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Abstract—The problem of learning to generalize on unseen
classes during the training step, also known as few-shot clas-
sification, has attracted considerable attention. Initialization
based methods, such as the gradient-based model agnostic meta-
learning (MAML) [1], tackle the few-shot learning problem by
“learning to fine-tune”. The goal of these approaches is to learn
proper model initialization, so that the classifiers for new classes
can be learned from a few labeled examples with a small number
of gradient update steps. Few shot meta-learning is well-known
with its fast-adapted capability and accuracy generalization onto
unseen tasks [2]. Learning fairly with unbiased outcomes is
another significant hallmark of human intelligence, which is
rarely touched in few-shot meta-learning. In this work, we
propose a Primal-Dual Fair Meta-learning framework, namely
PDFM, which learns to train fair machine learning models using
only a few examples based on data from related tasks. The key
idea is to learn a good initialization of a fair model’s primal and
dual parameters so that it can adapt to a new fair learning task
via a few gradient update steps. Instead of manually tuning the
dual parameters as hyperparameters via a grid search, PDFM op-
timizes the initialization of the primal and dual parameters jointly
for fair meta-learning via a subgradient primal-dual approach.
We further instantiate an example of bias controlling using
decision boundary covariance (DBC) [3] as the fairness constraint
for each task, and demonstrate the versatility of our proposed
approach by applying it to classification on a variety of three real-
world datasets. Our experiments show substantial improvements
over the best prior work for this setting. Our code and datasets
are available at https://github.com/charliezhaoyinpeng/PDFM.git.

Index Terms—dual subgradient, dual decomposition, meta-
learning, fairness, few shot

I. INTRODUCTION

In contrast to the conventional machine learning systems,

the ability to learn from a handful of examples is one of the

critical characteristics of human intelligence. Learning quickly

yet remains a daunting challenge for artificial intelligence,

which receives significant attention from the machine learning

community, especially when it needs to transfer knowledge

from a given distribution of tasks onto unseen ones. To address

this challenge, meta-learning (a.k.a learning to learn) leverages

the transferable knowledge learned from previous tasks, then

adapts to new environments rapidly with a few training

examples. The goal of a few-shot meta-learning problem is

to minimize generalization error across a distribution of tasks

with few training examples (i.e. few-shot). This technique has

demonstrated success in both supervised learning, such as few-

shot regression [1], [4], classification [5], [6], and reinforcement

learning [7] settings.

There are several lines of meta-learning algorithms for base

learners, nearest neighbors based methods [5], [6] which ad-

dress the problem by “learning to compare”; recurrent network-

based methods [8] that instantiates the transferable knowledge

as latent representations, and gradient-based methods [1], [9]–

[12] that aim to learn proper model initialization for all tasks,

such that the summation query errors is minimized and further

the meta-parameter is adapted to novel tasks using a few

optimization steps. Despite their early success in the few-

shot application, to the best of our knowledge, most of the

existing meta-learning algorithms ignore to mitigate the notion

of fairness in tasks and thus lack the capability of fairness

generalization on new tasks.

Machine learning models trained to output prediction based

on historical data will naturally inherit the past biases, with

the biased input, the main goal of training an unbiased model

is to make the output fair. In other words, the predictions are

statistically independent of protected variables (e.g. race and

gender) [13]. Such models could be enhanced by masking some

attributes to the decision-maker, however, as many attributes

may be correlated with the protected one [14]. Moreover,

techniques in the area of fairness learning are incapable of

adapting deep learning models on fairness to new tasks. This

paper’s motivation is: can we develop meta-learning methods

that adapt deep learning models on both generalization accuracy

and fairness to unseen tasks?

This paper bridges areas of few-shot meta-learning and un-

fairness prevention and formulate this problem by enhancing the

meta-learning model with fairness constraints. More concretely,

for each task during the training stage, it is constrained with

a task-specific fair inequality, which ensures the independent

effect of the protected variable on task predictions. In the

support set during the training process, the overall proportion

of members in a protected group would receive predictions,

which are identical to the proportion of the population as a

whole. To this end, we resort to a dual subgradient algorithm

with an averaging scheme for each task. It approximately

optimizes a pair of task-specific primal and dual parameters,

which minimizes the summation of query losses and fairness

constraints are satisfied simultaneously. In contrast to the grid
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Fig. 1: Schematic of our proposed PDFM pipeline. (Left) The

global meta-parameters (θ, μ) are sent to each task and each

task optimizes in parallel to find a good task-specific primal-

dual pair, e.g. (θ′1, μ
′
1), that is approximated by an averaging

scheme dual subgradient algorithm presented on the right.

Query losses and fairness are gathered and utilized to update

the meta-initialization pair. (Right) A few-shot unfairness

prevention approach is shown. In the meta-training stage, in

each task, support loss is optimized under a fairness constraint

which performs a trade-off between losses and fairness. The

inner loop dual subgradient algorithm ensures that the duality

gap of each task is minimum.

search technique, we consider Lagrange multipliers as dual

variables that they are optimized to minimize the duality gap

between the primal and dual functions.

Furthermore, instead of updating the meta-parameter from

the outer loop (such as MAML [1]), in our work, inspired by the

concept of resource allocation from economics, we propose a

pair of primal-dual meta-parameters, which could be optimized

iteratively through a dual decomposition [15], [16] and divided

into broadcast and gather steps. We apply such decomposition

to leverage the observation that problems can be decomposed

into some sub-problems, and then introduce fairness constraints

to enforce the notion of agreement between solutions to the

different issues. The agreement constraints are incorporated

using Lagrange multipliers, and an iterative algorithm is used to

minimize the resulting dual. As shown in Figure 1, the interplay

between the inner-algorithm (task-level) and the meta-algorithm

plays a key role in our work. The former one is used to compute

a good approximation of the meta-subgradient, and supplied

to the latter. Finally, another key merit of this paper is that

we derive an efficient and theoretically grounded analysis for

the proposed meta-learning approach. Besides, we instantiate

an example of decision boundary covariance (DBC) as the

fairness constraint for justification, such constraint indicates

the covariance between the protected variable and the signed

distance from the feature vectors to the decision boundary

[3]. We demonstrate our proposed approach’s versatility on a

variety of three real-world datasets and extensive experiments

to show substantial improvements over the best prior work.

In summary, the main contributions of this paper is threefold:

• We propose a novel Primal-Dual Fair Meta-learning

framework, namely PDFM, in which a good pair of meta-

parameters is approximately optimized. Our framework

efficiently controls biases for each task, and ensures the

generalization capability of both accuracy and fairness

onto unseen tasks.

• We further implement two optimized strategies for inner

loop and meta-subgradient update. Specific and theoreti-

cally grounded analysis for the proposed strategies justifies

the efficiency and effectiveness of them.

• Finally, we validate the performance of our approach with

state-of-the-art techniques on three real-world datasets.

Our results demonstrate the proposed approach is capable

of mitigating biases, generalizing accuracy and fairness

to unseen tasks with the minimized input training data.

II. RELATED WORK

Meta-Learning based on few-shot studies that trained models

to make it quickly adapt to new tasks, under a few labeled sam-

ples. Several recent approaches have made significant progress

in meta-learning [17]–[20]. Previous algorithms majorly focus

on the metric-based idea, which aim to learn an embedding

space between query and support examples, where similar

instances are closer and different ones are further apart [5],

[6], [21], [22]. For example, the Matching-Net [5] employed

ideas from k-nearest neighbors and metric learning based on

a feature encoder to extract embedding in the context of the

support set, and Prototypical networks [6] learn a metric space

in which classification is able to be performed by computing

Euclidean distances to prototype representations of each class.

In addition, gradient descent based algorithms [1], [8], [9],

[12], [23] aim to learn good model initialization so that the

meta-loss is minimum. They tend to meta-learn an initial set

of weights for neural networks, and quickly adapted to new

task with just a few steps of gradient descent, which could

achieve good generalization over new tasks by encoding prior

knowledge. Some existing work such as Franceschi et al. [24]

also provide convergence guarantees for gradient-based meta-

learning with strongly-convex functions. Despite methods in the

area of meta-learning have been shown effective for adaption of

deep learning models on generalization accuracy to new tasks,

our experiments show such state-of-the-arts have difficulties in

adaption on fairness.

Fairness researchers develop machine learning algorithms

that would produce predictive models, ensuring that those

models are free from biases. Standard predictive models,

induced by machine learning and data mining algorithms,

may discriminate groups of entities because (1) data bias

comes from data being collected from different sources, or

(2) dependence on sensitive attributes was identified in the

data mining community [25]. Based on the taxonomy by tasks,

fairness learning can be typically categorized to classification

[3], [26], [27], regression [25], [28], [29], clustering [30], and

recommendation [31], [32] works. Even though techniques for

unfairness prevention on classification were well developed, to
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the best of our knowledge, the majority of existing fairness-

aware machine learning algorithms are under the assumption of

giving abundant training examples. Learning quickly, however,

is another significant hallmark of human intelligence.

Several recent approaches have been developed in fair meta-

learning [33]–[35]. These methods focus on studies of fairness

generalization onto unseen tasks by adding an uniformed fair-

ness regularizer to each task. In addition, Lagrange multipliers

were consider as hyperparameters and they were manually

tuned by grid search. However, such prior studies suffer from

limitations that (1) the trade-off parameter is valued the same

for each task, and (2) hence there is a big room for improvement

on the generalization of both accuracy and fairness onto new

tasks. In this paper, to overcome such limitations, we develop

a novel fair meta-learning framework. Each task is underwent

a task-specific soft fairness constraint. Besides, we consider

Lagrange multipliers as dual variables and hence, instead of

grid search, they are optimized to minimize the duality gap

between the primal and dual functions.

III. METHODOLOGY

A. Problem Setting

Let Z = X × Y be the data space, where X ⊂ R
n is the

input space, Y = {1, 2, ..., N} means a sequence of discrete

classes of the output space, and N is the number of classes.

Meta-learning for few-shot learning aims to train a meta-learner

which is able to learn on a large number of various tasks

from a small amount of data. Gradient based meta-learning

frameworks, such as Model-Agnostic Meta-Learning (MAML)

[1], lead to state-of-the-art performance and fast adaptation to

unseen tasks. More precisely, the goal of MAML is to estimate

a good meta-parameter θ ∈ Θ such that the summation of

empirical risks for each task is minimized. Throughout this

work, the Θ will be a closed, convex, non-empty subset of an

Euclidean space.

In this work, we consider a collection of supervised learning

tasks T = {(DS
t ,DQ

t )}Tt=1 which distributions over Z and T is

denoted as the number of tasks. T is often referred to as a meta-

training set as well as an episode (DS
t ,DQ

t ) explicitly contains

a pair of a support (i.e. DS
t ) and a query (i.e. DQ

t ) data sets. For

each task t ∈ {1, 2, ..., T}, we let {xt,i, yt,i}mi=1 ∈ (X × Y) be

the corresponding task data, and m is the number of datapoints

in the support set. For example, standard few-shot learning

benchmarks evaluate model in N -way K-shot classification

tasks and thus m = N × K indicates, in the support set of

the t-th task, it contains N categories and each consists of

K datapoints. We emphasize that we need to sample without

replacement, i.e., DS
t ∩ DQ

t = ∅.
To study fairness generalization problem under meta-learning

frameworks, a fairness constraint, gt(θt) ≤ 0, is considered

in each task, where t indicates task index. In researches of

bias prevention, convexity of the constraint receives increasing

attention in the machine learning fields [28], [36], [37]. For

this purpose, in this paper, we assume that convexity of task

constraints always holds.

B. Model-Agnostic Meta-Learning with constraints

Meta-learning approaches for few-shot learning aim to

minimize the generalization error across a distribution of tasks

sampled from a task distribution. It is often assume that the

support and query sets of a task are sampled from the same

distribution. In our work, for each single task, the objective is to

minimize the predictive error Linner such that it is constrained

by gt:

θ′t = Alg(DS
t , θ) = arg min

θt∈Θ
ft(θt; θ) := Linner(DS

t , θt; θ)

subject to gt(DS
t , θt) ≤ 0 (1)

where Linner : Rn → R is a loss function, such as cross-

entropy loss for classification problems and θt is the model

parameter at task t, which is initialized with θ. Alg(D, θ)
corresponds to one or multiple steps of gradient descent

initialized at θ. g : Rn → R is an appropriate complexity

function ensuring the existence and the uniqueness of the

above minimizer. A point θt in the domain of the problem is

feasible if it satisfies the constraint gt(θt) ≤ 0.

Assumption 1. (Task Loss and Constraint). Let ft(θt) be a
convex real-valued function for any θt ∈ Θ. Let Γ(Θ) be a
set of proper, closed and convex function over Θ and gt ∈
Γ(Θ) be such that, for any θt ∈ Θ, gt(θt) is convex over R

n,
infθt∈Θ gt(θt) = 0 and, for any θt /∈ Θ, dom(gt(θt)) = ∅.

The optimal value of the Eq.(1) is denoted as f∗t , which is

assume to be finite and is achieved at an optimal and feasible

solution θ∗t , i.e. f∗t = ft(θ
∗
t ). The goal of training a single

task is to output local parameter θt given the meta-parameter

θ such that it minimizes the task loss ft(θt) subject to the

task constraint gt(θt) ≤ 0. Next, to update the meta-parameter,

we minimize the generalization error Lmeta using query sets

across every tasks in the batch such that query constraints for

all tasks are satisfied. Formally, the learning objective across

all tasks is

min
θ∈Θ

Lmeta =
T∑

t=1

ft(θ
′
t; θ) :=

T∑

t=1

Linner(DQ
t , Alg(DS

t , θ))

subject to

T∑

t=1

gt(DQ
t , Alg(DS

t , θ)) ≤ 0 (2)

where θ′t = argminθt∈Θ,gt(θt)≤0 ft(θt) is a local optimum

of each task t. Here, for the purpose of optimization with

simplicity, the constraint of Eq.(2) is approximated, which

originally takes the form of a sequence gt(DQ
t , Alg(DS

t , θ)) ≤
0, where t = 1, ..., T . In this setting, the meta-objectives and

the consequently their subgradients used by the meta-algorithm

are dependent on the properties of the inner algorithm. We

will show the algorithm details and analysis in the following

sections.
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C. Primal and Dual Formulation

Our approach aims to optimize a pair of meta-parameters

(i.e. primal and dual variables) as model initialization, instead

of using the conventional grid search technique [33]–[35]. It

consists of two nested primal-dual algorithms, one operating

within each task and another across all tasks. In this section,

we briefly recall from the primal-dual interpretation of the

algorithm framework and such interpretation will be used in

the subsequent analysis for both inner and meta problems.

To recover the primal optimal solution of Eq.(1), we use

the Lagrange duality theory to relax the primal problem by its

constraints, and the Lagrangian function is

L(θt, μt) = ft(θt) + μT
t gt(θt)

where μt ∈ R
m
+ is the Lagrange multiplier (or dual variable).

The dual function hence is defined as

qt(μt) = inf
θt∈Θ

L(θt, μt) = inf
θt∈Θ

{ft(θt) + μT
t gt(θt)}

Since the dual function qt(μt) is a pointwise affine function

of μt, we thus can maximize the dual function to obtain a

tightest lower bound of the optimal primal f∗t and through

out this paper, we assume f∗t is finite. The goal is to obtain

the dual optimal value q∗t at μ∗t , such that the duality gap, i.e.
f∗t −q∗t , is as small as possible. Zero duality gap thus indicates

that the optimal values of the primal and dual problems are

equal, i.e. f∗t = q∗t . Due to space limit, the same idea is applied

to solve Eq.(2). The Lagrangian function of the outer loop is

hence parameterized by the meta-pair (θ, μ) and the goal is

to find a good pair of initializations by optimizing a max-min

problem.

D. Update Task-Specific Model-Parameters via Dual Subgra-
dient

In order to find a good pair of meta-parameters (θ, μ) ∈
Θ×R

m
+ , such that constraints of all tasks can be satisfied and

generalization error is minimized. To this end, in this section,

we provide an approximate solution to the inner task of Eq.(1)

by proposing a task-level dual subgradient algorithm. This

method takes in the meta-parameter pair from the previous

outer (or meta) loop and the task-specific (or local) primal and

dual parameters are then iterative updated using the support

data of the single task.

In the subsequent development, to solve the dual problem of

Eq.(1) for a single task, we consider a subgradient algorithm

with a constant step size α � 0 to update the dual solution

iteratively:

μk
t = [μk−1

t + αT gk]
+ (3)

where [u]+ denotes the projection of [u] on the nonnegative

orthant in R
m
+ , namely [u]+ = (max{0, u1}), ...,max{0, um}),

k = 1, 2, ... is the index of iterations, subscript t is the

task index number, and μ0
t � 0 is an initial dual point. The

Algorithm 1 Update Model-parameters of Task t using Dual

Subgradient Method

Require: θ ∈ Θ, μ ∈ R
m
+ : prime and dual initializations

Require: α � 0, γ � 0: learning rate

Require: q > 0: a small number of subgradient update steps

1: μ0
t ← μ, θ0t ← θ

2: Initialize an empty array a = ∅
3: for k = 1, 2, ... do
4: for q = 1, 2, ... do
5: Evaluate the primal feasible subgradient ∇̄ ∈
∇θk−1

t
{ft(θk−1

t ) + (μk−1
t )T gt(θ

k−1
t )}

6: θkt ← θk−1
t − γT ∇̄

7: end for
8: Add θkt in a
9: Evaluate θ̃kt by taking the average of previous vectors

in a: θ̃kt =
1
k

∑k−1
i=0 θit

10: Calculate the subgradient iterate gk = gt(θ̃
k
t )

11: Update the dual solution μk
t = [μk−1

t + αT gk]
+

12: end for
13: return (θ′t, μ

′
t), where θ′t = θkt , μ

′
t = μk

t

subgradient iterate gk is a subgradient of the dual function qt
at a given μk

t � 0:

gk = gt(θ̃
k
t ) ∈ ∂qt(μ

k
t ) = conv({gt(θ̃kt )|θ̃kt ∈ Θμk

t
}) (4)

where Θμk
t
= {θ̃kt ∈ Θ|qt(μk

t ) = ft(θ̃
k
t ) + (μk

t )
T gt(θ̃

k
t )}

and conv(Y ) denotes the convex hull of a set Y . Although a

general dual subgradient method can generate near-optimal dual

solutions with a sufficiently small step size and a large number

of iterations, it does not directly provide primal solutions which

are of our interest. But even worse, it may fail to produce any

useful information. Motivated by this reason, we apply an

averaging scheme to the primal sequence {θkt } to approximate

primal optimal solutions. In particular, the sequence {θ̃kt } is

defined as the averages of the previous vectors through θ0t to

θk−1
t ,

θ̃kt =
1

k

k−1∑

i=1

θit, ∀k ≥ 1 (5)

where the corresponding primal feasible iterate θk is given

by any solution of the set.

θkt ∈ arg min
θt∈Θ

{ft(θk−1
t ) + (μk−1

t )T gt(θ
k−1
t )} (6)

As the subgradient method can usually generate a reasonable

estimation of the dual optimal solutions within several iterations,

approximate primal solutions are obtained accordingly. The

constant stepsize α is a simple hyperparameter for controlling,

then through choosing an appropriate value of α, the proposed

Algorithm 1 is able to approach the optimal value arbitrarily

close within a small finite number of steps.
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Moreover, the dual subgradient schemes can be applied

efficiently to approximate a solution to Eq.(1). Specifically, it

returns a good pair of task-level primal and dual parameters

(θ′t, μ
′
t). In the following section, due to the decomposable

structure of the meta-learning framework for few-shot learn-

ing, meta-parameters (θ, μ) are updated by minimizing the

summation of query losses across all training tasks.

E. Update Meta-parameters via Dual Decomposition

In this work, inspired by the concept of resource allocation

from economics [15], [16], our model’s goal is to estimate a

good pair of primal-dual weight initialization (θ, μ), such that

both the meta-loss across tasks is minimum and constraints of

all tasks are also satisfied. To this end, we update the pair of

primal-dual initialization iteratively using a dual decomposition

method that is normally considered as a special case of

Lagrangian relaxation [38]. This method is typically simple

and efficient, which can be divided into two steps for each

iterate, i.e. broadcast and gather. In the broadcast step, the

meta-dual parameter μ is sent to each of tasks Tt. Through

Algorithm 1, local primal, and dual parameters θt and μt of

a single task are iteratively optimized using few-shot support

data. Query loss ft(DQ
t , θ

′
t) and fairness estimate gt(DQ

t , θ
′
t),

therefore, are evaluated using query data set. In the gather step,

both query losses and fairness estimates collected across all

tasks are applied to update primal and dual meta-parameters,

θs+1 ∈ argmin
θ∈Θ

T∑

t=1

ft(θ
′
t; θ

s) + μs
T∑

t=1

gt(θ
′
t; θ

s) (7)

μs+1 = [μs + β
T∑

t=1

gt(θ
′
t)]

+ (8)

where s = 1, 2, ... is the index of the outer iteration and

β � 0 is the stepsize. The full algorithm of the proposed

approach is outlined in Algorithm 2.

IV. ANALYSIS

Recall that the proposed averaging scheme used to approxi-

mate the task-specific primal-dual parameter pair is built upon

the dual subgradient method with a constant stepsize. We denote

the dual feasible set as M = {μt|μt � 0,−∞ < qt(μt) <∞},
and for every fixed μt ∈M , we have the solution set C ⊂ Θ
for qt(μt).

Assumption 2. (Slater Condition and Bounded Subgradients)
The convex set Θ is compact (i.e. closed and bounded). There
exists a Slater point θ̄t ∈ Θ, such that gj(θ̄t) < 0, ∀j =
1, 2, ...,m, and exists L > 0, L ∈ R, such that ||gk|| < L, ∀k ≥
0.

When f∗t is finite, the Slater condition is sufficient for

the existence of a dual optimal solution, and therefore the

proposed task adaptation approach efficiently reduces the

amount of feasibility violation at the approximate primal

solutions. Furthermore, intuitively, bounded subgradients in

Assumption 2 is satisfied when L = maxθ̃t∈Θ ||gt(θ̃t)||.

Algorithm 2 The Primal-Dual Fair Meta-learning (PDFM)

Algorithm

Require: p(T ): distribution over tasks

Require: η � 0, β � 0: learning rate

1: randomly initialize primal and dual meta-parameter, i.e.
θ ∈ Θ and μ ∈ R

m
+

2: while not done do
3: sample batch of tasks Tt ∼ p(T ), t = 1, 2, ..., T
4: for all Tt = {DSt ,DQt } do
5: Sample datapoints DS

t = {xt,yt} from Tt
6: Compute adapted primal-dual parameters θ′t and μ′t

using DS
t by applying Algorithm 1

7: Sample datapoints DQ
t = {xt,yt} from Tt for the

meta-update, where DS
t ∩ DQ

t = ∅
8: Evaluate query loss ft(θ

′
t) and query constraint

gt(θ
′
t) using DQt

9: end for
10: Update θ and μ using Eq.(7). � Update

Meta-parameters.

11: end while

Lemma 1. If Assumption 1 and the continuity of ft(θt) and
gt(θt) hold, there exists at least one optimal solution θμ ∈ C.
Furthermore, θμ is unique if ft(θt) is strictly convex, otherwise
there may be multiple solutions.

Due to space limit, Lemma 1 is easily proved using the

Weierstrass Theorem proposed in [39]. Next, for the averaged

primal sequence {θ̃kt }, we show that it always converges when

Θ is compact [40].

Proposition 1. Under Assumption 2, when the convex set Θ
is compact, let the approximate primal sequence {θ̃kt } be the
running averages of the primal iterates given in Eq.(5). Then
{θ̃kt } can converge to its limit θ̃∗t .

Proof: For simplicity, the subscript t is hidden. To prove

the convergence, we first show that {θ̃k} is a Cauchy sequence,

i.e. ∀ε > 0, there is a K ∈ N such that ||θ̃k′−θ̃k|| < ε, ∀k′, k ≥
K. Given Eq.(5), we can derive θ̃k+1 = k

k+1 θ̃
k + 1

k+1θ
k. And

hence θ̃k+1−θ̃k = θk−θ̃k

k+1 . Since Θ is a compact convex set and

we assume k′ > k, we have θk, θ̃k ∈ Θ and ||θk||, ||θ̃k|| ≤M ,

where M ≥ 0. Iteratively, we have

||θ̃k′ − θ̃k|| = ||θ̃k′ − θ̃k
′−1 + · · ·+ θ̃k+1 − θ̃k||

= ||θ
k′−1 − θ̃k

′−1

k′
+ · · ·+ θk − θ̃k

k + 1
||

≤ ||θk′−1||+ ||θ̃k′−1||
k′

+ · · ·+ ||θ
k||+ ||θ̃k||
k + 1

≤ 2M(k′ − k)

k + 1

Therefore, for any arbitrary ε > 0, we let
2M(k′−k)

k+1 < ε and

we have ||θ̃k′ − θ̃k|| < ε, ∀k′, k ≥ K. Thus, {θ̃k} is a Cauchy

sequence. Furthermore, since a Cauchy sequence is bounded,

there is a subsequence bn converging to the limit L of it. For any
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ε > 0, there exists n,m ≥ K satisfying ||θ̃n− θ̃m|| < ε
2 . Thus,

there is a bk = θ̃mk , such that mk ≥ K and ||bmk
− L|| < ε

2 .

||θ̃n − L|| = ||θ̃n − bk + bk − L||
≤ ||θ̃n − bk||+ ||bk − L||
< ||θ̃n − θ̃m||+ ε

2
< ε

Since ε is arbitrarily small, we proof that the sequence {θ̃k}
converges to its limit L = θ̃∗ asymptotically.

Besides, since the proposed Algorithm 2 is considered as an

extended and modified version of [1], convergence of Algorithm

2 is guaranteed and detailed analysis is stated in [41]. Accessing

to sufficient samples, the running time of the proposed approach

is O(s · k · q) , where s, k are respectively the number of outer

and inner iterations, and q is gradient steps of inner loop. For

a N -way-K-shot learning, the best accuracy is achieved when

||∇θ|| ≤ O(σ̃/
√
NK), where θ = ET ∼p(T )lT (fθ), lT is the

query loss of task T , σ is a bound on the standard deviation

of ∇Lt(θt, μt) from its mean ∇L(θ, μ), and σ̃ is a bound on

the standard deviation of estimating ∇Lt(θt, μt) using a single

data point.

V. A CLASSIFICATION EXAMPLE IN UNFAIRNESS

PREVENTION

In the previous section, we derived a theoretically principled

algorithm under the assumption that the convexity always holds

for both ft(·) and gt(·). However, many problems of interest

in machine learning and deep learning have a non-convex

landscape due to the non-linearity of neural networks, where

theoretical analysis is challenging. Nevertheless, algorithms

originally developed for convex optimization problems like

gradient descent have shown promising results in practical

non-convex settings. Taking inspiration from these successes,

in this section, we respectively describe practical instantiations

of our unfairness prevention for classification problems, and

empirically evaluate the performance in Section VII.

Intuitively, an attribute affects the target variable if one

depends on the other. Strong dependency indicates strong

effects. Currently, most fairness criteria used for evaluating and

designing machine learning models focus on the relationships

between the protected attribute and the system output. For

simplicity, we consider one binary protected attribute (e.g.
white and black) in this work. However, our ideas can be easily

extended to many protected attributes with multiple levels. We

thus modify the introduced setting by letting Z = X × Y be the

data space, where X = E ∪ S . Here E ⊂ R
n is an input space,

S = {0, 1} is a protected space, and Y = {0, 1} is an output

space for binary classification. For each task t ∈ {1, 2, ..., T},
we let {et,i, yt,i, st,i}mi=1 ∈ (E × Y × S) be the corresponding

task data and m is the number of datapoints in the support set.

In a N -way-K-shot classification problem, since we assume

all the tasks to be binary labeled, in this example, all of our

tasks are 2-way (i.e. N = 2). In referencing K-shot fairness,

we mean that we are using K training examples irrespective

of class label, with the assumption that all tasks are 2-way.

A fine-grained measurement to ensure fairness in class label

prediction is to design fair classifiers by controlling the decision

boundary covariance (DBC) [3].

Definition 1 (Decision Boundary Covariance [3]). The co-
variance between the protected variables s = {si}hi=1 and
the signed distance from the feature vectors to the decision
boundary, dθ(e) = {dθ(ei)}hi=1,

DBC(s, dθ(e)) = E[(s− s̄)dθ(e)]− E[s− s̄]d̄θ(e)

≈ 1

h

h∑

i=1

(si − s̄)dθ(e) (9)

where E[s− s̄]d̄θ(e) is cancels out since E[s− s̄] = 0 and

h = N ×K is the sample size of a support set of a single task.

In a linear model for classification, such as logistic regression,

the decision boundary is simply the hyperplane defined by

θT e = 0. A point θt in the domain of a task is feasible if it

satisfies the constraint gt(θt) ≤ 0. More concretely, gt(θt) is

defined by the definition of DBC in Eq.(9), i.e.

gt(θt) =

∣∣∣∣∣∣
1

2K

∑

si,ei∼Tt
(si − s̄)dθt(ei)

∣∣∣∣∣∣
− c (10)

where c is a small positive fairness relaxation. To formalize

the supervised classification problem in the context of meta-

learning definitions, a cross-entropy loss function is used to

describe the adapted loss over a support set for each task.

Integrated with DBC fairness constraint, the classification

problem of a single task is formulated as follow

min
θt∈Θ

ft(θt) =
∑

(ei,yi)∼Tt

yi log ŷ(ei, θt) (11)

+ (1− yi) log(1− ŷ(ei, θt))

subject to

∣∣∣∣∣∣
1

2K

∑

si,ei∼Tt
(si − s̄)dθt(ei)

∣∣∣∣∣∣
≤ c

where (ei, yi) are an input/output pair sampled from task

Tt and ŷ is a predicted outcome. The goal of a single task

optimization is to approximate a good parameter pair (θ′t, μ
′
t)

by applying the proposed dual subgradient method and further

pass the pair to evaluate accuracy and fairness (i.e. DBC)

over the query data. As the original meta-learning problem

in Eq.(2) is decomposed into a batch of single tasks, meta-

parameters (θ, μ) are iteratively updated using the proposed

dual decomposition approach outlined in Algorithm 2.

VI. EXPERIMENTAL SETTINGS

To validate our approach of unfairness prevention in few-

shot meta-learning models, we conduct experiments with three

real-world datasets which are available from the UCI ML-

repository.
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TABLE I: Key characteristics and statistics of real dataset.

Data Adult
Communities

and Crime
Bank

s {M, F} {Black,
non-Black}

{Married,
non-Married}

y
income

{≥ or < 50K}
crime rate

{≥ or < 50%}
deposit

{Yes, No}
# of instance 48,842 2,216 41,188

tasks countries states months and dates
# of total tasks 34 46 50

# of input features 12 98 17
tasks for training 22 30 40

tasks for validation 6 8 5
tasks for testing 6 8 5

DBC 0.043 0.052 0.067
Discrimination 0.195 0.214 0.028

Consistency 0.485 0.222 0.377

A. Data
The Adult income dataset [42] contains a total of 34 tasks

according to different countries and regions, totally 48,842

instances with 14 features (e.g., age, educational level) and a

binary label, which indicates whether a subject’s incomes is

above or below 50K dollars. We consider gender, i.e. male and

female, as the protected attribute.
Communities and Crime dataset [43] includes information

relevant to crime (e.g., police per population, income) as well

as demographic information (such as race and sex) in different

communities across the U.S. We convert this dataset to a few-

shot fairness setting by using each state as a different task.

Following the same setting in [33], since the violent crime rate

is a continuous value, we convert it into a binary label based

on whether the community is in the top 50% violent crime rate

within a state. Additionally, we add a binary sensitive column

that receives a protected label if African-Americans are the

highest or second highest population in a community in terms

of percentage racial makeup.
Bank Marketing dataset [44] contains a total 41,188

subjects, each with 20 attributes (e.g. loan, housing, etc.) and a

binary label, which indicates whether the client has subscribed

or not to a term deposit. In this case, we consider the marital

status as the binary protected attribute, which is discretized

to indicate whether the client is married or not. Since the

dataset contains information of different months (i.e. January

to December) and dates (i.e. Monday to Friday), we combine

them as task labels and thus the dataset contains 50 tasks.

B. Evaluation Metrics
To evaluate the proposed techniques for fairness learning, we

introduced two classic evaluation metrics to measure data biases.

These measurements came into play that allows quantifying

the extent of bias taking into account the protected attribute

and were designed for indicating indirect discrimination.
Discrimination measures the bias with respect to the

protected attribute S in the classification:

Disc =

∣∣∣∣∣

∑
i:si=1 ŷi∑
i:si=1 1

−
∑

i:si=0 ŷi∑
i:si=0 1

∣∣∣∣∣

This is a form of statistical parity that is applied to the

binary classification decisions. It measures the difference in

the proportion of positive classifications of individuals in the

protected and unprotected groups. Disc = 0 indicates there is

no discrimination.

Consistency [14] compares a model’s classification predic-

tion of a given data item to its k-nearest neighbors:

Cons = 1− 1

|D|k

|D|∑

i=1

∣∣∣∣∣∣
ŷi −

∑

j∈kNN(ei)

ŷj

∣∣∣∣∣∣

where |D| is the sample size, k is the number of nearest

neighbors, and a nearest neighbor is defined based on a

similarity measure (i.e. euclidean distance) of unprotected

attributes e. As demonstrated in [14], we applied the kNN

function to the full set of examples to obtain the most accurate

estimate of each point’s nearest neighbors. The consistency is

a real number with a value of one signifying a fair prediction.

C. Baseline Methods

We evaluate all datasets – the proposed approach against

various baselines – by comparing the results of generalization

on both classification accuracy and fairness applied to:

1) MAML: The model-agnostic meta-learning model with

no fairness constraints proposed by Finn et al., [1].

2) Masked MAML: Similar to MAML, this approach is

applied to modified datasets by removing the protected

attributes.

3) pretrain: In computer vision, models pre-trained on

large-scale image classification have been shown to learn

effective features [46]. In this paper, the pre-train baseline

trains a single network on all tasks and in each task an

unified fairness constraint is added to ensure DBC is

satisfied.

4) fair-MAML: [35] controls unfairness for each task and

tunes a shared Lagrangian multiplier across tasks by

simply applying grid search.

5) F-MAMLdp: is a fair meta-learning approach proposed

in [33]. In this baseline, Slack et al., proposed a simple

regularization term aimed at achieving demographic

parity for each task. All tasks share an unified regu-

larization term in which the fairness hyperparameter is

tuned through grid search, where the demographic parity

regularizer Rdp = 1− p(ŷ = 1|s = 0).
6) F-MAMLeop: is another fair meta-learning approach

proposed in [33], in which the demographic parity regu-

larizer is replaced with the one aimed at improving equal

opportunity, where Reop = 1− p(ŷ = 1|s = 0, y = 1).
7) LAFTR [45]: is a transferring fair machine learning ap-

proach across domains that uses an adversarial approach

to create an encoder that can be used to generate fair

representations of datasets and demonstrate the utility of

the encoder for fair transfer learning.

D. Experiment Setup and Parameter Tuning

Our neural network trained follows the same architecture

used by [1], which contains 2 hidden layers of size of 40 with

ReLU activation functions. When training, we use only one
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TABLE II: Consolidated overall result for few-shot classification.

Adult Data Communities and Crime Bank Marketing
K Approach Acc DBC Disc Cons Acc DBC Disc Cons Acc DBC Disc Cons
- Data - 0.043 0.195 0.485 - 0.052 0.214 0.222 - 0.067 0.028 0.377

5-
sh

ot

MAML [1] 82.1% 0.046 0.227 0.883 98.4% 0.039 0.450 0.726 61.1% 0.026 0.122 0.884
Masked MAML 79.9% - 0.157 0.916 85.8% - 0.322 0.846 57.6% - 0.083 0.926
pretrain 76.5% 0.024 0.239 0.907 84.5% 0.030 0.337 0.815 57.1% 0.018 0.106 0.923
fair-MAML [35] 59.7% 0.028 0.146 0.909 77.2% 0.026 0.358 0.758 56.2% 0.012 0.057 0.952
F-MAMLdp [33] 82.8% 0.030 0.159 0.913 95.1% 0.039 0.442 0.757 59.3% 0.017 0.081 0.929
F-MAMLeop [33] 79.5% 0.029 0.153 0.916 95.0% 0.041 0.387 0.775 57.0% 0.017 0.083 0.927
LAFTR [45] 72.0% 0.035 0.188 0.891 89.2% 0.050 0.440 0.787 62.1% 0.030 0.100 0.865
Ours 78.2% 0.003 0.026 0.937 79.0% 0.013 0.200 0.893 55.9% 0.005 0.026 0.950

10
-s

ho
t

MAML [1] 81.9% 0.045 0.211 0.900 99.6% 0.038 0.463 0.760 59.7% 0.020 0.089 0.898
Masked MAML 80.0% - 0.143 0.930 86.5% - 0.275 0.864 57.7% - 0.059 0.941
pretrain 78.8% 0.023 0.125 0.923 83.2% 0.030 0.293 0.849 58.3% 0.008 0.039 0.969
fair-MAML [35] 70.0% 0.030 0.146 0.925 83.6% 0.035 0.356 0.797 60.2% 0.016 0.061 0.942
F-MAMLdp [33] 78.2% 0.025 0.114 0.943 97.6% 0.036 0.432 0.781 59.3% 0.013 0.058 0.945
F-MAMLeop [33] 71.9% 0.028 0.134 0.927 94.1% 0.032 0.253 0.901 57.3% 0.012 0.054 0.941
LAFTR [45] 72.3% 0.030 0.179 0.912 90.1% 0.050 0.401 0.790 62.3% 0.025 0.098 0.877
Ours 83.8% 0.011 0.123 0.943 90.1% 0.016 0.215 0.927 61.3% 0.010 0.027 0.973

15
-s

ho
t

MAML [1] 82.7% 0.039 0.179 0.909 99.1% 0.047 0.380 0.788 60.4% 0.016 0.068 0.903
Masked MAML 80.2% - 0.141 0.934 86.2% - 0.246 0.870 58.1% - 0.049 0.947
pretrain 80.6% 0.024 0.117 0.927 84.8% 0.029 0.264 0.859 57.6% 0.014 0.063 0.939
fair-MAML [35] 65.4% 0.022 0.103 0.924 83.4% 0.021 0.221 0.895 56.2% 0.010 0.044 0.960
F-MAMLdp [33] 81.0% 0.030 0.141 0.935 94.8% 0.039 0.313 0.812 57.9% 0.011 0.046 0.946
F-MAMLeop [33] 80.8% 0.028 0.129 0.938 95.3% 0.040 0.320 0.815 58.4% 0.011 0.050 0.946
LAFTR [45] 75.5% 0.029 0.159 0.915 91.2% 0.030 0.299 0.825 61.1% 0.012 0.089 0.892
Ours 80.4% 0.005 0.011 0.985 80.6% 0.009 0.093 0.959 57.0% 0.005 0.010 0.989

20
-s

ho
t

MAML [1] 82.5% 0.044 0.185 0.914 99.8% 0.048 0.380 0.774 60.8% 0.014 0.062 0.912
Masked MAML 80.8% - 0.137 0.938 84.8% - 0.242 0.876 57.8% - 0.042 0.952
pretrain 80.4% 0.021 0.100 0.935 84.9% 0.027 0.229 0.869 57.5% 0.012 0.053 0.942
fair-MAML [35] 69.7% 0.018 0.083 0.931 86.0% 0.018 0.229 0.891 55.2% 0.005 0.044 0.964
F-MAMLdp [33] 80.6% 0.028 0.132 0.939 98.0% 0.042 0.314 0.816 67.4% 0.010 0.042 0.951
F-MAMLeop [33] 83.3% 0.029 0.135 0.936 95.7% 0.038 0.318 0.817 58.1% 0.010 0.041 0.948
LAFTR [45] 76.2% 0.032 0.175 0.911 89.8% 0.029 0.353 0.810 62.1% 0.015 0.095 0.875
Ours 79.2% 0.001 0.018 0.988 85.7% 0.008 0.076 0.965 57.5% 0.006 0.006 0.991

step gradient update (i.e. q = 1) and k = 10 inner primal-

dual updates with 2NK samples of query set, and a fixed

primal and dual learning rate of γ = 0.01 and α = 0.01. We

use Adam as the meta-optimizer. Because we only consider

a binary classification problem, all of tasks are 2-way, i.e.
N = 2. Similarly, we set meta-learning rates of η = 0.001 and

β = 0.01 used to update the meta-loss in the outer loop. For

three datasets, all the unprotected attributes are standardized

to zero mean and unit variance and prepared for experiments.

Besides, taking few-shot learning into account, we set a meta

batch-size of 8 tasks and 4000 meta-iterations for all datasets.

Some key characteristics for all real data are listed in Table I.

All baseline models used to compare with our proposed

approach share the same neural network architecture and

parameter settings. Hyperparameters are selected by a held-out

validation procedure. All experiments are repeated 10 times

with the same settings. Results shown with these methods in

this paper are mean of experimental outputs.

VII. EXPERIMENT RESULTS

This section evaluates the effectiveness of the proposed

approach and its competitors on a classification task. We focus

on generalization of statistical parity on unseen tasks and trade-

off between validation loss and fairness that the proposed dual

subgradient method alleviates when used to train classifiers. For

all baseline methods, wherever applicable, hyper-parameters

were tuned via grid search. Specifically, we chose the models

that were Pareto-optimal with regard to DBC and all other

evaluation metrics.

Consolidated and detailed performance of the different

techniques over real-world data are listed in Table II. We

evaluate performance by fine-tuning the model learned by all

methods on K-shot of {5, 10, 15, 20} datapoints of each class

for each dataset. Best performance in each experimental unit

are labeled in bold. We first observe that there is a considerable

amount of unfairness in the original datasets, which are reflected

in the results of Data in the table. Experiment results in Table

II demonstrates our proposed approach out-performs than other

baseline methods in terms of controlling biases. It efficiently

reduces DBC from the original dataset and values of DBC are

limited to close zero that signify a fair prediction. In addition,

fairness results based on two fair evaluation metrics, i.e. Disc
(Figure 2 (a-c)) and Cons (Figure 2 (d-f)), are plotted in Figure

2. Each trail was repeated 10 times and results shown in the

figure are mean of experimental outputs followed by error bars

representing one standard deviation of uncertainty.

MAML became a famous meta-learning algorithm because

of its fast adaptation and good generalization performance on

losses [1]. However, our results shows it fails to control biases

nor performs success in fairness generalization in a few-shot

meta-learning, although MAML is stably able to produce high

generalization accuracy. Masked MAML shows an improvement

in fairness; however, there is still substantial unfairness hidden

in the data in the form of correlated attributes. F-MAMLdp

828

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 16,2021 at 21:30:33 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)( )

(d)

( )

(e)

( )

(f)

Fig. 2: Experiment results of real-world datasets in controlling biases.

(a) (b) (c)

Fig. 3: The validation loss/fairness trade off sweeping over a range of dual variables.

and F-MAMLeop proposed by Slack et al., in [33] intuitively

control unfairness by taking advantage of demographic parity

and equal opportunity, respectively. Our results in Figure 2

demonstrate that these two baseline methods fail to show

fairness generalization onto unseen tasks in contrast to the

proposed approach, in terms of reducing Disc and promoting

Cons. Furthermore, though LAFTR offers a way to transfer

machine learning models between tasks, consistent with [33],

we observe it is unsuccessful in very data light situations.

Besides, it is worth noting that we outperform baseline methods

in bias controlling with better results as the number of training

data increases.

Although our proposed approach, PDFM, returns a bit

smaller predictive accuracies (see Table II), this is due to

the trade-off between losses and fairness. To this end, we

train each method and sweep over a range of seven dual

variables: [0.001, 0.01, 0.1, 1, 10, 100, 1000]. Taking 10-shot as

an example, results presented in Figure 3 is the mean across 10

runs on each set of dual variable using randomly selected hold

out validation tasks. The fairness, i.e. DBC, presented is the

ratio between the protected and unprotected groups. Smaller

validation loss and fairness values closer to zero (i.e. bottom

left in each sub-figure) indicate more successful outcomes.

Here, as MAML does not have hyper-parameters to control

the loss/fairness trade-off, its outcomes across three datasets

are presented with very low validation losses but high fairness

values. In the proposed problem setting, the pretrain neural

network shows some ability to learn the new task using little

data and fine-tuning epochs and as the dual variable increases,

its validation losses decrease and thus DBC increases. Moreover,

LAFTR is not successful at learning with minimal data and a

small number of fine-tuning epochs for the new task. At low

values, fair-MAML, F-MAMLdp, and F-MAMLeop are able to

achieve lower validation losses than the pretrain and LAFTR
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baselines. Crucially, the results stated in Figure 3 confirm and

further illustrate the findings that our proposed PDFM is able

to learn more accurate representations that are also fairer for

the swept range than all baseline techniques.

VIII. CONCLUSION AND FUTURE WORK

Techniques in meta-learning have been shown effectiveness

for adaption of deep learning models on accuracy generalization

to new tasks. These methods, however, are unable to ensure

fairness adaption. In this paper, for the first time a novel Primal-

Dual Fair Meta-learning (PDFM) framework is proposed,

in which a good pair of primal-dual meta-parameters is

optimally learned. To be specific, the meta-parameter pair

is trained over a variety of learning tasks with a small amount

of training samples. To produce the best performance, we

implement two optimization strategies for both inner and

meta subgradient update. Theoretical analysis justifies the

efficiency and effectiveness of the proposed algorithms to

support existence of solutions and algorithmic convergence

guarantee. Results from extensive experiments demonstrate

substantial improvements over the best prior work and our

proposed framework is capable of generalization both accuracy

and fairness onto new tasks. Further research in this area can

make multitask parameters a standard ingredient in explainable

fairness transfer learning.
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