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ABSTRACT

Alterations to the gut microbiome caused by changes in diet, consumption of
antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome
during critical developmental periods potentially have long-lasting impacts on hosts.
Using four selectively bred High Runner and four non-selected Control lines of mice, we
examined the effects of early-life diet and exercise manipulations on the adult
microbiome by sequencing the hypervariable Internal Transcribed Spacer region of the
bacterial gut community. Mice from High Runner lines run ~3-fold more on wheels than
do Controls, and have several other phenotypic differences (e.g., higher food
consumption and body temperature) that could alter the microbiome, either acutely or in
terms of coevolution. Males from generation 76 were given wheels and/or Western diet
from weaning until sexual maturity at 6 weeks of age, then housed individually without
wheels on standard diet until 14 weeks of age, when fecal samples were taken.
Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout
period (equivalent to ~6 human years). We also found interactive effects of genetic
linetype, juvenile diet, and/or juvenile exercise on microbiome composition and diversity.
Microbial community structure clustered significantly in relation to both linetype and diet.
Western diet also reduced the relative abundance of Muribaculum intestinale. These
results constitute one of the first reports of juvenile diet having long-lasting effects on
the adult microbiome after a substantial washout period. Moreover, we found
interactive effects of diet with early-life exercise exposure, and a dependence of these

effects on genetic background.
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INTRODUCTION

Animals have evolved in a bacterial world. Coevolution between hosts and symbionts
has resulted in complex relationships, wherein the diverse community of species
inhabiting the gastrointestinal tract in mammals is essential for breaking down nutrients
from ingested food, normal metabolic function, and protection through enhanced
immunity (Dominguez-Bello et al., 2019; Gilbert et al., 2018; Kohl and Carey, 2016).
Many factors have been shown to influence the gut microbial community and diversity,
including diet, exercise, antibiotics, and age (Bokulich et al., 2016; Clark and Mach,
2016; Lozupone et al., 2012; Yatsunenko et al., 2012). Alterations to the community
can result in potentially irreversible (Dethlefsen and Relman, 2011; Langdon et al.,
2016) changes in the microbiome. Compositional changes in the gut microbiome can,
in turn, affect many aspects of host biology, including physiology and behavior.

Diet can rapidly alter the gut microbiome community in as short as 24 hours
(David et al., 2014). For example, many laboratory studies of adult rodents have shown
that a typical Western diet (high in fat and sugar) alters the gut microbiome community
and reduces diversity of bacterial species (Becker et al., 2020; Beilharz et al., 2017;
Leamy et al., 2014; Pindjakova et al., 2017; Turnbaugh et al., 2008). In multiple strains
of inbred, outbred, and transgenic mice, a shift in diet can have lasting effects on the
community, as repetitive switching from a high-fat, high-sugar diet to a low-fat diet
results in altered community membership and composition that does not revert to the
original state (Carmody et al., 2015). Rodent studies also indicate that diet can alter
microbial function. For example, adult mice fed a high-fat diet for 12 weeks had unique
gut microbiome communities, increased body weight, and altered gut bacterial function
as measured by metaproteome and metabolome analyses (Daniel et al., 2014). In this
study, high-fat diet led to an increase in amino acid metabolism and enzymes involved
in the oxidative stress response, possibly in response to the shift in nutrient availability
within the gut.

Acute and chronic exercise can also affect the microbiome (Clark and Mach,
2016; Codella et al., 2018; Mach and Fuster-Botella, 2017; Mailing et al., 2019;
O’Sullivan et al., 2015; Scheiman et al., 2019). The first paper highlighting the

relationship between exercise and the microbiome found that adult rats with wheel
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access for five weeks had an increased amount of cecal n-butyrate, a short-chain fatty
acid byproduct of bacterial fermentation (Matsumoto et al., 2008). Butyrate can be
transported from the small intestine to muscles, where it can lead to activation of
several regulatory pathways linked to ATP production as well as muscle integrity, thus
potentially altering athletic ability/performance (Ticinesi et al., 2017; Walsh et al., 2015).
Approaches for measuring the effect of exercise on the gut microbiome vary widely in
the literature, but consistent trends in results are emerging. For example, both rodent
and human studies have reported increased butyrate-producing bacteria (Barton et al.,
2018; Matsumoto et al., 2008), and also increases in taxa such as Lactobacillus
(Batacan et al., 2017; Lambert et al., 2014; Petriz et al., 2014; Queipo-Ortufio et al.,
2013), Bifidobacterium (Bressa et al., 2017; Lambert et al., 2014; Queipo-Ortufio et al.,
2013), and Akkermansia (Barton et al., 2018; Bressa et al., 2017; Clarke et al., 2014;
Liu et al., 2015). In amateur half-marathon runners the relative abundances of several
bacterial taxa and also fecal metabolites were significantly different pre- and post-race
(Zhao et al., 2018).

Diet and exercise have also been shown to interactively influence the gut
microbiome community and diversity in rodents (Batacan et al., 2017; Denou et al.,
2016; Evans et al., 2014). Mice placed on a high-fat diet for 6 weeks followed by 6
weeks of high-intensity interval training had greater bacterial diversity in the feces
compared to sedentary mice on standard chow (Denou et al., 2016). Exercise-trained
mice on a high-fat diet had significant changes in the relative abundance of the phylum
Bacteroidetes in the small intestine, cecum, and colon compared to mice on a high-fat
diet without exercise training. In another study on the interactions between exercise
and diet, mice given 12 weeks of voluntary wheel access on a standard or high-fat diet
had higher diversity than sedentary controls as well as significant main effects of diet,
exercise, and their interactions on taxa relative abundance (Evans et al., 2014). More
specifically, this study found an increase in the relative abundance of butyrate-
producing taxa in the Clostridiales order compared to sedentary mice. In rats, high-
intensity and light-intensity interval training regimens resulted in unique microbiome

communities regardless of whether they were on a high-fat, high-fructose diet or a
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standard diet (Batacan et al., 2017). The scarcity of studies examining diet-exercise
interactions highlights the need for more research in this growing field.

In mammals, the period of development from weaning to sexual maturity is a
crucial time during which environmental conditions can have a lasting impact on many
traits (Garland et al., 2017), including normal development of the microbiome (Kerr et
al., 2015). Immediately after birth, initial colonizers of the gut microbiome in placental
mammals are dominated by microbes from the mother, followed by further acquisitions
from the early-life environment (Funkhouser and Bordenstein, 2013; Milani et al., 2017).
A clear example of developmental effects on the gut microbiome is early-life diet: babies
who are breastfed have a unique microbiome compared to those fed formula (Sprockett
et al., 2018), and have higher bacterial diversity during 12-24 months of age (Bokulich
et al., 2016). In mice, early-life antibiotic treatment followed by placement on a high-fat,
high-sugar diet as adults results in increased adult adiposity and an increase in the ratio
of Firmicutes to Bacteroidetes as compared to mice on a normal diet (Schulfer et al.,
2019). In a recent study, juvenile mice given 3 weeks of high-fat diet or cafeteria diet
starting at 4 weeks of age followed by an approximately 7-week long washout period
had altered adult gut microbiome communities (Fulling et al., 2020). More specifically,
mice with juvenile high-fat diet had reduced diversity of the adult gut microbiome at
approximately 14 weeks of age. However, only one study has tested whether early-life
effects of exercise on the microbiome can persist after a substantial washout period.
After a 25-day washout period, rats with 6 weeks of juvenile wheel access tended to
have decreased Firmicutes abundance as adults (Mika et al., 2015).

The first goal of the present study was to test for long-lasting effects of early-life
Western diet and exercise on the adult microbiome. To do so, we used a unique animal
model: four lines of High Runner (HR) mice that have been selectively bred for high
voluntary wheel-running behavior and their four non-selected Control (C) lines (Swallow
et al., 1998). The HR mice differ from C mice in several ways that might affect the
microbiome through alterations in the gut environment. HR mice have higher activity
levels and food consumption even when housed without wheels, and increased body
temperature when active (Copes et al., 2015; Malisch et al., 2009; Swallow et al., 2009;

Wallace and Garland, 2016), all of which might affect the gut environment. In the
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absence of compensatory reductions in other aspects of physical activity, exercise leads
to increased energy expenditure and hence necessitates greater food consumption
(Garland et al., 2011), which should directly impact the gut microbiome. Exercise also
causes many acute changes in physiology, including increases in body temperature,
changes in hormone levels, intestinal barrier function, and digestive transit time that
could feedback into the gut environment (Campbell and Wisniewski, 2017; Mach and
Fuster-Botella, 2017). HR and C mice also differ in circulating concentrations of
hormones (Garland et al., 2016). When housed without wheels, HR and C mice do not
differ in small or large intestine mass or length, suggesting that the former might have
faster digestive throughput (Kelly et al., 2017). Therefore, our second goal was to test
for microbiome differences between the HR and C lines, which could result from acute
effects of the noted phenotypic differences. Another possibility is coevolution of the gut
microbiome across many tens of generations of selective breeding, but we cannot
differentiate that from acute/chronic effects of exercise with the present experimental
design. Our analyses also considered the possibility of interactive effects, e.g., that
genetic background (Benson et al., 2010; Carmody et al., 2015; Leamy et al., 2014)
might influence if and how early-life Western diet or exercise opportunity affects the

adult microbiome.

METHODS

All experiments and methods were approved by the Institutional Animal Use and Care

Committee of the University of California, Riverside.

Experimental animals

Mice were sampled from generation 76 of an ongoing selection experiment selecting for
high voluntary wheel-running behavior. Four replicate High Runner (HR) lines are bred
for high levels of voluntary wheel running and are compared with four non-selected
Control (C) lines. The base population was 224 outbred Hsd:ICR laboratory house mice
(Swallow et al., 1998). Mice are weaned at 21 days of age and housed 4 per cage
separated by line and sex until ~6-8 weeks of age. Mice are then placed into individual

cages attached to a 1.12 m circumference wheel (Lafayette Instruments, Lafayette, IN,
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USA) with a sensor to record the total number of revolutions per day (e.g. see Swallow
et al., 1998). For HR mice, the highest running male and female from each family
based on the average revolutions on days 5 and 6 of a 6-day period of wheel access
are chosen as breeders for the next generation. Breeders in the C lines are chosen
without regard to how much they run. Each generation has ~10 breeding pairs per line,

and sibling pairings are not allowed.

Early-life diet and exercise treatment

165 male mice, sampled approximately equally from the 4 replicate HR and 4 non-
selected C lines, were weaned at 21 days of age and placed into one of 4 treatment
groups for 3 weeks: standard diet, no wheels; Western diet, no wheels; standard diet,
wheels; Western Diet, wheels (see Figure 1). Mice were provided with ad lib food and
water for the duration of the experiment. Standard Laboratory Rodent Diet (SD) from
Harlan Teklad (W-8604) contained 4% kJ from fat and the Western diet (WD) from
Harland Teklad (TD.88137) contained 42% kJ from fat. After the 3 weeks of juvenile
exposure, which allowed them to reach sexual maturity, all mice were housed
individually without wheel access on standard diet for an 8-week washout period
(equivalent to approximately 6 human years: Dutta and Sengupta, 2016). Mice were
maintained in rooms with lights on at 0700 Pacific Standard Time for a 12h:12h L:D
photo period, and at approximately 22°C.

Juvenile wheel running
Juvenile wheel running was measured during weeks 3-6 of the early-life diet and/or

exercise manipulation. Mice were housed individually in home cages with attached
wheels, as used during the routine selective breeding protocol (Swallow et al., 1998).
Sensors attached to the wheel record the number of revolutions in each 1-minute
interval during a 23 hr measurement period. We measured wheel freeness by recording
the number of revolutions per wheel until it reaches a stop after accelerating each wheel

to a constant speed (Copes et al., 2015).

Juvenile food consumption
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Juvenile food consumption was measured during weeks 3-6 of the early-life diet and/or
exercise manipulation. Food hoppers were weighed at the start and end of each week
to measure apparent food consumption after accounting for food wasting (Koteja et al.,
2003). Food consumption was converted to caloric intake as the diets differed in energy
content (Meek et al., 2010).

Fecal sampling

At 14 weeks of age, individual mice were placed into a clean, empty cage and watched
until defecation. We obtained fecal samples from 149 individuals. The samples were
placed into a sterile tube and held on dry ice prior to storage in -80°C, where they

remained until DNA extraction.

Bacterial rRNA ITS analysis

lllumina bacterial rRNA ITS libraries were constructed as follows. PCRs were
performed using a DNA Engine thermal cycler (Bio-Rad Inc., Hercules, CA, USA) as 25-
Ml reactions containing: 50 mM Tris (pH 8.3), bovine serum albumin (BSA) at 500 pg/ml,
2.5 mM MgCl,, 250 uM of each deoxynucleotide triphosphate (ANTP), 400 nM of the
forward PCR primer, 200 nM of each reverse PCR primer, 2.5-ul of DNA template, and
0.625 units JumpStart Taqg DNA polymerase (Sigma-Aldrich, St. Louis, MO, USA). PCR
primers targeted a portion of the small-subunit (ITS-1507F,
GGTGAAGTCGTAACAAGGTA) and large-subunit (ITS-23SR,
GGGTTBCCCCATTCRG) rRNA genes and the hypervariable Internal Transcribed
Spacer region (Ruegger et al., 2014), with the reverse primers including a 12-bp
barcode and both primers including the sequences needed for lllumina cluster
formation; primer binding sites are the reverse and complement of the commonly used
small-subunit rRNA gene primer 1492R (Frank et al., 2008) and the large-subunit rRNA
gene primer 129F (Hunt et al., 2006). PCR primers were only frozen and thawed once.
Thermal cycling parameters were 94°C for 5 min; 35 cycles of 94°C for 20 s, 56°C for
20 s, and 72°C for 40 s; followed by 72°C for 10 min. PCR products were purified using
a Qiagen QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA) according to the

manufacturer’s instructions. DNA sequencing (single-end 250 base) was performed
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using an lllumina MiSeq (lllumina, Inc., San Diego, CA, USA). Clusters were created
using template concentrations 2.5 pM and phi X at 107 K/mm2.

Data processing was performed with USEARCH v10.0 (Edgar, 2010). We used
the UPARSE pipeline for de-multiplexing, length trimming, quality filtering and
operational taxonomic unit (OTU) picking using default parameters or recommended
guidelines that were initially described in (Edgar, 2013) and which have been updated at
https://www.drive5.com/usearch/manual10/uparse_pipeline.html. Briefly, after
demultiplexing and using the recommended 1.0 expected error threshold, sequences
were trimmed to a uniform length of 248 bp and then dereplicated. Dereplicated
sequences were subjected to error-correction (denoised) and chimera filtering to
generate zero-radius operational taxonomic units (ZOTUs) using UNOISE3 (Edgar,
2016b). An OTU table was then generated using the otutab command. ZOTUs having
non-bacterial DNA were identified and enumerated by performing a local BLAST search
(Altschul et al., 1990) of their seed sequences against the nucleotide database. ZOTUs
were removed if any of their highest scoring BLAST hits contained taxonomic IDs within
the rodent family, Fungi, Viridiplantae, or phi X. Taxonomic assignments to bacterial
Z0OTUs were made with the SINTAX taxonomy prediction algorithm (Edgar, 2016a) on
an updated SSU-ITS database (Ruegger et al., 2014). This resulted in 2,730 OTUs with
an average of 47,851 sequences per sample. Data were normalized within each
sample by dividing the number of reads in each OTU by the total number of reads in
that sample.

The bacterial rRNA ITS sequences have been deposited in the National Center
for Biotechnology Information (NCBI)’'s Sequence Read Archive (SRA) under SRA
BioProject Accession is PRINA624662.

Statistical Analyses

Juvenile wheel running and food consumption. As used in numerous previous
studies of these lines of mice, we used linear mixed models in SAS 9.4 Procedure
Mixed (SAS Institute, Cary, NC, USA). The effect of linetype is tested against the

variance among replicate lines, which are a nested random effect within linetype.

Wheel Access*Line(Linetype), Diet*Line(Linetype), and Wheel
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Access*Diet*Line(Linetype) were also nested random effects. In these full models, the
effects of Wheel Access, Diet, Linetype, and their interactions were tested with 1 and 6
degrees of freedom. If the covariance parameter estimate for higher-order random
effects was zero, we removed them in a stepwise fashion. In other words, if the
covariance parameter estimate for the 3-way interaction was 0, we removed the Wheel
Access*Diet*Line(linetype) random effect. Then, if one of the two-way random
interaction effects was also zero, we removed it. However, we always retained the
line(linetype) random effect, given the nature of the experimental design (e.g. see
Castro and Garland, 2018; Castro et al., 2020; Swallow et al., 1998). For juvenile wheel
running, we included wheel freeness as a covariate in the model. For caloric intake, we
included body mass as a covariate.

In these statistical models, we also tested for effects of the mini-muscle
phenotype (present in 2 of the HR lines) on juvenile wheel running, juvenile caloric
intake, adult gut microbiome richness and relative abundance. The mini-muscle
phenotype is caused by an autosomal recessive allele, a single base pair change in a
myosin heavy chain gene (Kelly et al., 2013). Homozygotes for this naturally occurring
mutation are characterized by a 50% reduction in hindlimb muscle mass, larger internal
organs, and various other differences as compared with unaffected individuals (Garland
et al., 2002; Swallow et al., 2009; Wallace and Garland, 2016). In the present study the
number of mini-muscle individuals varied among analysis. For example, of the 88 mice
for which we obtained wheel-running data during week 1 of juvenile exposures, 12 had
the mini-muscle phenotype (all 9 in line 3 and 3 of the 11 in line 6). Of the 165 mice for
which we obtained week 1 food consumption data, 43 had the mini-muscle phenotype
(all 21 in line 3 and 5 of 22 in line 6). Of the 149 mice for which we obtained
microbiome data, 25 had the mini-muscle phenotype (all 20 in line 3 and 5 of 20 in line
6).

Beta diversity of the adult gut microbiome. Gut microbiome membership and
structure of the community were compared by calculating unweighted UniFrac and
Hellinger distance matrices in QIIME version 1.9.1. Unweighted UniFrac distance

utilizes the presence and absence of bacterial species while accounting for the
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295 phylogenetic relationship between bacterial species. For statistical and graphical

296 representation, we used an OTU table rarified to an even sequencing depth of 14,000
297  reads per sample. We used a Principal Coordinates Analysis (PCoA) to visualize the
298 communities in a 3D space. For beta diversity, we used a PERMANOVA test in QIIME
299 to determine statistical significance (Anderson, 2001). For these tests we did not treat
300 replicate line as a nested random effect because the software to do this is not currently
301 available.

302

303 Alpha diversity of the adult gut microbiome. To determine the effects of diet,

304 exercise, linetype, and their interactions on alpha diversity of the adult gut microbiome,
305 we used the Chao1 Index and Shannon Index calculated in QIIME Version 1.9.1 from
306 an OTU table rarified to the lowest common sequencing depth of 14,000 reads. We
307 also totaled the number of non-zero OTUs identified in each mouse using the rarified
308 OTU table. We used the statistical procedures described above in Juvenile wheel

309 running and food consumption. Because ANOVAs have relatively low power to detect
310 interactions (Wahlsten, 1990), and following our laboratory’s previous analyses of these
311  mice (e.qg., Belter et al., 2004; Houle-Leroy et al., 2000), we considered interactions

312 significant if P<0.10.

313

314 Lower-level taxa summary comparisons. \We compared the relative abundance data
315 of identified phylum, class, order, family, genus, and species groups produced by the
316 summarize_taxa.py script in QIIME. Based on the simulations reported by Aschard et
317 al. (2019), we only analyzed taxa found in >85% of the mice [phylum (N=6), class (N=9),
318  order (N=8), family (N=16), genus (N=17), species (N=26), and OTUs (N=140, of the
319 total 2,730 identified OTUs)], which totaled 221 tests and 1,761 P values. We used the
320 statistical procedures described above in Juvenile wheel running and food consumption.
321  Bacterial relative abundance data were log or arcsine square root transformed to

322 normalize residuals (Brown et al., 2020; Kohl et al., 2016). P values were corrected for
323  multiple comparisons using the false discovery rate (Benjamini and Hochberg, 1995).
324  For these analyses, we accepted statistical significance at P<0.05 after adjustment for
325 FDR.
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RESULTS

Linetype, diet, and exercise affect juvenile wheel running and food consumption
Diet had an interactive effect on wheel running across the three weeks of early-life
exposure (full statistical results are in Table S1). During the first week, Western diet
increased wheel running, but the effect was greater in HR mice (interaction F4 76 = 7.62,
P=0.0072, Figure 2A), and mini-muscle mice ran more than non-mini (F176 = 6.12, P
=0.0156). During the second week, mice with Western diet continued to run
significantly more than those with standard diet, and HR mice ran 2.6-fold more
revolutions/day than C mice, with no interaction between diet and linetype (interaction
F176 = 0.51, P=0.4765, Figure 2A). By the third week of juvenile wheel access, HR
mice ran 3.4-fold more than C mice and diet no longer significantly affected wheel
running.

During the first week of early-life exposure, diet and wheel access had an
interactive effect on caloric intake (interaction F4 143 = 26.62, P<0.0001, Figure 2B).
Western diet increased caloric intake in all groups, by ~21% on average (F1,143 =
313.25, P<0.0001, Figure 2B). However, wheel access increased intake in mice on a
standard diet but decreased it in those on Western diet. During the second week, mice
on the Western diet had increased caloric intake (F16 = 37.71, P=0.0009, Figure 2B)
and those with wheels consumed more than mice without wheels (F16 = 25.18,
P=0.0024, Figure 2B). In the third week, mice with wheels again consumed more
calories than those without wheels (F16 = 84.23, P<0.0001, Figure 2B), but the effect of
diet was no longer significant. Mini-muscle mice consumed significantly more food
during both weeks 2 (F1.137 = 5.55, P=0.0199) and 3 (F1.136 = 4.97,P=0.0274).

Dominant phyla of the adult gut microbiome

The 2,730 identified OTUs were classified into 7 phyla, 22 classes, 36 orders,58
families, 79 genera, and 112 species. Community composition for the entire set of
experimental mice (N=149) was dominated by the phylum Bacteroidetes (68.1 £ 17.4%)
(mean £ S.D.) and Firmicutes (27.9 £ 16.7%), with additional phyla being much less

12
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abundant: Proteobacteria (1.2 £ 2.1%), Candidatus Melanobacteria (0.3 + 0.6%),
Tenericutes (0.2 £ 0.3%), and Actinobacteria (0.05 + 0.04%) (Figure 3).

Juvenile diet and linetype affect adult community membership (Beta diversity)
Community membership measured by unweighted UniFrac distance and by Hellinger
distance plotted in a PCoA plot (Figure 4 and 5, respectively; corresponding statistical
results in Tables 1 and 2, respectively) showed clustering of mice by linetype and by
juvenile diet exposure. HR and C mice significantly clustered independent of one
another (PERMANOVA, F1 147 = 1.56, P=0.009, Figure 4A; PERMANOVA, F1147=2.31,
P=0.001, Figure 5A). Mice with juvenile Western diet resulted in significant clustering of
samples compared to mice with juvenile standard diet (PERMANOVA, F1 147=2.72,
P=0.001, Figure 4B; PERMANOVA, F1 147 = 2.85, P=0.001, Figure 5B). Within both HR
and C linetypes, mice clustered together by diet (C, F175= 1.64, P=0.007; HR F1 70 =
0.001, P=0.001: Figure S1F). Wheel Access did not result in significant clustering within
linetypes (PERMANOVA, F1 70 = 1.30, P=0.072, Figure S1G). HR mice also clustered
independently by diet (PERMANOVA, F1 70=3.783, P=0.001, Figure S2F).

Early-life exposures, linetype, and their interactions affect adult gut microbiome
richness (Alpha diversity)

For the total number of OTUs, early-life diet and exercise exposures altered the adult
gut microbial richness in a linetype-dependent manner: the three-way interaction of
juvenile diet, wheel access, and linetype was significant (interaction F1 128 = 2.83,
P=0.095; Figure 6A). Early-life Western diet tended to have a lasting impact on gut
microbiome diversity by reducing the total OTUs (ANOVA, F16= 5.67, P=0.055; Figure
6A).

The three-way interaction of juvenile diet, exercise, and linetype was significant
for the Chao1 Index, a corrected index of gut microbial richness that accounts for rarer
taxa (interaction F4 128 = 2.83, P=0.013; Figure 6B). Early-life exposure to Western diet
tended to have a lasting impact on the gut microbiome by reducing adult gut community
richness (ANOVA, Fi6=5.68, P=0.054; Figure 6B). The Shannon Index, another

13
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measure of gut microbial richness that accounts for the abundance of taxa in a sample,

was not statistically different among groups (Figure 6C).

Juvenile Western diet affects adult gut microbiome community

Of the 1,760 P values tested, only 2 remained significant at £<0.10 after correcting for
multiple comparisons using a Benjamini and Hochberg false discovery rate (See File S2
for phylum through genus P values before FDR and File S3 for the full list of P values
for phylum though OTU). Western diet significantly reduced the relative abundance of
the family Muribaculaceae, which is commonly found in the mouse gut microbiome
(ANOVA, F1128=19.2; P=0.021). This decrease is explained by the gut bacterial
species Muribaculum intestinale, which was found in all mice from our study (ANOVA,
F1128=19.2; P=0.021; Figure 7). Muribaculum intestinale made up 0.38% of the
identified OTUs. Mini-muscle mice did not significantly differ in the relative abundance

of any of the tested taxa.

DISCUSSION

Our results constitute one of the first reports of juvenile diet having long-lasting effects
on the adult microbiome after a substantial washout period (equivalent to ~6 human
years). Moreover, we found interactive effects of diet with early-life exercise exposure,
and a dependence of these effects on genetic background. The overall bacterial
community composition that we found (Figure 3) is similar to that reported in many other
studies of adult laboratory house mice (Benson et al., 2010; Lamoureux et al., 2017).
However, beta diversity metrics indicated that community membership was unequal
between the two genetic linetypes we studied (replicate, selectively bred HR and C lines
of mice), and was also affected by early-life Western diet (Figure 4, 5). Bacterial
richness and alpha diversity were also affected by an interaction of juvenile diet,
exercise, and linetype (Figure 6). Finally, juvenile Western diet significantly decreased
the relative abundance of the Muribaculaceae family driven by the species Muribaculum
intestinale (Figure 7).

Selective breeding for high voluntary wheel running resulted in unique clustering

of gut microbiomes by linetype (Figure 4, 5). These results are consistent with the fact
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that selection for wheel-running behavior has caused many exercise-associated
biological changes that could influence the gut environment, including higher food
consumption even when housed without wheels, higher body temperatures when active,
and differences in circulating concentrations of multiple hormones, including
corticosterone, a classic "stress hormone" (Copes et al., 2015; Garland et al., 2016;
Malisch et al., 2009; Swallow et al., 2009; Wallace and Garland, 2016). Our results and
those of other recent studies also demonstrate the utility of selectively bred rodent
models for understanding possible coevolutionary changes in the microbiome (e.g., see
Kohl et al., 2016; Liu et al., 2015; van der Eijk et al., 2020; Zhang et al., 2020).

A Western diet can negatively impact the host’s normal gut barrier function by
increasing intestinal permeability (Martinez-Medina et al., 2014) and by increasing
inflammation of the gut environment (Agus et al., 2016). Several studies have
demonstrated effects of Western diet on the gut microbiome in adult rodents. For
example, Western diet results in unique clustering of microbiome communities
(Carmody et al., 2015; Pindjakova et al., 2017). We also found significant clustering of
microbiome communities by diet (Figures 4 and 5). Previous studies of adult mice have
reported that a high-fat or high-sugar diet can decrease bacterial diversity (Pindjakova
et al., 2017; Sonnenburg et al., 2016; Turnbaugh et al., 2008). Adult rats on standard
chow supplemented with 10% sucrose solution and a selection of cakes, biscuits, and
high-protein foods continuously for 25 days had a significantly reduced alpha diversity,
evidenced by a reduction in the total number of OTUs compared to control rats (Beilharz
et al., 2017). In our study, Western diet during the juvenile period increased wheel-
running behavior and food consumption in both selectively bred HR mice and non-
selected C mice (Figure 2). Both altered diet and increased food consumption can
affect the gut environment and thus alter the bacterial community. In principle, early-life
Western diet could have altered the gut microbiome in a way that persists into
adulthood, an effect that we did indeed find (Figures 4-7).

Only one other publication has examined the long-lasting effects of juvenile diet
on the adult gut microbiome after a significant washout period in mice. Mice with 3
weeks of juvenile high-fat diet followed by a 7-week washout period had decreased

alpha diversity measured by the Shannon Index as adults (Fulling et al., 2020). In our
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study, perturbation of the juvenile gut microbiome with Western diet also had long-
lasting effects on species community indicators of adult gut microbial richness by
reducing the total number of OTUs and the Chao1 index, though no differences in
Shannon diversity were found (Figure 6). Similarly to Carmody et al. (2015), who
demonstrated that a high-fat, high-sugar diet in multiple inbred, outbred, and transgenic
strains of mice resulted in clustering of mice by both diet and genotype within diet
treatment, we found significant clustering of genetic lines within diet treatment (Figure
S1), showing the response to diet can be genotype-dependent.

After correction for multiple comparisons of 1,760 p values comparing taxa at the
level of phylum, class, order, family, genus, species, and OTU, we found one species
(and it’'s family) whose relative abundance was significantly decreased by juvenile
Western diet, Muribaculum intestinale (Figure 7, File S3). The Muribaculaceae family is
commonly found in mouse (but not human) gut microbiomes (previously referred to as
S24-7; Lagkouvardos et al., 2016; Seedorf et al., 2014). Muribaculaceae has been
linked with propionate production, a short-chain fatty acid, in a mouse longevity study
(Smith et al., 2019). This family was also seen to increase in abundance in mice given
voluntary wheel access while on a high-fat or standard diet, and decrease in relative
abundance in mice on a high-fat diet with or without exercise (Evans et al., 2014). This
finding is similar to our study in which the relative abundance of Muribaculum
intestinale, a species of the Muribaculaceae family, was unaffected by exercise but
decreased in abundance with juvenile Western diet (Figure 7). Muribaculaceae belongs
to the phylum Bacteroidetes, one of the two most abundant phyla in the gut microbiome.
Western diet has been shown to usually decrease the relative abundance of
Bacteroidetes, a primarily acetate and propionate producing phylum while increasing
the relative abundance of Firmicutes, a primarily butyrate producing phylum (Carmody
et al., 2015; den Besten et al., 2013; Ley et al., 2006). If species in the Muribaculaceae
family could potentially influence the energy substrate availability to the host, this could
lead to a differential effect of diet and exercise treatments on normal host function. As
M. intestinale is a newly cultured species, it remains to be seen what other functions it
might have (Lagkouvardos et al., 2019). In a small sample of adult wild-type and

ACS5KO mice (known for their exercise-associated traits of longevity and increased
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mitochondrial metabolism in skeletal muscle (Ho et al., 2015)), a taxon with high
sequence similarity to the species M. intestinale were enriched in adult AC5KO mice
after 5 weeks of treadmill training, suggesting that M. intestinale is a potentially
exercise-associated species (Dowden et al., 2020).

To our knowledge, only one previous study of rodents has tested for long-lasting
effects of juvenile exercise on the adult microbiome. Mika et al. (2015) found that
juvenile rats given 6 weeks of wheel access, followed by a 25-day washout period,
tended (not statistically significant) to have a decreased abundance of the Firmicutes
phylum compared to sedentary juveniles. We found that early-life exercise significantly
interacted with diet and linetype to influence gut microbial diversity (Figure 6). Given
that we have shown long-lasting effects of relatively mild and natural early-life changes
(diet, exercise), more severe treatments, such as antibiotics, might have even stronger,

long-lasting effects (Ma et al., 2020).

Limitations and Future Directions
When examining the gut microbiome, variation in sequencing methods can lead to

different results under similar experimental conditions. Much of the literature consists of
16S rRNA analysis. Instead, we sequenced the ITS rRNA gene for finer resolution of
the gut microbial community (Ruegger et al., 2014). This poses a challenge when
comparing ITS data to 16S data. Nevertheless, by examining broad patterns in diversity
and community structure (Figures 4-6) we were able find similar patterns between our
data and the literature (see above). For example, Western diet tends to decrease gut
microbiome diversity (Figure 6) and alters the gut microbiome community measured by
beta diversity (Figures 4 and 5).

We were only able to sample feces and obtain microbial sequence data for one
time point. Logistical constraints precluded our obtaining fecal samples at the beginning
of the study. In future studies, repeating this experiment with a baseline sample at
weaning and immediately after the juvenile exposure to diet and/or exercise would
increase the power to detect longitudinal changes. As we had only the microbiome data
after the washout period, we cannot know when the effects of the experimental
treatments first appeared. They might have appeared during the 3-week treatment

period, which seems likely, or they might have appeared later, at any time prior to when
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we took fecal samples. Regardless of when the effects first appeared, they were
detectable when we analyzed the adult fecal samples. This is an important result, even
in the absence of information regarding the longitudinal trajectory of the effects. Future
studies should examine the time course of early-life effects. In addition, study of the
cecum would allow a more in situ view of the microbiome.

We did not separate or sterilize cages, bedding, food, or water, thus giving the
mice constant exposure to environmental bacteria. This exposure should have tended
to homogenize the gut microbiome, thus possibly erasing any early-life effects of diet or
exercise. Nevertheless, we were able to detect such effects after a substantial washout
period, supporting the idea that the early-life developmental period of the microbiome is
sensitive and responsive to change, and can be impacted in ways that resist
subsequent environmental perturbations.

Future experiments involving antibiotic reduction and transplantation of the
microbiome will be required to determine whether the unique microbial community of
HR mice (Figure 4 and 5), which has potentially co-evolved during the selection
experiment, contributes to their high motivation and/or ability for sustained, aerobically
supported exercise (Hsu et al., 2015; Nay et al., 2019; Okamoto et al., 2019; Scheiman
et al., 2019). More specifically, one could administer antibiotics to eliminate the existing
gut microbiome, monitor changes in wheel running, then transplant the HR microbiome
into C mice and vice versa. Additional groups would receive their own linetype-specific
microbiome in the reseeding phase of the experiment (i.e., HRto HR and C to C). Ifa
unigue microbiome is partly responsible for the HR phenotype, then we would predict
that (1) antibiotics would reduce their wheel running and (2) reseeding with HR (but not
C) microbiome would recover the normal wheel-running behavior for HR mice. Itis also
possible that transplanting the HR microbiome to C mice would increase their wheel
running, at least if some other inherent factor does not limit their running motivation or
ability.

Overall, we found that early-life Western diet had more long-lasting effects on the
microbiome than did early-life exercise. Future studies will be required to determine if
this is a general result. In particular, we need dose-response studies of how much

exercise, and what type of exercise, is needed to elicit a permanent, potentially
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beneficial, change in the gut microbiome. The field also needs more studies of how
voluntary exercise can acutely change the gut microbiome (e.g., by short-term or
alternate-day wheel access), combined with longitudinal sampling. Finally, milder diet
alterations should be examined, in addition to effects of probiotics (Sanders et al.,
2019).
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Table 1. Statistical analyses corresponding to Figure 4 (Community membership of the

adult gut microbiome Principal Coordinate Analysis using unweighted UniFrac

distances).
Figure Sum of D.F. F RZ P
Squares

Linetype 4A 0.213 1,147 1.560 0.010 0.009
Diet 4B 0.369 1, 147 2.719 0.018 0.001
Wheel Access 4C 0.170 1, 147 1.243 0.008 0.096
C:Diet 4B, Sup. 1F 0.225 1,75 1.644 0.021 0.007
HR:Diet 4B, Sup. 1F 0.328 1,70 2.462 0.034 0.001
C:Wheel Access 4C, Sup. 1G 0.116 1,75 0.838 0.011 0.832
HR:Wheel Access 4C, Sup. 1G 0.176 1,70 1.304 0.018 0.072
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Table 2. Statistical analyses corresponding to Figure 5 (Community membership of the

adult gut microbiome Principal Coordinate Analysis using a Hellinger distance matrix).

Figure Sum of D.F. F R P
Squares
Linetype S5A 1.150 1,147 2.310 0.015 0.001
Diet 5B 1.414 1, 147 2.851 0.019 0.001
Wheel Access 5C 0.497 1, 147 0.989 0.007 0.483
C:Diet 5B, Sup. 2F 0.534 1,75 1.043 0.014 0.384
HR:Diet 5B, Sup. 2F 1.753 1,70 3.783 0.051 0.001
C:Wheel Access 5C, Sup. 2G 0.385 1,75 0.749 0.010 0.843
HR:Wheel Access | 5C, Sup. 2G 0.458 1,70 0.951 0.013 0.518

21




579
580

581
582
583
584

585
586
587
588
589
590
591
592

593

594
595
596

597

598
599
600
601
602
603
604
605
606
607
608

Figure Legends

Figure 1. Early-life experimental design and treatment groups (N=149 mice). Fecal
sampling occurred as adults (14 weeks of age) after the eight-week washout period on

standard diet with no wheel access.

Figure 2. Weekly revolutions/day and caloric intake in response to juvenile diet and/or
exercise treatment. Data are presented as untransformed least squares means +
s.e.m. (values for mini-muscle versus normal-muscle mice are not shown). Shown
above each week are the significant main effects and interactions (2-tailed ANCOVAs
P<0.05, not adjusted for multiple comparisons). Full statistical results are in Table S1.
A. Weekly juvenile wheel running for half of the mice during the 3 weeks of early-life
exposure (N=88). B. Weekly mass-adjusted juvenile caloric intake during the 3 weeks

of early-life exposure (N=165).

Figure 3. Community composition of the adult gut microbiome for all experimental mice
(N=149). Bars represent the mean relative abundance of the 4 main phyla found in

greater than 1% of the population, separated by treatment group.

Figure 4. Community membership of the adult gut microbiome Principal Coordinate
Analysis using unweighted UniFrac distances. A. Clustering of mice by High Runner
(N=72) and Control (N=77) lines of mice (PERMANOVA, F; 147 = 1.56, R = 0.010,
P=0.009). B. Clustering of mice by Western diet (N=77) and Standard diet (N=72)
(PERMANOVA, F;147=2.72, R* = 0.018 P=0.001). C. Clustering of mice by wheel
access (N=75) and no wheel access (N=74) (PERMANOVA, F1 147 = 1.24, R?> = 0.008
P=0.096). Statistical analyses are in Table 1.

Figure 5. Community membership of the adult gut microbiome Principal Coordinate
Analysis using a Hellinger distance matrix. A. Clustering of mice by High Runner
(N=72) and Control (N=77) lines of mice (PERMANOVA, F; 147=2.31, R> = 0.015,
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P=0.001). B. Clustering of mice by WD (N=77) and SD (N=72) (PERMANOVA, F1 147 =
2.85, R? =0.019, P=0.001). C. Clustering of mice by wheel access (N=75) and no
wheel access (N=74) (PERMANOVA, F; 147 = 0.99, R? = 0.007, P=0.483). Statistical

analyses are in Table 2.

Figure 6. Alpha diversity metrics of the adult gut microbiome (N=149 mice). Data are
presented as untransformed least squares means = s.e.m. (A). Total OTUs when the
OTU table was rarified to an even number of reads per sample. The three-way
interaction between juvenile diet, exercise, and linetype on fecal bacterial richness was
significant (2-tailed ANOVA interaction, F4 128 = 2.83, P=0.095, not adjusted for multiple
comparisons). Early life exposure to Western diet tended to have a lasting impact on
gut microbiome diversity by reducing the total OTUs (2-tailed ANOVA, F¢= 5.67,
P=0.055, not adjusted for multiple comparisons). (B). Chao1 Index. The three-way
interaction between Western diet, exercise, and linetype was statistically significant (2-
tailed ANOVA interaction, F1 128 = 6.39, P=0.013, not adjusted for multiple comparisons).
Early life exposure to Western diet tended to have a lasting impact on the gut
microbiome by reducing adult gut community richness (2-tailed ANOVA, F;6= 5.68,
P=0.054, not adjusted for multiple comparisons). (C). Shannon Index was not

significantly affected by any experimental factor.

Figure 7. Relative abundance of the species Muribaculum intestinale (N=149 mice).
Data are presented as transformed least squares means + s.e.m. Mice with juvenile
exposure to Western diet had a significantly lower relative abundance of the species M.
intestinale. (2-tailed ANOVA, F 128 = 19.2; FDR adjusted P=0.0213).
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