(f)| ≤ δ2 and
λ(f) ≥ ρ2 for all n, i, f . Also assume that δ1 < ρ1 and
δ2 < ρ2. Then, q̂s,f satisfies the following:

|q̂s,f − I(fs = f)| ≤ υ, ∀f, s. (34)

where υ = exp(−(ND+1− 1
ρ2(ρ2−δ2) +N(1− 1

ρ1(ρ1−δ1) ))+

log(F )).

The proof of Lemma 1 is given in Appendix D-A. The next
lemma shows that the subsequent M-step estimates the An’s
and λ up to bounded errors:

Lemma 2 Assume that E2
⋂
E3
⋂
E4 holds. Suppose q̂s,f sat-

isfies the following:

|q̂s,f − I(fs = f)| ≤ β, ∀f, s, (35)

where β > 0 is a scalar. Then Ân and λ̂ updated by (33) are
bounded by:

|Ân(i, f)−An(i, f)| ≤ 2tnif + 2Sβ

λ(f)p− tnif − β
, (36a)

|λ̂(f)− λ(f)| ≤ cf + β + Fβ

1− Fβ
. (36b)

The proof of Lemma 2 is given in Appendix D-B. To
proceed, we have the following lemma:

Lemma 3 Assume that E1
⋂
E2
⋂
E3
⋂
E4 happens. Also as-

sume that |Â0
n(i, f)−An(i, f)| ≤ δ1 := 4

ρ1(4+D)
, An(i, f) ≥

ρ1, |λ̂0(f) − λ(f)| ≤ δ2 := 4
ρ2(4+ND)

, λ(f) ≥ ρ2 for

all n, i, f and D ≥ max
{

8−4ρ21
ρ21

,
8−4ρ22
Nρ22

}
. Suppose that the

following holds ∀g ∈ {{tnif}n,i,f , {cf}f}:

2 exp(−ND
2

+ log(F )) ≤ g ≤ pρ2
8F

ξ, (37)

where ξ = min
(

4
ρ1(4+D)

, 4
ρ2(4+ND)

)
. Then, by updating the

parameters using EM at least once (i.e., after runing the EM
algorithm for at least one iteration), we have the following:∣∣∣Ân(i, f)−An(i, f)

∣∣∣ ≤ 4tnif
λ(f)p

≤ δ1, (38a)∣∣∣λ̂(f)− λ(f)
∣∣∣ ≤ 8Fcf ≤ δ2. (38b)

The proof of Lemma 3 is given in Appendix D-C.
Let us characterize the probability of the intersection
E1
⋂
E2
⋂
E3
⋂
E4 happening. Theorem 4 in [43] characterizes

the probabilities of E1, E2 and E3 happening. Specifically, we
get the following results from [43]:

Pr(E1) ≥ 1− SF exp

(
− ND1

33 log(1/ρ1)

)
, (39a)

Pr(E2) ≥ 1−
N∑
n=1

F∑
f=1

In∑
i=1

2 exp

(
−
St2nif

3pλ(f)

)
, (39b)

Pr(E3) ≥ 1−
N∑
n=1

F∑
f=1

In∑
i=1

2 exp

(
−
St2nif

3pλ(f)

)
. (39c)

In order to characterize Pr(E4), we observe that
∑S
s=1 I(fs =

f) is the sum of i.i.d. Bernoulli random variables. Using the
Chernoff bound, for a particular f , we have

Pr

[∣∣∣∣∣
S∑
s=1

I(fs = f)− Sλ(f)

∣∣∣∣∣ ≥ Scf
]
≤ 2e−

Sc2f
3λ(f) . (40)

By taking the union bound over all f ∈ {1, . . . , F}, we obtain

Pr(E4) ≥ 1−
F∑
f=1

2 exp(−Sc2f/(3λ(f))). (41)

Applying the union bound and the De Morgan’s law, one
can see that E1

⋂
E2
⋂
E3
⋂
E4 happens with a probability

≥ 1 − SFe
− ND1

33 log(1/ρ1) −
∑N
n=1

∑F
f=1

∑In
i=1 4e−

St2nif
3pλ(f) −∑F

f=1 2e−
Sc2f

3λ(f) .



15

To ensure that the estimation error bounds for An and
λ given by (38) hold with probability greater than 1 − ε,
a sufficient condition is that the following being satisfied
simultaneously:

N ≥ 33 log(1/ρ1) log(3SF/ε)

D1

(42)

S ≥ 3pλ(f) log(12NFI/ε)

t2nif
(43)

S ≥ 3λ(f) log(6F/ε)

c2f
. (44)

We can assign specific values to tnif and cf such that the
above conditions are satisfied. Let

tnif :=

√
3pλ(f) log(12NFI/ε)

S
, (45a)

cf :=

√
3λ(f) log(12NFI/ε)

S
. (45b)

By this selection of tnif and cf , the conditions in (43) and (44)
hold. To enforce the condition (37), the following equalities
have to hold:√

3pλ(f) log(12NFI/ε)

S
≥ 2 exp

(
−ND

2
+ log(F )

)
√

3λ(f) log(12NFI/ε)

S
≤ pρ2

8F
ξ =

pρ2δmin

8F
,

where δmin = min(δ1, δ2). The above can be implied by the
following:

N ≥ 4 log(2SF 2/(3pρ2 log(12NFI/ε)))

D
(46)

S ≥ 192F 2 log(12NFI/ε)

p2ρ22δ
2
min

, (47)

where we have used 1 ≥ λ(f) ≥ ρ2.
Using the inequality log x > 1− 1

x , x > 0, we can express
the condition (46) as

N ≥ 4 log(2SF 2/(3pρ2(1− ε/(12NFI))))

D
Since ε ≤ 1 and the product NFI > 1, we always have
1 − ε/(12NFI) > ε/2, which makes the above condition as
follows:

N ≥ 4 log(4SF 2/(3pρ2ε))

D
. (48)

Combing the two conditions (42) and (48), we have

N ≥ max

(
33 log(3SF/ε)

ρ1D1

,
4 log(4SF 2/(3pρ2ε))

D

)
, (49)

where we have used the fact that log(1/ρ1) ≤ (1/ρ1) − 1 <
1/ρ1.

To summarize, if (47) and (49) hold and tnif and cf are
chosen to be as in (45), then, with probability at least 1 − ε,
the following inequalities hold by Lemma 3:

|Ân(i, f)−An(i, f)|2 ≤
16t2nif
p2λ(f)2

≤ 48 log(12NFI/ε)

Spλ(f)

|λ̂(f)− λ(f)|2 ≤ 64F 2c2f ≤
192F 2λ(f) log(12NFI/ε)

S
.

This completes the proof.
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