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ABSTRACT

Semi-supervised learning (SSL) is an appealing approach to resolve
generalization problem for speech emotion recognition (SER) sys-
tems. By utilizing large amounts of unlabeled data, SSL is able to
gain extra information about the prior distribution of the data. Typi-
cally, it can lead to better and robust recognition performance. Exist-
ing SSL approaches for SER include variations of encoder-decoder
model structures such as autoencoder (AE) and variational autoe-
coders (VAEs), where it is difficult to interpret the learning mecha-
nism behind the latent space. In this study, we introduce a new SSL
framework, which we refer to as the DeepEmoCluster framework,
for attribute-based SER tasks. The DeepEmoCluster framework is
an end-to-end model with mel-spectrogram inputs, which combines
a self-supervised pseudo labeling classification network with a su-
pervised emotional attribute regressor. The approach encourages the
model to learn latent representations by maximizing the emotional
separation of K-means clusters. Our experimental results based on
the MSP-Podcast corpus indicate that the DeepEmoCluster frame-
work achieves competitive prediction performances in fully super-
vised scheme, outperforming baseline methods in most of the condi-
tions. The approach can be further improved by incorporating extra
unlabeled set. Moreover, our experimental results explicitly show
that the latent clusters have emotional dependencies, enriching the
geometric interpretation of the clusters.

Index Terms— Semi-supervised learning (SSL), speech emo-
tion recognition (SER), unsupervised clusters

1. INTRODUCTION

Recognizing human’s emotional states is crucial to modern human
computer interaction (HCI) systems [1]. Speech emotion recognition
(SER) also plays an important role in various fields such as educa-
tion [2] and healthcare [3]. Although recent advances in deep learn-
ing approaches have led to high performance in areas such as image
classification [4] and automatic speech recognition (ASR) [5], SER
is still a challenging problem with often poor generalization across
different conditions (e.g., environment, recording settings or speak-
ers) [6, 7]. One of the major factors leading to low performance is
the availability of the amount of training data. Comparing to image
or speech recognition tasks, the sizes of speech emotional corpora
are relatively small (e.g., IEMOCAP corpus for SER [8] ~ 12 hrs
versus the LibriSpeech corpus for ASR [9] ~ 1,000 hrs). To al-
leviate this limitation, studies have investigated domain adversarial
techniques that utilize information from multiple corpora. Studies
have explored either adopting additional domain classifier with re-
verse gradient layers [10] or a critic network [11] to obtain a more
generalized intermediate representation, reducing mismatches from

This study was funded by the National Science Foundation (NSF)
under grant CNS-2016719 and CAREER IIS-1453781.  Github link-
https://github.com/winston-lin-wei-cheng/DeepEmoClusters

different domains. Other studies have also explored data augmenta-
tion methods to improve robustness of SER models. More specif-
ically, generative adversarial networks (GANs) have been applied
to artificially synthesize emotional samples to reduce the sparsity in
the distribution of the train set [12, 13]. However, these adversarial
training approaches may suffer from unstable convergence issues or
be limited by the size of the datasets. Another appealing approach
is semi-supervised learning (SSL). The key concept of SSL is to
leverage large amounts of unlabeled data to improve the robustness
and performance of the supervised task [14]. Unlike labeled data,
the collection of unlabeled resources is often easy and inexpensive.
Therefore, it is easy to obtain a large dataset of unlabeled data that
augments the often reduced labeled set. SSL methods learn addi-
tional structure of the input distribution by using this unlabeled data
[15]. One of the approaches for utilizing unlabeled data in SSL is
to make use of the cluster assumption, which says that if two data
samples in the input space belong to the same cluster, they are likely
to belong to the same class or region in the target space. DeepClus-
ter [16] follows this assumption, achieving great success in extract-
ing discriminative features from completely unsupervised represen-
tation learning. It utilizes self-supervised training technique to learn
cluster-based pseudo class labels, which achieves competitive per-
formance compared to supervised learning models.

Inspired by the DeepCluster framework, this study proposes a
novel formulation for SER, where we modify the original unsuper-
vised structure into a semi-supervised framework. The approach de-
rives emotional speech clusters, namely - DeepEmoCluster. Specif-
ically, we implement an additional supervised emotional attribute-
based regressor (i.e., arousal, dominance and valence) to jointly train
with the unsupervised cluster classifier, encouraging the model to
learn emotionally discriminative contents under a maximum latent
clusters separation constraint. The proposed model is an end-to-
end (E2E) convolutional neural network (CNN) architecture (i.e.,
VGG-16 [17]), where the input feature is a 128D-mel spectrogram.
We evaluate our proposed framework using the MSP-Podcast cor-
pus [18], using the concordance correlation coefficient (CCC) as the
metric to evaluate model performance. The results show that DeepE-
moCluster framework achieves competitive prediction performances
under fully supervised scheme for arousal, valence and dominance,
outperforming baseline models most of the time. We find that the
DeepEmoCluster framework can further improve the prediction per-
formance while using the semi-supervised setting, where reinforc-
ing the information gains from the unlabeled data is helpful for the
supervised task. As part of the evaluation, we explore the optimal
number of clusters needed in the DeepEmoCluster framework. The
results indicate that the number of clusters should be fine-tuned de-
pending on the size of the unlabeled set and the emotional attribute.
Finally, our latent cluster analysis demonstrates that the DeepEmo-
Cluster approach creates latent clusters that depend on the emotional
content, enriching the geometric interpretation of the clusters.



The key contribution of this paper is the new SSL DeepEmo-
Cluster framework for the SER task, which is a semi-supervised
variant of the DeepCluster framework [16]. By leveraging unlabeled
data and jointly training with supervised networks, the DeepEmo-
Cluster approach improves attribute-based SER model performance
with explicit geometric interpretations in the latent representation.

2. RELATED WORK

One of the recent popular trends in SER is to build E2E learning
systems. E2E models do not require predefined handcrafted fea-
tures and can directly extract emotionally relevant features from ei-
ther time domain waveforms [19], or frequency domain raw spectro-
grams [20]. These approaches often rely on deep neural networks
(DNNs). Satt et al.[20] demonstrated that an E2E SER model with
raw spectrogram inputs could be easily combined with a noisy re-
duction solution (e.g., harmonic filtering), enabling SER systems to
resist low SNR environments. Li et al.[21] proposed a multitask
model with self-attention mechanism based on spectrogram features.
Their method achieved state-of-the-art performance on the IEMO-
CAP dataset [8]. Trigeorgis et al.[19] built their E2E model from raw
waveforms using a CNN-BLSTM structure. The key component was
the 1D convolutions operating on the discrete-time domain wave-
forms, which could be considered as a feature refinement system to
remove background noise. Their results showed that features derived
from the E2E model outperforms handcrafted acoustic features (e.g.,
eGeMAPS [22]). In this study, we also employ an E2E model with
mel-spectrogram inputs to better represent emotional cues.

Various studies have explored SSL and latent representation
learning approaches to utilize unlabeled data for SER tasks. Deng et
al.[23] presented the semi-supervised autoencoder (SSAE), which
combined an unsupervised deep denoising autoencoder (DDAE)
with a supervised learning objective. They introduced an extra
class label for the unlabeled data, forcing models to learn a bottle-
neck latent representation by incorporating prior information from
unlabelled data. Following a similar concept, Latif e al.[24] pro-
posed a variational autoencoders (VAEs) framework for deriving
a latent representation from speech signals. In contrast to DDAE,
VAEs learns a probability distribution representing the inputs in a
latent space instead of compressing them in the bottleneck layer.
Parthasarathy and Busso [25, 26] adopted the ladder networks
framework (I'-model in Rasmus et al.[27]) to improve attribute-
based SER performance. The I'-model imposes consistency regu-
larization on skip connections between noisy encoder and decoder,
aiming to obtain invariant intermediate representations toward noise
perturbations. These approaches rely on the encoder-decoder struc-
ture, where the bottleneck latent representation was not trained to
explicitly involve strong geometric properties by pulling apart data
with different emotional content. Therefore, it is difficult to under-
stand the mechanism behind the latent space or the bottleneck layer.
This study aims to create a meaningful latent representation using
a SSL approach based on the DeepCluster framework [16], which
imposes strong geometric constraints (i.e., maximum emotional
separation between clusters) without requiring decoder networks.

3. RESOURCES

This study uses the MSP-Podcast corpus [18], which consists of
emotionally rich spontaneous speech recordings collected from pub-
licly available podcasts under creative commons license. The con-
tent of the recordings cover various topics such as interviews, sports,
academic talks, entertainment and politics. We process these record-
ings through a speaker diarization tool to segment the podcasts into
smaller speaking turns of length between 2.75 and 11 seconds in

duration. We employ a number of pre-processing steps to select
speaking turns with high signal fo noise ratio (SNR) and single
speaker content without overlapped speech. We remove turns with
background noise, music and telephone quality speech. To balance
the emotional content of the corpus and have emotionally rich sen-
tences, we run speech segments through emotional retrieval algo-
rithms based on the strategy suggested in Mariooryad et al.[28].

This study uses version 1.6 of the corpus which consists of
50,362 sentences (83h 29m). We use amazon mechanical turk
(AMT) to annotate the sentences in the corpus using a variation of
the crowdsourcing protocol discussed in Burmania et al.[29]. The
sentences are annotated for their primary and secondary emotional
content (categorical classes), as well as the emotional attributes
arousal (calm versus active), valence (negative versus positive) and
dominance (weak versus strong). This study uses emotional at-
tributes, formulating the SER task as a regression problem. Each
annotator assessed the emotional content with a seven point likert-
type scale using self-assessment manikins (SAMs). Each sentence in
the corpus has five or more annotations and the ground-truth labels
are obtained by averaging the scores across subjects. The test set
has 10,124 samples from 50 speakers, the development set has 5,958
samples from 40 speakers, and the train set has 34,280 samples from
the rest of the speakers. This partition aims to keep speaker inde-
pendent sets. There are around 500, 000 additional speech segments
that have not been retrieved or annotated. These speaking turns form
our unlabeled data in the corpus.

4. PROPOSED DEEPEMOCLUSTER APPROACH

Figure 1 shows the proposed DeepEmoCluster approach, which is a
SSL framework that creates meaningful emotional dependent clus-
ters as a latent representation.

4.1. Acoustic Features and Pre-processing

We use the toolkit librosa [30] to extract the 128D-mel spectrogram
as the input acoustic representation to our end-to-end SER model.
First, the magnitude spectrogram of the waveform signal is calcu-
lated with a window size of 32 ms (512 sample points), with 16 ms
overlap between windows. Then, we map the magnitude spectro-
gram into 128D mel-scale filters. We perform z-normalization on
these features, where the mean and standard deviation used in the
normalization are estimated over the train set. After obtaining the
normalized 128D-mel spectrogram for each sentence, we split them
into smaller data chunks (i.e., sub-images of the original spectro-
gram). This study follows the chunk segmentation approach pro-
posed by Lin and Busso [31] that splits different duration sentences
into a fixed number of chunks with fixed duration. We achieve this
segmentation by dynamically adjusting the overlap between chunks
per sentence. The parameters of this segmentation are the desired
chunk length w., and the maximum duration of a sentence in the
dataset T},q2. Based on these parameters, Equation 1 defines the
number of chunks C' per sentence. Equation 2 provides the target
chunk step size Ac; for a given sentence ¢ with duration 7;. Then,
we can split a sentence into fixed C' chunks without relying on zero-
paddings. Figure 2 shows a visual example of the chunking process.

C — ’VTIH&X—‘ (1)
We
Ti — We
Aci = 70 1 (2)

The input of our model is the split sub-images of the spectro-
gram, which have the same image size. During training, the same
sentence-level emotional label is assigned to all the sub-images ob-
tained from original spectrogram. While more sophisticated meth-
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Fig. 1. The semi-supervised DeepEmoCluster framework for SER.

ods can be used to combine the chunk-based decisions [31], in this
study we directly average the prediction outputs of the sub-images
to derive a final prediction for the sentence.

4.2. The DeepEmoCluster Framework

The proposed semi-supervised DeepEmoCluster framework consists
of three networks: 1) the feature encoder fenc(+), 2) the cluster clas-
sifier feir(-), and 3) the emotional regressor femo(-) (Fig. 1).

The first network of the DeepEmoCluster approach is the fea-
ture extractor, which extracts discriminative information from the
chunks. This block is implemented with the VGG-16 architecture
[17] with batch normalization. The CNN-based network extracts
the chunk-level feature representations h; from the input mel-
spectrograms x;. The second network is the cluster classifier,
which is an unsupervised (or self-supervised) network that classifies
pseudo-class labels given by the K-means clustering results based
on the latent feature space. The number of classes depends on the
number of K-means clusters and these clustering pseudo labels are
re-assigned after every training epoch. The third network is the
emotional regressor, which is a supervised regression network that
predicts the target emotional attribute (i.e., arousal, dominance and
valence). The addition of this supervised network brings emotional
dependencies into the latent space.

The semi-supervised training scheme of the proposed DeepE-
moCluster framework is divided into two stages within a single train-
ing epoch. First, data points from the unlabeled set are considered
for the cluster classifier (i.e., unsupervised path). During this step,
we freeze the femo(-) model and the gradients only backpropagate
through the fenc(-) and feir () networks. Second, the data-label
pairs from the labeled set are jointly used to backpropagate the gra-
dients to the entire model. During this training stage, we consider the
network as a multitask learning model with the loss function given
in Equation 3, where CCC is the concordance correlation coefficient
(CCC) loss for the regression task, and CE is the cross entropy (CE)
loss computed for the self-supervised cluster classifier. The parame-
ter \ controls the importance of the unsupervised task.

Loss=(1-CCC)+ A xCE 3)

5. EXPERIMENTAL RESULTS

5.1. Experimental Settings
We split the 128D mel-spectrogram feature of every sentence into
C = 11 sub-images by setting the desired chunk window size w.
to 1 sec (Eq. 1). Note that the maximum sentence duration of the
MSP-Podcast dataset is 11 secs [18]. The detailed architecture of the
feature encoder fenc(+) model is shown in Table 1, which follows
the VGG-16 structure [17]. The CNN-blocks in Table 1 consist of a
2D-CNN with BatchNorm and ReLU activation function.

The cluster classifier and emotional regressor models have the
same structure, but they are constructed using fully connected layers
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Fig. 2. A visualization example of the chunk segmentation proce-

dure [31]. Sentences with different durations are split into C' chunks
with fixed duration (w.) by adjusting the chunk step size (Ac;).

Table 1. The VGG-16 feature encoder model used in this study.

Layer Channels/Nodes Kernel Stride Activation
Input 1 N/A N/A N/A
CNN-block (X 2) 32 (3,3) 1 ReLU
CNN-block (% 2) 64 (3,3) 2 ReLU
CNN-block (x 3) 128 (3,3) 2 ReLU
Flatten N/A N/A N/A N/A
Linear 256 N/A N/A ReLU
Dropout p=0.5 N/A N/A N/A

(ReLU activation) and a task-dependent output layer (i.e., softmax
output for the cluster classifier and linear combination output for the
emotional regressor). The weighting factor A of the loss function
(Eq. 3) is set to 1 and the cluster number of K-means is a fine-
tuned parameter depending on the size of the dataset. We discuss its
value in Section 5.3. We train our model with a batch size of 64,
with Adam optimizer for the emotional regressor (Ir=0.0005), and
stochastic gradient descent (SGD) optimizer for the feature encoder
and cluster classifier (Ir=0.001). We save the best models with an
early stopping criterion based on the validation loss. All models are
implemented with PyTorch.

We compare three baseline models in this study: CNN-regressor,
CNN-AE and CNN-VAE. The CNN-regressor is a regular CNN-based
emotional regression model. More specifically, the model contains
the feature encoder and emotional regressor networks, which can
only be applied to fully supervised learning. Instead of using the
cluster classifier (i.e., pseudo labeling), the CNN-AE and CNN-VAE
are attached with an additional decoder network to reconstruct the
inputs as an unsupervised task. By combining a supervised task
with the autoencoder, these two baselines can also be extended to
semi-supervised frameworks providing appropriate baselines for our
proposed DeepEmoCluster framework. The decoder network mir-
rors the layers of the encoder (i.e., the feature encoder in Table 1),
where the transposed convolutional layer is used to reconstruct the
original input feature maps. The major difference between CNN-AE
and CNN-VAE is that the CNN-AE baseline directly reconstructs the
outputs from the bottleneck, whereas, the CNN-VAE baseline recon-
structs the input from the reparametrized latent vectors. We evaluate
the model performance using CCC. We randomly split the original
test set into four subsets with the same size and run five trails for all
models, reporting the average based on these results (i.e., 4 subsets
X 5 trails = 20 results per model per attribute). We implement this
strategy to conduct statistical analysis using a two-tailed T-test over
the 20 results. We assert statistical significance when p-value <0.05.

5.2. Evaluation with Fully Supervised Learning

In this section, we focus on comparing fully supervised performance
of the proposed DeepEmoCluster framework with the three baseline
models. All the models are trained with the labeled set without con-
sidering any unlabeled data. We fix the number of clusters to 10
(i.e., 10-clusters) for all emotional attributes in the DeepEmoCluster



Table 2. CCC performance for the DeepEmoCluster approach and
three baselines for the supervised condition. Results tagged with *, T
and 7 indicate that the CCC values are statistic significant better than
the results for CNN-regressor, CNN-AE and CNN-VAE, respectively.

Table 4. The CCC performances of semi-supervised DeepEmoClus-
ter framework training with additional 40K unlabeled set by differ-
ent settings of clusters number. Results tagged with * means statistic
significant greater than /0-clusters setting.

DeepEmoCluster DeepEmoCluster
_ o, _AE N _ AE I (", o 5 2 -clus ¢ _ o o
CNN-regressor CNN:- CNN-V, (10-clusters) (40K unlabeled) O-clusters O-clusters 30-clusters
Aro. 0.6177 0.6338 0.5586 0.6502*7F Aro. 0.6611 0.6491 0.6416
Dom. 0.4928 0.5111 0.4800 0.5426" 1% Dom. 0.5400 0.5459 0.5490"
Val. 0.1696 0.1354 0.1826 0.1510f Val. 0.1572 0.1756* 0.1752*

Table 3. CCC performances of the semi-supervised DeepEmoClus-
ter framework as we increase the number of clusters. Results tagged
with * indicates that the values are statistic significant better than the
results of the model trained with only 10-clusters.

DeepEmoCluster .
) S Y 15K 40K
(10-clusters) fully supervised 5K unlabeled OK unlabeled
Aro. 0.6502 0.6504 0.6611*
Dom. 0.5426 0.5400 0.5400
Val. 0.1510 0.1714* 0.1572

framework. Table 2 shows the CCC performances of all models for
the three emotional attributes. DeepEmoCluster achieves the best
prediction scores for arousal and dominance, which significantly
outperforms all the baseline models. Although the valence result of
the DeepEmoCluster does not reach the highest performance, it still
obtains competitive results. These results indicate that discretizing
latent representation by encouraging maximum separations between
data points can be beneficial to a continuous regression task, since
it reduces the complexity of the learned latent space which is con-
strained under discrete clusters.

5.3. Evaluation of Unlabeled Set Size and Number of Clusters
Since the proposed DeepEmoCluster framework is a semi-supervised
framework, we can utilize unlabeled data to further improve the
model performance. Table 3 reports the CCC performances, as
we add more unlabeled data (0, 15K and 40K unlabeled segments)
under a semi-supervised training scheme. We use 10 clusters for
the DeepEmoCluster approach. Table 3 shows that training with
additional unlabeled data leads to improved model prediction re-
sults, especially for the valence attribute. This result validates the
effectiveness of our SSL approach to better represent features by
utilizing unlabeled data information.

We notice that while we increase the size of the unlabeled set,
the performance does not keep significantly increasing. Therefore,
we hypothesize that the clusters’ number depends on the size of the
unlabeled set. To validate our hypothesis about the relation between
the clusters’ number and the size of the unlabeled set, we fix the un-
labeled data to 40K segments. Then, we evaluate the approach with
different number of clusters. Table 4 shows the increasing trends in
the prediction performance as we increase the number of clusters in
the DeepEmoCluster framework for dominance and valence. How-
ever, the prediction for arousal achieves the best result with only
10-clusters. This result suggests that the number of clusters is a fine-
tuning parameter that depends on the size of unlabeled set and the
emotional attribute.

5.4. Cluster Analysis

The DeepEmoCluster framework possesses high geometric interpre-
tation, which enables us to explicitly show the mechanism behind
the learned emotional latent space contributing to performance im-
provements. One approach to validate whether the emotional content
plays arole in the latent clusters is to visually compare the emotional
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Fig. 3. Emotional distributions of the clusters with the highest and
lowest average level of arousal. The distributions are farther apart
with the addition of the supervised SER task.

(b) Supervised Clusters

distribution for each cluster. We can sketch histograms of emotional
labels corresponding to clusters to evaluate the separations between
different latent clusters according to the ground truth annotations.
Figure 3 is an example graph which shows the arousal distribution
for two different clusters obtained with supervised and unsupervised
models. The unsupervised model is trained by removing the emo-
tional regressor in Figure 1. The goal is to evaluate the role of the
regressor network in the clusters obtained by the DeepEmoCluster
framework. To simplify the figure, we only present the clusters with
the highest (red) and lowest (blue) separation. For the unsupervised
implementation, Figure 3(a) shows only a small difference in the
emotional distributions for the clusters with the highest and lowest
emotional means. However, the supervised version of the DeepE-
moCluster framework presents a larger separation between clusters
(Fig. 3(b)). These results show the implicit emotional dependencies
induced in the clusters by adding the supervised regression task.

6. CONCLUSIONS

We presented the DeepEmoCluster framework, a new semi-supervised
approach that learns better latent representations for SER from la-
beled and unlabeled sets. The DeepEmoCluster approach is able
to construct a latent feature space based on clusters that depend
on the emotional content. We achieve this goal by adding a su-
pervised emotional regression task. The maximum latent cluster
constraint during the joint training procedure enables our approach
to achieve the best prediction scores for arousal and dominance, and
competitive performance for valence under a fully supervised train-
ing scheme. By applying a semi-supervised training strategy, the
DeepEmoCluster approach can further improve the model perfor-
mance, reaching the best overall recognition accuracy for emotional
attributes. A future work of this study is to strengthen the connec-
tions between the latent clusters and the target emotions. We can
adopt additional information theoretic-based loss function such as
mutual information, directly associating the cluster classifier and
emotional regressor. Another promising future direction is to build
a multimodal DeepEmoCluster based on video, audio and language,
forming meaningful behavioral emotional clusters.
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