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ABSTRACT

Canonical polyadic decomposition (CPD) has been a workhorse
for multimodal data analytics. This work puts forth a stochastic
algorithmic framework for CPD under β-divergence, which is well-
motivated in statistical learning—where the Euclidean distance is
typically not preferred. Despite the existence of a series of prior
works addressing this topic, pressing computational and theoretical
challenges, e.g., scalability and convergence issues, still remain.
In this paper, a unified stochastic mirror descent framework is de-
veloped for large-scale β-divergence CPD. Our key contribution is
the integrated design of a tensor fiber sampling strategy and a flex-
ible stochastic Bregman divergence-based mirror descent iterative
procedure, which significantly reduces the computation and mem-
ory cost per iteration for various β. Leveraging the fiber sampling
scheme and the multilinear algebraic structure of low-rank tensors,
the proposed lightweight algorithm also ensures global convergence
to a stationary point under mild conditions. Numerical results on
synthetic and real data show that our framework attains significant
computational saving compared with state-of-the-art methods.

Index Terms— Tensor decomposition, β-divergence, stochastic
optimization, mirror descent method

1. INTRODUCTION

Canonical polyadic decomposition (CPD) [1, 2] is arguably one of
the most important tensor decomposition models that has enabled
many core tasks in signal processing and machine learning [3]. A
plethora of classic CPD algorithms were developed under the Eu-
clidean distance-based fitting criterion (i.e., the least squares loss);
see, e.g., the overviews in [3, 4]. Nonetheless, instead of using least
squares as the CPD model fitting criterion, the β-divergence has
been found useful in many applications where the ‘distance’ between
points are typically not measured in the Euclidean space (e.g., sta-
tistical learning and integer data analysis). Some examples of the
β-divergence-based data analytics tasks include neuroscience [5],
gene expression analysis [6], musical analysis [7], image decompo-
sition [8], text mining [9], recommender systems [10], just to men-
tion a few. Both the Eulidean distance and the KL divergence are
special cases of the β divergence, with β = 2 and 1, respectively.

Designing CPD algorithms under the least squares loss has been
a central task in the tensor community, for which effective first-order,
(quasi-)second-order, and stochastic optimization algorithms were
all developed; see, e.g., [11–14]. More discussions on algorithms
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can be found in recent review paper [15]. However, algorithms de-
veloped under the Euclidean distance are often not easily extend-
able to handle the β-divergence. CPD under statistical divergence-
based loss functions has also drawn increasing attention. As a special
case of the β-divergence, the KL-divergence was considered in [9],
where a block majorization-minimization (MM) algorithm is devel-
oped. For the more general β-divergence cases, MM and its variants
for non-negative matrix decomposition were studied in [16] and a
second-order based algorithm was developed recently in [17].

Batch algorithms such as those in [16, 17] are effective to a cer-
tain extent. However, in the era of big data, handling large-scale
β-divergence CPD problems may benefit from stochastic optimiza-
tion for reducing per-iteration computational and memory burdens.
Recently, a stochastic gradient descent (SGD) based algorithm [18]
was proposed for CPD with non-Euclidean distance losses including
the β-divergence. In particular, the algorithm in [18] utilizes SGD to
handle the problem of interest at very large scales. However, the al-
gorithm is developed based on randomly sampling the tensor entries.
Such a strategy makes it hard to exploit some interesting algebraic
properties of low-rank tensors for designing more efficient updates
tailored for CPD model. In addition, convergence properties of the
SGD algorithm in [18] are unclear.

In this paper, by exploiting the multilinear algebraic struc-
ture of low-rank tensors, a unified stochastic mirror descent (MD)
algorithmic framework is developed for large-scale β-divergence
CPD. Our idea is to integrate a recently proposed tensor fiber sam-
pling strategy [14, 19] with the MD algorithm. The fiber sampling
strategy gives rise to nicely structured (non-)convex subproblems
with respect to the latent factors under the β-divergence, which
admits simple and efficient mirror descent-based updates. Lever-
aging the recently proposed notion of Lipschitz-like convexity [20]
from the optimization literature, the proposed algorithmic frame-
work allows flexible choices of the local surrogate functions under
the MD framework to adapt to different β. Such flexibility also
helps offer lightweight updates when the latent factors are under
a variety of constraints that are of interest in data analytics. In
addition, the β-divergence CPD loss function in general has no
Lipschitz-continuous gradient. This poses challenges on analyzing
the convergence behavior—especially under stochastic settings with
constraints. In this work, theoretical convergence is established un-
der the integrated fiber sampling and MD framework. To our best
knowledge, this is the first stochastic MD algorithm framework with
guaranteed convergence for tensor decomposition.

2. CPD UNDER β-DIVERGENCE

Consider a data tensor X with a size of I1× I2× . . .× IN . Assume
that X can be approximated by a low-rank tensor M ,



X ≈M =
∑R

r=1
A1(:, r) ◦A2(:, r) ◦ . . . ◦AN (:, r), (1)

where “◦” denotes the outer product of vectors, An ∈ RIn×R is the
mode-n latent factor, and R is the smallest positive integer such that
(1) holds. On the entry level, the model in (1) can be expressed as
Mi ,M(i1, i2, . . . , iN ) =

∑R
r=1

∏N
n=1 An(in, r), where

i ∈ I , {(i1, i2, . . . , iN )| in = 1, 2, . . . , In, ∀n}

denotes the entry index coordinates—an N -dimensional vector. Us-
ing β-divergence as the distance measure, approximating X by M
can be formulated as the following minimization problem,

min
A1,A2,...,AN

1

|I|
∑
i

dβ (Xi,Mi)

s.t. Mi =
∑R

r=1

∏N

n=1
An(in, r), ∀i ∈ I

An ∈ An, ∀n,

(2)

where dβ(·, ·) denotes the β-divergence, i.e.,

dβ(x, y) =



x

y
− log(

x

y
)− 1, β = 0,

x log
x

y
+ y − x, β = 1,(

xβ + (β − 1)yβ − βxyβ−1
)

β(β − 1)
, β ∈ R/{0, 1},

An is a constraint set which captures the prior information about
the structure of latent factors An, e.g., non-negativity, sparsity and
smoontheness. Since the 2010s, this problem has drawn increasing
attention; see early developments in, e.g., [9]. Recent works [17,18]
considered more advanced stochastic and Gauss-Newton approaches
for (2). The SGD approach in [18] is particularly suitable for massive
data analytics. However, by directly applying the conventional SGD
to the CPD problem, the problem geometry and the tensor algebraic
properties are not fully exploited. Additionally, no convergence un-
derstanding was offered.

3. STOCHASTIC MIRROR DESCENT

For very large-scale tensors (e.g., those arise in social networks, gene
networks, and computer vision), designing batch algorithms faces
both computation and memory challenges (e.g., a 5000 × 5000 ×
5000 tensor costs more than 900GB to store if the double precision
is used). Instead, stochastic optimization schemes which work with
‘partial data’ per iteration can significantly reduce computational and
memory load. Next, we first introduce a fiber sampling strategy and
then present the proposed stochastic MD algorithm.

3.1. Fiber Sampling and Block Structure
In recent year, a fiber sampling [14, 19, 21] strategy was used in Eu-
clidean loss based tensor decomposition and completion to reduce
the complexity and memory burdens. In [14, 19], fiber sampling-
based stochastic CPD algorithms select samples i that are related to
a single latent factor An and updates An based on the selected fiber
samples per iteration. In the context of β-divergence-based CPD, the
sampling strategy admits a couple of notable advantages:
• Incorporating Prior on An: Randomly sampling some indexes
i [22] or selecting a subtensor [13] faces an issue that samples may
relate to only parts of An. Useful prior information about the en-
tire latent factor (e.g., column norm constraints) cannot be imposed;
see [14, 15] for more discussion. Fiber sampling does not have this
challenge. This advantage is shared by the least squares loss and β-
divergence based CPD.

• Block-wise Convex Approximation: Fiber sampling also pro-
vides a way to further exploit the block-wise structure under the
β-divergence. With the notion of Lipschitz-like convexity [20], the
β-divergence with respect to each block An can often be upper
bounded by a strongly convex function—despite the fact the block
subproblems have no Lipschitz-continuous gradient. Exploiting such
block structure in algorithm design can simplify the procedures for
solving the subproblems (see Table 2). The existence of such block
structure also helps analyze the theoretical convergence behavior of
the algorithm (see Section 3.3).

The fiber sampling scheme is based on matrix unfolding oper-
ation, which rearranges a tensor into a matrix. The mode-n matrix
unfolding of X is a Jn × In matrix, denoted as Xn, and the corre-
spondence isXi = Xn(j, in), where j = 1+

∑N
k=1,k 6=n(ik−1)Jk

and Jk =
∏k−1
m=1,m 6=n Im. For low rank tensorM in (1), its mode-n

matrix unfolding is Mn = HnA
T
n , where Hn = AN �AN−1 . . .�

An+1 �An−1 � . . .�A1 and � denotes the Khatri-Rao product.
Based on the mode-n matrix unfolding for X and M , approxi-

mating X by M with {Am}m 6=n fixed can be regarded as a linear
system approximation problem under the β-divergence, i.e., Xn ≈
HnA

T
n . To find this approximation, the mode-n fiber sampling uses

part of rows of Xn as well as the corresponding rows of Hn. De-
note Fn ⊂ {1, 2, . . . , Jn} as the sampled fiber index set. Then, the
sampled version of problem in (2) w.r.t. An becomes

min
An∈An

1

|Fn|In

|Fn|∑
j=1

In∑
i=1

dβ(X̂n(j, i), Ĥn(j, :)An(i, :)T ), (3)

where X̂n = Xn(Fn, :) and Ĥn = Hn(Fn, :).

3.2. Mirror Descent

Problem in (3) boils down to a constrained least squares problem
when β = 2, and a stochastic proximal gradient algorithm is devel-
oped in [14]. However, for the general β-divergence, the problem
is more challenging, since it has no Lipschitz-continuous gradient
and dβ(x, y) may be nonconvex in y. Since Problem (3) is often not
solvable, the key question is how to construct a good approximation
for it? We notice that dβ(x, y) is convex in y for 1 ≤ β ≤ 2 or other-
wise can be decomposed into a convex part ďβ(x, y) plus a concave
part d̂β(x, y), i.e., dβ(x, y) = ď(x, y) + d̂(x, y). By making use of
this property, the objective function in (3) can be upper bounded by
a strongly convex function.

To get an insight on its geometric property, let us take a close
look at each term in (3). Specifically, consider dβ(x, hT a), where
x = X̂n(j, i), hT = Ĥn(j, :), and a = An(i, :)T . Let us consider
`(x,hTa) at ā with hr, ār > 0, ∀r, then we show the following
lemma:

Lemma 1. Let φ(·) be a σ-strongly convex function satisfying the
following condition,

∃L > 0, such that Lφ(ar)− ďβ
(
x,
hr
λr
ar

)
is convex, (4)

where λr = hr ār
hT ā

> 0, r = 1, 2, . . . , R, and
∑R
r=1 λr = 1. Then,

dβ(x, hT a) ≤ dβ(x, hT ā)+〈∇dβ(x, hT ā), a−ā〉+L
R∑
r=1

Dφ(ar, ār),

and equality holds if and only if a = ā and Dφ(ar, ār) is Bregman
divergence by referring function φ(·), defined as

Dφ(ar, ār) = φ(ar)− φ(ār)− 〈∇φ(ār), ar − ār〉.



Table 1. Examples of function φ(y) with respect to different β.
β φ(y) Convexity

β < 1 yβ−1

nonconvex
β > 2 yβ

β = 1 y log y,− log y convex
1 < β ≤ 2 yβ , y2

The lemma says that dβ(x, hT a) at ā can be upper bounded by a
strongly convex function based on the Bregman divergence. Apply-
ing the Jensen’s inequality for convex part together with the notion of
Lipschitz-like convexity [20] and combining the linearization for the
concave part (if exists) lead to the conclusion of Lemma 1. Note that
condition in (4) is easy to satisfy, e.g., by choosing φ(a) = ďβ(x, a),
and it is referred as Lipschitz-like convexity condition for function
pair

(
φ(·), ďβ(x, ·)

)
. Lemma 1 indicates that properly choosing φ(·)

to ‘fit’ the geometry of the convex part of β-divergence can construct
a strongly convex upper bound function using the Bregman diver-
gence. This can be straightforwardly extended to multiple i, j case.
Also note that MM schemes in [9, 16] are special cases of the upper
bound function indicated by Lemma 1. Consequently, by properly
choosing φ(·) to adapt the function geometry, Problem (3) is approx-
imately solved via the following update:

At+1
n = arg min

A∈An
〈Ĝt, A−Atn〉+

1

ηt
DΦ(A,Atn), (5)

where t is the iteration index and ηt > 0 is a proper step size. Ĝt is
the gradient at Atn, given as

Ĝtn =
1

|Fn|In

[
(ĤnA

t
n).β−2 ~ (ĤnA

t
n − X̂n)

]T
Ĥn, (6)

where A.β denotes the entry-wise power operation and ~ is the
Hadamard product. Here, DΦ(A,Atn) is the Bregman divergence
which measures the ‘distance’ between A and Atn by a reference
function Φ(A) =

∑
j,i φji(A(j, i)) and φj,i(·) is a proper σ-

strongly convex function.
Combining the fiber sampling together with randomized block

selection, the proposed algorithm is summarized in Algorithm 1.
The subproblem in (5) is also known as stochastic MD method in
the optimization literature. In addition, note that some existing block
coordinate descent based algorithms [9, 14, 16, 23, 24] for matrix or
tensor decomposition can be regarded as special cases of the pro-
posed algorithm, i.e., properly choosing φ and the step size ηt, or
using full samples to update An. A couple of additional remarks are
as follows:

Remark 1 (Choice of φ). Some choices of φ(·) w.r.t. various β’s
are given in Table 1. Note that dβ(x, y) may be nonconvex in y,
under mild conditions (see Assumption 1), any strongly convex func-
tion φ(·) can be used with guaranteed convergence. Detailed con-
vergence analysis is presented in Section 3.3.

Remark 2 (Solving problem (5)). The Bregman divergenceDΦ(A,A′)
is defined in a entry-wise form, which makes the update in (5) has
closed-form solutions for many kinds of pair φ(·) and An. Some
examples are given in Table 2.

Table 2. Examples of φ(·) andAn which have closed-form solution.
φ(·) An

yβ (β /∈ [0, 1]),− log y non-negative

y log y non-negative, probability simplex

y2 many forms, see Table I in [15]

Algorithm 1 Stochastic Mirror Descent (MD) Algorithm
Require: X,A0

1, A
0
2, . . . , A

0
N , φ, {ηt}t=0,1,...

1: for t = 0, 1, . . . , until meet some convergence criteria do
2: Uniformly sample n ∈ {1, 2, . . . , N};
3: Uniformly sample fibers Fn ⊂ {1, 2, . . . , Jn}
4: Compute the sampled gradient Ĝtn by (6)
5: At+1

n = argminAn∈An 〈Ĝtn, A−Atn〉+
1
ηt
DΦ(A,Atn)

6: At+1
i = Ati, ∀i 6= n

7: end for

3.3. Convergence Analysis
Classic convergence analysis for stochastic MD usually requires the
Lipschitz-continuous gradient assumption [25], which does not hold
for β-divergence. The recently proposed notion of Lipschitz-like
convexity [20] provides a way for dealing with our problem with-
out Lipschitz-continuous gradient. Based on this notion, several
recent works studied stochastic MD type algorithms for problem in
convex [26, 27] and nonconvex [28–30] settings, but none of them
covers the proposed algorithm, where each block subproblem in (3)
may be nonconvex and inexactly solved one step of stochastic MD
algorithm. In this work, we offer a tailored analysis for the CPD
problem of interest.

Denote the objective in (2) as F (A) = F (A1, A2, . . . , AN ).
Then, Problem (2) can be re-expressed as follows:

min
A1,A2,...,AN

F (A) + h(A) (7)

where h(A) =
∑N
n=1 hn(An) and hn(A) is the indicator function

of set An, i.e., hn(A) = 0 if A ∈ An and otherwise hn(A) =∞.
Our convergence analysis starts by using the following “refer-

ence” function in each iteration:

L(A;At) := F (A) + hn(A) +
1

2λ
DΦ(A,At)

where λ > 0 is a constant such that L(A;At) is strongly con-
vex and DΦ(A,At) = 1

N

∑N
n=1 DΦ(An, A

t
n). Denoting Ât =

arg minA L(A;At), the following lemma shows that DΦ(Ât,At)
can be used as a stationarity measure for Problem (7).

Lemma 2. A is a stationary point of Problem (7), i.e., 0 ∈
∇F (A) + ∂h(A), where ∂h(A) denotes the subgradient, if and
only if DΦ(Â,A) = 0.

Then, we make the following mild assumption and show the
convergence in Theorem 1.

Assumption 1. The set An is a compact set, ∀n.

Theorem 1. Suppose E
[
‖Ĝtn‖2

]
is bounded and φ(·) satisfies

condition in Table 1. Then, for diminishing step size ηt, Algo-
rithm 1 converge to a stationary point of problem (7) in expectation,
lim inft→∞ E

[
Dφ(Ât,At)

]
= 0.
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Fig. 1. β-divergence (left) and MSE metric (right) over 50 trials.

The key step for proving Theorem 1 is shown in Lemma 3. In the
expectation sense, if the step size ηt is properly chosen, then the
Bregman Moreau envelop [31] of Problem (7), denoted asM(At),
decreases after every iteration. As the optimization process contin-
ues in a Markovian manner [32], Lemma 3 together with the tower
rule and telescope trick helps complete the proof of Theorem 1.

Lemma 3. Suppose φ(·) satisfies conditions in Table 1 and denote
M(At) = minA L(A;At). Let At+1 be generated by Algorithm 1
at iteration t. Then, we have

E
[
M(At+1)

]
≤M(At)− cηt

4λ2N
DΦ(Ât,At)+

η2
t

4λσ
E
[
‖Ĝtn‖2

]
,

where c is a positive constant.

4. SIMULATIONS

4.1. Synthetic Data
A third-order tensor of size 300 × 300 × 300 and rank 20 is con-
sidered. The latent matrices A1, A2, and A3 are drawn from i.i.d.
uniform distribution between 0 and 1 and An for all n are set to
be the nonnegative orthant. Two algorithms are selected as base-
lines. The first one is the generalized CPD optimization (GCP-OPT)
algorithm proposed in [18] and the second one is the second-order
method developed in [17]. GCP-OPT is implemented by gcp opt
provided in Tensor Toolbox [33] and ‘adam’ is selected as the op-
timization solver with 40 × 300 entry samples per iteration. The
second-order method [17] is implemented by nlsb gndl shared
by the authors of Tensorlab [34] and the ‘preconditioner’ is set as
‘block-Jacobi’. For the proposed stochastic MD algorithm, function
φji(y) is chosen as cjiy0.5 as suggested in Table 1, where cji ≥ 0
is specified according to Lemma 1. For the proposed algorithm, 40
fibers (40×300 entry samples) are used per iteration and the step size
is set as ηt = 1

t0.02
. All the algorithms are tested under β-divergence

based CPD setting β to 0.5.
The objective value and the averaged mean squared error (MSE)

of the estimated latent factors (see definition in [14]) over 50 inde-
pendent trials are shown in Fig. 1, where the solid lines represent the
average convergence curves and dash lines correspond to the individ-
ual trials. Clearly, the two stochastic algorithms, i.e., the proposed
stochastic MD and GCP-OPT have much faster convergence behav-
ior than the second order method since both of them enjoy low com-
putation cost, i.e., only about 0.05% entries are used per iteration.
Further, the proposed stochastic MD is much faster than GCP-OPT,
especially in the beginning.

4.2. Real Data
The algorithms are also evaluated using the Enron email dataset that
contains the emails between the employees of the Enron Corporation
during the period of the infamous Enron scandal (September 1998–
July 2002). A subset of the Enron email data is used. The subset
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Fig. 2. Different components of mode-3 latent factor of the Enron
tensor data (200 × 200 × 47 tensor with rank R = 5). The plot
represents the (normalized) amount of email exchanges between the
employees of the company during each month.

counts the number of words exchaged through emails among 200
employees over 47 months, giving rise to a 200 × 200 × 47 tensor.
This tensor contains 24282 nonzero entries. The tensor data is pre-
processed following idea in [35] to reduce bias from prolific senders
or receivers. Since the actual rank of the tensor R is unknown, R =
5 is chosen following existing works, e.g., [36,37]. For the proposed
stochastic MD algorithm, β = 1 and φ(y) = y log y are used, and
thus the objective function in (2) is equivalent to minimizing the
KL divergence between the observed tensor and the low rank CPD
model. The step size schedule is the same as before and the number
of fibers sampled per iteration is also 40. The proposed algorithm
is benchmarked by GCP-OPT using the same β divergence. The
algorithms are run until the relative change of the objective value is
less than 10−3.

Fig. 2 presents different components in the learned mode-3 la-
tent factor from the Enron tensor data. The columns of the latent fac-
tor are normalized with respect to the `1-norm for better visual rep-
resentations. The plot represents the amount of the words exchanged
between the employees of the company through emails over the 47
months. One can see that the temporal profiles extracted by both al-
gorithms are similar to those discovered in [36, 37]. These temporal
profiles maybe interpreted as email communication loads associated
with 5 clusters of employees (see previous study in [36, 37]). Re-
discovering these temporal profiles helps ‘cross-validate’ the pro-
posed and the baseline algorithms’ effectiveness in extracting infor-
mation from this particular dataset. According to the temporal pro-
files, a major surge in email communications is identified during Apr.
2001 and Aug. 2001, when the change of CEO and the collapse of
Enron shares happened. Another major peak is during Sep. 2001
and Dec. 2001, when the company was undergoing the legal trials
and the bankruptcy. The highest peak profile was connected to the
cluster of executives in [36], which makes sense. Besides producing
meaningful data mining results, a more important observation is that
the proposed algorithm is much faster than GCP-OPT for attaining
essentially the same results.

5. CONCLUSION

A unified stochastic MD algorithm framework with guaranteed con-
vergence is developed for CPD under the β-divergence. The pro-
posed algorithm enjoys low computational and memory cost. Sig-
nificant computational saving relative to state-of-the-art methods is
observed on both synthetic and real data sets. The proposed algo-
rithm framework promises future extensions for dealing a large va-
riety of loss functions [18] that are of great interests in real-world
tensor decomposition applications.
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