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Variation in complex traits is the result of contributions from many loci of
small effect. Based on this principle, genomic prediction methods are used
to make predictions of breeding value for an individual using genome-
wide molecular markers. In breeding, genomic prediction models have
been used in plant and animal breeding for almost two decades to increase
rates of genetic improvement and reduce the length of artificial selection
experiments. However, evolutionary genomics studies have been slow to
incorporate this technique to select individuals for breeding in a conserva-
tion context or to learn more about the genetic architecture of traits, the
genetic value of missing individuals or microevolution of breeding values.
Here, we outline the utility of genomic prediction and provide an overview
of the methodology. We highlight opportunities to apply genomic prediction
in evolutionary genetics of wild populations and the best practices when
using these methods on field-collected phenotypes.

1. Introduction

The goal of genomic prediction is to make a prediction of the additive genetic
value of an individual using genome-wide molecular markers. Genomic predic-
tion was described almost 20 years ago, and has been a revolution in plant and
animal breeding [1-5]. Genomic prediction models, in conjunction with drasti-
cally reduced genotyping costs, have produced gains in key crop and livestock
traits and shortened the time required for artificial selection [1,6-8]. Genomic
prediction has served these practical needs well, and has attracted a consider-
able amount of research effort. A related field has sprung up in human
genetics and personalized medicine, where genomic prediction (often called
polygenic risk scores) is used to identify patient risk for disease or treatment
options conditioned on their unique genotype [9]. However, only a small
number of pioneering studies have applied genomic prediction methods in
wild populations [10-18].

The power of genomic prediction is the ability to predict the breeding value
of unobserved individuals or individuals who have not yet expressed the trait
of interest. This capability could be used in a variety of applications in evol-
utionary biology, including understanding if there is an association between
viability selection and breeding values, or to understand the microevolution
of breeding values through time [15,19]. Further, with some care, formal tests
of genetic architecture can be made [12] and the additive genetic value for his-
torical populations can be predicted. Clearly, there is much untapped promise
for genomic prediction in evolutionary studies.

In this review, we provide an introduction to genomic prediction, an over-
view of some of the models and how to improve their accuracy. We then
shift to the challenges associated with bringing a tool developed for animal
breeding to studies of evolutionary genetics and opportunities in which geno-
mic prediction could be used in the field of evolutionary genetics. We envision
genomic prediction aiding in selecting individuals to breed for conservation
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genetics, wildlife disease resistance, and climate change resi-
lience and to predict genetic component of phenotypes that
are unobservable, such as for historical DNA samples.

Genomic prediction models were developed to accelerate the
breeding process by identifying individuals with high breed-
ing merit for a particular trait (i.e. genomic selection, [2]). In
the breeding literature, the additive genetic value an individ-
ual has for a phenotype is called the breeding value [20,21].
Estimating the breeding value of an organism can be
especially useful when the phenotype is unobservable in
that particular individual, such as the breeding value for
milk production for a bull or when unmeasured individuals
have undergone viability selection [15,19].

In genomic prediction, the breeding value is estimated by
summing additive genetic effects of all genome-wide markers
(e.g. single nucleotide polymorphisms (SNPs), indels) for a
focal individual. Using appropriate training data (individuals
whose genotypes and phenotypes have been observed), geno-
mic prediction produces a prediction model where each
genotype combination (e.g. aa, Aa, AA) is assigned a value
indicating its contribution to the breeding value. Markers in
regions of the genome with a large impact on phenotype will
tend to have a large contrast among the estimated genotypic
effects (e.g. aa < Aa < AA), whereas regions with little impact
on phenotype will have small differences (e.g. aa ~ Aa~ AA).

Significance thresholds are not applied to individual
markers in genomic prediction as is commonly done in quan-
titative trait loci (QTL) mapping or genome-wide association
studies (GWAS). Instead, all markers are allowed to contrib-
ute to the prediction. Additionally, in genomic prediction,
all marker effects are estimated in a single model, whereas
in GWAS, a model is typically fit for each marker (i.e.
single-marker regression) [22]. In the following sections, we
provide a brief overview of the basics, though, we encourage
readers to examine previous work [23] as well as a curated
virtual series highlighting genomic prediction https://
www.genetics.org/content/genomic-prediction.

Genomic prediction models fit all marker effects in a single
model. This creates complications that make it unfavourable
or often impossible to use standard least-squares methods
like multiple regression (box 1) and has necessitated special-
ized statistical methods. A good starting place for discussing
genomic prediction methods is ridge regression [2,29]. Ridge
regression is similar to least-squares regression in that it esti-
mates the marker effects such that they minimize the residual
error in the model. However, ridge regression goes beyond
least squares with one additional constraint, which is that
all marker effects are assumed to have a normal distribution
with a mean of zero and a specific variance as their prior
(figure 1a). By sharing a common variance, the marker effects
experience ‘shrinkage’ (box 1), which draws them towards
zero. This helps prevent overfitting on the training data and
conceptually, the normal prior mimics the assumptions of
the quasi-infinitesimal model of quantitative genetics. There
is an equivalency under certain conditions between ridge
regression and a technique known as genomic best linear

Box 1. Basic principles of GP: model fitting and cross-validation.

Estimating the phenotypic impact of a large number of
markers simultaneously is a challenging task. The
number of individuals (N) will frequently be less than
the number of markers genotyped (P). When N<DP,
there is no unique least-squares solution, so multiple
regression cannot be used. Even if N is greater than P, esti-
mates will suffer from the multicollinearity problem of
multiple regression, which can make marker effect esti-
mates unstable. This problem is compounded by high-
density genotyping which produces datasets were
many markers are tightly linked. For these reasons, mul-
tiple regression is inappropriate for genomic prediction.
One approach to overcome the N < P and multicollinear-
ity problems is to bound marker effects to a prior
distribution with a shared variance, such as using a
normal distribution prior for marker effects in ridge
regression [2]. While this allows predictions to be made
when N <P this assumption (i.e. marker effects come
from a normal distribution) also results in ‘shrinkage’.
Shrinkage causes marker effects to be drawn towards
zero, and the degree to which this occurs is controlled
by the ‘shrinkage parameter’ (a value that controls the
variance of the prior distribution assumed to govern
marker effects) [8]. Optimizing the shrinkage parameter
can improve model performance [24]. Finally, when fit-
ting the genomic prediction model, it is important to
assess the model’s accuracy. One common technique is
cross-validation, where the full dataset (records of indi-
viduals with known genotypes and phenotypes) is
subset into a training data sample (e.g. 80%) and a test
data sample (e.g. 20%). Once the model is trained on the
training set, breeding values are estimated for the test
set and compared to observed phenotypes to assess
model performance. This is repeated such that every indi-
vidual is in the training set multiple times and the test set
once [25,26]. This cross-validation approach is extensively
employed across different genomic prediction methods to
tune various model parameters and evaluate factors
affecting accuracy such as marker number, model type,
and training populations size and composition [26-28].

unbiased prediction (GBLUP). GBLUP uses genetic markers
to compute a genomic relationship matrix between individ-
uals and then uses this matrix as a covariate in a linear
mixed model [24,30,31]. For this reason, ridge regression
methods (such as rrBLUP) [24] and GBLUP methods produce
similar results [31].

Genomic prediction has expanded to other statistical
models that may better fit specific genetic architectures (i.e.
number of causative loci and their effect sizes). For example,
LASSO (least absolute shrinkage and selection operator)
employs a double exponential distribution for the marker
effects prior rather than the normal prior that is used in
ridge regression (figure 1a). The double exponential model
has thicker tails and a higher peak at zero compared to a
normal distribution. This allows more markers to be esti-
mated with larger effects and with zero effect. For some
traits, this distribution more realistically represents the
underlying genetic architecture [32-34].
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Figure 1. Marker effect coefficient prior and marker effect variance distributions used in genomic prediction models. (a) The double exponential (LASSO) and normal
(ridge regression) marker effect coefficient prior distributions. (b) The marker effect variance prior for the scaled inverse y? distribution (BayesA and BayesB). This
distribution is governed by two parameters, degrees of freedom (d.f.) and a scaling factor (s). Three examples range from having most of the density near zero
(df.=1, s=10.2) to most of the density spread away from zero (d.f. = 10, s = 2). These parameters make it possible to express priors corresponding to different
genetic architectures. The scaled inverse y? distribution has no density at zero. BayesB follows the scaled inverse 4 prior from BayesA, but adds a third parameter,

7, which controls the proportion of marker effect variances that are zero.

LASSO and mixture models (models that allow marker
effect sizes to be drawn from multiple distributions rather
than a single distribution) are known as variable selection
models. Variable selection models assume a priori that some
markers have an effect size of zero on the phenotype, thus,
can enable the fitting of large effect alleles better than
GBLUP (box 1) [8,23,35]. There are multiple mixture models
that differ in their prior distributions for marker effects and
variances (e.g. BayesA, BayesB; figure 1b; and also BayesC,
Bayesian LASSO and BayesR) [1,23]. For example, the prior
in BayesC assumes that the marker effects either have no
effect or follow a normal distribution estimated from the
data, whereas Bayesian LASSO assumes that the marker
effects either have no effect or follow a double exponential
distribution (see comparable examples in figure 1a). The
degree to which these methods shrink some marker effects
to zero depends on the strength of the prior used and the
data, and with some combinations, it may be possible to
have no zero-effect markers [36].

In many breeding populations, the ridge regression
model is as accurate as variable selection models since a
normal distribution of marker effect sizes is a decent approxi-
mation of genetic architecture for many traits and can be
computationally faster [4,30,37] (but see [35,38]). Breeding
populations are special cases, as shared ancestry is often
quite high and linkage disequilibrium (LD) is often exten-
sive [37]. Moreover, breeding populations have typically
experienced strong selection for economically valuable
traits, which tends to fix beneficial large-effect alleles and
purge detrimental large-effect alleles, leaving smaller
phenotypic effects among the remaining segregating alleles
[39,40]. In natural populations, variable selection models
may be superior when individuals are unrelated and popu-
lations are diverse and polymorphic at some large-effect
loci [37].

Genomic prediction accuracy is a measure of how good the
prediction equation is at predicting the breeding value of an

individual solely from its genotype. Because breeding values
are unknown, accuracy is often estimated as the correlation
between the measured phenotypic value and the predicted
breeding value (genomic estimated breeding value, GEBV).
Accuracy, when estimated this way, is expected to be down-
wardly biased because the phenotype is an imperfect
estimator of the breeding value. As a general rule-of-thumb, a
correlation of 0.6 is considered moderate and many successful
prediction equations obtain this level of accuracy [41,42]. The
required genomic prediction accuracy varies across appli-
cations and should be determined within the context of
how genomic selection will be used to increase the rate of
genetic progress when compared with phenotypic selection.

There are several key characteristics that lead to more
accurate prediction equations [43—46]:

(1) careful and accurate measurement of phenotypes (under
relevant environments) [45],

(2) a highly heritable trait [47] (figure 2),

(3) a large training dataset [30] (figure 2),

(4) relatively close relationship between breeding population
and training population [48,49],

(5) tight LD between the markers and the causative loci [50]
and a number of markers sufficient to capture each
unique haplotype [1,30],

(6) the genetic architecture of the trait [51] and how well it
matches the model used [35,44,45].

An estimate of the accuracy, as measured by Pearson’s corre-
lation (r), between the GEBVs and the true breeding values
for a population can be estimated a priori with the following
equation:

NK?
N2+ M,’

where N is the training dataset size, h” is the trait heritability
and M, is the effective number of chromosome segments in
the population [46]. M, can be estimated by M,=2N.L,
where N, is the effective population size and L is the length
of the genetic map in Morgans [1], though there is debate
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Figure 2. The relationship between training dataset size and prediction accuracy for five different heritability values. The effective number of chromosome segments
(M) is 20000 in @ and 100 000 in b, corresponding to an N, of 400 in a and 2000 in b.

on how M, should be estimated [52]. In practice, this estima-
tor represents the upper bound on accuracy, as it assumes
marker saturation, where a marker tags every QTL in the
population [30,46]. Figure 2 gives the relationship between
the training dataset size (N) and the trait heritability (4?)
assuming M, = 20000 (figure 2a) or M,=100000 (figure 2b).
Given a 25 Morgan genetic map (as a general representative
[53,54]), these values of M, would be expected for a
population with an N, of approximately 400 and 2000,
respectively. Reasonable prediction accuracy can be achieved
for M,=20000 for high heritability traits with a moderate
number of individuals. By contrast, accuracy is low when
the trait heritability is low or when M, is large (figure 2b).
M, is highly impacted by effective population size, and
larger more diverse populations require more individuals in
the training dataset and a higher marker density to reach
high levels of accuracy [37]. This is an especially important
consideration for natural populations.

More recent approaches to increase accuracy are centred
on the development of models that better fit the genetic archi-
tecture or use prior functional information. For example,
BayesRC includes a separate distribution for markers associ-
ated with known causal loci [8]. Another example is genomic
feature BLUP (GFBLUP) which groups markers by gene func-
tion (e.g. GO annotation) or metabolic pathway information
and allows that prior information to shape the effect size dis-
tributions [12,55]. Thus, the accuracy of genomic prediction
models may be increased in natural populations for which
a partial genetic basis is known, or by including additional
biological knowledge from genomic features.

5. Considerations for applying genomic
prediction to natural populations

Genomic prediction methods were developed for breeding
programmes, and there are a few considerations regarding
how they would perform in natural populations, chief
among them are sample size and design of the training popu-
lation. While we highlight considerations below, successful
implementation of accurate genomic prediction in wild
populations has been achieved [12,15,17].

(a) Sample size

Genomic prediction often requires large sample sizes and this
scales with the diversity of the population being studied
(figure 2). Recent livestock studies may incorporate 10 000+
animals, and sample sizes this large are often difficult to
achieve in natural populations, or in fact may not exist for
some species. The effective population size of some natural
populations may also be several orders of magnitude
higher than in domesticated species. This means training
populations may need to be large to achieve reasonable accu-
racy [30] (figure 2). For example, a recent study of egg-laying
date in approximately 2000 great tits found genomic pre-
diction accuracy to be near 0.2, and this relatively low
accuracy was attributed, in part, to the very large effective
population size of that species [10].

Larger effective population sizes also mean that many more
SNPs may be needed to capture all of the unique haplotypes
associated with the trait [10,12,56]. Typically, SNP arrays are
developed for genotyping agricultural species with tens of thou-
sands of common SNPs across the populations (e.g. Illumina
BovineSNP50 with approx. 50 000 SNPs, [57]). Natural popu-
lations may harbour more rare alleles and shorter LD blocks
than domesticated species. Thus, marker density may need to
be higher than domesticated species to ensure causal SNPs are
linked with markers [37,56], and employing whole-genome
sequencing may be helpful for some species [37].

(b) Training population

Thoughtfully designing a training population is key to the
accuracy of the prediction model. For example, if the individ-
uals in need of prediction are from a genetically less diverse
population, the training population should be closely related
to the prediction population. By contrast, to predict more
diverse individuals, the training population will also need to
be diverse and potentially quite large (table 1) [8]. If the train-
ing population is too distantly related to the prediction
population, genomic prediction will be less accurate [59], as
seen when prediction equations are applied across species,
populations or breeds [60]. Newer models have shown that
bridging information across breeds can be successful when
focused on specific genomic regions that may have an outsized
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impact on the trait of interest (GFBLUP [55]), and BayesRC
[61] appears to be an advance in across-breed performance.

Similar to the issue of elevated effective population size,
natural populations often exhibit genetic structure by distance
or environment. Such issues plague GWAS, where they can
cause spurious signatures of association [62]. Genomic predic-
tion differs from GWAS in that it is generally not concerned
with identifying causative loci. In genomic prediction, if the
training and prediction populations share the same popu-
lation structure and the trait of interest is associated with
this structure, population structure can contribute beneficially
to prediction accuracy, even if the alleles associated with this
structure themselves are not causative [63]. One must use cau-
tion, though, if phenotypes are obtained from individuals
where the direct effects of environment on phenotypes are
associated with the genetic structure of the population.

An interesting example was found in a multi-breed sheep
study on fleece weight. SNPs on chromosome 1 recovered
86% of the prediction accuracy of the full-genome model
[63]. The authors hypothesized this is not because most
fleece weight QTL reside on chromosome 1, but rather that
a single chromosome captured much of the signal of popu-
lation structure, and the structure itself was correlated with
fleece weight. Next, the authors attempted to control for
population structure (as one would in GWAS) and found
that model accuracy decreased, a result that has also been
shown in maize and rice [64].

In these studies, population structure was shared between
the training and prediction populations. In natural popu-
lations, population structure differences may be detected
between the training and prediction populations. As in
GWAS, the goal of accounting for structure when it differs
between training and prediction populations is to gain pre-
diction accuracy by avoiding spurious associations due to
structure alone [63]. Issues with population structure also
need to be monitored over time, and updates to the predic-
tion model and/or training population may need to be
made if population structure changes (but see [37]).

To help infer the expected prediction accuracy for a
planned training population size and composition, determi-
nistic equations or simulations are often employed a priori,
and cross-validation could be useful to give a quick
assessment of empirical prediction accuracy [52,59,65,66].

In theory, the breeding value captures only the additive genetic
component of the phenotype. This means that under ideal con-
ditions, breeding values omit both non-additive genetic and
environmental factors, which often interact with the genotype.
Thus, the predicted breeding value is typically defined only
for a target set of environmental conditions. One interesting
example of how to deal with this complicating factor comes
from [15,17] who opted to fit mixed models that incorporated
fixed effects, non-genetic random effects and repeated
measures. The random effect of individual identity was
extracted and incorporated as the phenotype in genomic predic-
tion. This resulted in a high-accuracy genomic prediction model.

There are extensions of genomic prediction models that
incorporate non-additive effects and genotype-by-environ-
mental interactions (GxE). Some models have been
developed to explicitly capture epistasis [67-69] and

Box 2. Superior progeny value.

One way to evaluate the value of a cross is to estimate
the expected performance of the offspring. The superior
progeny value (s) is defined as s = i + io,, where y is the
progeny mean, i is the selection intensity and oy is the
genetic standard deviation for a trait [80,81]. Superior
progeny value estimates can be made by genotyping
the parents and simulating a large number of offspring
from those parents [82]. The genomic prediction model
can be used to predict the expected breeding value of
the simulated offspring (figure 3) and estimate y and
o, This approach is limited by the accuracy of the
underlying genomic prediction model.

parent 1 x

x  ( parent 4

% ( parent 6

simulated offspring GEBVs

Figure 3. For each hypothetical cross, the distributions of
GEBVs from simulated offspring are given to the right,
made from the phenotypes and genotypes of the parents.
The distributions have different means and variances,
which can be used to determine the usefulness of each cross.

dominance [70,71], while others, through the use of nonlinear
functions relating genotype to phenotype, hold the potential
to capture cryptic interactions [72]. Empirical studies on the
superiority of these models in genomic prediction accuracy
are inconsistent [4,73-75].

Similarly, genomic prediction models have been devel-
oped to better account for GxE effects [76]. These models
would incorporate genomic, phenotypic and environmental
data and allow for the prediction of unobserved genotypes
in future, unobserved environments [77], though fully attain-
ing this outcome is still a major challenge of the field [78,79].

With some creativity, genomic prediction models can be an
important tool for the evolutionary community. Genotyping
and sequencing costs have fallen dramatically, making it
possible to apply genomic prediction in ways that would
have been cost-prohibitive a decade ago. Below, we explore
several exciting uses for genomic prediction in evolutionary
and conservation genetics.

Genomic prediction can predict the expected shape of the
breeding value distribution among offspring for any pair of
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genotyped individuals. Referred to as the superior progeny
value of the cross (box 2) [80,81], this principle has been
used extensively in breeding to identify crosses with the high-
est potential to produce exceptional offspring. For
populations with extensive pedigree information (e.g. Soay
sheep, scrub jays, fly catchers), one could determine how
natural mating patterns correlate with the superior progeny
value. This approach could offer an interesting contrast to
the empirical approach of estimating the quality of mate
choice based on the traits or fitness of observed offspring.
In addition, one could use this approach to identify traits
where mate choice correlates with the superior progeny
value and traits where it does not.

(b) Testing the genetic architecture of traits

While the standard ridge regression methods work well for
traits with many loci of small effect, variable selection models
can better accommodate a genetic architecture that includes
large effect loci [35] but see [36,83]. Such a formal test rejected
the infinitesimal model for chill coma recovery, starvation
resistance and startle response in Drosophila melanogaster [12].

This offers other exciting possibilities to learn about the
genetic architecture of traits. For example, one could poten-
tially fit models before and after an ‘evolve-and-resequence’
experiment to determine if variable selection models fit the
data better after imposing specific evolutionary scenarios.
This could offer a formal test of genomic architecture shifts
that are theoretically expected under different forms of
selection [84,85].

As with other uses of genomic prediction, this should be
treated with awareness of limitations [86]. For example, it has
been shown that when the number of markers is considerably
greater than the number of individuals in the training data
(i.e. P> N), the estimated marker effects will be strongly
influenced by the prior distribution [36]. This has the poten-
tial to muddle the inference of the genetic architecture.
However, adding more individuals than markers (i.e. P <N)
can overcome this issue [36].

(c) Genome-wide association studies

Recent work has advocated for using variants of genomic
prediction models for GWAS [8], as genomic prediction fits
all SNPs simultaneously with different distributions of
effect size. By contrast, most GWAS methods fit one SNP at
a time, which can lead to large blocks of significant, linked
SNPs in the region of a QTL. Originally, there was scepticism
of this practice because if all SNPs are fit simultaneously with
only one distribution of marker effect sizes, as in RRBLUPF,
these blocks of linked SNPs could be individually assigned
smaller effects due to shrinkage, which may make it difficult
to identify true QTL peaks [8]. However, newer genomic pre-
diction methods show promise in more precisely and clearly
identifying QTL [8]. Specifically, BayesRC [61] can be used to
group markers by biological function or mutational class,
allowing key markers within a large block of linked markers
to assume much of the QTL effect size, thereby potentially
increasing QTL resolution.

(d) Historical samples
Genomic prediction allows prediction of the breeding value
of any sample where DNA is available, but the phenotype

was not observed, so long as an appropriate training popu-
lation exists. This opens up substantial potential for
predicting the breeding value of historical samples and
might be especially useful for populations under climate
change. Simulations suggest that accuracies may be main-
tained for 10 generations and possibly beyond, when
using BayesR and whole-genome sequence [37]. Thus, the
training population could potentially be made from
contemporary populations. A similar analysis, using poly-
genic risk scores, was undertaken to predict genomic health
and attention-deficit/hyperactivity disorder in Neanderthals
[87,88], though, as with all genomic prediction models, they
must be applied with regard to environmental impacts on
phenotypes and changes in LD between contemporary and
past data, epistasis and mutation changes.

(e) Conservation genetics: which individuals should be
bred in captive breeding programmes?

With the rise of wildlife infections such as sea-star wasting dis-
ease [89], white-nose syndrome in bats [90] and chytrid fungus
in amphibians [91], the conservation community could poten-
tially use genomic prediction models to better enable captive
breeding strategies. For example, a genomic prediction training
dataset could be built from resistant and susceptible individ-
uals. Wild-collected individuals could be genotyped and
genomic prediction used to select which individuals would
be best to breed for resistance, accelerating the development
of pathogen-resistant populations. Indeed, this has already
been demonstrated in commercial fisheries settings [92], for-
estry [16] and in soya beans when searching for germplasm
that was resistant to white mould [93]. Notably, in commercial
fisheries and forestry settings, strategically reducing the geno-
typing effort to several thousand markers appears to be
sufficient for achieving a decently accurate prediction in
some cases [16,92]. In the same vein, genomic prediction
could be used to accelerate the response to climate change [94].

7. Conclusion

While there are challenges associated with implementing
genomic prediction models in evolutionary systems, these
methods have been underused by the evolutionary genetics
community. Above we offer five possible use cases for geno-
mic prediction in evolutionary genetics, each of which could
open up new opportunities. While genomic prediction arose
in agricultural genetics, there are lessons to be taken from the
advances in statistical methods derived for breeding pur-
poses. Evolutionary biologists have already applied these
models to learn more about selection over time in wild popu-
lations and to learn more about the genetic architecture of
complex traits (table 1). As evolutionary biologists endeavour
to collect ever-larger phenotypic datasets and use ever-
improving sequencing approaches to quantify genomic
variation, we believe genomic prediction methods will
continue to grow as a tool.
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