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Link Prediction Under Imperfect Detection:
Collaborative Filtering for Ecological Networks

Xiao Fu, Eugene Seo, Justin Clarke, and Rebecca A. Hutchinson

Abstract— Matrix completion based collaborative filtering is considered scalable and effective for online service link prediction (e.g.,
movie recommendation) but does not meet the challenges of link prediction in ecological networks. A unique challenge of ecological
networks is that the observed data are subject to systematic imperfect detection, due to the difficulty of accurate field sampling. In this
work, we propose a new framework customized for ecological bipartite network link prediction. Our approach starts with incorporating
the Poisson N -mixture model, a widely used framework in statistical ecology for modeling imperfect detection of a single species in
field sampling. Despite its extensive use for single species analysis, this model has never been considered for link prediction between
different species, perhaps because of the complex nature of both link prediction and N -mixture model inference. By judiciously
combining the Poisson N -mixture model with a probabilistic nonnegative matrix factorization (NMF) model in latent space, we propose
an intuitive statistical model for the problem of interest. We also offer a scalable and convergence-guaranteed optimization algorithm to
handle the associated maximum likelihood identification problem. Experimental results on synthetic data and two real-world ecological
networks data are employed to validate our proposed approach.
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1 INTRODUCTION

Link prediction [1] aims at inferring unseen connections
between entities in a complex network, which lies at the
heart of a large variety of data mining problems. For exam-
ple, social network analytics involves many link prediction
problems (e.g., community detection) [2]. In online service
recommender systems (e.g., streaming services and online
shopping) [3]–[5], link prediction plays an essential role in
learning user preferences.

Among many link prediction techniques, low-rank ma-
trix completion (MC)-based collaborative filtering (CF) [6]
is one of the most popular approaches—possibly because
of its simplicity and effectiveness, as well as its elegance
in mathematics [7], [8]. Taking the movie recommendation
problem as an example, the idea of MC-based CF is as
follows: If many users have similar preferences and a lot of
movies have similar traits, then the complete (but partially
observed) user-movie matrix (whose entries are users’ rat-
ings for the movies) should exhibit correlations across rows
and columns—and thus be an approximately low-rank ma-
trix. Therefore, imputing those unobserved ratings should
not be arbitrary—it should be done under the constraint
that the imputed movie rating matrix is low-rank.

Existing MC-based CF approaches have been quite suc-
cessful in the aforementioned online service-related do-
mains, but note that there is a clear distinction in these
applications between missing and non-missing values. For
example, an online movie streaming system knows perfectly
which ratings are recorded and which are missing. Our
work is motivated by a domain in which this distinction
is not clear: species interaction networks. Data on these net-
works are often collected through field observations, which
may fail to record some interactions due to limited time
for sampling or poor observation conditions. For example,
hundreds of species of pollinators and plants exist in the
Cascade mountains, Oregon, United States [9]. Ecologists

are eager to know the interaction patterns between polli-
nators and plants, in order to predict the effects of species
extinctions or invasions and to protect ecosystem services
(e.g., pollination) provided by pertinent species [10], [11]
(see Fig. 1 for illustration).

At first glance, it appears that pollinator-plant link pre-
diction is quite similar to user-movie link prediction, and
that approaches proposed for the latter should also be
applicable for the former. Indeed, such approaches have
been attempted for these data with mixed results; CF tech-
niques sometimes failed to outperform a baseline of simply
predicting the most popular plants (i.e., items) [12]. The
shortcomings of traditional CF methods are due to key
differences among the application domains. One particular
challenge is that the data recorded for pollination networks
are very different from those recorded in online services.
For example, the interaction counts between pollinators
and plants in the Cascade mountains were recorded by
student researchers at montane meadows in the HJ Andrews
Experimental Forest in Blue River, Oregon, United States;
see details in [9]. Even for meticulous observers (or even if
the student observers were replaced by cameras), there is a
significant chance that many interactions were not recorded
for a number of reasons—since factors such as the season,
location, and weather at the time of observation all play
roles in the recorded number of observed interactions. This
means that every entry in the pollinator-plant interaction
matrix is subject to imperfect detection. For example, “2
interactions recorded” may be the result of “8 interactions
really happened” plus the effect of missed detections. Thus,
the non-zero recorded counts in the interaction matrix are
likely biased low. This effect applies to the recorded zeros
as well; the zeros are a mixture of true zeros (no interac-
tion) along with unseen interactions that actually occurred
(missed detections). Algorithms proposed for user-movie
link prediction assume that while the data may be sparse
(as are pollination data), the observed ratings are essen-
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C. Project Description
Link prediction in bipartite networks lies at the heart of many data mining tasks—e.g., community

detection in social networks [1,2] and all kinds of recommender systems [3–6]. During the past decade,

a plethora of link prediction approaches have been proposed, triggered by the wide availability of

data and computing power (and perhaps also the Netflix Prize [7]). Link prediction is also a core

task in ecological applications. For example, hundreds of species of pollinators and plants exist in

the Cascade mountains of Oregon [8,9]. Ecologists seek to understand interaction patterns between

pollinators and plants, in order to predict the effects of species extinctions or invasions and protect the

ecosystem services provided by these systems [10, 11]. Ecological network link prediction problems

are, however, still poorly understood; most approaches in the literature focus on online services

such as movie and news recommendation. The goal of this project is to develop a suite of

computational tools for analyzing large-scale, partially observed, multimodal ecological

networks.

Pollinator Species

Plant Species

Figure 1: Top: Halictus bee species visit-
ing Clarkia amoena flower; photo by Blanca
Peto, REU student. Bottom: Subset of the
plant-pollinator network observed by REU
students, which is subject to systematic
under-counting.

At first glance, predicting interactions between ecological en-

tities, e.g., pollinators and plants, may seem to be a typical

bipartite link prediction problem, analogous to user-movie or

user-item networks. Hence, a natural question is can we sim-

ply apply techniques for online recommender systems such as

collaborative filtering and matrix completion to link predic-

tion in ecological networks? The answer is, unfortunately,

negative. There are several traits of ecological networks that

classical link prediction techniques do not address.

• Imperfect Detection Classical link prediction ap-

proaches assume that, while some link data may be missing,

the observed data are reliable. This is far from true in ecolog-

ical data. Many species and their interactions are systemat-

ically under-counted in field sampling. This applies to both

observed interactions (e.g., an interaction recorded 3 times

may actually have occurred 5 times) as well as unobserved

interactions (e.g., zeroes reflect both truly absent links and

interactions that occurred but were unseen). This contrasts

with domains like streaming services, in which, while data

entries may be missing [12,13], the distinction between missing and observed data is clear.

• Limited Resources Ecological networks form and operate in particular contexts subject to limited

resource constraints. In pollination networks, insects search for nectar among the set of flowers

available to them; each flower’s nectar supply declines over the course of the day. The set of flowering

plant species, the set of pollinator species, and the relative abundances of each vary across space

and time. The observed species interactions are a composition of pollinator preferences, flower and

pollinator abundances, and inter-species competition. In contrast, online streaming services and

product recommendations assume constant item availability and independent user choices.

•Multimodal Data The dataset inspiring this work consists of pollination networks of hundreds of

species observed over 12 meadows, each containing 10 subplots [8]; also see Figure 1. The networks

were observed 5 times per summer over the course of 8 years. These data may be aggregated to

form one large network representing the entire dataset, but scientific questions about pollination

span multiple spatial and temporal scales, which are obfuscated by aggregation. Instead, a model

C-1

Fig. 1. Dataset that motivates this work [9]: Top: Halictus bee species
visiting Clarkia amoena flower; Bottom: Subset of the plant-pollinator
network recorded by student observers, which is subject to systematic
under-counting.

tially noise-free. However, in ecological networks, pervasive
missed detections violate this assumption and demand new
link prediction approaches.

The issue of imperfect detection has been recognized
as a universal challenge in ecology [13], since cryptic and
secretive species are frequently hard to observe. A family
of statistical models have been proposed to handle this
problem, e.g., occupancy models for binary observations
[14] and the N -mixture model for counts [15]. The idea is to
impose a probabilistic model that links the true species oc-
currence or abundance (ground-truth) and the observations
(e.g., by modeling the observation as a binomial selection
of the ground truth). Combined with a latent probabilistic
model for the events of interest (e.g., a Poisson model), this
leads to an intuitively pleasing two-layer graphical model
for generating the observed data. This idea makes a lot of
sense, and has been widely used in applications such as
animal abundance estimation [15]. Nevertheless, because of
the intrinsic computational difficulties, it has been unclear
whether this family of models could be extended to link
prediction in ecological networks.
Contributions In this work, we offer a computational frame-
work for link prediction under imperfect detection. Our
work is motivated by the pollination network analysis
problem mentioned before, but other ecological networks
share similar properties and challenges (e.g., host-parasite
networks, food webs). Inspired by the efficacy of statistical
ecology tools for modeling imperfect detection, we pro-
pose a collaborative filtering framework that integrates the
Poisson N -mixture model and low-rank nonnegative ma-
trix factorization (NMF)—so that the challenging ecological
network link prediction problem can be effectively modeled
and approached. Our detailed contributions include:

1) Statistical Model for Ecological Link Prediction
We propose a graphical model for the genera-
tive process of observing interactions between two
species in an ecosystem. Our idea is motivated by
the Poisson N -mixture model [15] that has been
used for single-species observations. We impose

a latent Poisson-nonnegative matrix factorization
(NMF) model for generating the real counts of ob-
servations, and a Binomial-linear regression model
to model the imperfect detection effect. This way,
both interaction preferences (modeled by latent
NMF) and factors that affect the observation (mod-
eled by features of the regression model) can be
considered under a unified framework.

2) Effective Optimization Algorithm We propose an
effective algorithm to handle the inference problem
associated with our model. The maximum likeli-
hood (ML) estimator under the generative model
poses a very challenging optimization problem, due
to the Poisson distribution in the latent space, pa-
rameterized by NMF—which is NP-hard to com-
pute. Nevertheless, we propose a block coordinate
descent (BCD)-based algorithm [16] to handle the ML
estimator, and show that the algorithm is conver-
gent. In addition, we judiciously design the updates
so that the algorithm only consists of algebraically
simple operations.

3) Evaluations on Ecological Network Data We test
the proposed approach on synthetic data and two
real-world ecological networks (plant-pollinator in-
teractions and host-parasite interactions) prediction
problem. The pollination and host-parasite data are
publicly available; see [9], [17]. Open-sourced code
for our method and the baselines are also made
available through GitHub at https://github.com/
Hutchinson-Lab/Poisson-N-mixture.

Notation Throughout the paper, we will use boldface capital
letters such as X to denote matrices. We use the Matlab
notationX(i, j) to denote the entry ofX at the ith row and
jth column. X(i, :) and X(:, j) denote the ith row and the
jth column ofX , respectively.X>,X−1, andX† denote the
transpose, inverse, and pseudo-inverse of X , respectively.
Boldface lowercase letters such as x are used to denote
vectors. The inequalities X ≥ 0 and x ≥ 0 mean that the
entries of the matrix and vector are all nonnegative.

2 MOTIVATION AND BACKGROUND

As we have mentioned briefly in the introduction, our
problem is motivated by studying pollination networks in
the Cascade mountains of Oregon, United States [9]. In
this study, student researchers recorded all interactions they
observed between plant and pollinator species. The goal of
this study, from an ecological point of view, is to infer the
structure and dynamics of the pollination network, in order
to understand how the network will respond to perturba-
tions like species extinctions and invasions. To achieve this
goal, one must first infer the true pattern of connections
between different species of pollinators and plants, despite
the incomplete (and highly biased) data provided by field
sampling. To this end, we propose an approach that com-
bines ideas from both collaborative filtering and statistical
ecology. Below, we review key concepts from these fields.

2.1 Matrix Completion-Based Collaborative Filtering
One of the key techniques that enables movie recommen-
dation is the so-called collaborative filtering (CF) [18]. In
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CF, we are given a movie rating matrix X whose rows and
columns represent users and movies, respectively—X(i, j)
is the rating of movie j by user i. Only a small portion
of X(i, j)’s are observed, indexed by (i, j) ∈ Ω. The task
of CF is to impute or predict the missing entries, which is
essentially link prediction for bipartite graphs. One of the
popular formulations is

minimize
U ,V

∑
(i,j)∈Ω

(
X(i, j)− u>ivj

)2
(1)

where ui and vj stand for the ith row and jth column of
U ∈ RI×F and V ∈ RJ×F , respectively, and U and V col-
lect all the latent representations (embeddings) of the users
and movies, respectively. The rationale behind the above
formulation is to model the rating of a movie by a user using
the ‘correlation’ between the user embedding and movie
embedding. In addition, one can view the formulation in (1)
from a low-rank matrix factorization viewpoint (with many
missing values)—since if many users have similar tastes and
many movies have similar traits, X is expected to be a low-
rank matrix. Hence, the collaborative filtering problem boils
down to a low-rank matrix completion (MC) problem.

The formulation in Eq. (1) is more suitable for continuous
data. When X(i, j) denotes a counted number, Poisson
priors are commonly used, which assumes the following
observation model [19], [20]:

X(i, j) ∼ Poisson(u>ivj), ui ≥ 0, vj ≥ 0, ∀i, j (2)

Note that the nonnegativity constraints on ui and vj are
needed to ensure that the Poisson parameter λij = u>ivj
characterizing the expected number of interactions within
a certain time interval is nonnegative. The corresponding
maximum likelihood (ML) estimator becomes

minimize
U ,V

∑
i,j

[
u>ivj −X(i, j) log(u>ivj)

]
(3a)

subject to U ≥ 0, V ≥ 0. (3b)

The problem above is essentially the same as the Kullback-
Leibler (KL)-divergence based NMF, which is well-studied
in the literature; see [19], [20].

Note that the Poisson modeling in (3) has several ap-
pealing features. Most notably, it naturally models missing
elements in X , since X(i, j) = 0 is allowed to happen with
positive probability under a Poisson distribution. This way,
the model interprets two major reasons for having missing
links (namely, interactions do not exist and interactions were
not observed) in a ecological network using a simple and
unified way. The Poisson NMF model is preferred also
because many ecological data are recorded as counts of
interactions or encounters—which are both natural numbers
rather than continuous values. This makes the formulation
in (3) more appealing for link prediction in ecosystems.
Nevertheless, the Poisson NMF model does not consider
the imperfect detection effect, and thus naively applying (3)
does not account for systematically under-counted data. In
particular, the mixture of both true and false zeros leads to
over-dispersion (zero-inflation) of the Poisson distribution if
imperfect detection is not incorporated.

N

Y

K

Fig. 2. Graphical model of a Poisson N -mixture model when K obser-
vations are made for a single spices.

2.2 Poisson N -Mixture Model
In statistical ecology, the Poisson N -mixture model is ap-
plied widely to handle the imperfect detection effect in field
sampling—especially when observing animals. The model
is simple and intuitive: the true abundance of an animal is
modeled as

N ∼ Poisson(λ).

The observed count is modeled as a binomial selection of N ,
i.e.,

Y ∼ Binominal(N, p)

where p is the detection probability; see the illustration in
Fig. 2. This model admits inference on both the true and
observed counts by explicitly accounting for the observation
process. Both λ and p can be linked to features that affect
true abundance (e.g., habitat characteristics) and detection
probability (e.g., weather conditions), respectively. How-
ever, most applications of this model have been concerned
with estimating p and λ for single species [15], [21], and this
model has not been applied to species interaction networks.
The standard N -mixture model is already computationally
hard [21], so incorporating it into link prediction problems
is quite challenging.

3 PROPOSED APPROACH

Our approach combines the strengths of the Poisson N -
mixture model for estimating species abundance under
imperfect detection and low-rank CF models for link pre-
diction. We propose the following generative model:

λij = u>ivj , ui ≥ 0, vj ≥ 0, (4a)
Nij ∼ Poisson(λij) (4b)

pij = α>z(ij), 0 ≤ pij ≤ 1 (4c)
yij ∼ Binomial(Nij , pij) (4d)

We model λij , i.e., the Poisson parameter for the (i, j)th
interaction. A bigger λij means that the interaction occurs
more frequently on average. We assume that the interaction
between pollinator i and plant j is more frequent if their
embeddings are more ‘correlated’. Note that we constrain
U and V to be elementwise nonnegative, because λij has to
be nonnegative.

In the observation model, we let the detection probability
of the (i, j)th interaction be pij = α>z(ij), where z(ij) ∈ RR
is a interaction-specific feature vector. This vector is defined
over a feature space that affects the detection probability
for a particular pair of (i, j)—e.g., abundance of plant j,
size of pollinator i, and the time of observation can all
be features collected by z(ij). This way, side information
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that we may have in the data generating process can be
seamlessly incorporated into the model. Note that pij is a
detection probability, and thus naturally lies in between 0
and 1.

4 OPTIMIZATION ALGORITHM

Following the generative model in (4), we are interested in
learning U , V , and α. Let us denote the probability mass
function of Yij by

Pr(Yij = yij ;λij , pij).

By the assumed generative model and the law of total
probability, the log-likelihood function of the parameters of
interest is as follows:

log

∏
ij

∞∑
n=yij

Pr(Nij = n;λij)Pr(yij |Nij = n; pij)


=
∑
ij

log

 ∞∑
n=yij

(
λnije

−λij

n!

n!

yij !(n− yij)!
p
yij
ij (1− pij)n−yij

)
The above formulation has an infinite sum, which appears
problematic at first glance: If one directly applies maximum
likelihood estimation using the above, then an infinite num-
ber of terms are involved in the estimator, which might be
very hard to handle.

To proceed, we invoke the following lemma [21]:

Lemma 1 The following equality holds:
∞∑

n=yij

λnije
−λij

n!

n!

yij !(n− yij)!
pyij (1−p)n−yij =

(pλij)
yije−λijp

yij !
.

Lemma 1 is a classic result that is employed in many
fields [21]—to be self-containing, we present a short proof
in Appendix A. Nonetheless, the result is very useful in
our context, since it elegantly converts a quite complicated
ML estimator to one that is much easier to maneuverer for
subsequent steps.

Applying Lemma 1, we have the following simplified
log-likelihood:∑

ij

log

(
(pijλij)

yij e−λijpij

yij !

)
=
∑
ij

(yij log pij + yij log λij − λijpij − log yij !) .
(5)

Hence, under our model, we aim to optimize the following:

minimize
U ,V ,α

−
∑
ij

[
yij log

(
α>z(ij)

)
+ yij logu>ivj

−(u>ivj)
(
α>z(ij)

)]
subject to : ui ≥ 0, vj ≥ 0, ∀i, j (6a)

0 ≤ α>z(ij) ≤ 1, ∀i, j. (6b)

The problem is still very challenging because of the coupled
nature of U ,V , and α. In addition, the constraints on the
optimization variables are not straightforward to handle.
To tackle the formulated maximum likelihood estimation

repeat the following until convergence:

αt+1 ← arg min
0≤α>zij≤1, ∀i,j

f(U t,V t,α)

U t+1 ← arg min
U≥0

f(U ,V t,αt+1)

V t+1 ← arg min
V ≥0

f(U t+1,V ,αt+1)

t← t+ 1

Fig. 3. The algorithmic framework for the ML estimator in Eq. (6).

problem, we propose a block coordinate descent (BCD) [16]
based algorithm. The basic idea is to cyclically solve ‘partial’
optimization problems w.r.t. a single block variable among
U , V , and α, respectively, while fixing the other two.
This way, the subproblems can be handled efficiently—
leveraging computational tools for probabilistic NMF. The
high-level algorithmic structure is summarized in Fig. 3,
where we use f(U ,V ,α) and t to denote the objective
function in (6) and the index of iteration, respectively. The
updates are carried out in each iteration until a certain
convergence criterion is met.

4.1 The α-update
First, consider the α-update. Since U ,V are fixed, the
relevant part of the objective function (6) is:

minimize
α

∑
(i,j)∈Ω

−
[
yij log

(
α>z(ij)

)
−
(
α>z(ij)

)
λij
]

s.t. 0 ≤ α>z(ij) ≤ 1,
(7)

where we have omitted the superscript ‘t’ for notational
simplicity. We use λij = u>ivj to denote the current estimate
of λij . This is a convex optimization problem. Nevertheless,
there is a serious scalability issue if standard optimization
toolboxes (e.g., CVX and the interior point method (IPM)
[22], [23]) are employed. The scalability challenge lies in
the large number of constraints, i.e., IJ constraints, which
makes IPM-like algorithms very slow (i.e., O(R2IJ) flops
are needed and both I and J can be large).

To circumvent the scalability issue, we propose an al-
ternating direction method of multipliers (ADMM) [24] based
algorithm. As will be seen, with judicious reformulation, the
updates of the ADMM algorithm are all very lightweight.
Specifically, we introduce an auxiliary variable P ∈ RI×J
such that P (i, j) = pij = α>z(ij) and we denote

p = vec(P ).

Consequently, Problem (7) can be rewritten as

min
α,p

∑
ij

− [yij log pij − pijλij ]

s.t. 0 ≤ pij ≤ 1, α>z(ij) = pij .

(8)

The augmented Lagrangian is

L =
∑
ij

− [yij log pij − pijλij ] +
ρ

2
‖p−Zα+ ω‖22

where p is the vectorized version for P , ρ > 0 is a
pre-specified regularization parameter (see details in [24,
Chapter 3] for how to select this parameter), ω = vec(W ),
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W (i, j) is the dual variable associated with α>z(ij) = pij ,
and

Z ∈ RIJ×R, Z((j − 1)I + i, :) = (z(ij))>,

which is a matrix that collects all (z(ij))>’s as its rows. The
updates of the ADMM algorithm are as below:

p← arg min
0≤p≤1

∑
ij

− [yij log pij − pijλij ]

+
ρ

2
‖p−Zα+ ω‖22 (9a)

α← arg min
α
‖p−Zα+ ω‖22 (9b)

ω ← p−Zα+ ω (9c)

In (9), the dual update (i.e., ω) is trivial and naturally
lightweight. The second line can be updated via the follow-
ing closed form solution, since it is simply a least squares
problem:

α← Z†(p+ ω), (10)

and the pseudo-inverse Z† can be computed and stored
in advance (which only needs to be computed once before
the whole BCD algorithm starts)—meaning that the only
operation needed here is matrix-vector multiplication.

It seems that the most difficult subproblem is Prob-
lem (9a). Nonetheless, this subproblem can be shown to
admit a closed-form solution:

Lemma 2 The solution to Problem (9a) can be obtained by the
following algebraic form:

p←
[

(ρp̄− λ) +
√

(ρp̄− λ)2 + 4ρy

2ρ

]
[0,1]

, (11)

where all the power, square, and division operators are taken
elementwise, [Q][0,1] = min[max[Q, 0],1], and

y = vec(Ỹ ).

Proof: Notice that the problem is separable w.r.t. each
(i, j), and thus it suffice to show (11) holds for each pij .
In other words, Problem (9a) can be solved via solving the
following scalar problem:

minimize
0≤p≤1

− y log p+ pλ+
ρ

2
(p− p̄)2

where we omitted the subscripts and let

p̄ = Zα− ω.
First consider the case where y > 0. Then, the optimal

solution must satisfy p > 0, since p = 0 results in an
infinitely large objective value. This univariate function in
the objective is convex, and thus can be easily solved via
taking the first-order derivative w.r.t. p and setting it to zero,
which leads to

−y
p

+ λ+ ρ(p− p̄) = 0.

The above amounts to a root-finding problem for a second-
order polynomial. Hence, the optimal solution is either at
the boundary of p ∈ [0, 1] (in this case, only 1) or

p =

[
(ρp̄− λ) +

√
(ρp̄− λ)2 + 4ρy

2ρ

]
, (12)

repeat the following until convergence:

update p← Eq (11);

update α← Z†(ω + p);
update ω ← p−Zα+ ω;

Fig. 4. The ADMM algorithm for solving (7).

if the above is smaller than 1.
Also consider the case where y = 0. This is even simpler

since the problem becomes

minimize
0≤p≤1

+ pλ+
ρ

2
(p− p̄)2,

which is a univariate quadratic problem. One can show that

p =
(ρp̄− λ) +

√
(ρp̄− λ)2

2ρ

or on the boundary of [0, 1] by the same reasoning. There-
fore, the solution for p can be summarized as that in (11).
�

The ADMM algorithm is summarized in Fig. 4. One
can see that all the updates are very lightweight and thus
the algorithm is easily scalable. Since the α-subproblem
is convex, the ADMM algorithm guarantees to solve it to
optimality [24].

4.2 The U -update
The subproblem w.r.t. ui and vj is

min
ui≥0,vj≥0

∑
i,j

[
piju

>
ivj − yij log(u>ivj)

]
, (13)

where pij = α>z(ij). In essence, the above problem can be
understood as a weighted version of KL-divergence based
nonnegative matrix factorization— the only difference be-
tween (13) and KL-divergence NMF is that the terms u>ivj
are scaled by pij . Techniques such as multiplicative updates
(MU) [25] that are used for KL-divergence NMF can still
be applied here, with careful modifications. To be specific,
consider the objective function of the U -subproblem, which
can be decoupled to I subproblems w.r.t. ui as follows:

f(ui) =
∑
j

[
piju

>
ivj − yij log(u>ivj)

]
and its tight upper bound

g(ui, ūi) =u>i

∑
j

pijvj


︸ ︷︷ ︸

ũi

−
∑
j

yij

R∑
r=1

β(ij)
r log

(
ui,rvj,r

β
(ij)
r

)
,

(14)

where β(ij)
r =

ūi,rvj,r
ū>ivj

. Note that the upper bound is derived
from the Jensen’s inequality; see details in [19], [20]. The
upper bound is tight in the following sense:

f(ui) ≤ g(ui, ūi), ∀ui ≥ 0, (15a)
f(ūi) = g(ūi, ūi) (15b)
∇uif(ūi) = ∇uig(ūi, ūi); (15c)

i.e., the two functions are ‘tangent’ at ui = ūi.
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The idea of MU-like algorithms is to update ui via
solving

ui ← arg min
ui≥0

g(ui, ūi), (16)

instead of directly solving f(ui) that is hard to tackle. This
is widely known to be majorization minimization (MM) in the
optimization literature [26], which ensures decreasing the
cost value of f(ui) in each iteration.

To solve the surrogate optimization problem (16), let us
take derivative w.r.t. ui,r , we have

∇ui,r
g(ui, ūi) = ũi,r −

∑
j

yi,jβ
(ij)
r

(
β

(ij)
r

ui,rvj,r

)(
vj,r

β
(ij)
r

)

= ũi,r −
∑

j

yi,jβ
(ij)
r

 1

ui,r
.

Setting the above equal to zero leads to

ui,r =

(∑
j yi,jβ

(ij)
r

)
ũi,r

, (17)

which is surely nonnegative, being reminiscent of the mul-
tiplicative update (MU)—under the condition that ũi,r is
nonzero, which hardly happens in practice if U , V and P
are initialized with nonzero matrices.

By role symmetry, we immediately have the following:

vj,r =

(∑
i yi,jβ

(ij)
r

)
ṽj,r

, ṽj =
∑
i

pi,jui (18)

The update of U and V can be represented in a more
compact form, i.e.,

U ← (U ◦Φ) /Ũ , Φ =
(
Y /UV>

)
V (19)

V ← (V ◦Ψ) /Ṽ , Ψ =
(
Y>/V U>

)
U , (20)

where “◦” denotes the Hadamard product and “/” denotes
the elementwise division (i.e., “./” in Matlab). One can see
that the above updates indeed exhibit a flavor of MU, with
the newly defined Ũ and Ṽ caused by incorporating the
weighting matrix P ; see Eqs (14) and (18) for the definitions
of the ith row of Ũ and jth row of Ṽ , respectively.

Remark 1 Our formulation and algorithm naturally work for
networks with many zeros without knowing if they are “unde-
tected links” (observation made but no interaction between the
associated pairs detected) or “true misses” (no observation made
for the associated pairs). One remark is that in many cases, domain
knowledge can be used to distinguish “undetected links” and “true
misses”, at least for part of the network. In incorporating such
domain knowledge is often useful, especially when dealing with
noisy real-world data. Minor modifications to the algorithm suffice
to take “true misses” into consideration. To be specific, we can keep
the same α-update as before, but only applied to the entries where
observations were made (no matter if interactions were recorded).
For the U ,V -updates, we first impute the missing entries (where
no observations were made) ŷi,j = û>i v̂j , where ûi, v̂j denote the
current estimations for ui and vj , respectively, and then apply the
proposed algorithm. This simple heuristic admits an expectation-
maximization (EM) interpretation in the NMF literature [27].

4.3 Convergence Properties

Our algorithm involves an exactly solved block subproblem
(i.e., the α) and two inexactly solved blocks (i.e., the U and
V blocks). One natural question is: does the algorithm con-
verge? The answer is affirmative, under certain conditions.
This can be shown by invoking recent results regarding
inexact block coordinate descent [26], [28]. Specifically, we
have the following proposition:

Proposition 1 Assume that the α-subproblem is solved by the
ADMM algorithm in each iteration, andU and V are updated by
MU in each iteration. Also assume that there is no zero element
appearing in U and V throughout the iterations. Then, every
limit point of the solution sequence produced by the proposed
algorithm is a stationary point of Problem (6).

Proposition 1 asserts that the algorithm is convergent under
certain conditions—and every limit point satisfies the nec-
essary conditions for optimality. The detailed proof is rele-
gated to Appendix B. Since we use a MU-like algorithm for
updating U and V , the caveat in theory is that convergence
is only guaranteed if there is no zero elements appeared in
U and V in each iteration—which is not easy to check or
ensure. Even worse, if zero appears in U or V , the update
rules such as Eq. (18) are ill-defined. Nevertheless, there are
many pragmatic ways to ‘robustify’ the algorithm, e.g., by
adding a very small ε > 0 to ũi,r and ṽj,r in each iteration
[20] [cf. Eq. (18)]. This usually improves the performance of
MU-type algorithms [20], [25] (also see Appendix B).

5 NUMERICAL EXPERIMENTS

In this section, we offer a series of numerical results to show-
case the effectiveness of the proposed algorithm. We start
with synthetic data that obeys the considered generative
model, as a sanity check for convergence, complexity, and
estimation accuracy. Then, we use the pollination network
data collected in the Cascades in Oregon [9] and the host-
parasite network data collected in a New Mexican desert
ecosystem [29] to evaluate the performance of the proposed
approach on real ecological network link prediction prob-
lems.

5.1 Synthetic Data

We generate the synthetic data following the model de-
scribed in (4). Specifically, we first generate U and V
whose elements are drawn uniformly at random between
zero and γ > 0—note that we change γ under different
problem settings such that u>ivj is not too small or too large,
leading to pathological cases. We also enforce the separability
condition on U and V so that the underlying NMF model is
identifiable [30]–[32]. Then, we generate the feature vectors
z(ij) and the linear regression coefficients α following the
same uniform distribution.

For synthetic data, we use two baselines as benchmarks.
The first one is the Poisson NMF algorithm [20], [25] that
handles Problem (3), without considering Binomial selec-
tion. The second algorithm is MC-based CF that handles a
similar problem as in (1), with regularizations for enhancing
performance [33].
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Fig. 5. The average MSEs of the estimated U ,V (left) and α (right)
produced by the algorithms under test.

We adopt a straightforward evaluation strategy for sim-
ulated data. Since we know the ground-truth model param-
eters U , V , and α, we use mean squared error (MSE) to
evaluate performance; e.g., the MSE of the estimated U is
defined as following:

MSE = min
π(f)∈{1,...,F}

1

F

F∑
f=1

∥∥∥∥∥ U(:, π(f))

‖U(:, π(f))‖2
− Û(:, f)

‖Û(:, f)‖2

∥∥∥∥∥
2

2

where Û denotes the estimate of U and π(f)’s are un-
der the constraint {π(1), . . . , π(F )} = {1, . . . , F}—i.e.,
[U(:, π(1)), . . . ,U(:, π(F ))] is a column-permuted version
of U . We use the above because NMF has intrinsic scaling
and permutation ambiguities, which need to be fixed before
evaluation [30], [34]. For V we use the same evaluation. For
α, we measure the MSE by MSE = 1

R ‖α̂−α‖
2
2 , where α̂

denotes the algorithm-estimated α.
All the algorithms under test in this subsection are coded

in Matlab, and are all initialized by the same randomU and
V . For the proposed method, α is also randomly initialized.
All the entries of the initializations of U ,V , and α are
drawn uniformly at random between zero and one.

Fig. 5 (left) shows the averaged MSEs of the estimatedU
and V of a case where R = 8, I = J = 50 and F = 15. In
this simulation we set γ = 15. The results are averaged over
50 random trials. One can see that MC-CF does not work for
this data model, since it is not specialized for integer data
and does not take into consideration the imperfect detec-
tion effect. The Poisson NMF algorithm works to a certain
extent—since it is a natural choice for count data as in our
model. Nevertheless, the estimation accuracy is not ideal.
The proposed algorithm exhibits the highest estimation ac-
curacy because it explicitly accounts for imperfect detection.

5 10 15 20 25 30
rank
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100

M
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10-2 100 102 104

time (sec.)
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M
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Fig. 6. Left: the average MSEs of the estimated α under different ranks.
Right: Runtime performance of the proposed algorithm using ADMM and
CVX, respectively.

In particular, when the number of iteration reaches 100, the
MSE output by the proposed method is all most one order of
magnitude lower relative to Poisson NMF. This shows that
considering the imperfect detection effect explicitly is quite
helpful for model identification. This result also shows that
our optimization strategy is quite effective in handling the
hard ML optimization problem.

Fig. 5 (right) shows the average MSE of α for the
same experiment. One can see that the accuracy increases
along with the iterations—and merely using 100 iterations
achieves quite a satisfactory estimation accuracy for this
case. This is encouraging, and indicates that identifying the
underlying NMF model together with the selection model
is possible, despite of the complex nature of this generative
model.

Fig. 6 (left) shows the estimation accuracy of latent
factors U ,V when the rank changes under I = J = 50.
The performance of all the algorithms under test deteriorate
gracefully when R increases – which is understandable
since for fixed data size, increasing the rank of UV>means
increasing the number of unknown parameters, and thus in-
creasing the problem difficulty. Nevertheless, the proposed
algorithm outperforms the benchmarks under all ranks un-
der test.

Fig. 6 (right) shows the efficiency of the proposed
ADMM-based α-update. The setting is the same as that use
in Fig. 5. One can see that the ADMM algorithm outper-
forms a generic convex optimization solver by a very large
margin, because the updates in the ADMM algorithm are all
simple operations.
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Fig. 7. Visualization of the real pollination data subset we analyzed.
Plants are rows, pollinators are columns, and blue entries means
interaction between the corresponding pairs never co-occurred in
space/time. Gray level of the grids are used to represent the number
of observed counts.

5.2 Ecological Network Data

Plant-Pollinator Network Dataset. We focus here on data
collected by undergraduate researchers at the H.J. Andrews
(HJA) Long-term Ecological Research site in the Oregon
Cascade mountains, which are publicly available [9]. These
data are comprised of observations at about 12 meadows
over seven years. Students record every visit they observe
from a pollinator to a flower—688 pollinator species and
148 plant species so far. The data are sparse; only about
3.5% of all possible links have ever been observed. The
visitation counts are also highly skewed, with many links
observed only once and a few observed over 1,000 times.
The recorded zeros in the data are a mix of true zeros and
links that likely occurred but were unobserved during the
students’ watches.

These network data are accompanied by side information
of varying types. First, before recording the visits, the stu-
dents exhaustively survey the observation plots and record
the number of stalks per flowering plant species present.
In addition, there are data describing traits of the species
themselves, like flower color and pollinator tongue length.

In this analysis, we focused on the most common species
observed in the visitation data for which we also had
information about species traits. Based on commonness and
trait information, we constructed a 50 × 50 plant-pollinator
visitation matrix for analysis by aggregating over all obser-
vations from 2011 through 2017 (Fig. 7). For these common
species, 42% of the entries were non-zero. Among the zero
entries, we used the flower survey data to distinguish be-
tween two cases of zeros: 1) the plant and pollinator species
occurred in the same time and place at least once but did
not interact (49% of the matrix; white cells in Fig. 7), vs.
2) the plant and pollinator species never co-occurred (9%
of the matrix; blue cells in Fig. 7). We treated the second
case as truly missing values. For the first kind of zeros,
we leave it to our probabilistic model to determine which
are true zeros and which may have been undercounted. We

used six categorical features in z(ij) based on species traits:
pollinator energy requirements (7 values), pollinator tongue
length (8 values), plant soil community (8 values), plant life
form (2 values), plant flower form (2 values), and plant
exclusion platform type (whether it excluded pollinators
based on its shape; 3 values).

Host-Parasite Dataset We also use another ecological
dataset, v.i.z., the host-parasite networks that is a part of
the Sevilleta Long-Term Ecological Research program. The
networks are also publicly available [17]. These data are
collected over 5 years at six sites, resulting in 22 host species
and 87 parasite species except for host species with less than
five observations during the sampling period. These data
also form a sparse and highly skewed visit count graph;
about 13.5% of all possible links have been observed.

These host-parasite network data also contain host and
parasite traits as side information. Host traits include life
history traits (e.g., host diet breadth, body mass, home range
size, maximum age, and species abundance) and some phy-
logenetic information. Parasite traits consist of life history,
transmission modes, genus, type, and location.

Similar to the plant-pollinator dataset, we focus on the
most common 19 host and 49 parasite species observed for
analysis. For these species, 22% of the entries are non-zero.
Unlike the pollination data, the host-parasite dataset does
not have additional information to distinguish “zeros” or
“truly missing entries”.

Semi-Real Data Evaluation. While the primary scientific
objective for pollination networks is inference of the latent
counts N̂ from the observations Y , we do not have ground
truth for N against which to compare our predictions.
Instead, we employ two other evaluation strategies that are
possible with the data at hand. First, we “observe” a real
pollination data matrix according to our detection model
with known parameters. This essentially replicates the simu-
lated data evaluation above with real count networks acting
as N . The point here is that real counts N are not likely to
strictly follow the Poisson distribution, so this analysis asks
whether or not our Poisson modeling is useful in practice.
The rationale is as follows: If our two-layer model holds,
the observed counts are Poisson distributed with parameter
pijλij (also see Lemma 2). Our experiments here essentially
treat the real observed counts asN in our model and impose
another layer of Binomial detection. If we can accurately
identify the imposed the detection model (i.e., accurately
estimating α), it implies that the Poisson modeling for the
counts is quite promising.

We test the algorithms under two settings. First, we use
a constant detection probability for all entries. Second, we
generate pij = α>z(i,j) using real traits z(i,j) and a random
vector α; the generating process is carefully controlled such
that pij ∈ [0, 1]. When the detection model consists of a
constant detection probability of 0.9, the model learns this
parameter with generally low MSEs [see Fig. 8, 9 (upper)],
if the rank is appropriately selected.For the second case,
one can see that the estimation of α is even more robust
to the change of ranks [see Fig. 8, 9 (lower)], perhaps
because the second case is more consistent with the assumed
generative model. Note that the MSE of the estimated α is
not monotonic along the iterations, which is understand-
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Fig. 8. The average MSEs of the estimated α produced by the algo-
rithms in the plant-pollinator network. Left: constant detection probability.
Right: feature-dependent detection probability.

able since BCD algorithms only ensure monotonic decrease
of the objective function. These results indicate that the
Poisson modeling in the proposed framework is plausible.
In addition, the results here also suggest that selecting an
appropriate rank F and using a good stopping criterion are
important.
Real Data Evaluation. The second evaluation strategy is a
more typical approach in collaborative filtering: we split
the matrix elements into ten folds and compare the true
Y with Ŷ on held-out elements. We compute relative root
mean squared error (rRMSE = RMSE/Y , where Y is
the mean value of Y ), area under the receiver operating
characteristic curve (AUROC), and area under the precision-
recall curve (AUPRC) on predictions for the non-missing
elements aggregated across the ten test folds. Since the
pollination network has some truely missing entries, we use
the EM variation mentioned in Remark 1 for this dataset. We
compare against four other matrix factorization methods:
Poisson NMF, implicit feedback matrix factorization (IFMF)
[35], MC-CF, truncated singular value decomposition (SVD).
We used performance on a validation fold as a stopping
criterion for the iterative methods and ran each method
with five different ranks (F ∈ {2, 5, 10, 20, 40}). The pro-
posed method uses the species traits as detection features
in the binomial model. We also use a competitive baseline,
namely, the recently developed neural network-based collabo-
rative filtering (NCF) [36] as a benchmark. We also compare
against Poisson regression [37], boosted regression trees
(BRT; with Poisson link) [38] and random forests (RF) [39]
which predict the same ten folds without using the matrix
structure. For NCF model, we tested the batch size of [256,

Fig. 9. The average MSEs of the estimated α produced by the algo-
rithms in the host-parasite network. Left: constant detection probability.
Right: feature-dependent detection probability.

TABLE 1
Performance of eight methods predicting held-out interactions in the
plant-pollinator network data. Rank and no.of trees were tuned on a

validation fold to minimize rRMSE; reporting majority vote of rank and
no. trees and average iterations over 10 folds. Methods above the

double line employ some form of matrix factorization; methods below
the double line predict interactions solely based on trait features.

Method Rank rRMSE AUROC AUPRC
or Trees

Pois. N-mix. 5 3.873 0.750 0.733
Pois. NMF 5 9.038 0.735 0.709
MC-CF 2 5.939 0.622 0.644
IFMF 2 7.444 0.631 0.626
Trunc. SVD 2 15.349 0.526 0.535
NCF n/a n/a 0.731 0.695
Pois. Regr. n/a 10.241 0.588 0.524
BRT n/a 10.187 0.603 0.537
RF n/a 10.308 0.661 0.574

512], the layer-wise neuron setup of [8, 16, 32, 64] and [16,
32, 64, 128] and the learning rate of [0.0001, 0.0005, 0.001,
0.005] to tune hyper-parameters. The tree-based methods
were tuned among {1000, 2500, 5000, 10000} trees. These
baselines speak to the utility of the trait data.

The results show that the proposed approach outper-
forms all competitors on all three metrics (Table 1). Among
the baselines, Poisson NMF have the most similar perfor-
mance as that of the proposed method. This is not entirely
surprising—as we have seen in Lemma 1, if N is Pois-
son distributed, then Y is also Poisson distributed, given
that the observation is truly a Binomial selection process.
Nevertheless, the proposed method still performs better
compared to a simple Poisson NMF formulation, even for
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TABLE 2
Performance of eight methods predicting held-out interactions in the

host-parasite network data.

Method Rank rRMSE AUROC AUPRC
or Trees

Pois. N-mix. 5 3.538 0.759 0.692
Pois. NMF 10 3.781 0.707 0.635
MC-CF 5 3.644 0.665 0.627
IFMF 2 3.872 0.639 0.587
Trunc. SVD 2 5.335 0.462 0.451
NCF n/a n/a 0.689 0.393
Pois. Regr. n/a 5.877 0.676 0.370
BRT n/a 5.905 0.697 0.383
RF n/a 5.920 0.663 0.343

the task of predicting Y . The reason might be that the
proposed approach can effectively incorporate trait features,
which should be helpful in practice. The proposed model
also outperforms NCF which is known to be effective for
collaborative filtering by replacing the inner product with
a neural architecture. It shows that capturing hidden inter-
action mechanisms from the sampled counts in the field,
which could have many missing data points unlike user
feedback, can be a challenging problem to user-oriented
recommendation models. In this regard, the proposed ap-
proach can predict additional information in the form of
latent network counts, i.e., N (to be discussed shortly),
which is more important in ecology.

As a third evaluation strategy, we examine predictions
made from our model for the true missing entries in the
pollination network (blue in Fig. 7). We sort the 226 missing
entries from largest to smallest predicted interaction counts.
We showed the top ten and bottom ten interactions to an
expert entomologist and asked which set were more likely to
interact if they did co-occur (without revealing our predic-
tions). The expert chose the set of the top ten interactions as
more likely than the bottom ten, in part because the bottom
ten included some plants with exclusionary characteristics
that would forbid some insects from visiting them. While it
is challenging to get quantitative validation, this qualitative
feedback is encouraging and also very intriguing.

Finally, we examine differences in the N̂ estimated from
pollination data with the observed Y . As mentioned above,
only 42% of the possible links in the pollination network
were observed. In contrast, 80.1% of the links were esti-
mated to have a latent count greater than zero. This implies
that the data maybe only recorded roughly half of the
actual links in the network. This effect of imperfect detection
extends to other network statistics of ecological importance
as well. One potential application of these estimates N̂
is that they can be offered to ecologists as references for
designing and taking field observations.

6 CONCLUSION AND DISCUSSION

In this work, we proposed a two-layer statistical model
for network analysis in ecology. Our model captures a
key aspect of many ecological networks (e.g., pollination
networks)—the interaction counts between species are usu-
ally systematically undercounted, which makes existing
collaborative filtering approaches inapplicable for such net-
works. We proposed a generative model that is a judicious

integration of Poisson low-rank latent matrix factorization
and Binomial selection, and we devised an effective op-
timization algorithm to handle the associated challenging
maximum likelihood model identification problem. We eval-
uated the proposed method on both synthetic and real data.
Excitingly, evaluation on the real pollination network shows
that the proposed model and algorithm are promising.

As future work, one possible extension is to introduce a
richer model for the Binomial selection stage. Our current
model uses a linear regression model, which strikes a good
balance between simplicity and effectiveness. However, a
nonlinear regression model using kernels or neural nets
may capture the reality even better, thereby further boosting
performance. In addition, we plan to develop a version
of this modeling framework that allows both latent and
observed features to inform the network model. This would
allow the trait data to influence the interaction counts di-
rectly rather than through the effects of imperfect detection,
leaving the latent features to capture unmeasured aspects of
the propensity for interactions to occur.
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APPENDIX A
PROOF OF LEMMA 1
The derivation is a classic result in statistics [21]. To obtain
the simple expression in (5), let us begin with the following:

∞∑
n=yij

λnije
−λij

n!

n!

yij !(n− yij)!
pyij (1− p)n−yij (21)

=
pyije−λij

yij !

∞∑
n=yij

λnij(1− p)n−yij
(n− yij)!

. (22)

Now, consider the following change of variables: mij = n−
yij . Then, what we have is

∞∑
n=yij

λnije
−λij

n!

n!

yij !(n− yij)!
pyij (1− p)n−yij

=
pyije−λij

yij !

∞∑
n=yij

λnij(1− p)n−yij
(n− yij)!

=
pyije−λij

yij !

∞∑
mij=0

λ
mij+yij
ij (1− p)mij

mij !

=
(pλij)

yije−λij

yij !

∞∑
mij=0

λ
mij

ij (1− p)mij

mij !

=
(pλij)

yije−λijp

yij !

where the last equality is by the Taylor expansion.

APPENDIX B
PROOF OF PROPOSITION 1
In this section, we present the convergence proof of the
proposed algorithm. Let us first introduce the block successive
upper bound minimization (BSUM) [26], [28], which will be
applied to our case.

Consider an optimization problem

minimize
x1,...,xn

f(x1, . . . ,xn) (23a)

suject to x1 ∈ X1, . . . , xn ∈ Xn, (23b)

where xi denotes the ith block of the optimization variables
and Xi denotes a convex closed set. The BSUM frame-
work advocates the following algorithm to update xi for
i = 1, . . . , n cyclically:

xt+1
i ← arg min

xi∈Xi

gi(xi;x
t
−i) (24)

where

xt−i =
(
xt+1

1 , . . . ,xt+1
i−1,x

t
i+1, . . . ,x

t
n

)
.

The BSUM framework bears a lot of resemblances to the
Gauss-Seidel type block coordinate descent (BCD) scheme [16].
The key difference lies in the employment of (24): Assuming
both f and gi are continuously differentiable, the gi function
is an optimization surrogate that satisfies

gi(xi;x
t
−i) ≥ f(xi;x

t
−i), ∀xi ∈ Xi (25)

gi(x
t
i;x

t
−i) = f(xti;x

t
−i), (26)

∇xigi(x
t
i;x

t
−i) = ∇xi

f(xti;x
t
−i). (27)

Eq. (25) means that gi is a blockwise tight upper bound of
f . It was shown in [26] that the following holds:

Theorem 1 Assume that f(·) is differentiable with respect to all
xi for i = 1, . . . , n, and that the block optimization surrogate
gi(·) for all i satisfies (25). Then, every limit point of the solution
sequence {xt} produced by the BSUM algorithm is a stationary
point of Problem (23).

The proposed algorithm admits three blocks, i.e., U , V ,
and α. let us denote x1 = vec(U), x2 = vec(V ) and x3 =
α. It is clear that g3(·) satisfies (25), since

g3(x3;xt−3) = f(x3;xt−3)

in our case. In addition, for x1, we notice that Eq. (25) also
holds by the construction in Eq. (15a). A subtle point is the
upper bound construction holds in Eq. (15a) only when
there is no zero element in U and V — which is why
Proposition 1 has this condition assumed. In practice, one
normally has no control of intermediate iterates U t and V t,
and thus assuming this is considered relatively strong. One
pragmatic remedy is to modify the update in (19) to

U ← (U ◦Φ) /
(
Ũ + ε11>

)
, Φ =

(
Y /UV>

)
V

V ← (V ◦Ψ) /
(
Ṽ + ε11>

)
, Ψ =

(
Y>/V U>

)
U ,

where 11> is an all-one matrix with proper size, and ε > 0 is
small number. With this modification,U t and V t are always
positive. This trick has been found effective for stabilizing
such multiplicative updates.


