1 2 Early-life effects of juvenile Western diet and exercise on adult gut microbiome 3 composition in mice 4 5 6 Monica P. McNamara¹, Jennifer M. Singleton¹, Marcell D. Cadney¹, Paul M. Ruegger², 7 James Borneman², Theodore Garland, Jr. 1* 8 ¹ Department of Evolution, Ecology, and Organismal Biology, University of California, 9 Riverside, CA 91521 10 ² Department of Microbiology and Plant Pathology, University of California, Riverside, 11 CA 91521 12 13 * Corresponding author: 14 Department of Evolution, Ecology, and Organismal Biology 15 University of California, Riverside 16 Riverside, CA 91521 17 U.S.A. 18 19 Phone: 951-827-3524 tgarland@ucr.edu 20 21 Key Words: Early-life, Exercise, Gut microbiome, ITS rRNA, Selection experiment, 22 Western diet 23

ABSTRACT

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially have long-lasting impacts on hosts. Using four selectively bred High Runner and four non-selected Control lines of mice, we examined the effects of early-life diet and exercise manipulations on the adult microbiome by sequencing the hypervariable Internal Transcribed Spacer region of the bacterial gut community. Mice from High Runner lines run ~3-fold more on wheels than do Controls, and have several other phenotypic differences (e.g., higher food consumption and body temperature) that could alter the microbiome, either acutely or in terms of coevolution. Males from generation 76 were given wheels and/or Western diet from weaning until sexual maturity at 6 weeks of age, then housed individually without wheels on standard diet until 14 weeks of age, when fecal samples were taken. Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout period (equivalent to ~6 human years). We also found interactive effects of genetic linetype, juvenile diet, and/or juvenile exercise on microbiome composition and diversity. Microbial community structure clustered significantly in relation to both linetype and diet. Western diet also reduced the relative abundance of Muribaculum intestinale. These results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period. Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background.

INTRODUCTION

Animals have evolved in a bacterial world. Coevolution between hosts and symbionts has resulted in complex relationships, wherein the diverse community of species inhabiting the gastrointestinal tract in mammals is essential for breaking down nutrients from ingested food, normal metabolic function, and protection through enhanced immunity (Dominguez-Bello et al., 2019; Gilbert et al., 2018; Kohl and Carey, 2016). Many factors have been shown to influence the gut microbial community and diversity. including diet, exercise, antibiotics, and age (Bokulich et al., 2016; Clark and Mach, 2016; Lozupone et al., 2012; Yatsunenko et al., 2012). Alterations to the community can result in potentially irreversible (Dethlefsen and Relman, 2011; Langdon et al., 2016) changes in the microbiome. Compositional changes in the gut microbiome can. in turn, affect many aspects of host biology, including physiology and behavior.

Diet can rapidly alter the gut microbiome community in as short as 24 hours (David et al., 2014). For example, many laboratory studies of adult rodents have shown that a typical Western diet (high in fat and sugar) alters the gut microbiome community and reduces diversity of bacterial species (Becker et al., 2020; Beilharz et al., 2017; Leamy et al., 2014; Pindjakova et al., 2017; Turnbaugh et al., 2008). In multiple strains of inbred, outbred, and transgenic mice, a shift in diet can have lasting effects on the community, as repetitive switching from a high-fat, high-sugar diet to a low-fat diet results in altered community membership and composition that does not revert to the original state (Carmody et al., 2015). Rodent studies also indicate that diet can alter microbial function. For example, adult mice fed a high-fat diet for 12 weeks had unique gut microbiome communities, increased body weight, and altered gut bacterial function as measured by metaproteome and metabolome analyses (Daniel et al., 2014). In this study, high-fat diet led to an increase in amino acid metabolism and enzymes involved in the oxidative stress response, possibly in response to the shift in nutrient availability within the gut.

Acute and chronic exercise can also affect the microbiome (Clark and Mach, 2016; Codella et al., 2018; Mach and Fuster-Botella, 2017; Mailing et al., 2019; O'Sullivan et al., 2015; Scheiman et al., 2019). The first paper highlighting the relationship between exercise and the microbiome found that adult rats with wheel

access for five weeks had an increased amount of cecal n-butyrate, a short-chain fatty acid byproduct of bacterial fermentation (Matsumoto et al., 2008). Butyrate can be transported from the small intestine to muscles, where it can lead to activation of several regulatory pathways linked to ATP production as well as muscle integrity, thus potentially altering athletic ability/performance (Ticinesi et al., 2017; Walsh et al., 2015). Approaches for measuring the effect of exercise on the gut microbiome vary widely in the literature, but consistent trends in results are emerging. For example, both rodent and human studies have reported increased butyrate-producing bacteria (Barton et al., 2018; Matsumoto et al., 2008), and also increases in taxa such as Lactobacillus (Batacan et al., 2017; Lambert et al., 2014; Petriz et al., 2014; Queipo-Ortuño et al., 2013), Bifidobacterium (Bressa et al., 2017; Lambert et al., 2014; Queipo-Ortuño et al., 2013), and Akkermansia (Barton et al., 2018; Bressa et al., 2017; Clarke et al., 2014; Liu et al., 2015). In amateur half-marathon runners the relative abundances of several bacterial taxa and also fecal metabolites were significantly different pre- and post-race (Zhao et al., 2018).

Diet and exercise have also been shown to interactively influence the gut microbiome community and diversity in rodents (Batacan et al., 2017; Denou et al., 2016; Evans et al., 2014). Mice placed on a high-fat diet for 6 weeks followed by 6 weeks of high-intensity interval training had greater bacterial diversity in the feces compared to sedentary mice on standard chow (Denou et al., 2016). Exercise-trained mice on a high-fat diet had significant changes in the relative abundance of the phylum *Bacteroidetes* in the small intestine, cecum, and colon compared to mice on a high-fat diet without exercise training. In another study on the interactions between exercise and diet, mice given 12 weeks of voluntary wheel access on a standard or high-fat diet had higher diversity than sedentary controls as well as significant main effects of diet, exercise, and their interactions on taxa relative abundance (Evans et al., 2014). More specifically, this study found an increase in the relative abundance of butyrate-producing taxa in the *Clostridiales* order compared to sedentary mice. In rats, high-intensity and light-intensity interval training regimens resulted in unique microbiome communities regardless of whether they were on a high-fat, high-fructose diet or a

standard diet (Batacan et al., 2017). The scarcity of studies examining diet-exercise interactions highlights the need for more research in this growing field.

109

110

111

112113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

In mammals, the period of development from weaning to sexual maturity is a crucial time during which environmental conditions can have a lasting impact on many traits (Garland et al., 2017), including normal development of the microbiome (Kerr et al., 2015). Immediately after birth, initial colonizers of the gut microbiome in placental mammals are dominated by microbes from the mother, followed by further acquisitions from the early-life environment (Funkhouser and Bordenstein, 2013; Milani et al., 2017). A clear example of developmental effects on the gut microbiome is early-life diet: babies who are breastfed have a unique microbiome compared to those fed formula (Sprockett et al., 2018), and have higher bacterial diversity during 12-24 months of age (Bokulich et al., 2016). In mice, early-life antibiotic treatment followed by placement on a high-fat, high-sugar diet as adults results in increased adult adiposity and an increase in the ratio of Firmicutes to Bacteroidetes as compared to mice on a normal diet (Schulfer et al., 2019). In a recent study, juvenile mice given 3 weeks of high-fat diet or cafeteria diet starting at 4 weeks of age followed by an approximately 7-week long washout period had altered adult gut microbiome communities (Fülling et al., 2020). More specifically, mice with juvenile high-fat diet had reduced diversity of the adult gut microbiome at approximately 14 weeks of age. However, only one study has tested whether early-life effects of exercise on the microbiome can persist after a substantial washout period. After a 25-day washout period, rats with 6 weeks of juvenile wheel access tended to have decreased Firmicutes abundance as adults (Mika et al., 2015).

The first goal of the present study was to test for long-lasting effects of early-life Western diet and exercise on the adult microbiome. To do so, we used a unique animal model: four lines of High Runner (HR) mice that have been selectively bred for high voluntary wheel-running behavior and their four non-selected Control (C) lines (Swallow et al., 1998). The HR mice differ from C mice in several ways that might affect the microbiome through alterations in the gut environment. HR mice have higher activity levels and food consumption even when housed without wheels, and increased body temperature when active (Copes et al., 2015; Malisch et al., 2009; Swallow et al., 2009; Wallace and Garland, 2016), all of which might affect the gut environment. In the

absence of compensatory reductions in other aspects of physical activity, exercise leads to increased energy expenditure and hence necessitates greater food consumption (Garland et al., 2011), which should directly impact the gut microbiome. Exercise also causes many acute changes in physiology, including increases in body temperature, changes in hormone levels, intestinal barrier function, and digestive transit time that could feedback into the gut environment (Campbell and Wisniewski, 2017; Mach and Fuster-Botella, 2017). HR and C mice also differ in circulating concentrations of hormones (Garland et al., 2016). When housed without wheels, HR and C mice do not differ in small or large intestine mass or length, suggesting that the former might have faster digestive throughput (Kelly et al., 2017). Therefore, our second goal was to test for microbiome differences between the HR and C lines, which could result from acute effects of the noted phenotypic differences. Another possibility is coevolution of the gut microbiome across many tens of generations of selective breeding, but we cannot differentiate that from acute/chronic effects of exercise with the present experimental design. Our analyses also considered the possibility of interactive effects, e.g., that genetic background (Benson et al., 2010; Carmody et al., 2015; Leamy et al., 2014) might influence if and how early-life Western diet or exercise opportunity affects the adult microbiome.

157158

159

160

161

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

METHODS

- All experiments and methods were approved by the Institutional Animal Use and Care Committee of the University of California, Riverside.
- 162

163

Experimental animals

Mice were sampled from generation 76 of an ongoing selection experiment selecting for high voluntary wheel-running behavior. Four replicate High Runner (HR) lines are bred for high levels of voluntary wheel running and are compared with four non-selected Control (C) lines. The base population was 224 outbred Hsd:ICR laboratory house mice (Swallow et al., 1998). Mice are weaned at 21 days of age and housed 4 per cage separated by line and sex until ~6-8 weeks of age. Mice are then placed into individual cages attached to a 1.12 m circumference wheel (Lafayette Instruments, Lafayette, IN,

171 USA) with a sensor to record the total number of revolutions per day (e.g. see Swallow et al., 1998). For HR mice, the highest running male and female from each family 172 173 based on the average revolutions on days 5 and 6 of a 6-day period of wheel access are chosen as breeders for the next generation. Breeders in the C lines are chosen 174 175 without regard to how much they run. Each generation has ~10 breeding pairs per line, and sibling pairings are not allowed. 176 177 178 Early-life diet and exercise treatment 179 165 male mice, sampled approximately equally from the 4 replicate HR and 4 nonselected C lines, were weaned at 21 days of age and placed into one of 4 treatment 180 groups for 3 weeks: standard diet, no wheels; Western diet, no wheels; standard diet, 181 wheels; Western Diet, wheels (see Figure 1). Mice were provided with ad lib food and 182 183 water for the duration of the experiment. Standard Laboratory Rodent Diet (SD) from Harlan Teklad (W-8604) contained 4% kJ from fat and the Western diet (WD) from 184 Harland Teklad (TD.88137) contained 42% kJ from fat. After the 3 weeks of juvenile 185 exposure, which allowed them to reach sexual maturity, all mice were housed 186 individually without wheel access on standard diet for an 8-week washout period 187 (equivalent to approximately 6 human years: Dutta and Sengupta, 2016). Mice were 188 maintained in rooms with lights on at 0700 Pacific Standard Time for a 12h:12h L:D 189 photo period, and at approximately 22°C. 190 191 192 Juvenile wheel running Juvenile wheel running was measured during weeks 3-6 of the early-life diet and/or 193 exercise manipulation. Mice were housed individually in home cages with attached 194 wheels, as used during the routine selective breeding protocol (Swallow et al., 1998). 195 Sensors attached to the wheel record the number of revolutions in each 1-minute 196 interval during a 23 hr measurement period. We measured wheel freeness by recording 197 198 the number of revolutions per wheel until it reaches a stop after accelerating each wheel

Juvenile food consumption

199

200

201

to a constant speed (Copes et al., 2015).

202 Juvenile food consumption was measured during weeks 3-6 of the early-life diet and/or exercise manipulation. Food hoppers were weighed at the start and end of each week 203 204 to measure apparent food consumption after accounting for food wasting (Koteja et al., 2003). Food consumption was converted to caloric intake as the diets differed in energy 205 206 content (Meek et al., 2010). 207 Fecal sampling 208 209 At 14 weeks of age, individual mice were placed into a clean, empty cage and watched 210 until defecation. We obtained fecal samples from 149 individuals. The samples were placed into a sterile tube and held on dry ice prior to storage in -80°C, where they 211 remained until DNA extraction. 212 213 Bacterial rRNA ITS analysis 214 Illumina bacterial rRNA ITS libraries were constructed as follows. PCRs were 215 performed using a DNA Engine thermal cycler (Bio-Rad Inc., Hercules, CA, USA) as 25-216 217 µl reactions containing: 50 mM Tris (pH 8.3), bovine serum albumin (BSA) at 500 µg/ml, 2.5 mM MgCl₂, 250 µM of each deoxynucleotide triphosphate (dNTP), 400 nM of the 218 219 forward PCR primer, 200 nM of each reverse PCR primer, 2.5-µl of DNA template, and 0.625 units JumpStart Taq DNA polymerase (Sigma-Aldrich, St. Louis, MO, USA). PCR 220 primers targeted a portion of the small-subunit (ITS-1507F, 221 GGTGAAGTCGTAACAAGGTA) and large-subunit (ITS-23SR, 222 GGGTTBCCCCATTCRG) rRNA genes and the hypervariable Internal Transcribed 223 Spacer region (Ruegger et al., 2014), with the reverse primers including a 12-bp 224 225 barcode and both primers including the sequences needed for Illumina cluster formation; primer binding sites are the reverse and complement of the commonly used 226 small-subunit rRNA gene primer 1492R (Frank et al., 2008) and the large-subunit rRNA 227 228 gene primer 129F (Hunt et al., 2006). PCR primers were only frozen and thawed once. 229 Thermal cycling parameters were 94°C for 5 min; 35 cycles of 94°C for 20 s, 56°C for 20 s, and 72°C for 40 s; followed by 72°C for 10 min. PCR products were purified using 230 a Qiagen QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA) according to the 231

manufacturer's instructions. DNA sequencing (single-end 250 base) was performed

using an Illumina MiSeq (Illumina, Inc., San Diego, CA, USA). Clusters were created using template concentrations 2.5 pM and phi X at 107 K/mm2.

Data processing was performed with USEARCH v10.0 (Edgar, 2010). We used the UPARSE pipeline for de-multiplexing, length trimming, quality filtering and operational taxonomic unit (OTU) picking using default parameters or recommended guidelines that were initially described in (Edgar, 2013) and which have been updated at https://www.drive5.com/usearch/manual10/uparse_pipeline.html. Briefly, after demultiplexing and using the recommended 1.0 expected error threshold, sequences were trimmed to a uniform length of 248 bp and then dereplicated. Dereplicated sequences were subjected to error-correction (denoised) and chimera filtering to generate zero-radius operational taxonomic units (ZOTUs) using UNOISE3 (Edgar, 2016b). An OTU table was then generated using the otutab command. ZOTUs having non-bacterial DNA were identified and enumerated by performing a local BLAST search (Altschul et al., 1990) of their seed sequences against the nucleotide database. ZOTUs were removed if any of their highest scoring BLAST hits contained taxonomic IDs within the rodent family, Fungi, Viridiplantae, or phi X. Taxonomic assignments to bacterial ZOTUs were made with the SINTAX taxonomy prediction algorithm (Edgar, 2016a) on an updated SSU-ITS database (Ruegger et al., 2014). This resulted in 2,730 OTUs with an average of 47,851 sequences per sample. Data were normalized within each sample by dividing the number of reads in each OTU by the total number of reads in that sample.

The bacterial rRNA ITS sequences have been deposited in the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive (SRA) under SRA BioProject Accession is PRJNA624662.

257

258

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

- Statistical Analyses
- Juvenile wheel running and food consumption. As used in numerous previous
- studies of these lines of mice, we used linear mixed models in SAS 9.4 Procedure
- Mixed (SAS Institute, Cary, NC, USA). The effect of linetype is tested against the
- variance among replicate lines, which are a nested random effect within linetype.
- Wheel Access*Line(Linetype), Diet*Line(Linetype), and Wheel

Access*Diet*Line(Linetype) were also nested random effects. In these full models, the effects of Wheel Access, Diet, Linetype, and their interactions were tested with 1 and 6 degrees of freedom. If the covariance parameter estimate for higher-order random effects was zero, we removed them in a stepwise fashion. In other words, if the covariance parameter estimate for the 3-way interaction was 0, we removed the Wheel Access*Diet*Line(linetype) random effect. Then, if one of the two-way random interaction effects was also zero, we removed it. However, we always retained the line(linetype) random effect, given the nature of the experimental design (e.g. see Castro and Garland, 2018; Castro et al., 2020; Swallow et al., 1998). For juvenile wheel running, we included wheel freeness as a covariate in the model. For caloric intake, we included body mass as a covariate.

In these statistical models, we also tested for effects of the mini-muscle phenotype (present in 2 of the HR lines) on juvenile wheel running, juvenile caloric intake, adult gut microbiome richness and relative abundance. The mini-muscle phenotype is caused by an autosomal recessive allele, a single base pair change in a myosin heavy chain gene (Kelly et al., 2013). Homozygotes for this naturally occurring mutation are characterized by a 50% reduction in hindlimb muscle mass, larger internal organs, and various other differences as compared with unaffected individuals (Garland et al., 2002; Swallow et al., 2009; Wallace and Garland, 2016). In the present study the number of mini-muscle individuals varied among analysis. For example, of the 88 mice for which we obtained wheel-running data during week 1 of juvenile exposures, 12 had the mini-muscle phenotype (all 9 in line 3 and 3 of the 11 in line 6). Of the 165 mice for which we obtained week 1 food consumption data, 43 had the mini-muscle phenotype (all 21 in line 3 and 5 of 22 in line 6). Of the 149 mice for which we obtained microbiome data, 25 had the mini-muscle phenotype (all 20 in line 3 and 5 of 20 in line 6).

Beta diversity of the adult gut microbiome. Gut microbiome membership and structure of the community were compared by calculating unweighted UniFrac and Hellinger distance matrices in QIIME version 1.9.1. Unweighted UniFrac distance utilizes the presence and absence of bacterial species while accounting for the

phylogenetic relationship between bacterial species. For statistical and graphical representation, we used an OTU table rarified to an even sequencing depth of 14,000 reads per sample. We used a Principal Coordinates Analysis (PCoA) to visualize the communities in a 3D space. For beta diversity, we used a PERMANOVA test in QIIME to determine statistical significance (Anderson, 2001). For these tests we did not treat replicate line as a nested random effect because the software to do this is not currently available.

Alpha diversity of the adult gut microbiome. To determine the effects of diet, exercise, linetype, and their interactions on alpha diversity of the adult gut microbiome, we used the Chao1 Index and Shannon Index calculated in QIIME Version 1.9.1 from an OTU table rarified to the lowest common sequencing depth of 14,000 reads. We also totaled the number of non-zero OTUs identified in each mouse using the rarified OTU table. We used the statistical procedures described above in *Juvenile wheel running and food consumption*. Because ANOVAs have relatively low power to detect interactions (Wahlsten, 1990), and following our laboratory's previous analyses of these mice (e.g., Belter et al., 2004; Houle-Leroy et al., 2000), we considered interactions significant if *P*<0.10.

Lower-level taxa summary comparisons. We compared the relative abundance data of identified phylum, class, order, family, genus, and species groups produced by the summarize_taxa.py script in QIIME. Based on the simulations reported by Aschard et al. (2019), we only analyzed taxa found in >85% of the mice [phylum (*N*=6), class (*N*=9), order (*N*=8), family (*N*=16), genus (*N*=17), species (*N*=26), and OTUs (*N*=140, of the total 2,730 identified OTUs)], which totaled 221 tests and 1,761 *P* values. We used the statistical procedures described above in *Juvenile wheel running and food consumption*. Bacterial relative abundance data were log or arcsine square root transformed to normalize residuals (Brown et al., 2020; Kohl et al., 2016). *P* values were corrected for multiple comparisons using the false discovery rate (Benjamini and Hochberg, 1995). For these analyses, we accepted statistical significance at *P*<0.05 after adjustment for FDR.

326 **RESULTS** 327 328 Linetype, diet, and exercise affect juvenile wheel running and food consumption Diet had an interactive effect on wheel running across the three weeks of early-life 329 exposure (full statistical results are in Table S1). During the first week, Western diet 330 331 increased wheel running, but the effect was greater in HR mice (interaction $F_{1,76}$ = 7.62, P=0.0072, Figure 2A), and mini-muscle mice ran more than non-mini ($F_{1.76}=6.12$, P332 333 =0.0156). During the second week, mice with Western diet continued to run significantly more than those with standard diet, and HR mice ran 2.6-fold more 334 335 revolutions/day than C mice, with no interaction between diet and linetype (interaction $F_{1,76}$ = 0.51, P=0.4765, Figure 2A). By the third week of juvenile wheel access, HR 336 mice ran 3.4-fold more than C mice and diet no longer significantly affected wheel 337 running. 338 339 During the first week of early-life exposure, diet and wheel access had an interactive effect on caloric intake (interaction $F_{1,143} = 26.62$, P < 0.0001, Figure 2B). 340 Western diet increased caloric intake in all groups, by ~21% on average ($F_{1,143}$ = 341 313.25, P<0.0001, Figure 2B). However, wheel access increased intake in mice on a 342 standard diet but decreased it in those on Western diet. During the second week, mice 343 on the Western diet had increased caloric intake ($F_{1.6} = 37.71$, P=0.0009, Figure 2B) 344 and those with wheels consumed more than mice without wheels ($F_{1.6}$ = 25.18, 345 P=0.0024, Figure 2B). In the third week, mice with wheels again consumed more 346 calories than those without wheels ($F_{1.6}$ = 84.23, P<0.0001, Figure 2B), but the effect of 347 diet was no longer significant. Mini-muscle mice consumed significantly more food 348 during both weeks 2 ($F_{1,137}$ = 5.55, P=0.0199) and 3 ($F_{1,136}$ = 4.97,P=0.0274). 349 350 Dominant phyla of the adult gut microbiome 351

353

355

The 2,730 identified OTUs were classified into 7 phyla, 22 classes, 36 orders,58 352

families, 79 genera, and 112 species. Community composition for the entire set of

experimental mice (N=149) was dominated by the phylum *Bacteroidetes* (68.1 ± 17.4%) 354

(mean ± S.D.) and Firmicutes (27.9 ± 16.7%), with additional phyla being much less

- abundant: *Proteobacteria* (1.2 ± 2.1%), *Candidatus Melanobacteria* (0.3 ± 0.6%),
- Tenericutes (0.2 \pm 0.3%), and Actinobacteria (0.05 \pm 0.04%) (Figure 3).

358

- Juvenile diet and linetype affect adult community membership (Beta diversity)
- Community membership measured by unweighted UniFrac distance and by Hellinger
- distance plotted in a PCoA plot (Figure 4 and 5, respectively; corresponding statistical
- results in Tables 1 and 2, respectively) showed clustering of mice by linetype and by
- juvenile diet exposure. HR and C mice significantly clustered independent of one
- another (PERMANOVA, $F_{1,147}$ = 1.56, P=0.009, Figure 4A; PERMANOVA, $F_{1,147}$ = 2.31,
- P=0.001, Figure 5A). Mice with juvenile Western diet resulted in significant clustering of
- samples compared to mice with juvenile standard diet (PERMANOVA, $F_{1,147} = 2.72$,
- P=0.001, Figure 4B; PERMANOVA, $F_{1.147}=2.85$, P=0.001, Figure 5B). Within both HR
- and C linetypes, mice clustered together by diet (C, $F_{1,75}$ = 1.64, P=0.007; HR $F_{1,70}$ =
- 0.001, *P*=0.001: Figure S1F). Wheel Access did not result in significant clustering within
- linetypes (PERMANOVA, $F_{1.70}$ = 1.30, P=0.072, Figure S1G). HR mice also clustered
- independently by diet (PERMANOVA, $F_{1.70} = 3.783$, P=0.001, Figure S2F).

- Early-life exposures, linetype, and their interactions affect adult gut microbiome
- 374 richness (Alpha diversity)
- For the total number of OTUs, early-life diet and exercise exposures altered the adult
- gut microbial richness in a linetype-dependent manner: the three-way interaction of
- juvenile diet, wheel access, and linetype was significant (interaction $F_{1.128}$ = 2.83,
- P=0.095; Figure 6A). Early-life Western diet tended to have a lasting impact on gut
- microbiome diversity by reducing the total OTUs (ANOVA, $F_{1.6}$ = 5.67, P=0.055; Figure
- 380 **6A)**.
- The three-way interaction of juvenile diet, exercise, and linetype was significant
- for the Chao1 Index, a corrected index of gut microbial richness that accounts for rarer
- taxa (interaction $F_{1,128}$ = 2.83, P=0.013; Figure 6B). Early-life exposure to Western diet
- tended to have a lasting impact on the gut microbiome by reducing adult gut community
- richness (ANOVA, $F_{1.6}$ = 5.68, P=0.054; Figure 6B). The Shannon Index, another

measure of gut microbial richness that accounts for the abundance of taxa in a sample, was not statistically different among groups (Figure 6C).

Juvenile Western diet affects adult gut microbiome community Of the 1,760 P values tested, only 2 remained significant at P<0.10 after correcting for multiple comparisons using a Benjamini and Hochberg false discovery rate (See File S2 for phylum through genus P values before FDR and File S3 for the full list of P values for phylum though OTU). Western diet significantly reduced the relative abundance of the family Muribaculaceae, which is commonly found in the mouse gut microbiome (ANOVA, $F_{1,128}$ = 19.2; P=0.021). This decrease is explained by the gut bacterial species Muribaculum intestinale, which was found in all mice from our study (ANOVA, $F_{1,128}$ = 19.2; P=0.021; Figure 7). Muribaculum intestinale made up 0.38% of the identified OTUs. Mini-muscle mice did not significantly differ in the relative abundance of any of the tested taxa.

DISCUSSION

Our results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period (equivalent to ~6 human years). Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background. The overall bacterial community composition that we found (Figure 3) is similar to that reported in many other studies of adult laboratory house mice (Benson et al., 2010; Lamoureux et al., 2017). However, beta diversity metrics indicated that community membership was unequal between the two genetic linetypes we studied (replicate, selectively bred HR and C lines of mice), and was also affected by early-life Western diet (Figure 4, 5). Bacterial richness and alpha diversity were also affected by an interaction of juvenile diet, exercise, and linetype (Figure 6). Finally, juvenile Western diet significantly decreased the relative abundance of the *Muribaculaceae* family driven by the species *Muribaculum intestinale* (Figure 7).

Selective breeding for high voluntary wheel running resulted in unique clustering of gut microbiomes by linetype (Figure 4, 5). These results are consistent with the fact

that selection for wheel-running behavior has caused many exercise-associated biological changes that could influence the gut environment, including higher food consumption even when housed without wheels, higher body temperatures when active, and differences in circulating concentrations of multiple hormones, including corticosterone, a classic "stress hormone" (Copes et al., 2015; Garland et al., 2016; Malisch et al., 2009; Swallow et al., 2009; Wallace and Garland, 2016). Our results and those of other recent studies also demonstrate the utility of selectively bred rodent models for understanding possible coevolutionary changes in the microbiome (e.g., see Kohl et al., 2016; Liu et al., 2015; van der Eijk et al., 2020; Zhang et al., 2020).

A Western diet can negatively impact the host's normal gut barrier function by increasing intestinal permeability (Martinez-Medina et al., 2014) and by increasing inflammation of the gut environment (Agus et al., 2016). Several studies have demonstrated effects of Western diet on the gut microbiome in adult rodents. For example. Western diet results in unique clustering of microbiome communities (Carmody et al., 2015; Pindjakova et al., 2017). We also found significant clustering of microbiome communities by diet (Figures 4 and 5). Previous studies of adult mice have reported that a high-fat or high-sugar diet can decrease bacterial diversity (Pindjakova et al., 2017; Sonnenburg et al., 2016; Turnbaugh et al., 2008). Adult rats on standard chow supplemented with 10% sucrose solution and a selection of cakes, biscuits, and high-protein foods continuously for 25 days had a significantly reduced alpha diversity, evidenced by a reduction in the total number of OTUs compared to control rats (Beilharz et al., 2017). In our study, Western diet during the juvenile period increased wheelrunning behavior and food consumption in both selectively bred HR mice and nonselected C mice (Figure 2). Both altered diet and increased food consumption can affect the gut environment and thus alter the bacterial community. In principle, early-life Western diet could have altered the gut microbiome in a way that persists into adulthood, an effect that we did indeed find (Figures 4-7).

Only one other publication has examined the long-lasting effects of juvenile diet on the adult gut microbiome after a significant washout period in mice. Mice with 3 weeks of juvenile high-fat diet followed by a 7-week washout period had decreased alpha diversity measured by the Shannon Index as adults (Fülling et al., 2020). In our

study, perturbation of the juvenile gut microbiome with Western diet also had longlasting effects on species community indicators of adult gut microbial richness by reducing the total number of OTUs and the Chao1 index, though no differences in Shannon diversity were found (Figure 6). Similarly to Carmody et al. (2015), who demonstrated that a high-fat, high-sugar diet in multiple inbred, outbred, and transgenic strains of mice resulted in clustering of mice by both diet and genotype within diet treatment, we found significant clustering of genetic lines within diet treatment (Figure S1), showing the response to diet can be genotype-dependent.

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

After correction for multiple comparisons of 1,760 p values comparing taxa at the level of phylum, class, order, family, genus, species, and OTU, we found one species (and it's family) whose relative abundance was significantly decreased by juvenile Western diet, Muribaculum intestinale (Figure 7, File S3). The Muribaculaceae family is commonly found in mouse (but not human) gut microbiomes (previously referred to as S24-7; Lagkouvardos et al., 2016; Seedorf et al., 2014). *Muribaculaceae* has been linked with propionate production, a short-chain fatty acid, in a mouse longevity study (Smith et al., 2019). This family was also seen to increase in abundance in mice given voluntary wheel access while on a high-fat or standard diet, and decrease in relative abundance in mice on a high-fat diet with or without exercise (Evans et al., 2014). This finding is similar to our study in which the relative abundance of *Muribaculum* intestinale, a species of the Muribaculaceae family, was unaffected by exercise but decreased in abundance with juvenile Western diet (Figure 7). Muribaculaceae belongs to the phylum *Bacteroidetes*, one of the two most abundant phyla in the gut microbiome. Western diet has been shown to usually decrease the relative abundance of Bacteroidetes, a primarily acetate and propionate producing phylum while increasing the relative abundance of *Firmicutes*, a primarily butyrate producing phylum (Carmody et al., 2015; den Besten et al., 2013; Ley et al., 2006). If species in the Muribaculaceae family could potentially influence the energy substrate availability to the host, this could lead to a differential effect of diet and exercise treatments on normal host function. As *M. intestinale* is a newly cultured species, it remains to be seen what other functions it might have (Lagkouvardos et al., 2019). In a small sample of adult wild-type and AC5KO mice (known for their exercise-associated traits of longevity and increased

mitochondrial metabolism in skeletal muscle (Ho et al., 2015)), a taxon with high sequence similarity to the species *M. intestinale* were enriched in adult AC5KO mice after 5 weeks of treadmill training, suggesting that *M. intestinale* is a potentially exercise-associated species (Dowden et al., 2020).

To our knowledge, only one previous study of rodents has tested for long-lasting effects of juvenile exercise on the adult microbiome. Mika et al. (2015) found that juvenile rats given 6 weeks of wheel access, followed by a 25-day washout period, tended (not statistically significant) to have a decreased abundance of the *Firmicutes* phylum compared to sedentary juveniles. We found that early-life exercise significantly interacted with diet and linetype to influence gut microbial diversity (Figure 6). Given that we have shown long-lasting effects of relatively mild and natural early-life changes (diet, exercise), more severe treatments, such as antibiotics, might have even stronger, long-lasting effects (Ma et al., 2020).

492 Limitations and Future Directions

When examining the gut microbiome, variation in sequencing methods can lead to different results under similar experimental conditions. Much of the literature consists of 16S rRNA analysis. Instead, we sequenced the ITS rRNA gene for finer resolution of the gut microbial community (Ruegger et al., 2014). This poses a challenge when comparing ITS data to 16S data. Nevertheless, by examining broad patterns in diversity and community structure (Figures 4-6) we were able find similar patterns between our data and the literature (see above). For example, Western diet tends to decrease gut microbiome diversity (Figure 6) and alters the gut microbiome community measured by beta diversity (Figures 4 and 5).

We were only able to sample feces and obtain microbial sequence data for one time point. Logistical constraints precluded our obtaining fecal samples at the beginning of the study. In future studies, repeating this experiment with a baseline sample at weaning and immediately after the juvenile exposure to diet and/or exercise would increase the power to detect longitudinal changes. As we had only the microbiome data after the washout period, we cannot know when the effects of the experimental treatments first appeared. They might have appeared during the 3-week treatment period, which seems likely, or they might have appeared later, at any time prior to when

we took fecal samples. Regardless of when the effects first appeared, they were detectable when we analyzed the adult fecal samples. This is an important result, even in the absence of information regarding the longitudinal trajectory of the effects. Future studies should examine the time course of early-life effects. In addition, study of the cecum would allow a more in situ view of the microbiome.

We did not separate or sterilize cages, bedding, food, or water, thus giving the mice constant exposure to environmental bacteria. This exposure should have tended to homogenize the gut microbiome, thus possibly erasing any early-life effects of diet or exercise. Nevertheless, we were able to detect such effects after a substantial washout period, supporting the idea that the early-life developmental period of the microbiome is sensitive and responsive to change, and can be impacted in ways that resist subsequent environmental perturbations.

Future experiments involving antibiotic reduction and transplantation of the microbiome will be required to determine whether the unique microbial community of HR mice (Figure 4 and 5), which has potentially co-evolved during the selection experiment, contributes to their high motivation and/or ability for sustained, aerobically supported exercise (Hsu et al., 2015; Nay et al., 2019; Okamoto et al., 2019; Scheiman et al., 2019). More specifically, one could administer antibiotics to eliminate the existing gut microbiome, monitor changes in wheel running, then transplant the HR microbiome into C mice and vice versa. Additional groups would receive their own linetype-specific microbiome in the reseeding phase of the experiment (i.e., HR to HR and C to C). If a unique microbiome is partly responsible for the HR phenotype, then we would predict that (1) antibiotics would reduce their wheel running and (2) reseeding with HR (but not C) microbiome would recover the normal wheel-running behavior for HR mice. It is also possible that transplanting the HR microbiome to C mice would increase their wheel running, at least if some other inherent factor does not limit their running motivation or ability.

Overall, we found that early-life Western diet had more long-lasting effects on the microbiome than did early-life exercise. Future studies will be required to determine if this is a general result. In particular, we need dose-response studies of how much exercise, and what type of exercise, is needed to elicit a permanent, potentially

beneficial, change in the gut microbiome. The field also needs more studies of how 541 voluntary exercise can acutely change the gut microbiome (e.g., by short-term or 542 543 alternate-day wheel access), combined with longitudinal sampling. Finally, milder diet alterations should be examined, in addition to effects of probiotics (Sanders et al., 544 545 2019). 546 **Funding** 547 This work was supported by the National Science Foundation [grant number DEB 548 1655362] to T.G., the National Institutes of Health [grant number R21HD084856] to J. 549 B., and funds from the University of California, Riverside Academic Senate. 550 551 **Author contributions** 552 553 M.P.M, M.D.C, T.G., and J.M.S. designed the study and collected data. J.B. and 554 P.M.R. analyzed the microbiome data. M.P.M., T.G., J.B., and P.M.R. wrote the manuscript. All authors edited the manuscript. 555 556 **Supplementary Information** 557 Supplementary information is available at the journal's website. 558 559 **Competing Interests** 560 561 The authors declare no competing or financial interests. 562 563 564

Table 1. Statistical analyses corresponding to Figure 4 (Community membership of the adult gut microbiome Principal Coordinate Analysis using unweighted UniFrac distances).

	Figure	Sum of Squares	D. F.	F	R ²	Р
Linetype	4A	0.213	1, 147	1.560	0.010	0.009
Diet	4B	0.369	1, 147	2.719	0.018	0.001
Wheel Access	4C	0.170	1, 147	1.243	0.008	0.096
C:Diet	4B, Sup. 1F	0.225	1, 75	1.644	0.021	0.007
HR:Diet	4B, Sup. 1F	0.328	1, 70	2.462	0.034	0.001
C:Wheel Access	4C, Sup. 1G	0.116	1, 75	0.838	0.011	0.832
HR:Wheel Access	4C, Sup. 1G	0.176	1, 70	1.304	0.018	0.072

Table 2. Statistical analyses corresponding to Figure 5 (Community membership of the adult gut microbiome Principal Coordinate Analysis using a Hellinger distance matrix).

	Figure	Sum of Squares	D. F.	F	R ²	Р
Linetype	5A	1.150	1, 147	2.310	0.015	0.001
Diet	5B	1.414	1, 147	2.851	0.019	0.001
Wheel Access	5C	0.497	1, 147	0.989	0.007	0.483
C:Diet	5B, Sup. 2F	0.534	1, 75	1.043	0.014	0.384
HR:Diet	5B, Sup. 2F	1.753	1, 70	3.783	0.051	0.001
C:Wheel Access	5C, Sup. 2G	0.385	1, 75	0.749	0.010	0.843
HR:Wheel Access	5C, Sup. 2G	0.458	1, 70	0.951	0.013	0.518

580 **Figure 1.** Early-life experimental design and treatment groups (*N*=149 mice). Fecal 581 sampling occurred as adults (14 weeks of age) after the eight-week washout period on 582 583 standard diet with no wheel access. 584 Figure 2. Weekly revolutions/day and caloric intake in response to juvenile diet and/or 585 exercise treatment. Data are presented as untransformed least squares means ± 586 s.e.m. (values for mini-muscle versus normal-muscle mice are not shown). Shown 587 above each week are the significant main effects and interactions (2-tailed ANCOVAs 588 589 P<0.05, not adjusted for multiple comparisons). Full statistical results are in Table S1. A. Weekly juvenile wheel running for half of the mice during the 3 weeks of early-life 590 591 exposure (*N*=88). B. Weekly mass-adjusted juvenile caloric intake during the 3 weeks of early-life exposure (*N*=165). 592 593 594 Figure 3. Community composition of the adult gut microbiome for all experimental mice 595 (N=149). Bars represent the mean relative abundance of the 4 main phyla found in greater than 1% of the population, separated by treatment group. 596 597 598 Figure 4. Community membership of the adult gut microbiome Principal Coordinate Analysis using unweighted UniFrac distances. A. Clustering of mice by High Runner 599 (N=72) and Control (N=77) lines of mice (PERMANOVA, $F_{1,147} = 1.56$, $R^2 = 0.010$, 600 P=0.009). **B.** Clustering of mice by Western diet (N=77) and Standard diet (N=72) 601 (PERMANOVA, $F_{1,147} = 2.72$, $R^2 = 0.018 P = 0.001$). **C.** Clustering of mice by wheel 602 access (N=75) and no wheel access (N=74) (PERMANOVA, $F_{1,147}=1.24$, $R^2=0.008$ 603 P=0.096). Statistical analyses are in Table 1. 604 605 Figure 5. Community membership of the adult gut microbiome Principal Coordinate 606 Analysis using a Hellinger distance matrix. **A.** Clustering of mice by High Runner 607 (N=72) and Control (N=77) lines of mice (PERMANOVA, $F_{1.147} = 2.31$, $R^2 = 0.015$, 608

Figure Legends

- 609 P=0.001). **B.** Clustering of mice by WD (N=77) and SD (N=72) (PERMANOVA, $F_{1,147}$ =
- 2.85, $R^2 = 0.019$, P=0.001). **C.** Clustering of mice by wheel access (N=75) and no
- wheel access (N=74) (PERMANOVA, $F_{1,147} = 0.99$, $R^2 = 0.007$, P=0.483). Statistical
- analyses are in Table 2.

613

- Figure 6. Alpha diversity metrics of the adult gut microbiome (*N*=149 mice). Data are
- presented as untransformed least squares means ± s.e.m. (A). Total OTUs when the
- OTU table was rarified to an even number of reads per sample. The three-way
- interaction between juvenile diet, exercise, and linetype on fecal bacterial richness was
- significant (2-tailed ANOVA interaction, $F_{1,128}$ = 2.83, P=0.095, not adjusted for multiple
- comparisons). Early life exposure to Western diet tended to have a lasting impact on
- gut microbiome diversity by reducing the total OTUs (2-tailed ANOVA, $F_{1,6}$ = 5.67,
- P=0.055, not adjusted for multiple comparisons). **(B).** Chao1 Index. The three-way
- interaction between Western diet, exercise, and linetype was statistically significant (2-
- tailed ANOVA interaction, $F_{1.128}$ = 6.39, P=0.013, not adjusted for multiple comparisons).
- Early life exposure to Western diet tended to have a lasting impact on the gut
- microbiome by reducing adult gut community richness (2-tailed ANOVA, $F_{1,6}$ = 5.68,
- P=0.054, not adjusted for multiple comparisons). (C). Shannon Index was not
- significantly affected by any experimental factor.

628

- Figure 7. Relative abundance of the species *Muribaculum intestinale* (*N*=149 mice).
- Data are presented as transformed least squares means ± s.e.m. Mice with juvenile
- exposure to Western diet had a significantly lower relative abundance of the species M.
- 632 *intestinale.* (2-tailed ANOVA, $F_{1,128}$ = 19.2; FDR adjusted P=0.0213).

633

635 636	REFERENCES
637 638 639	Acosta, W., Meek, T. H., Schutz, H., Dlugosz, E. M., Vu, K. T. and Garland, Jr., T. (2015). Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice. <i>Physiol. Behav.</i> 149 , 279–286.
640 641 642 643	Agus, A., Denizot, J., Thévenot, J., Martinez-Medina, M., Massier, S., Sauvanet, P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R., et al. (2016). Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. <i>Sci. Rep.</i> 6, 19032.
644 645	Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
646 647	Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. <i>Austral Ecol.</i> 26 , 32–46.
648 649 650	Aschard, H., Laville, V., Tchetgen, E. T., Knights, D., Imhann, F., Seksik, P., Zaitlen, N., Silverberg, M. S., Cosnes, J. and Weersma, R. K. (2019). Genetic effects on the commensal microbiota in inflammatory bowel disease patients. <i>PLoS Genet.</i> 15 , e1008018.
651 652 653 654	 Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., Shanahan, F., Cotter, P. D. and O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. <i>Gut</i> 67, 625–633.
655 656 657	Batacan, R. B., Fenning, A. S., Dalbo, V. J., Scanlan, A. T., Duncan, M. J., Moore, R. J. and Stanley, D. (2017). A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. <i>J. Appl. Microbiol.</i> 122 , 1627–1638.
658 659 660	Becker, S. L., Chiang, E., Plantinga, A., Carey, H. V., Suen, G. and Swoap, S. J. (2020). Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. <i>FEMS Microbiol. Ecol.</i> 96 , fiaa079.
661 662 663	Beilharz, J. E., Kaakoush, N. O., Maniam, J. and Morris, M. J. (2017). Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. <i>Mol. Psychiatry</i> 23 , 351–361.
664 665	Belter, J. G., Carey, H. V. and Garland, Jr., T. (2004). Effects of voluntary exercise and genetic selection for high activity levels on HSP72 expression in house mice. <i>J. Appl. Physiol.</i> 96 , 1270–1276.
666 667	Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. <i>J. R. Stat. Soc. Ser. B Methodol.</i> 57 , 289–300.
668 669 670 671	Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh, P. L., Nehrenberg, D., Hua, K., et al. (2010). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. <i>Proc. Natl. Acad. Sci.</i> 107 , 18933–18938.

- Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber, A. D., Wu, F., Perez-Perez,
 G. I., Chen, Y., et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation
 during early life. Sci. Transl. Med. 8, 343ra82-343ra82.
- Bressa, C., Bailén-Andrino, M., Pérez-Santiago, J., González-Soltero, R., Pérez, M., Montalvo Lominchar, M. G., Maté-Muñoz, J. L., Domínguez, R., Moreno, D. and Larrosa, M. (2017).
 Differences in gut microbiota profile between women with active lifestyle and sedentary
 women. PloS One 12, e0171352.
- Brown, T. A., Tashiro, H., Kasahara, D. I., Cho, Y. and Shore, S. A. (2020). Early life microbiome perturbation alters pulmonary responses to ozone in male mice. *Physiol. Rep.* **8**, e14290.
- 681 **Campbell, S. C. and Wisniewski, P. J.** (2017). Exercise is a novel promoter of intestinal health and microbial diversity. *Exerc. Sport Sci. Rev.* **45**, 41–47.
- 683 **Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. and Owen, L. J.** (2015). Dysbiosis of the gut microbiota in disease. *Microb. Ecol. Health Dis.* **26**,.
- Carmody, R. N., Gerber, G. K., Luevano, J. M., Gatti, D. M., Somes, L., Svenson, K. L. and Turnbaugh, P.
 J. (2015). Diet dominates host genotype in shaping the murine gut microbiota. *Cell Host Microbe* 17, 72–84.
- Castro, A. A. and Garland, Jr., T. (2018). Evolution of hindlimb bone dimensions and muscle masses in
 house mice selectively bred for high voluntary wheel-running behavior. *J. Morphol.* 279, 766–
 779.
- 691 **Castro, A. A., Rabitoy, H., Claghorn, G. C. and Garland, Jr., T.** (2020). Rapid and longer-term effects of selective breeding for voluntary exercise behavior on skeletal morphology in house mice. *J. Anat.* **00**, 1–24.
- 694 **Clark, A. and Mach, N.** (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. *J. Int. Soc. Sports Nutr.* **13**,.
- 696 Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O'Reilly, 697 M., Jeffery, I. B., Wood-Martin, R., et al. (2014). Exercise and associated dietary extremes 698 impact on gut microbial diversity. *Gut* 63, 1913–1920.
- 699 **Codella, R., Luzi, L. and Terruzzi, I.** (2018). Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. *Dig. Liver Dis.* **50**, 331–341.
- Copes, L. E., Schutz, H., Dlugosz, E. M., Acosta, W., Chappell, M. A. and Garland, Jr., T. (2015). Effects of
 voluntary exercise on spontaneous physical activity and food consumption in mice: Results from
 an artificial selection experiment. *Physiol. Behav.* 149, 86–94.
- Daniel, H., Gholami, A. M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P.,
 Rothballer, M., Walker, A., et al. (2014). High-fat diet alters gut microbiota physiology in mice.
 ISME J. 8, 295–308.

- David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V.,
 Devlin, A. S., Varma, Y., Fischbach, M. A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. *Nature* **505**, 559–563.
- 710 den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D.-J. and Bakker, B. M. (2013). The 711 role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy 712 metabolism. *J. Lipid Res.* **54**, 2325–2340.
- Denou, E., Marcinko, K., Surette, M. G., Steinberg, G. R. and Schertzer, J. D. (2016). High-intensity
 exercise training increases the diversity and metabolic capacity of the mouse distal gut
 microbiota during diet-induced obesity. *Am. J. Physiol. Endocrinol. Metab.* 310, E982–E993.
- 716 **Dethlefsen, L. and Relman, D. A.** (2011). Incomplete recovery and individualized responses of the 717 human distal gut microbiota to repeated antibiotic perturbation. *Proc. Natl. Acad. Sci.* **108**, 718 4554–4561.
- 719 **Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. and Blaser, M. J.** (2019). Role of the microbiome 720 in human development. *Gut* **68**, 1108–1114.
- Dowden, R. A., McGuinness, L. R., Wisniewski, P. J., Campbell, S. C., Guers, J. J., Oydanich, M., Vatner,
 S. F., Häggblom, M. M. and Kerkhof, L. J. (2020). Host genotype and exercise exhibit species level selection for members of the gut bacterial communities in the mouse digestive system. *Sci. Rep.* 10, 8984.
- 725 **Dutta, S. and Sengupta, P.** (2016). Men and mice: Relating their ages. *Life Sci.* **152**, 244–248.
- Figure 726 Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* **26**, 2460–2461.
- Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. *Nat. Methods* 10, 996–998.
- Figure 730 Edgar, R. C. (2016a). SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 074161.
- Fig. 732 Edgar, R. C. (2016b). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 081257.
- Fvans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., Moulton, L.,
 Glawe, A., Wang, Y., Leone, V., et al. (2014). Exercise prevents weight gain and alters the gut
 microbiota in a mouse model of high fat diet-induced obesity. *PLoS ONE* **9**, e92193.
- Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A. and Olsen, G. J. (2008). Critical
 evaluation of two primers commonly used for amplification of bacterial 16s rrna genes. *Appl. Environ. Microbiol.* 74, 2461–2470.
- Frazier, C. R. M., Mason, P., Zhuang, X. and Beeler, J. A. (2008). Sucrose exposure in early life alters adult motivation and weight gain. *PLoS ONE* **3**,

- Fülling, C., Lach, G., Bastiaanssen, T. F. S., Fouhy, F., O'Donovan, A. N., Ventura-Silva, A.-P., Stanton,
 C., Dinan, T. G. and Cryan, J. F. (2020). Adolescent dietary manipulations differentially affect gut
 microbiota composition and amygdala neuroimmune gene expression in male mice in
 adulthood. *Brain. Behav. Immun.* 87, 666–678.
- Funkhouser, L. J. and Bordenstein, S. R. (2013). Mom Knows Best: The Universality of Maternal Microbial Transmission. *PLOS Biol.* **11**, e1001631.
- Garland, Jr., T., Morgan, M. T., Swallow, J. G., Rhodes, J. S., Girard, I., Belter, J. G. and Carter, P. A.
 (2002). Evolution of a small-muscle polymorphism in lines of house mice selected for high activity levels. *Evolution* 56, 1267–1275.
- Garland, Jr., T., Schutz, H., Chappell, M. A., Keeney, B. K., Meek, T. H., Copes, L. E., Acosta, W.,
 Drenowatz, C., Maciel, R. C., Dijk, G. van, et al. (2011). The biological control of voluntary
 exercise, spontaneous physical activity and daily energy expenditure in relation to obesity:
 human and rodent perspectives. J. Exp. Biol. 214, 206–229.
- Garland, Jr., T., Zhao, M. and Saltzman, W. (2016). Hormones and the evolution of complex traits: insights from artificial selection on behavior. *Integr. Comp. Biol.* **56**, 207–224.
- Garland, Jr., T., Cadney, M. D. and Waterland, R. A. (2017). Early-life effects on adult physical activity: concepts, relevance, and experimental approaches. *Physiol. Biochem. Zool.* **90**, 1–14.
- 759 **Gilbert, J. A., Blaser, M. J., Caporaso, J. G., Jansson, J. K., Lynch, S. V. and Knight, R.** (2018). Current understanding of the human microbiome. *Nat. Med.* **24**, 392–400.
- Ho, D., Zhao, X., Yan, L., Yuan, C., Zong, H., Vatner, D. E., Pessin, J. E. and Vatner, S. F. (2015). Adenylyl cyclase type 5 deficiency protects against diet-induced obesity and insulin resistance. *Diabetes* 64, 2636–2645.
- Houle-Leroy, P., Garland, Jr., T. J., Swallow, J. G. and Guderley, H. (2000). Effects of voluntary activity
 and genetic selection on muscle metabolic capacities in house mice *Mus domesticus*. *J. Appl. Physiol.* 89, 1608–1616.
- Hsu, Y. J., Chiu, C. C., Li, Y. P., Huang, W. C., Huang, Y. T., Huang, C. C. and Chuang, H. L. (2015). Effect of intestinal microbiota on exercise performance in mice. *J. Strength Cond. Res.* **29**, 552–558.
- Hunt, D. E., Klepac-Ceraj, V., Acinas, S. G., Gautier, C., Bertilsson, S. and Polz, M. F. (2006). Evaluation
 of 23s rrna pcr primers for use in phylogenetic studies of bacterial diversity. *Appl. Environ. Microbiol.* 72, 2221–2225.
- Kelly, S. A., Bell, T. A., Selitsky, S. R., Buus, R. J., Hua, K., Weinstock, G. M., Garland, Jr., T., Pardo Manuel de Villena, F. and Pomp, D. (2013). A novel intronic single nucleotide polymorphism in
 the *myosin heavy polypeptide 4* gene is responsible for the mini-muscle phenotype
 characterized by major reduction in hind-limb muscle mass in mice. *Genetics* 195, 1385–1395.
- 776 **Kelly, S. A., Gomes, F. R., Kolb, E. M., Malisch, J. L. and Garland, Jr., T.** (2017). Effects of activity, genetic selection, and their interaction on muscle metabolic capacities and organ masses in mice. *J. Exp. Biol.* jeb.148759.

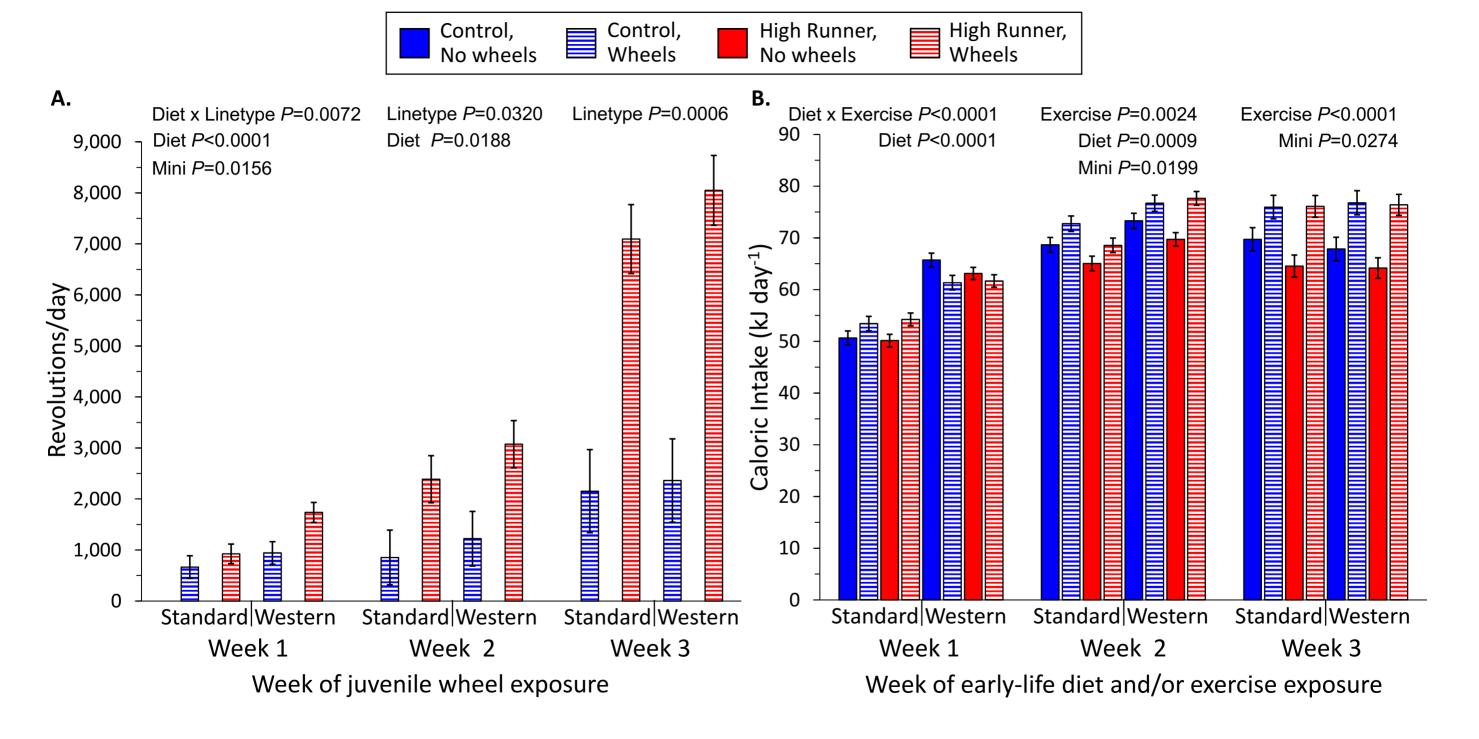
- 779 Kerr, C. A., Grice, D. M., Tran, C. D., Bauer, D. C., Li, D., Hendry, P. and Hannan, G. N. (2015). Early life 780 events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit.
- 781 Rev. Microbiol. 41, 326-340.
- 782 Kohl, K. D. and Carey, H. V. (2016). A place for host-microbe symbiosis in the comparative physiologist's 783 toolbox. J. Exp. Biol. 219, 3496-3504.
- 784 Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. and Koteja, P. (2016). Experimental evolution 785 on a wild mammal species results in modifications of gut microbial communities. Front. 786 Microbiol. 7,.
- 787 Koteja, P., Carter, P. A., Swallow, J. G. and Garland Jr., T. (2003). Food wasting by house mice: variation 788 among individuals, families, and genetic lines. Physiol. Behav. 80, 375–383.
- 789 Lagkouvardos, I., Pukall, R., Abt, B., Foesel, B. U., Meier-Kolthoff, J. P., Kumar, N., Bresciani, A., 790 Martínez, I., Just, S., Ziegler, C., et al. (2016). Corrigendum: The Mouse Intestinal Bacterial 791 Collection (miBC) provides host-specific insight into cultured diversity and functional potential of 792 the gut microbiota. Nat. Microbiol. 1, 16219.
- 793 Lagkouvardos, I., Lesker, T. R., Hitch, T. C. A., Gálvez, E. J. C., Smit, N., Neuhaus, K., Wang, J., Baines, J. 794 F., Abt, B., Stecher, B., et al. (2019). Sequence and cultivation study of Muribaculaceae reveals 795 novel species, host preference, and functional potential of this yet undescribed family. 796 Microbiome 7, 28.
- 797 Lambert, J., Bomhof, M., Myslicki, J., Belke, D., Reimer, R. and Shearer, J. (2014). Exercise training 798 modifies gut bacterial composition in normal and diabetic mice (LB434). FASEB J. 28, LB434.
- 799 Lamoureux, E. V., Grandy, S. A. and Langille, M. G. I. (2017). Moderate exercise has limited but 800 distinguishable effects on the mouse microbiome. mSystems 2, e00006-17.
- 801 Langdon, A., Crook, N. and Dantas, G. (2016). The effects of antibiotics on the microbiome throughout 802 development and alternative approaches for therapeutic modulation. Genome Med. 8, 39.
- 803 Leamy, L. J., Kelly, S. A., Nietfeldt, J., Legge, R. M., Ma, F., Hua, K., Sinha, R., Peterson, D. A., Walter, J., 804 Benson, A. K., et al. (2014). Host genetics and diet, but not immunoglobulin A expression, 805 converge to shape compositional features of the gut microbiome in an advanced intercross 806 population of mice. Genome Biol. 15, 552.
- 807 Ley, R. E., Turnbaugh, P. J., Klein, S. and Gordon, J. I. (2006). Microbial ecology: Human gut microbes 808 associated with obesity. Nature 444, 1022–1023.
- 809 Liu, T.-W., Park, Y.-M., Holscher, H. D., Padilla, J., Scroggins, R. J., Welly, R., Britton, S. L., Koch, L. G., 810 Vieira-Potter, V. J. and Swanson, K. S. (2015). Physical activity differentially affects the cecal 811 microbiota of ovariectomized female rats selectively bred for high and low aerobic capacity. 812 PLOS ONE 10, e0136150.
- 813 Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. and Knight, R. (2012). Diversity, stability 814 and resilience of the human gut microbiota. *Nature* **489**, 220–230.

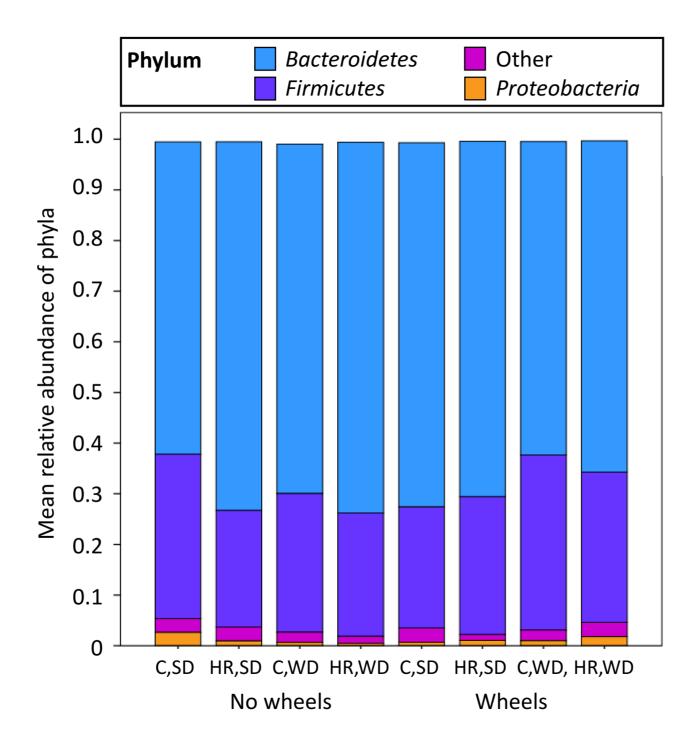
815 Ma, T., Villot, C., Renaud, D., Skidmore, A., Chevaux, E., Steele, M. and Guan, L. L. (2020). Linking 816 perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut 817 microbiota: prediction of diarrhea. ISME J. 818 Mach, N. and Fuster-Botella, D. (2017). Endurance exercise and gut microbiota: A review. J. Sport Health 819 Sci. 6, 179-197. 820 Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J. and Woods, J. A. (2019). Exercise and the gut 821 microbiome: a review of the evidence, potential mechanisms, and implications for human 822 health. Exerc. Sport Sci. Rev. 47, 75–85. 823 Malisch, J. L., Breuner, C. W., Kolb, E. M., Wada, H., Hannon, R. M., Chappell, M. A., Middleton, K. M. 824 and Garland, Jr., T. (2009). Behavioral despair and home-cage activity in mice with chronically 825 elevated baseline corticosterone concentrations. Behav. Genet. 39, 192–201. 826 Martinez-Medina, M., Denizot, J., Dreux, N., Robin, F., Billard, E., Bonnet, R., Darfeuille-Michaud, A. 827 and Barnich, N. (2014). Western diet induces dysbiosis with increased E coli in CEABAC10 mice, 828 alters host barrier function favouring AIEC colonisation. *Gut* **63**, 116–124. 829 Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N. and Hara, H. (2008). 830 Voluntary running exercise alters microbiota composition and increases n-butyrate 831 concentration in the rat cecum. Biosci. Biotechnol. Biochem. 72, 572–576. 832 Meek, T. H., Eisenmann, J. C. and Garland, Jr., T. (2010). Western diet increases wheel running in mice 833 selectively bred for high voluntary wheel running. Int. J. Obes. 34, 960–969. 834 Mika, A., Van Treuren, W., González, A., Herrera, J. J., Knight, R. and Fleshner, M. (2015). Exercise is 835 more effective at altering gut microbial composition and producing stable changes in lean mass 836 in juvenile versus adult male f344 rats. PLOS ONE 10, e0125889. 837 Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., Belzer, C., Palacio, S. D., Montes, 838 S. A., Mancabelli, L., et al. (2017). The first microbial colonizers of the human gut: composition, 839 activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81, 840 e00036-17. 841 Nay, K., Jollet, M., Goustard, B., Baati, N., Vernus, B., Pontones, M., Lefeuvre-Orfila, L., Bendavid, C., 842 Rué, O., Mariadassou, M., et al. (2019). Gut bacteria are critical for optimal muscle function: a 843 potential link with glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 317, E158–E171. 844 Okamoto, T., Morino, K., Ugi, S., Nakagawa, F., Lemecha, M., Ida, S., Ohashi, N., Sato, D., Fujita, Y. and 845 Maegawa, H. (2019). Microbiome potentiates endurance exercise through intestinal acetate 846 production. Am. J. Physiol.-Endocrinol. Metab. 847 O'Sullivan, O., Cronin, O., Clarke, S. F., Murphy, E. F., Molloy, M. G., Shanahan, F. and Cotter, P. D. 848 (2015). Exercise and the microbiota. *Gut Microbes* **6**, 131–136. 849 Petriz, B. A., Castro, A. P., Almeida, J. A., Gomes, C. P., Fernandes, G. R., Kruger, R. H., Pereira, R. W. 850 and Franco, O. L. (2014). Exercise induction of gut microbiota modifications in obese, non-obese 851 and hypertensive rats. BMC Genomics 15,..

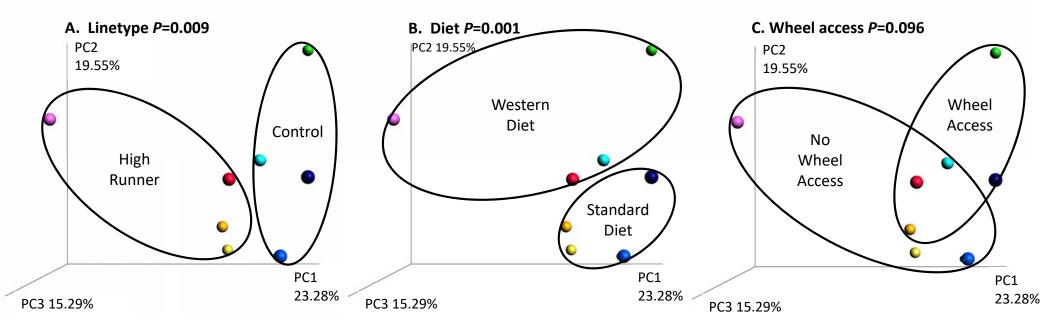
852 Pindjakova, J., Sartini, C., Lo Re, O., Rappa, F., Coupe, B., Lelouvier, B., Pazienza, V. and Vinciguerra, M. 853 (2017). Gut dysbiosis and adaptive immune response in diet-induced obesity vs. systemic 854 inflammation. Front. Microbiol. 8, 1157. 855 Queipo-Ortuño, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F., 856 Casanueva, F. and Tinahones, F. J. (2013). Gut microbiota composition in male rat models under 857 different nutritional status and physical activity and its association with serum leptin and ghrelin 858 levels. PLoS ONE 8,. 859 Ruegger, P. M., Clark, R. T., Weger, J. R., Braun, J. and Borneman, J. (2014). Improved resolution of 860 bacteria by high throughput sequence analysis of the rRNA internal transcribed spacer. J. 861 Microbiol. Methods 105, 82–87. 862 Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. and Rastall, R. A. (2019). Probiotics and 863 prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. 864 Hepatol. **16**, 605–616. 865 Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L.-D., Wibowo, M. C., Wurth, 866 R. C., Punthambaker, S., Tierney, B. T., et al. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 1. 867 868 Schulfer, A. F., Schluter, J., Zhang, Y., Brown, Q., Pathmasiri, W., McRitchie, S., Sumner, S., Li, H., 869 Xavier, J. B. and Blaser, M. J. (2019). The impact of early-life sub-therapeutic antibiotic 870 treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes. ISME J. 1. 871 Seedorf, H., Griffin, N. W., Ridaura, V. K., Reyes, A., Cheng, J., Rey, F. E., Smith, M. I., Simon, G. M., 872 Scheffrahn, R. H., Woebken, D., et al. (2014). Bacteria from diverse habitats colonize and 873 compete in the mouse gut. Cell 159, 253-266. 874 Smith, B. J., Miller, R. A., Ericsson, A. C., Harrison, D. C., Strong, R. and Schmidt, T. M. (2019). Changes 875 in the gut microbiome and fermentation products concurrent with enhanced longevity in 876 acarbose-treated mice. BMC Microbiol. 19, 130. 877 Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S. and Sonnenburg, J. 878 L. (2016). Diet-induced extinction in the gut microbiota compounds over generations. Nature 879 **529**, 212–215. 880 Sprockett, D., Fukami, T. and Relman, D. A. (2018). Role of priority effects in the early-life assembly of 881 the gut microbiota. *Nat. Rev. Gastroenterol. Hepatol.* 882 Swallow, J. G., Carter, P. A. and Garland, Jr., T. (1998). Artificial selection for increased wheel-running 883 behavior in house mice. Behav. Genet. 28, 227–237. 884 Swallow, J. G., Hayes, J. P., Koteja, P. and Garland, Jr., T. (2009). Selection experiments and 885 experimental evolution of performance and physiology. Exp. Evol. Concepts Methods Appl. Sel. 886 Exp. 301-351.

887 Ticinesi, A., Lauretani, F., Milani, C., Nouvenne, A., Tana, C., Del Rio, D., Maggio, M., Ventura, M. and 888 Meschi, T. (2017). Aging gut microbiota at the cross-road between nutrition, physical frailty, and 889 sarcopenia: is there a gut-muscle axis? Nutrients 9,. 890 Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. (2006). An 891 obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 892 1027-131. 893 Turnbaugh, P. J., Bäckhed, F., Fulton, L. and Gordon, J. I. (2008). Diet-induced obesity is linked to 894 marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-895 223. 896 van der Eijk, J. A. J., Rodenburg, T. B., de Vries, H., Kjaer, J. B., Smidt, H., Naguib, M., Kemp, B. and 897 Lammers, A. (2020). Early-life microbiota transplantation affects behavioural responses, 898 serotonin and immune characteristics in chicken lines divergently selected on feather pecking. 899 Sci. Rep. 10, 2750. 900 Wahlsten, D. (1990). Insensitivity of the analysis of variance to heredity-environment interaction. Behav. 901 Brain Sci. 13, 109-120. 902 Wallace, I. J. and Garland, T. (2016). Mobility as an emergent property of biological organization: 903 Insights from experimental evolution: Mobility and biological organization. Evol. Anthropol. 904 Issues News Rev. 25, 98-104. 905 Walsh, M. E., Bhattacharya, A., Sataranatarajan, K., Qaisar, R., Sloane, L., Rahman, M. M., Kinter, M. 906 and Van Remmen, H. (2015). The histone deacetylase inhibitor butyrate improves metabolism 907 and reduces muscle atrophy during aging. Aging Cell 14, 957–970. 908 Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, 909 M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., et al. (2012). Human gut microbiome viewed 910 across age and geography. Nature 486, 222. 911 Zhang, Y., Kumarasamy, S., Mell, B., Cheng, X., Morgan, E. E., Britton, S. L., Vijay-Kumar, M., Koch, L. G. 912 and Joe, B. (2020). Vertical selection for nuclear and mitochondrial genomes shapes gut 913 microbiota and modifies risks for complex diseases. *Physiol. Genomics*. 914 Zhao, X., Zhang, Z., Hu, B., Huang, W., Yuan, C. and Zou, L. (2018). Response of gut microbiota to 915 metabolite changes induced by endurance exercise. Front. Microbiol. 9, 765.

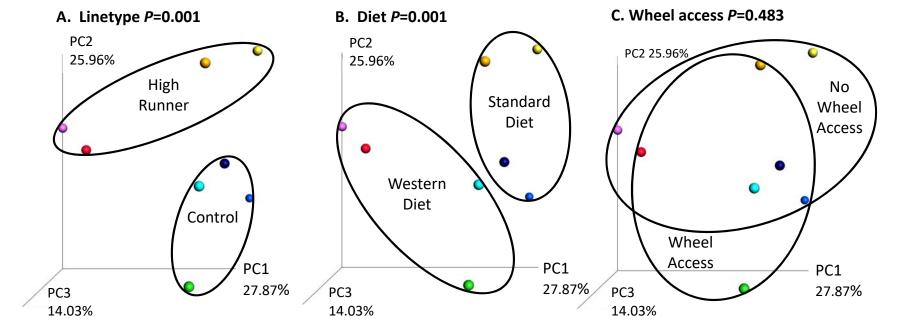
4 Control Lines 4 High Runner Lines C, Standard diet, Wheels **HR**, Standard diet, Wheels (N=19)(N=17)**Standard Diet C**, Standard diet, No wheels **HR**, Standard diet, No wheels (4% kJ from fat) (N=17)(N=19)**C**, Western diet, Wheels HR, Western diet, Wheels (N=21)(N=18)**Western Diet** (42% kJ from fat) **C**, Western diet, No wheels **HR**, Western diet, No wheels (N=21)(N=17)Early-life 8-Week Fecal Diet/Exercise Washout Sampling Manipulation Period

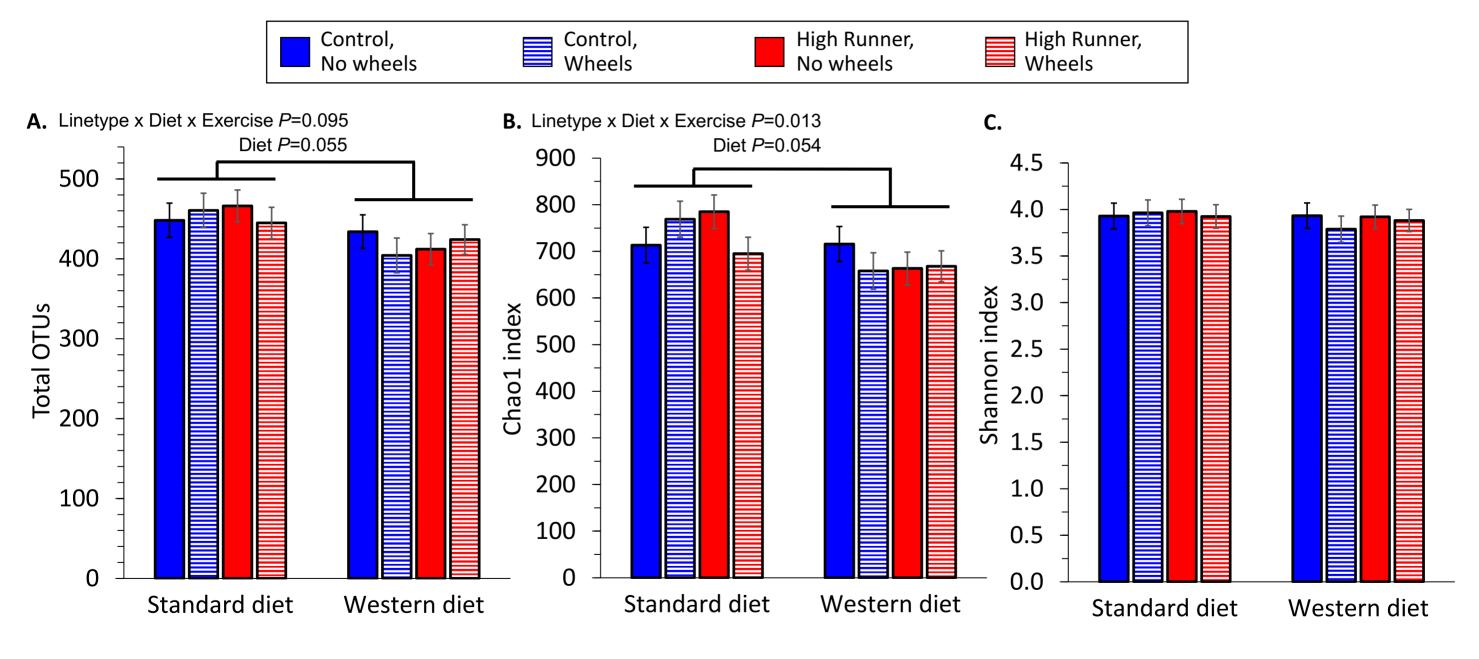

Age in 0

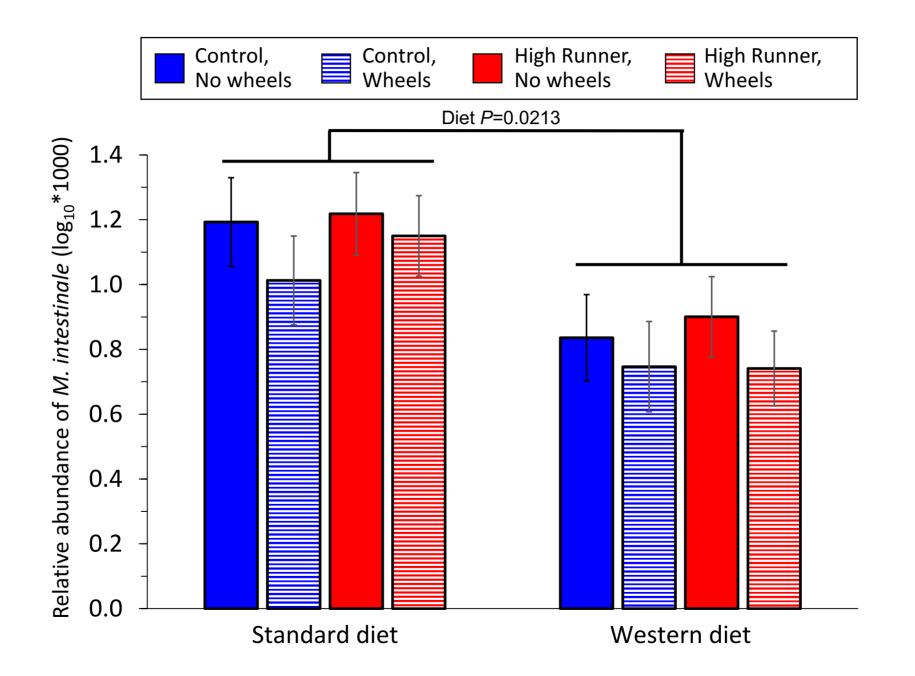

Birth


Weaning

Weeks


12





- C, Standard Diet, No Wheels
- C, Standard Diet, Wheels
- C, Western Diet, No Wheels
- C, Western Diet, Wheels
- HR, Standard Diet, No Wheels
- HR, Standard Diet, Wheels
 - HR, Western Diet, No Wheels
 - HR, Western Diet, Wheels

- C, Standard Diet, No Wheels
 - C, Standard Diet, Wheels
- C, Western Diet, No Wheels
- C, Western Diet, Wheels
- HR, Standard Diet, No Wheels
- HR, Standard Diet, Wheels
- HR, Western Diet, No Wheels
 - HR, Western Diet, Wheels

