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Abstract—A critical issue of current speech-based sequence-to-one learning tasks, such as speech emotion recognition (SER), is the
dynamic temporal modeling for speech sentences with different durations. The goal is to extract an informative representation vector of
the sentence from acoustic feature sequences with varied length. Traditional methods rely on static descriptions such as statistical
functions or a universal background model (UBM), which are not capable of characterizing dynamic temporal changes. Recent
advances in deep learning architectures provide promising results, directly extracting sentence-level representations from frame-level
features. However, conventional cropping and padding techniques that deal with varied length sequences are not optimal, since they
truncate or artificially add sentence-level information. Therefore, we propose a novel dynamic chunking approach, which maps the
original sequences of different lengths into a fixed number of chunks that have the same duration by adjusting their overlap. This simple
chunking procedure creates a flexible framework that can incorporate different feature extractions and sentence-level temporal
aggregation approaches to cope, in a principled way, with different sequence-to-one tasks. Our experimental results based on three
databases demonstrate that the proposed framework provides: 1) improvement in recognition accuracy, 2) robustness toward different
temporal length predictions, and 3) high model computational efficiency advantages.

Index Terms—Sequence-to-one modeling, speech emotion recognition, attention model, chunk-level modeling
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1 INTRODUCTION

SUMMARIZATION from perceived information is an es-
sential ability during human decision making processes.

Our brain can effectively extract and summarize infor-
mation obtained from different sources, including visual
and acoustic modalities, to make decisions. The concept of
sequence-to-one learning tasks in machine learning aim to
imitate and learn the human’s summarization mechanism
[1], [2]. A critical challenge of sequence-to-one learning is
efficiently extracting insightful information from data with
different durations. More specifically, the model is required
to learn how to summarize relevant temporal information
from a varied length input, mapping the sequence into a
single label.

Speech emotion recognition (SER) is a task that is often for-
mulated as a sequence-to-one problem following the labels
provided by existing databases. Some of the emotional cor-
pora are annotated with time-continuous emotional traces
[3]–[5], providing labels for sequence-to-sequence formula-
tion. However, those databases are hard to collect, as the an-
notation process is time consuming and the inter-evaluation
agreement is often low [6], [7]. There are also additional
challenges with emotional traces, including compensating
for the reaction lag of the evaluators [8], [9]. Therefore,
most existing speech emotional corpora are labeled at the
sentence-level (i.e., one global label is assigned per sentence
[10]–[12]). As a result, most studies in SER rely on standard
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sequence-to-one learning tasks.
Traditionally, studies rely on estimation of high level

descriptors (HLDs) (i.e., a fixed set of statistical functions)
from low level descriptors (LLDs) extracted from speech [13].
For instance, we can compute the mean of the fundamental
frequency and the variance of the Mel frequency cepstral
coefficients (MFCCs) to obtain a single fixed dimensional
feature vector that represents the sentence, regardless of
its duration. This vector is then used to train a machine
learning model such as a support vector machine (SVM) [14],
[15] or a fully connected neural network (FCNN) [16]. Another
approach to obtain the sentence-level representation vector
is to train a universal background model (UBM) such as a
Gaussian mixture models (GMM), and then utilize a bag-of-
words (BOW) model or Fisher vector algorithm to extract the
encoding output [17], [18]. However, these methods provide
static descriptions by either using fixed statistical functions
or a fixed pre-trained background model, which cannot
reflect the dynamic temporal information in the expression
of emotion, leading to limited performance for SER systems.

Deep learning approaches for SER systems have recently
led to state-of-the-art performance [19]–[21]. Different archi-
tectures exploring temporal information, such as recurrent
neural networks (RNNs), convolution neural networks (CNNs)
or hybrid neural networks (CNN-LSTM), have shown state-
of-the-art performance by deriving features directly from
LLDs or raw waveforms [22]–[26]. A conventional approach
to dealing with speech sequences with varied lengths is to
force them to have the same length by either cropping the
signal or zero-padding the sequence [25], [26]. However,
cropping a sentence into a specific duration truncates tem-
poral information that can be valuable. For example, acous-
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tic features at the end of a sentence provide discriminative
information to predict happiness [27]. The zero-padding
method fixes the length of the input sequences, which is
convenient for batch training. However, it does not solve the
essential problem of temporal modeling, achieving robust
performance toward any duration of the inputs, especially
for long sequences. We need a dynamic temporal framework
that is able to capture the entire information in a sentence
regardless of its duration, allowing end-to-end training.

This study presents a general framework to solve current
sequence-to-one temporal modeling issues, where our focus
is on SER tasks. The framework consists of four components:
The first block is the feature extraction step, where we obtain
representative frame-level acoustic features. These features
can be either LLDs, Mel-filter bank, or raw spectrogram.
The second block is the dynamic chunk segmentation step,
where the frame sequence of arbitrary duration is split into
a fixed number of small chunks with the same duration by
adjusting the overlap between chunks. This approach does
not rely on the zero padding technique. The third block
is the chunk-level feature representation step, which extracts
a feature representation for each chunk. The implementa-
tion of this step is flexible, as we can use several deep
learning approaches, including CNN, RNN or FCNN. The
fourth block is the sentence-level temporal aggregation step,
which combines the chunk-level features into a sentence-
level representation. This component is also flexible, since it
can be implemented with different approaches, such as an
attention model, a gate mechanism or a temporal pooling.
The core part of the framework is our proposed novel chunk
segmentation process, which enables flexible combinations
of different state-of-the-art methods used in deep-learning
by transforming a speech signal of varied length into a
fixed number of chunks with the same duration. This end-
to-end framework not only preserves complete temporal
information, but also effectively captures emotionally rich
regions within a sentence by jointly training the chunk-level
aggregation models. One major advantage of our proposed
flexible framework is that it can accommodate different
deep-learning implementations. We explore multiple com-
binations of the framework components, implementing the
chunk-level feature representation with LSTM, CNN, or
functional models, and the sentence-level temporal aggrega-
tion with a mean pooling layer (NonAtten), a gated network
(GatedVec), an attention mechanism (RNN-AttenVec), or a
scaled dot-product self-attention model (Self-AttenVec). The
proposed formulation is also computationally efficient, since
the size and number of chunks are fixed, facilitating parallel
computing.

Our experimental results based on the MSP-Podcast
database [10] demonstrate that our proposed framework
(under any combination) outperforms other sentence-level
and chunk-level SER baseline models. We find that the
key factor leading to the performance improvement is the
sentence-level aggregation module, indicating the impor-
tance of modeling the complete temporal information of
the sentence. Further analysis shows that our proposed
framework not only increases the accuracy of our predic-
tions, but also introduces additional advantages including
robust predictions toward different duration inputs, model
efficiency, and task generality. The two major contributions

of this study are:
• A novel dynamic chunk segmentation approach, which
can map varied length data into a fixed number of data
chunks with fixed lengths.
• A flexible sequence-to-one modeling framework, which
can model complete temporal information with a flexible
combination of different modules to cope with general
sequence-to-one tasks.

The rest of the paper is organized as follows. Section 2
discusses the research background and related work. Sec-
tion 3 presents the proposed framework, providing detailed
explanations of its components. Section 4 presents the exper-
imental setup used to train and test our approach, including
the database, acoustic features, and implementation details.
Section 5 describes the experimental results on the MSP-
Podcast corpus, comparing our proposed method with base-
line models. Section 6 evaluates the generalization of the
proposed framework, presenting results with two different
emotional corpora. Finally, Section 7 presents the concluding
remarks and future directions of this study.

2 BACKGROUND

2.1 Segmentation Approaches in SER
Various studies in SER have adopted the concept of mod-
eling a sentence at the chunk or segment level [28], [29].
Chunk-level SER forces the model to learn short-term
subsequences by dividing original sequences of arbitrary
length into short segments with a predefined fixed step size
(i.e., the overlapping area between segments). Typically, it
combines these subsequences (i.e., chunk-level) prediction
outputs into a sentence-level representation according to a
mean pooling layer or a majority vote rule.

Han et al. [30] formed their segment-level features by
stacking neighboring LLD frames to train a deep neural
network (DNN). The outputs of the trained segment-level
classifier were used to estimate the probability of each
emotion for that segment. This approach created probability
curves for the emotions in a sentence. Finally, they esti-
mated statistics, such as the mean over these curves, which
were used as the sentence-level feature representations of
a static classifier implemented with an extreme learning ma-
chine (ELM). Mao et al. [31] proposed a similar approach,
consisting of a segment-level classifier with a CNN model.
They demonstrated the improved performance of segment-
level models by comparing to results with the ones obtained
by modeling the entire sentence. Tzinis and Potamianos [32]
employed HLDs to represent segment-wise global features
from LLDs, which obtained better performance compared to
LLDs under a LSTM model. Tarantino et al. [33] and Sahoo
et al. [34] found that a smaller step size (i.e., more overlap
between chunks) can increase the discrimination of the
feature representation in the network. These results showed
that chunk-based SER can lead to better performance than
sentence-based approaches.

These studies set the step size of the chunks as a fixed
parameter, resulting in a varied number of segments in
a sentence depending on its duration. We argue this seg-
mentation approach is not optimal, since it restricts the
aggregation of chunk-level predictions into limited static
methods such as concatenating with a mean pooling layer.
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Our proposed segmentation approach aims to generate data
chunks by varying the step size of the chunk as a function
of the duration of the utterances, producing a fixed number
of segments for different sentence durations.

2.2 Attention Models in SER
One essential component of the proposed framework is
the fusion of information in the chunks through attention
models, which have been widely used in SER [35]–[38]. The
most common way to apply this method is by building
an attention model using frame-level features. Attention
models are often implemented with RNN-based networks.
The inputs of the attention models are activations of in-
termediate hidden layers in the network. This approach
produces attention weights per frame, facilitating models
to capture emotionally salient instances. This approach
obtains an attention vector to recognize emotions [36]–
[38]. Recent self-attention SER models based on scaled dot-
product attention layers have become popular, since they
can be implemented even with only fully connected layers,
reducing the computational complexity of the models. This
model improves prediction performance, while taking into
account computational efficiency [33], [39], [40]. In contrast
to previous studies constructing attention models at the
frame-level, our formulation constructs attention models at
the chunk-level. Therefore, it reduces the computational cost
since the number of chunks is fixed and significantly lower
than the number of frames.

3 PROPOSED FRAMEWORK

This study proposes a flexible framework, which can cope
with general speech-based sequence-to-one learning tasks
such as SER, speech gender detection, or speaker recogni-
tion. The framework solves the dynamic temporal modeling
of varied length sequences, which is a critical problem for
sequence-to-one learning. We model the complete tempo-
ral information of any input sequence, without relying on
cropping or zero padding techniques, by mapping a varied
duration (or length) sequence into a fixed number of small
chunks with a fixed size. Figure 1 shows the generic formu-
lation that we propose. The core component of the frame-
work is the proposed chunk-based segmentation process,
which enables the use of various effective chunk-level tem-
poral aggregating models, achieving competitive sentence-
level recognition performances. This section presents the
detailed descriptions of each block of our system.

3.1 Feature Extraction
The first block in our framework consists of extracting
frame-based acoustic features. Our formulation is flexible,
where different acoustic features can be used, including
common feature sets, spectrogram, or LLDs. Alternatively,
we can also use raw waveforms. Typically, these raw fea-
tures are utilized to build end-to-end deep learning systems.
The LLDs consist of frequency, amplitude, and spectral-
related features (e.g., fundamental frequency, energy, and
MFCCs). These acoustic features are extracted within a small
window (i.e., frame) from the original audio signal. The size
of the small window wlen and window hop size ∆wlen are

Feature Extraction

Dynamic Chunk 
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Chunk-level Feature 
Representation
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e.g., NonAtten, GatedVec, 
RNN-AttenVec, Self-AttenVec

e.g., LSTM, CNN, Functional

e.g., spectrogram,
LLDs, waveform

Raw Feature Map (X)

𝑿𝟏 . .  .𝑿𝟐 𝑿𝑪

𝒉𝟏 𝒉𝟐

. .  .
𝒉𝑪

𝒛

Fig. 1: Diagram of the proposed framework. The left side
of the figure shows the four system components of our
approach. Blocks in green represent flexible components,
which can be implemented with different alternative meth-
ods. The core part of the framework is the dynamic chunk
segmentation (tagged in red), which enables arbitrary com-
binations across blocks. The right side of the figure shows
the corresponding hierarchical aggregation of the model
(speech, frames, chunks, and sentence) and the notation.

fixed parameters during the feature extraction procedure.
We denote the frame-based feature map as X ∈ RM×d,
where M is the arbitrary number of frames, depending on
the duration of the speech signal, and d is the dimension of
the acoustic feature.

3.2 Chunk-Based Segmentation Process
The second block is the chunk-based segmentation process,
which aims to split the feature map X of varied length into
a fixed number of data chunks that have the same fixed
duration. This is the key step in our formulation, providing
the flexibility to use different chunk-level representation
methods (Sec. 3.3), and different sentence-level temporal
aggregation approaches (Sec. 3.4).

There are two parameters that need to be defined in this
process. The first variable is the desired length for the chunk
window wc. This variable should be big enough to preserve
reliable emotional information, but small enough to process
short sentences. We discuss how to set this variable in
Section 5.6. The second parameter is the maximum sentence
duration of the corpus Tmax = max{T1, T2, . . . , Ti, . . . , TN},
where Ti denotes the duration of sentence i. Notice that
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Sentence 1

Sentence 2
Δ c1
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Fig. 2: Proposed chunk-based segmentation to split sen-
tences of different durations into C chunks with fixed
duration (wc). We achieve this goal by adjusting the chunk
step size (∆ci).

we can intentionally set a bigger value for Tmax to avoid
problems of sentences with durations longer than expected.
However, this study makes the assumption that we know
the maximum duration of the train and the test samples,
which are the same. This assumption is reasonable since
a system would typically set a maximum response time
to reduce latency (i.e., return a result within Tmax secs),
which naturally restricts the maximum length of the input
sentences. Tmax cannot be too long for SER tasks, since
emotions may change within the segment. In this case, a
single label or prediction would not properly characterize
the emotion in the long segment.

We can use Tmax and wc to estimate a fixed number of
chunks C , according to Equation 1.

C =

⌈
Tmax

wc

⌉
(1)

We obtain a fixed number of chunks for each sentence
by dynamically changing the overlap between chunks. The
step size of the chunks ∆ci for sentence i is defined by
Equation 2. As we increase C , ∆ci decreases, resulting in
more overlap between chunks.

∆ci =
Ti − wc

C − 1
(2)

Figure 2 visualizes the proposed approach for two sen-
tences with different durations. The key difference between
them is the chunk step size ∆ci (i.e., the overlap between
chunks). This approach is able to split sentences of differ-
ent durations into a fixed number of chunks C that have
the same duration wc by adjusting the chunk step size.
We denote these data chunks as {X1,X2, . . . ,XC} where
Xj ∈ Rm×d. The dimension m is a fixed number, which
indicates the number of frames within a chunk window
wc. Notice that the unit of variables wc, Ti and ∆ci are in
seconds. We provide the values for all the parameters used
in our evaluation in Section 4.3.

3.3 Chunk-level Feature Representation

The third block in our framework is to extract the chunk-
level feature representation for each of these data chunks
{X1,X2, . . . ,XC}. There are two clear advantages of ex-
tracting feature representations from chunks. First, the size
of the chunk is fixed which simplifies deep learning archi-
tectures. Second, this step can be parallelized, estimating

the feature representation for the C chunks at the same
time. While various methods can be applied, we focus on
the three most common approaches used in previous SER
studies: 1) statistical functions, 2) LSTM, and 3) CNN. The
three approaches use LLDs as inputs, which we describe in
Section 4.2. We present the model architectures in Table 1.

For the statistical functions, we adopt HLDs extracted
from LLDs to obtain chunk-level vector representations,
without relying on deep learning structures. These vec-
tors are the statistical descriptions over acoustic features
obtained for each data chunk (e.g., mean of fundamental
frequency, kurtosis of energy). We apply a total of 15 HLDs
for the functional representation in this study: mean, max,
min, std, median, argmax, argmin, skew, kurtosis, 99th

percentile, 1st percentile, range (99th,1st), 75th percentile,
25th percentile and interquartile range. Then, we pass these
functional vectors through a linear layer with ReLU activa-
tion, mapping the HLDs into a b-dimensional chunk-level
feature representation.

For the LSTM model, we feed the LLDs obtained for each
chunk into two consecutive LSTM layers with b nodes and
dropout regularization. The dropout nodes are imposed on
the linear transformation of the inputs with a rate p = 0.5.
Note that we do not drop nodes for the linear transforma-
tion of the recurrent state. Then, we exploit the final time
step output of the second LSTM layer as the chunk-level
feature representation.

For the CNN model, we use 1D convolution over the
LLDs. We use 1D convolution instead of 2D convolution
since the feature map created by the LLDs does not nec-
essarily have spatial relationships. Therefore, the model
implemented with 1D CNN can focus on temporal feature
information. As Table 1 shows, the CNN model has an
encoder-like architecture. The CNN block consists of a 1D-
CNN, a BatchNorm, and a ReLU layer. The output dimen-
sions of each CNN block depends on the length of the chunk
window wc and the CNN padding mode. We do not use
dilated kernels or padding in the CNN layers. Table 1 shows
other selected parameters (e.g., number of channels, kernel
size, stride). After flattening the output of the final CNN
layer, we add a linear layer with ReLU activation to map
the dimension of the vector into a fixed size b-dimensional
chunk-level feature representation.

The chunk-level feature representation from the input
data chunks {X1,X2, . . . ,XC} produced by the three
methods is denoted by {h1,h2, . . . ,hC}, where ht ∈ R1×b.

3.4 Sentence-Level Temporal Aggregation
The forth block in our framework is aggregating the tem-
poral information across chunks. Having a fixed number of
chunks per sentence, regardless of its duration, simplifies
the aggregation of temporal information to form the final
sentence-level feature representation. A key advantage of
aggregating temporal information with this approach is the
computational efficiency, since the number of chunks is
significantly lower than the number of frames in a sentence.
Therefore, our chunk-based approach is more efficient than
frame-based aggregation models.

The goal of this block is to combine the C chunk-level
feature vectors {h1,h2, . . . ,hC} into a single sentence-
level feature representation z, where z ∈ R1×b. Several
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TABLE 1: Architectures of different chunk-level feature rep-
resentation models.

Functional model LSTM model

Layer Dimension Activation Layer Dimension Activation
Input 1 × 15d N/A Input m × d N/A
Linear 1 × b ReLU LSTM m × b Tanh

LSTM 1 × b Tanh

CNN model

Layer Channels Kernel Stride Dimension Activation
Input N/A N/A N/A m × d N/A

Permute N/A N/A N/A d × m N/A
CNN-block 128 (1, 3) 1 depends ReLU
CNN-block 128 (1, 3) 1 depends ReLU
CNN-block 64 (1, 3) 1 depends ReLU
CNN-block 64 (1, 3) 1 depends ReLU
CNN-block 32 (1, 3) 2 depends ReLU

Flatten N/A N/A N/A depends N/A
Linear N/A N/A N/A 1 × b ReLU

approaches can be used. This study explores the following
four alternative methods:
NonAtten: We directly average the C chunk-level feature
vectors to obtain the sentence-level representation z (Eq. 3).
This approach corresponds to a mean pooling layer.

z =
1

C

C∑
t=1

ht (3)

GatedVec: An alternative approach is the gated mechanism
[41]. This approach controls the information flow from
different channels, in our case, chunks. Equation 4 shows
this operation, which consists of a trainable sigmoid neural
network (NN) layer (W, b) and a point wise multiplication
operation. By concatenating the gate model after the chunk-
level vectors, we can produce the gating weights gt (scalar),
which ranges from 0 to 1. Equation 5 computes the weighted
average vector for the sentence-level representation z.

gt = σ(W · ht + b) (4)

z =
C∑
t=1

gtht (5)

RNN-AttenVec: This approach relies on attention models.
We first stack {h1,h2, . . . ,hC} into a chunk-level hidden
feature map H ∈ RC×b, and feed H into an attention model
formed with a vanilla RNN layer. The attention model
is trained to produce the attention weights αt by using
the general score function presented in Luong et al. [42].
These attention weights are then utilized to multiply the
corresponding time step’s hidden states {h1,h2, . . . ,hC},
where ht ∈ R1×q , resulting in the weighted summation
vector v (i.e., context vector) in Equation 6. The dimension q
is the number of nodes in the RNN attention model. Finally,
we concatenate the vector v with the last hidden state hC ,
passing it through a NN layer (W ) with the tanh activation
function to obtain a sentence-level feature representation z
(Eq. 7). Since the time steps in the RNN layer are fixed to
C (i.e., attention to chunks rather than attention to all the
input frames), the attention model is very computationally

efficient.

v =
C∑
t=1

αtht (6)

z = tanh(W [v;hC ]) (7)

Self-AttenVec: The last alternative method relies on self-
attention using the multi-head (MH) attention structure [43].
The MH attention model consists of several scaled dot-
product attention layers running in parallel. The scaled dot-
product attention (Eq. 8) is formulated by the variables
query (Q), key (K), value (V ), and a scaling factor dk. The
first softmax term produces attention weights applied on
the value V (Eq. 8). Equation 10 shows the MH model
concatenated with multiple single heads, where the inputs
V , Q and K are projected by different trainable parameter
matrices (i.e., matrices WQ

j , WK
j and WV

j in Eq. 9). Lastly,
the concatenated output of the heads is mapped into a
matrix with the same dimension as the input V by the
output parameter matrix WO , so we can perform residual
connections with the input. An advantage of the MH atten-
tion over the RNN-based attention model is the improved
computational efficiency, since this model does not require
any recurrent layer.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (8)

Headi = Attention(QWQ
j ,KW

K
j , V WV

j ) (9)

MH(Q,K, V ) = Concat(Head1, . . . ,Headh)WO (10)

We use the stacked hidden feature map H as the self-
attention input (i.e., the V , Q and K variables are equal
to the same H matrix). Note that we do not apply posi-
tional encoding since we are focusing on a sequence-to-one
problem. Finally, we average the output attention matrix
H̃ ∈ RC×b along the C axis to obtain the sentence-level
representation z,

z =
1

C

C∑
t=1

H̃t (11)

where H̃t is the t-th row of matrix H̃ . An additional advan-
tage of chunk-level self-attention is that we map the original
arbitrary length sequence into a fixed length equal toC . This
approach significantly reduces the sequence length, which is
typically the part that contributes the most to the complexity
of the scaled-dot product attention model [44].

After obtaining the sentence-level representation vector
z, we feed it into the output layer, which we implement
with two fully connected layers. The final output of the
network is a prediction score for either arousal, dominance,
or valence.

4 EXPERIMENTAL SETTINGS

4.1 MSP-Podcast Corpus
This study relies on the MSP-Podcast corpus [10] to build
and evaluate our proposed approach. The dataset consists
of spontaneous speech turns that are rich in emotional
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content from various online audio-sharing podcast websites
under Creative Commons licenses. The podcasts include
spontaneous discussions on a variety of topics including
politics, sports, entertainment, art, technology and eco-
nomics, providing broad, rich, and natural emotional dis-
plays. The collected podcasts are processed to identify clean
audio without music, noise, overlapping speech, or multi-
ple speakers in the background [45]. The dataset provides
both categorical and attribute-based emotional annotations,
which are labeled by at least five annotators for each speech
segment using a crowdsourcing approach [46]. We evaluate
our models using regression tasks to predict the emotional
attributes of arousal (calm versus active), valence (negative
versus positive), and dominance (weak versus strong). The
ground truth labels are the average of the scores across
different annotators. We use version 1.6 of the corpus which
has 50,362 speaking turns (83h29m). We have identified the
speaker identity for 42,567 sentences belonging to 1,078
speakers. We use the speaker information to define the
partitions for the train (34,280 speech turns), development
(5,958 speech turns) and test (10,124 speech turns) sets.
The partitions aim to define speaker independent sets. The
readers are referred to Lotfian and Busso [10] for more
details on this corpus.

We also consider the IEMOCAP [11] and MSP-IMPROV
[47] databases to validate the results with other emotional
corpora in Section 6. The IEMOCAP and MSP-IMPROV
databases are multimodal emotional corpora that have been
widely used in SER studies. Both databases are designed to
elicit spontaneous emotional expression with dyadic inter-
actions between actors. These recordings are collected under
controlled laboratory environments. Therefore, there are in-
evitable domain mismatches between these corpora and the
MSP-Podcast corpus, which makes them ideal candidates
to evaluate the generalization of our proposed framework.
Both of these corpora provide attribute-based annotations
for arousal, valence, and dominance.

4.2 Acoustic Features
For the acoustic features, we extract the LLD feature set
proposed for the Interspeech 2013 computational paralin-
guistics challenge [13] using the OpenSmile toolkit [48]. The
window length wlen is set to 32ms, and the window step
size ∆wlen is set to 16 ms (50% overlap). In total, the set
includes 130 frame-based acoustic features (d = 130), which
are normalized by subtracting the mean and dividing by the
standard deviation. The parameters of this normalization
are estimated over the training set. Therefore, the output
feature map X for each sentence is a M × 130 normalized
LLD matrix, where the number of frames M depends on the
duration of the sentence.

4.3 Implementation
Each emotion attribute is regarded as an independent
sequence-to-one task building separate models for arousal,
valence and dominance. We implement our approach using
chunks of 1 sec (wc= 1). Studies have shown that segments
as short as 0.5 secs can be used in SER tasks [49], so 1
sec is a good compromise. Section 5.6 presents the perfor-
mance of the system by using chunks of different durations.

Therefore, the fixed number of frames m within each chunk
window is 62 (16ms× 62 ≈ 1sec). Since the duration of the
sentences is between 2.75 and 11 secs for the MSP-Podcast
corpus [10], Tmax is 11 secs. The number of chunks C is
11, according to Equation 1. The value of the step size for
the chunks ∆ci depends on the duration of the sentence Ti
(Eq. 2). For example, if the duration of the input sentence
is Ti = 6 secs, then ∆ci is 0.5 secs. As a result, we split
every sentence into fixed 11 chunks with 1 sec length for
each sentence regardless of its duration. The dimension of
each data chunk Xt is fixed to 62× 130 (i.e., m× d).

For the network settings, we fixed the number of nodes
for all layers, matching the dimensions of the LLDs (i.e.,
d = b = q = 130). Our multi-head attention model consists
of three heads, where the output dimension of each head
is 50 (i.e., dk=50 in Eq. 8). We use the Adam optimizer
with a batch size of 128, 256 and 512 for the LSTM, CNN
and functional models, respectively. The number of training
epochs is fixed to 100, which is sufficient for convergence of
all models. We save the best models with an early stopping
criterion based on the development loss. The cost function
optimizes the concordance correlation coefficient (CCC). We
also report the accuracy of our prediction in the testing set
in terms of CCC. We randomly split the original test set
into 15 small subsets with similar size, reporting the average
results. We implement this strategy to conduct a statistical
analysis using a two-tailed t-test over the 15 subsets in the
test partition. We define statistical significant at p-value =
0.05. All models are implemented in Keras.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Preliminary Study of Chunk-level SER

We first evaluate the role of splitting a sentence into small
chunks using alternative methods. We compare these ap-
proaches with our proposed solution. The ultimate goal
of a sequence-to-one SER task is to encode the emotional
information of the entire sentence into a single vector.
We expect that this vector is able to capture emotionally-
relevant content in the input speech sentence. To achieve this
goal, studies usually pad zeros to the sequences to match the
maximum length for the batch training. An obvious issue is
the poor capacity toward long sequences since a single fixed
dimension vector may not be sufficient to represent such
complex, long, and temporal dynamic information [50].

An alternative method to avoid the model directly learn-
ing long sequences is to split the original sequence into
small segments (chunks) through cropping and padding
techniques [33], [34]. Similar to the proposed approach, we
need to set a desired chunk window length wc. For the
baseline, we use a fixed chunk step size ∆c, which is the
conventional approach. Note that the number of chunks
per sentence still varies as a function of the duration of
the sentence. During the training stage, each data chunk is
treated as an independent training sample sharing the same
sentence-level label. In the inference stage, the final sentence
score is the average of these chunk-level predictions.

Exploring the aforementioned methods, we compare our
dynamic chunk-based segmentation process with alterna-
tive baselines. We present the baseline results in Figure 3 for
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Fig. 3: Preliminary results of feature extraction models with
different chunking methodologies. The symbols ↑ and ↓ in-
dicates that the results are statistically significantly better or
worse that the entire baseline, which processes the sentences
without chunk segmentation.

LSTM, CNN, and functional models. The model architec-
tures are the same as the ones presented in Table 1, which are
directly combined with two fully connected output layers
without attention models. The settings to train and evaluate
the network are described in Section 4.3 (e.g., batch size and
cost function). The approaches considered in this study are:

1) Sentence-level SER
• entire: extracting the sentence-level representation

vector directly from the entire sentence. These se-
quences are zero padded to reach the maximum
length of the sentences in the corpus (i.e., 11 secs).

2) Chunk-level SER
• nonOverlap: splitting the sentence into chunks with-

out overlap. We set the length of the chunk to wc = 1

sec, using the same value used by our method (Sec.
4.3). The chunk step size ∆c is fixed to 1 sec (i.e.,
0% overlap between chunks). The last data chunk, if
shorter than 1 sec, is padded with zeros to reach a
duration of 1 sec.

• 30percentOverlap: same as nonOverlap but the chunk
step size ∆c is fixed to 0.7 sec (i.e., 30% overlap
between chunks).

• 50percentOverlap: same as nonOverlap but the chunk
step size ∆c is fixed to 0.5 sec (i.e., 50% overlap
between chunks).

• dynamicOverlap: split sentence into small chunks with
a dynamic chunk step size ∆ci depending on its
duration (i.e., our proposed method in Sec. 3.2). Note
that we do not apply any sentence-level temporal
aggregation model. Each chunk is independently
treated, sharing the same sentence-level label during
training.

Figure 3 shows the results for arousal, valence and
dominance. We denote with the symbols ↑ and ↓ cases
where the chunk-level segmentation methods lead to sig-
nificantly better or worse performance than the result of
the sentence-level approach, respectively. The figure shows
that the chunk-level SER methods often perform better than
the sentence-level SER (i.e., entire) for LSTM architectures.
The results are particularly clear for arousal and valence.
This result shows that reducing the input sequence length
can benefit recurrent-based models. However, we do not
observe the same behavior when we rely on a CNN or
a functional model. The chunk-level SER methods for the
CNN model only improve results for valence. We do not
observe clear benefits of using chunk-based models using
statistical functions, where we even observe worse perfor-
mance for valence. We notice that static encoding models
such as CNN or statistical functions are not able to ef-
fectively capture emotionally-relevant features, since each
small data chunk only contains local emotional information.
Moreover, forcing data chunks to share the same sentence-
level label is implausible, since emotions are not uniformly
distributed in a sentence [51]. Another interesting finding is
that the step size between chunks ∆c does not play a key
role in the prediction performance. Different overlaps be-
tween chunks do not drastically affect the performance. Our
proposed dynamic chunk step size ∆ci can even achieve the
best performance in many cases (e.g., valence results with
LSTM and functional models).

We conclude two main issues of current chunk-level
SER: (1) each data chunk only contains partial sentence-
level information, and (2) each data chunk shares the same
sentence-level emotional label. Our proposed framework
can solve both issues, hierarchically extracting emotion-
relevant information from the frame-level, chunk-level, and
sentence-level, via a simple data segmentation process.

5.2 Proposed Chunk-level SER Results

As we stated in previous sections, the key advantage of
our proposed dynamic chunk segmentation process is the
fixed number of output chunks, allowing us to aggregate
complete sentence-level temporal information by different
techniques in an efficient way. This section compares im-
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plementations of our proposed framework with two models
presented in Section 5.1: entire and dynamicOverlap. We use
dynamicOverlap as the representative chunk-level baseline
model, since the performances of chunk methods with dif-
ferent overlaps are similar. In addition, the key difference
between dynamicOverlap and our proposed framework is the
addition of the sentence-level temporal aggregation. There-
fore, it is straightforward to compare the effectiveness of
modeling complete temporal information with the methods
described in Section 3.4.

Table 2 shows the results for different combinations of
chunk-level feature representation models and sentence-
level temporal aggregation methods. For the LSTM models,
Table 2 shows that the results for chunk-level methods
are significantly better than directly learning the entire
sequence for all emotional attributes (especially for valence).
Although arousal and dominance have similar accuracy
with dynamicOverlap (i.e., the differences are not statistically
significant), our proposed Self-AttenVec method achieved
the best valence CCC result (CCC=0.3337). Valence is an at-
tribute that is particularly challenging to predict with acous-
tic features [52], [53], indicating that complete sentence-
level information can bring complemental benefits for more
complex tasks. The advantage of applying attention mod-
els is amplified in the CNN and functional models. Table
2 shows that the models often obtain significantly better
performance than the entire and dynamicOverlap baselines
for all emotional attributes (e.g., see results for GatedVec
model). These results verify that aggregation of sentence-
level temporal knowledge is necessary and particularly
important for the static CNN or functional-based model.

The results show that we cannot find a general combi-
nation of our frameworks which is able to reach the best
performance for all different tasks and models (chunk-level
feature representation and sentence-level temporal aggrega-
tion models). For instance, the RNN-AttenVec model gives
sub-optimal results when the features are extracted with
either CNN or functional models. This result demonstrates
that the combination of framework modules should be task
or model dependent. Based on the results in Table 2, we
suggest the sentence-level temporal aggregation models of
RNN-AttenVec or Self-AttenVec for the LSTM model, and
NonAtten or GatedVec for the CNN and functional models.
We keep only these combinations for the rest of the eval-
uations in this study. Notice that the CCC improvements
reported in this section are only possible after using the
proposed chunk-based segmentation.

5.3 Analysis of Chunk-level Attention Weights

We analyze the chunk-level weights of the sentence-level
temporal aggregation methods. We select the RNN-AttenVec
model to analyze the LSTM model. The attention weights αt

in the RNN-AttenVec model (Eq. 6) are the softmax output
of the general score function [42], so they are constrained
to sum to 1. For the CNN and functional models, we use
the GatedVec weights for the analysis (gt in Eq. 5). Each
weight is the sigmoid output value of the gated model cor-
responding to each input chunk. Its value ranges from 0 to
1. Other temporal aggregation methods are not considered.
For the NonAtten framework, the weights are constant across

TABLE 2: Framework performance using different combi-
nation of chunk-level feature representation and sentence-
level temporal aggregation methods. The symbols ∗ and †
indicate that the improvements of our methods over the en-
tire and dynamicOverlap baselines are statistically significant,
respectively (two-tailed t-test, p-value < 0.05).

Aro [CCC] Val [CCC] Dom [CCC]

Functional Model

entire 0.6777 0.2285 0.6079
dynamicOverlap 0.6828 0.2319 0.6043
NonAtten 0.6992∗ 0.2585∗† 0.6224
GatedVec 0.7038∗† 0.2942∗† 0.6236
RNN-AttenVec 0.6666 0.1835 0.5955
Self-AttenVec 0.6987∗ 0.2679∗† 0.6253

LSTM Model

entire 0.6711 0.2145 0.6078
dynamicOverlap 0.6976 0.3172 0.6186
NonAtten 0.6807 0.3275∗ 0.6085
GatedVec 0.6771 0.3141∗ 0.6011
RNN-AttenVec 0.6955∗ 0.3006∗ 0.6175
Self-AttenVec 0.6837 0.3337∗ 0.6004

CNN Model

entire 0.6762 0.1629 0.5935
dynamicOverlap 0.6818 0.2068 0.6002
NonAtten 0.7035∗† 0.2683∗† 0.6268∗†

GatedVec 0.7027∗† 0.2856∗† 0.6201∗†

RNN-AttenVec 0.6845 0.1582 0.5885
Self-AttenVec 0.7012∗ 0.2310∗† 0.6207∗†

chunks so this analysis is not relevant. Although the Self-
AttenVec method has the same softmax attention weights
as RNN-AttenVec, we only present the analysis for the RNN-
AttenVec method as the representation of the analysis for this
type of attention weights in the LSTM model since its per-
formances are generally better than the performances of the
Self-AttenVec model (see Table 2 for arousal and dominance).
Our models produce attention weights based on chunk-
level representations, which are used to combine the vectors
h1,h2, . . . ,hC . The number of weights per sentence is fixed
to C = 11 under our experimental settings, which facilitate
the visualization of the weights. The purpose of this analysis
is to evaluate if the models are assigning different weights
to different chunks within the sentences.

Figure 4 presents the results. The dots inside the solid
line represent the mean weights. The shaded area around
the lines indicates the weight’s standard deviation across the
entire testing set for each specific chunk. The first interesting
point we can notice in Figure 4 is that the attention weights
of LSTM-based RNN-AttenVec present a decreasing trend
along with time for all emotional attributes, indicating that
the first chunks are, in general, weighted more. The results
show the importance of the first impression in the decision
making process [54]. The second observation is the high
value of the standard deviations, which shows that the
values of the weights are different from sentence to sentence.
For both CNN and functional-based GatedVec models, we
observe different patterns for emotional attributes. For va-
lence, the gated weights have high deviations and the same
decreasing trend as the LSTM-based RNN-AttenVec model.
For arousal and dominance, we observe a flat-shape with
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Fig. 4: Analysis of the chunk-level attention weighs for RNN-AttenVec implemented with LSTM, and GatedVec implemented
with CNN and functional models. The solid lines represent the average score for each of the C = 11 chunks and the shaded
area represents the standard deviation.

small deviations suggesting that the weights of chunks are
similar without much variation across sentences. This result
suggests that keeping the weights constant for arousal and
dominance (i.e., NonAtten model) may be sufficient to obtain
similar performance to the GatedVec model. This result is
consistent with the CCC values observed in Table 2. The
high variability in the weights for valence illustrates the
benefits of adding temporal modeling in its prediction [55].

5.4 Results as a Function of Sentence Duration
This section analyzes additional advantages of the proposed
chunk-level SER framework by analyzing the CCC perfor-
mance as a function of the duration of the sentences. We
compare the selected models to a sentence-level baseline
implemented with zero padding to fix the duration of the
sentence (entire model presented in Sec. 5.1). To evaluate the
model performance for sentences of different lengths, we
arbitrarily split the test set into short (≤ 5sec), medium (5-
8sec) and long (≥ 8sec) subsets based on the duration of
the sentences. The test set has 4,280 short, 3,684 medium,
and 2,160 long sentences. Following the approach presented
in Section 4.3, we further split each of these test sets (i.e.,
short, medium and long sets) into 15 subsets, reporting the
average scores, and estimating statistical significance with a
two-tailed t-test.

Table 3 shows the results of the selected LSTM, CNN,
and functional models. The first observation is that the
performance of the entire model degrades as we increase the
duration of the sentences for all three emotional attributes.
The result shows unstable performances for sentences of
different durations, since zero padding introduces artifacts
in the feature vector affecting the temporal model. The same
trend can be observed when this baseline is implemented
with either LSTM, CNN, or functional models. The results
verify the challenges in modeling long sequences using the
zero padding technique while building the sentence-level
SER (see the results for medium and long subsets, especially

for the valence attribute). However, our proposed models
systematically improve the performance for different dura-
tion of the data, especially for medium and long sequences.
These results demonstrate that temporal modeling based
on smaller chunks can be useful to aggregate long-term
temporal information, leading to robust prediction accuracy,
regardless of the duration of the sentences.

5.5 Analysis of Computational Benefits

As we set the desired chunk window length wc in Section
3.2, we generate C chunks per sentence. Each chunk has
m frames. The variable m depends on the chunk window
length (wc) and step size (∆wlen) during the feature extrac-
tion stage (Sec. 3.1). Equation 12 gives this relationship.

wc = m×∆wlen (12)

Since we feed these data chunks into a LSTM model,
the GPU is able to process the chunks in parallel. We can
observe that the time step size in the backpropagation through
time (BPTT) and RNN-based forward algorithm reduces
from an arbitrary number M (i.e., total number of frames
in a sentence) to a fixed variable m in Equation 13, where E
is the prediction loss, , ŷ is the network prediction outputs,
s is the consecutive time-step hidden outputs and W is the
network trainable parameters.

∂Em

∂W
=

m∑
k=0

∂Em

∂ŷm

∂ŷm
∂sm

(
m∏

j=k+1

∂sj
∂sj−1

)
∂sk
∂W

(13)

Typically m is significantly less than the original to-
tal number of frames, which can effectively improve the
computational efficiency of the RNN-based models. For
instance, if the duration of the input sentence is 10 seconds,
with a LLDs extraction step size equal to ∆wlen = 0.016
seconds (16ms), we will obtain 625 frames for the LLDs
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TABLE 3: Analysis of performance as a function of the
sentence duration. The sentences are grouped into short,
medium and long sentences. The symbol ∗ indicates that
the improvements of our methods over the entire baseline
are statistically significant (two-tailed t-test, p-value < 0.05).

LSTM Model

Short(≤ 5sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6800 0.2497 0.6188
RNN-AttenVec 0.7010∗ 0.3246∗ 0.6235
Self-AttenVec 0.6809 0.3494∗ 0.6031

Medium(5 ∼ 8sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6622 0.1838 0.5984
RNN-AttenVec 0.6870 0.2876∗ 0.6149
Self-AttenVec 0.6794 0.3337∗ 0.5955

Long(≥ 8sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6565 0.1836 0.5828
RNN-AttenVec 0.6862 0.2452∗ 0.5951
Self-AttenVec 0.6892∗ 0.2775∗ 0.5905

CNN Model

Short(≤ 5sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6947 0.1994 0.6160
NonAtten 0.7134 0.3159∗ 0.6332
GatedVec 0.7059 0.3326∗ 0.6262

Medium(5 ∼ 8sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6622 0.1440 0.5825
NonAtten 0.6960∗ 0.2259∗ 0.6281∗

GatedVec 0.6995∗ 0.2473∗ 0.6172∗

Long(≥ 8sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6545 0.1244 0.5440
NonAtten 0.6814 0.2061∗ 0.6040∗

GatedVec 0.6899 0.2122∗ 0.6036∗

Functional Model

Short(≤ 5sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6939 0.2826 0.6241
NonAtten 0.7006 0.2992 0.6288
GatedVec 0.7093 0.3374∗ 0.6297

Medium(5 ∼ 8sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6644 0.2096 0.5956
NonAtten 0.6963∗ 0.2322 0.6175
GatedVec 0.7011∗ 0.2593∗ 0.6226

Long(≥ 8sec)
Aro [CCC] Val [CCC] Dom [CCC]

entire 0.6559 0.1406 0.5839
NonAtten 0.6922∗ 0.1960∗ 0.6053
GatedVec 0.6886 0.2364∗ 0.5989

feature map. Now, if we set wc to 1 second, m will approx-
imately equal to 62, reducing the time step size from 625 to
62. The same model efficiency improvement is also observed
with the CNN model. We split the original big feature map
into multiple small and fixed size sub-maps, which can be
processed in parallel by the GPU.

Table 4 compares the model efficiency in terms of the
number of parameters, time for training (i.e., average in
seconds per training epoch), and time for online processing
(i.e., average in millisecond per utterance during inference).
All models are trained and tested under the same single
NVIDIA GeForce RTX 2080 Ti GPU environment. As we
expect, even though LSTM-based chunk-level SER models
are equipped with an additional attention model (i.e., RNN-

TABLE 4: Analysis of the computational efficiency of the
proposed framework for different implementations. The
table lists the number of parameters, time for training, and
time for online processing.

Model # of Par. Train Online
[106] [sec/epoch] [ms/uttr]

LSTM entire 0.289 436.6 519.2
LSTM RNN-AttenVec 0.374 140.1 40.9
LSTM Self-AttenVec 0.368 87.5 41.3

CNN entire 1.587 76.9 1.9
CNN NonAtten 0.269 53.0 1.8
CNN GatedVec 0.269 83.9 3.0

AttenVec or Self-AttenVec), they considerably improve the
model efficiency. Both training and online testing times have
been significantly reduced, achieving models that are 10
times faster during online processing than the baseline (i.e.,
the entire model). Even though we observe an increase in the
number of parameters for the LSTM models, the proposed
chunk-level attention models have low complexity. For the
CNN model, we observe the same efficiency improvement
trend, but the relative improvements are smaller, since the
convolution operation is already well parallelized in the
GPU. For the CNN-based model, the number of parameters
is significantly lower than the baseline model over the entire
sentence. The entire model requires the complete sentence-
level feature map, resulting in a high dimensional flatten
output at the final CNN layer. This high dimension vector
representation increases the complexity of the model when
we add the fully connected output layers. However, chunk-
level SER does not inherit this problem, since it receives
small and fixed size sub-maps as the input.

5.6 Effect of the Window Size for the Chunks

While the maximum sentence duration in a corpus is fixed
(Tmax), adjusting the chunk window length wc changes
the number of chunks C . There is a tradeoff in setting
the value for wc. On the one hand, increasing wc means
more information is contained within a chunk. However, it
reduces the role of the temporal aggregation model since
C decreases. Furthermore, long sequences might include
changes of emotions within the chunks if wc is too large,
making it more difficult to learn its ambiguous information.
On the other hand, decreasing wc can enhance the influ-
ence of the temporal aggregation model since C increases.
However, short-term information may not be sufficient to
reliably recognize emotion if wc is too small. Increasing C
also increases the computational complexity of the sentence-
level temporal aggregation models. This section evaluates
the performance of the system as a function of wc.

Figure 5 shows the valence results for different values
of wc (i.e., 0.5 secs, 1 sec, 1.5 secs and 2 secs). The results
for arousal and dominance present similar trends so we do
not present them in this paper. All settings are the same as
the setting described in Section 4, where we only change
the variable wc. We only present specific combinations of
the framework as representative examples for each chunk-
level feature representation approach (e.g., RNN-AttenVec
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Fig. 5: Analysis of the performance of the models for valence
as a function of the window length wc. We evaluate the
RNN-AttenVec model implemented with LSTM, and the
GatedVec model implemented with CNN and functional
models.

for LSTM). The figure shows that the recognition perfor-
mance decreases as we increase the length of wc to 1.5 secs
or 2 secs. However, the degradation of performance does
not significantly change when we decrease wc to 0.5 secs.
We conclude that the sentence-level aggregation methods
can effectively capture useful temporal information even
when the chunks only contain limited emotional informa-
tion. Similar results have been reported by Arias et al. [56],
where they successfully recognized emotions using 0.5 secs
windows. Based on the results, we believe that setting the
chunk window length wc to 1 sec is a good balance to
obtain reliable short-term chunk information and long-term
sentence-level aggregation.

We highlight that the value of wc is task dependent.
For some tasks, the target traits are conveyed across all
frames. An example is basic gender acoustic traits, which
do not change too much across time. Therefore, we can use
a longer chunk duration to capture full gender patterns.
For other tasks, such as SER, the target information varies
from frame to frame. For these tasks, the duration of the
chunk window should be short enough to capture temporal
variations to be leveraged by the sentence-level temporal
aggregation models. The value of wc also depends on the
speech style. If the recordings are spontaneous speech from
a group of people, we can expect many interruptions and
overlapped speech. Since these patterns might challenge the
model during training, we can choose a window size with
smaller duration to capture a single speaker for most of the
chunks. Using a reduced window size increases the number
of chunks (Eq. 1), giving more freedom to the sentence-level
temporal aggregation model to ignore trivial or confusing
acoustic patterns.

6 GENERALIZATION OF PROPOSED APPROACH

This section evaluates the generalization of our framework
for SER systems on other emotional corpora. We consider
two benchmark databases widely used in the commu-
nity: the IEMOCAP [11] and MSP-IMPROV [47] databases.
This section considers within-corpus evaluations, defining
separate train, development, and test partitions for each
database. We implement the approach for arousal, valence,

0.567
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0.365* 0.394
0.469*

(a) Results on the IEMOCAP corpus

0.444

0.563*

0.208

0.354*
0.297

0.422*

(b) Results on the MSP-IMPROV corpus

Fig. 6: Results on the IEMOCAP and MSP-IMPROV cor-
pora. The figure compares the performance of the proposed
GatedVec framework implemented with CNN with the entire
baseline implemented with CNN. The CCC performances
are calculated using a leave-one-session-out cross validation
approach, where we randomly split the data into 15 subsets
to perform the statistical test. Results tagged with ∗ indicate
statistically significant improvements over the baseline.

and dominance. To simplify the evaluation, we only con-
sider the CNN model (same architecture described in Table
1) with the GatedVec algorithm to aggregate the temporal
information across chunks. We compare our approach with
the entire sentence-level SER baseline. All model settings are
the same as the ones described in Section 4.3, including
the acoustic features (i.e., the 130 normalized LLDs). The
collection of the IEMOCAP and MSP-IMPROV datasets
did not impose strict duration range for sentences, so we
artificially define Tmax = 17 secs, discarding sentences with
duration outside this range. We also discarded sentences
that were shorter than 1 sec. Sentences with duration be-
tween 1 sec and 17 secs cover over 97% of the sentences
for both datasets. We set wc = 1 sec, resulting in C = 17.
We implement the evaluation using a speaker-independent
cross-validation (CV) setting, using 5 folds for the IEMOCAP
corpus (5 dyadic sessions), and 6 folds for the MSP-IMPROV
corpus (6 dyadic sessions). For every CV, one dyadic session
(i.e., 2 speakers) is used for the test set, one dyadic session
is used for the development set, and the rest of the corpus is
used for the train set. Consistent with Section 4.3, we report
the average CCC values obtained across 15 randomly split
subsets of the CV prediction results, evaluating statistical
significance with a two-tailed t-test.

The experiment results are shown in Figure 6. Our pro-
posed chunk-level SER method systematically outperforms
the baseline model, which directly learns discriminative in-
formation from the entire sentence. This result is particularly
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clear for valence. The same improved performance trend
can be observed in the MSP-Podcast corpus (see the CNN
model in Table 2). The results from the MSP-IMPROV and
IEMOCAP corpora validate the general effectiveness of the
proposed framework.

7 CONCLUSIONS AND FUTURE WORK

This study presented a general chunk-level sequence-to-
one framework to cope with important dynamic temporal
information in SER tasks. The proposed approach is able to
split sentences with varied durations into a fixed number
of chunks, which have the same length by dynamically
adapting the overlap between chunks. The approach offers
the flexibility to efficiently combine different chunk-level
feature representation frameworks (e.g., functional statistics,
LSTM or CNN) with alternative sentence-level temporal
aggregation models (e.g., GatedVec, RNN-AttenVec or Self-
AttenVec). The proposed framework hierarchically extracts
task-relevant features at the frame, chunk, and sentence
levels, providing an appealing end-to-end framework. The
experimental results based on multiple databases showed
the benefits in model efficiency and accuracy by using the
proposed chunk-level temporal modeling methodology. The
results show higher accuracies for sentences with medium
and long durations, which are challenging for conventional
approaches relying on zero padding. Our solution solves a
critical issue for directly building sentence-level models.

The framework offers multiple potential research di-
rections to extend this study. First, we expect that this
framework can be extended to sequence-to-sequence learn-
ing tasks, providing an appealing solution when emotional
information is available within a sentence (e.g., emotional
traces). Estimating continuous emotion trends from a speech
recording is a challenging task. Robust frame-level predic-
tions require time-continuous traces (i.e., emotional labels)
that are well synchronized with the speech signal. This
synchronization is hard to achieve due to the reaction lag
of the evaluators [9]. Since this framework decreases the
resolution from frame-level to chunk-level analysis, the
strict synchronization requirement is relaxed. Second, the
framework can also be beneficial for multi-modal process-
ing. Multimodal approaches also require synchronization
between different modalities, which is usually infeasible.
For example, the sampling rate for videos typically does
not match the sampling rate for speech. We can increase the
tolerance for timing mismatches across signals by turning
a frame-level analysis into a chunk-level analysis. Third,
our current framework splits a sentence into chunks based
exclusively on duration. We can alternatively use other
criteria to include more meaningful linguistic information.
An interesting extension of this approach is to develop an
advanced framework that leverages the output from an
automatic speech recognition (ASR) system to define favorable
chunk durations, considering both acoustic and linguistic
information. Finally, we can apply this approach in other
sequence-to-one problems.
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