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Abstract—The problem of learning to generalize on unseen
classes during the training step, also known as few-shot clas-
sification, has attracted considerable attention. Initialization
based methods, such as the gradient-based model agnostic meta-
learning (MAML) [1], tackle the few-shot learning problem by
“learning to fine-tune”. The goal of these approaches is to learn
proper model initialization, so that the classifiers for new classes
can be learned from a few labeled examples with a small number
of gradient update steps. Few shot meta-learning is well-known
with its fast-adapted capability and accuracy generalization onto
unseen tasks [2]. Learning fairly with unbiased outcomes is
another significant hallmark of human intelligence, which is
rarely touched in few-shot meta-learning. In this work, we
propose a Primal-Dual Fair Meta-learning framework, namely
PDFM, which learns to train fair machine learning models using
only a few examples based on data from related tasks. The key
idea is to learn a good initialization of a fair model’s primal and
dual parameters so that it can adapt to a new fair learning task
via a few gradient update steps. Instead of manually tuning the
dual parameters as hyperparameters via a grid search, PDFM op-
timizes the initialization of the primal and dual parameters jointly
for fair meta-learning via a subgradient primal-dual approach.
We further instantiate an example of bias controlling using
decision boundary covariance (DBC) [3] as the fairness constraint
for each task, and demonstrate the versatility of our proposed
approach by applying it to classification on a variety of three real-
world datasets. Our experiments show substantial improvements
over the best prior work for this setting. Our code and datasets
are available at https://github.com/charliezhaoyinpeng/PDFM.git.

Index Terms—dual subgradient, dual decomposition, meta-
learning, fairness, few shot

I. INTRODUCTION

In contrast to the conventional machine learning systems,
the ability to learn from a handful of examples is one of the
critical characteristics of human intelligence. Learning quickly
yet remains a daunting challenge for artificial intelligence,
which receives significant attention from the machine learning
community, especially when it needs to transfer knowledge
from a given distribution of tasks onto unseen ones. To address
this challenge, meta-learning (a.k.a learning to learn) leverages
the transferable knowledge learned from previous tasks, then
adapts to new environments rapidly with a few training
examples. The goal of a few-shot meta-learning problem is
to minimize generalization error across a distribution of tasks
with few training examples (i.e. few-shot). This technique has

demonstrated success in both supervised learning, such as few-
shot regression [1], [4], classification [5], [6], and reinforcement
learning [7] settings.

There are several lines of meta-learning algorithms for base
learners, nearest neighbors based methods [5], [6] which ad-
dress the problem by “learning to compare”; recurrent network-
based methods [8] that instantiates the transferable knowledge
as latent representations, and gradient-based methods [1], [9]-
[12] that aim to learn proper model initialization for all tasks,
such that the summation query errors is minimized and further
the meta-parameter is adapted to novel tasks using a few
optimization steps. Despite their early success in the few-
shot application, to the best of our knowledge, most of the
existing meta-learning algorithms ignore to mitigate the notion
of fairness in tasks and thus lack the capability of fairness
generalization on new tasks.

Machine learning models trained to output prediction based
on historical data will naturally inherit the past biases, with
the biased input, the main goal of training an unbiased model
is to make the output fair. In other words, the predictions are
statistically independent of protected variables (e.g. race and
gender) [13]. Such models could be enhanced by masking some
attributes to the decision-maker, however, as many attributes
may be correlated with the protected one [14]. Moreover,
techniques in the area of fairness learning are incapable of
adapting deep learning models on fairness to new tasks. This
paper’s motivation is: can we develop meta-learning methods
that adapt deep learning models on both generalization accuracy
and fairness to unseen tasks?

This paper bridges areas of few-shot meta-learning and un-
fairness prevention and formulate this problem by enhancing the
meta-learning model with fairness constraints. More concretely,
for each task during the training stage, it is constrained with
a task-specific fair inequality, which ensures the independent
effect of the protected variable on task predictions. In the
support set during the training process, the overall proportion
of members in a protected group would receive predictions,
which are identical to the proportion of the population as a
whole. To this end, we resort to a dual subgradient algorithm
with an averaging scheme for each task. It approximately
optimizes a pair of task-specific primal and dual parameters,
which minimizes the summation of query losses and fairness
constraints are satisfied simultaneously. In contrast to the grid
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Fig. 1: Schematic of our proposed PDFM pipeline. (Left) The
global meta-parameters (6, ;1) are sent to each task and each
task optimizes in parallel to find a good task-specific primal-
dual pair, e.g. (0], 1}), that is approximated by an averaging
scheme dual subgradient algorithm presented on the right.
Query losses and fairness are gathered and utilized to update
the meta-initialization pair. (Right) A few-shot unfairness
prevention approach is shown. In the meta-training stage, in
each task, support loss is optimized under a fairness constraint
which performs a trade-off between losses and fairness. The
inner loop dual subgradient algorithm ensures that the duality
gap of each task is minimum.

search technique, we consider Lagrange multipliers as dual
variables that they are optimized to minimize the duality gap
between the primal and dual functions.

Furthermore, instead of updating the meta-parameter from
the outer loop (such as MAML [1]), in our work, inspired by the
concept of resource allocation from economics, we propose a
pair of primal-dual meta-parameters, which could be optimized
iteratively through a dual decomposition [15], [16] and divided
into broadcast and gather steps. We apply such decomposition
to leverage the observation that problems can be decomposed
into some sub-problems, and then introduce fairness constraints
to enforce the notion of agreement between solutions to the
different issues. The agreement constraints are incorporated
using Lagrange multipliers, and an iterative algorithm is used to
minimize the resulting dual. As shown in Figure 1, the interplay
between the inner-algorithm (task-level) and the meta-algorithm
plays a key role in our work. The former one is used to compute
a good approximation of the meta-subgradient, and supplied
to the latter. Finally, another key merit of this paper is that
we derive an efficient and theoretically grounded analysis for
the proposed meta-learning approach. Besides, we instantiate
an example of decision boundary covariance (DBC) as the
fairness constraint for justification, such constraint indicates
the covariance between the protected variable and the signed
distance from the feature vectors to the decision boundary
[3]. We demonstrate our proposed approach’s versatility on a
variety of three real-world datasets and extensive experiments
to show substantial improvements over the best prior work.
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In summary, the main contributions of this paper is threefold:

e We propose a novel Primal-Dual Fair Meta-learning
framework, namely PDFM, in which a good pair of meta-
parameters is approximately optimized. Our framework
efficiently controls biases for each task, and ensures the
generalization capability of both accuracy and fairness
onto unseen tasks.

We further implement two optimized strategies for inner
loop and meta-subgradient update. Specific and theoreti-
cally grounded analysis for the proposed strategies justifies
the efficiency and effectiveness of them.

Finally, we validate the performance of our approach with
state-of-the-art techniques on three real-world datasets.
Our results demonstrate the proposed approach is capable
of mitigating biases, generalizing accuracy and fairness
to unseen tasks with the minimized input training data.

II. RELATED WORK

Meta-Learning based on few-shot studies that trained models
to make it quickly adapt to new tasks, under a few labeled sam-
ples. Several recent approaches have made significant progress
in meta-learning [17]-[20]. Previous algorithms majorly focus
on the metric-based idea, which aim to learn an embedding
space between query and support examples, where similar
instances are closer and different ones are further apart [5],
[6], [21], [22]. For example, the Matching-Net [5] employed
ideas from k-nearest neighbors and metric learning based on
a feature encoder to extract embedding in the context of the
support set, and Prototypical networks [6] learn a metric space
in which classification is able to be performed by computing
Euclidean distances to prototype representations of each class.

In addition, gradient descent based algorithms [1], [8], [9],
[12], [23] aim to learn good model initialization so that the
meta-loss is minimum. They tend to meta-learn an initial set
of weights for neural networks, and quickly adapted to new
task with just a few steps of gradient descent, which could
achieve good generalization over new tasks by encoding prior
knowledge. Some existing work such as Franceschi et al. [24]
also provide convergence guarantees for gradient-based meta-
learning with strongly-convex functions. Despite methods in the
area of meta-learning have been shown effective for adaption of
deep learning models on generalization accuracy to new tasks,
our experiments show such state-of-the-arts have difficulties in
adaption on fairness.

Fairness researchers develop machine learning algorithms
that would produce predictive models, ensuring that those
models are free from biases. Standard predictive models,
induced by machine learning and data mining algorithms,
may discriminate groups of entities because (1) data bias
comes from data being collected from different sources, or
(2) dependence on sensitive attributes was identified in the
data mining community [25]. Based on the taxonomy by tasks,
fairness learning can be typically categorized to classification
[3], [26], [27], regression [25], [28], [29], clustering [30], and
recommendation [31], [32] works. Even though techniques for
unfairness prevention on classification were well developed, to
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the best of our knowledge, the majority of existing fairness-
aware machine learning algorithms are under the assumption of
giving abundant training examples. Learning quickly, however,
is another significant hallmark of human intelligence.

Several recent approaches have been developed in fair meta-
learning [33]-[35]. These methods focus on studies of fairness
generalization onto unseen tasks by adding an uniformed fair-
ness regularizer to each task. In addition, Lagrange multipliers
were consider as hyperparameters and they were manually
tuned by grid search. However, such prior studies suffer from
limitations that (1) the trade-off parameter is valued the same
for each task, and (2) hence there is a big room for improvement
on the generalization of both accuracy and fairness onto new
tasks. In this paper, to overcome such limitations, we develop
a novel fair meta-learning framework. Each task is underwent
a task-specific soft fairness constraint. Besides, we consider
Lagrange multipliers as dual variables and hence, instead of
grid search, they are optimized to minimize the duality gap
between the primal and dual functions.

III. METHODOLOGY

A. Problem Setting

Let Z = & x Y be the data space, where X C R" is the
input space, Y = {1,2,..., N} means a sequence of discrete
classes of the output space, and NV is the number of classes.
Meta-learning for few-shot learning aims to train a meta-learner
which is able to learn on a large number of various tasks
from a small amount of data. Gradient based meta-learning
frameworks, such as Model-Agnostic Meta-Learning (MAML)
[1], lead to state-of-the-art performance and fast adaptation to
unseen tasks. More precisely, the goal of MAML is to estimate
a good meta-parameter # € © such that the summation of
empirical risks for each task is minimized. Throughout this
work, the © will be a closed, convex, non-empty subset of an
Euclidean space.

In this work, we consider a collection of supervised learning
tasks 7 = {(DF, D?)}L_, which distributions over Z and T is
denoted as the number of tasks. 7 is often referred to as a meta-
training set as well as an episode (D, D? ) explicitly contains
a pair of a support (i.e. D;) and a query (i.e. D? ) data sets. For
each task t € {1,2,..., T}, we let {x;;,y1,i }12q € (X x Y) be
the corresponding task data, and m is the number of datapoints
in the support set. For example, standard few-shot learning
benchmarks evaluate model in N-way K-shot classification
tasks and thus m = N x K indicates, in the support set of
the ¢-th task, it contains N categories and each consists of
K datapoints. We emphasize that we need to sample without
replacement, i.e., Dy N DtQ =

To study fairness generalization problem under meta-learning
frameworks, a fairness constraint, g;(6;) < 0, is considered
in each task, where t indicates task index. In researches of
bias prevention, convexity of the constraint receives increasing
attention in the machine learning fields [28], [36], [37]. For
this purpose, in this paper, we assume that convexity of task
constraints always holds.
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B. Model-Agnostic Meta-Learning with constraints

Meta-learning approaches for few-shot learning aim to
minimize the generalization error across a distribution of tasks
sampled from a task distribution. It is often assume that the
support and query sets of a task are sampled from the same
distribution. In our work, for each single task, the objective is to
minimize the predictive error £™" such that it is constrained

by g

0, = Alg(Df, 0) = arg gneilc}) f1(04;0) := Ei"””(Df, 03 0)

subject to gt(Df, 6:) <0 (1)

where £*"¢" . R" — R is a loss function, such as cross-
entropy loss for classification problems and 6; is the model
parameter at task ¢, which is initialized with 6. Alg(D, )
corresponds to one or multiple steps of gradient descent
initialized at 0. g : R™ — R is an appropriate complexity
function ensuring the existence and the uniqueness of the
above minimizer. A point ¢, in the domain of the problem is
feasible if it satisfies the constraint g,(6;) < 0.

Assumption 1. (Task Loss and Constraint). Let fi(0;) be a
convex real-valued function for any 0; € ©. Let T'(©) be a
set of proper, closed and convex function over © and g; €
T'(O©) be such that, for any 0, € ©, g;(0;) is convex over R™,
infg,co 9:(6:) = 0 and, for any 0; ¢ ©, dom(g:(0:)) = 0.

The optimal value of the Eq.(1) is denoted as f;*, which is
assume to be finite and is achieved at an optimal and feasible
solution 67, i.e. fif = f:(0F). The goal of training a single
task is to output local parameter ¢, given the meta-parameter
6 such that it minimizes the task loss f:(6:) subject to the
task constraint g () < 0. Next, to update the meta-parameter,
we minimize the generalization error £™°'% using query sets
across every tasks in the batch such that query constraints for
all tasks are satisfied. Formally, the learning objective across
all tasks is

T T
min L7 =) fi(0:0) =Y L (DY, Alg(D},0))
t=1 t=1
T
subject to th(D?, Alg(D7,0) <0 )
t=1

where 0; = arg ming,ce g, (6,)<0 f+(0:) is a local optimum
of each task t. Here, for the purpose of optimization with
simplicity, the constraint of Eq.(2) is approximated, which
originally takes the form of a sequence gt(DfQ, Alg(D?,0)) <
0, where t = 1,...,T. In this setting, the meta-objectives and
the consequently their subgradients used by the meta-algorithm
are dependent on the properties of the inner algorithm. We
will show the algorithm details and analysis in the following
sections.
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C. Primal and Dual Formulation

Our approach aims to optimize a pair of meta-parameters
(i.e. primal and dual variables) as model initialization, instead
of using the conventional grid search technique [33]-[35]. It
consists of two nested primal-dual algorithms, one operating
within each task and another across all tasks. In this section,
we briefly recall from the primal-dual interpretation of the
algorithm framework and such interpretation will be used in
the subsequent analysis for both inner and meta problems.

To recover the primal optimal solution of Eq.(1), we use
the Lagrange duality theory to relax the primal problem by its
constraints, and the Lagrangian function is

L(0y, i) = f1(00) + 11 91(6r)

where 11y € R’ is the Lagrange multiplier (or dual variable).
The dual function hence is defined as

qe(pe) = eit%f@L(eta/Lt) = eitréf@{ft(gt) + M?gt(et)}

Since the dual function g:(u+) is a pointwise affine function
of y;, we thus can maximize the dual function to obtain a
tightest lower bound of the optimal primal f; and through
out this paper, we assume f;* is finite. The goal is to obtain
the dual optimal value ¢; at uf, such that the duality gap, i.e.
fi —qf, is as small as possible. Zero duality gap thus indicates
that the optimal values of the primal and dual problems are
equal, i.e. f;" = ¢;. Due to space limit, the same idea is applied
to solve Eq.(2). The Lagrangian function of the outer loop is
hence parameterized by the meta-pair (0, ) and the goal is
to find a good pair of initializations by optimizing a max-min
problem.

D. Update Task-Specific Model-Parameters via Dual Subgra-
dient

In order to find a good pair of meta-parameters (6, ) €
© x R, such that constraints of all tasks can be satisfied and
generalization error is minimized. To this end, in this section,
we provide an approximate solution to the inner task of Eq.(1)
by proposing a task-level dual subgradient algorithm. This
method takes in the meta-parameter pair from the previous
outer (or meta) loop and the task-specific (or local) primal and
dual parameters are then iterative updated using the support
data of the single task.

In the subsequent development, to solve the dual problem of
Eq.(1) for a single task, we consider a subgradient algorithm
with a constant step size « > 0 to update the dual solution
iteratively:

3

where [u]T denotes the projection of [u] on the nonnegative
orthant in R’?, namely [u]" = (max{0,u1}), ..., max{0, u, }),
k = 1,2,... is the index of iterations, subscript ¢ is the
task index number, and ;Y = 0 is an initial dual point. The

pf = [t + o g
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Algorithm 1 Update Model-parameters of Task ¢ using Dual
Subgradient Method
Require: ¢ € ©, ;€ RY": prime and dual initializations
Require: o > 0,y > 0: learning rate
Require: ¢ > 0: a small number of subgradient update steps
o p, 09 0
Initialize an empty array a = ()
for k=1,2,... do
for g =1,2,... do
Evaluate the primal feasible subgradient V €
Vet {fe(0F71) + (i ™) g0 (657 1)}
0F < oF 1 — 4TV
end for
Add 0% in a
Evaluate éf by taking the average of previous vectors
ina: 6F = 1 32155 6
Calculate the subgradient iterate g, = g, (0F)
Update the dual solution uf = [uf~* 4+ o gp]*
end for
return (0], 1)), where 0, = 0F u, = b

0 ® D

10:
11:
12:
13:

subgradient iterate g is a subgradient of the dual function ¢,
at a given u,’f > 0:

gk = 9:(07) € 0qr(py) = conv({g:(07)0F € ©,}) ()

where @, = {6 € Olgi(uk) = Fi(05) + ()T g:(65))
and conv(Y") denotes the convex hull of a set Y. Although a
general dual subgradient method can generate near-optimal dual
solutions with a sufficiently small step size and a large number
of iterations, it does not directly provide primal solutions which
are of our interest. But even worse, it may fail to produce any
useful information. Motivated by this reason, we apply an
averaging scheme to the primal sequence {6F} to approximate
primal optimal solutions. In particular, the sequence {éf} is

defined as the averages of the previous vectors through 69 to
o7,

o

0k = 0:,

1

vk > 1 5)

T =

%

where the corresponding primal feasible iterate 8% is given
by any solution of the set.

& . k—1 k—1
0F € arg ;flelrel){ft(et )+ (g

RICS T )

As the subgradient method can usually generate a reasonable
estimation of the dual optimal solutions within several iterations,
approximate primal solutions are obtained accordingly. The
constant stepsize « is a simple hyperparameter for controlling,
then through choosing an appropriate value of «, the proposed
Algorithm 1 is able to approach the optimal value arbitrarily
close within a small finite number of steps.
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Moreover, the dual subgradient schemes can be applied
efficiently to approximate a solution to Eq.(1). Specifically, it
returns a good pair of task-level primal and dual parameters
(0;, 1). In the following section, due to the decomposable
structure of the meta-learning framework for few-shot learn-
ing, meta-parameters (6, p) are updated by minimizing the
summation of query losses across all training tasks.

E. Update Meta-parameters via Dual Decomposition

In this work, inspired by the concept of resource allocation
from economics [15], [16], our model’s goal is to estimate a
good pair of primal-dual weight initialization (6, 11), such that
both the meta-loss across tasks is minimum and constraints of
all tasks are also satisfied. To this end, we update the pair of
primal-dual initialization iteratively using a dual decomposition
method that is normally considered as a special case of
Lagrangian relaxation [38]. This method is typically simple
and efficient, which can be divided into two steps for each
iterate, i.e. broadcast and gather. In the broadcast step, the
meta-dual parameter y is sent to each of tasks 7;. Through
Algorithm 1, local primal, and dual parameters 6; and u; of

a single task are 1terat1vely optimized using few-shot stg)port
data. Query loss ft(Dt ,0}) and fairness estimate g:(D
therefore, are evaluated using query data set. In the gather step,
both query losses and fairness estimates collected across all
tasks are applied to update primal and dual meta-parameters,

95+1eargmm2ft 0,;:0°) + p° th 0,:0°) ()

t=1

= +/3th<9£>}+ ®)

t=1

MS

where s = 1,2,... is the index of the outer iteration and
B > 0 is the stepsize. The full algorithm of the proposed
approach is outlined in Algorithm 2.

IV. ANALYSIS

Recall that the proposed averaging scheme used to approxi-
mate the task-specific primal-dual parameter pair is built upon
the dual subgradient method with a constant stepsize. We denote
the dual feasible set as M = {p|pr = 0, —00 < qi(uy) < o0},
and for every fixed u; € M, we have the solution set C C ©

for g (pue)-

Assumption 2. (Slater Condition and Bounded Subgradients)
The convex set © is compact (i.e. closed and bounded). There
exists a Slater point 0, € ©, such that g;(0;) < 0,Vj =
1,2,...,m, and exists L > 0, L € R, such that ||gx|| < L,Vk >
0.

When f7 is finite, the Slater condition is sufficient for
the existence of a dual optimal solution, and therefore the
proposed task adaptation approach efficiently reduces the
amount of feasibility violation at the approximate primal
solutions. Furthermore, intuitively, bounded subgradients in
Assumption 2 is satisfied when L = maxg ¢ l1g:(62)])-
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Algorithm 2 The Primal-Dual Fair Meta-learning (PDFM)
Algorithm

Require: p(7): distribution over tasks
Require: 1 > 0,5 > 0: learning rate

1: randomly initialize primal and dual meta-parameter, i.e.
0 € © and p € R
while not done do
sample batch of tasks T; ~ p(T),t =
for all 7; = {DS, D2} do
Sample datapoints D} = {x;,y;} from T;
Compute adapted primal-dual parameters 6} and ]
using Dy by applying Algorithm 1
Sample datapoints D = {x;,y;} from 7 for the
meta-update, where Dy N Di’? =
Evaluate query loss f;(6;) and query constraint
9:(6}) using D2
end for
Update 6 and p using Eq.(7).
Meta-parameters.
end while

1,2,...T

SANEA A

9:

10: > Update

11:

Lemma 1. If Assumption 1 and the continuity of fi(6;) and
g¢(0¢) hold, there exists at least one optimal solution 0,, € C.
Furthermore, 0,, is unique if f(0:) is strictly convex, otherwise
there may be multiple solutions.

Due to space limit, Lemma 1 is easily proved using the
Weierstrass Theorem proposed in [39]. Next, for the averaged
primal sequence {éf} we show that it always converges when
© is compact [40].

Proposition 1. Under Assumption 2, when the convex set ©
is compact, let the approximate primal sequence {0F} be the
running averages of the primal iterates given in Eq.(5). Then
{6%} can converge 1o its limit 0.

Proof: For simplicity, the subscript ¢ is hidden. To prove
the convergence, we first show that {#*} is a Cauchy sequence,
i.e. Ve > 0, there is a K € N such that ||§¥ — §k|| < € Yk k>
K. Given Eq.(5), We can derive GF 1 = _k_gk 6%. And

V' S e
hence 0¥+ —0F = k+1 . Since © is a compact convex set and

we assume k' > k, we have 0% 6% € © and ||0%||, ||6%|] < M,
where M > 0. Iteratively, we have

||0~k’_9~kH :||9~k’_ék’71+ ..+ék+1_9~k||
91@’71 _ ék'fl ok — ék
) O
16| + 116% 1] [16%[] + 116*1]
< L L L L
- K kE+1
MK — k)
< A
- k41

Therefore, for any arbitrary € > 0, we let %ﬂ < € and
we have ||0¥ — 0%|| < €,Vk/,k > K. Thus, {#*} is a Cauchy
sequence. Furthermore, since a Cauchy sequence is bounded,

there is a subsequence b,, converging to the limit L of it. For any
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€ > 0, there exists n, m > K satisfying ||§” — ™|| < 5. Thus,

there is a by = 0", such that my > K and ||b,,, — L|| < 5.

16" = L|| = ||6" — by, + by, — L||
< 16" = bil| + [|bx — LI|
<NF" =)+ 5 <

Since e is arbitrarily small, we proof that the sequence {6%}
converges to its limit L = 6* asymptotically. ]

Besides, since the proposed Algorithm 2 is considered as an
extended and modified version of [1], convergence of Algorithm
2 is guaranteed and detailed analysis is stated in [41]. Accessing
to sufficient samples, the running time of the proposed approach
is O(s-k-q) , where s, k are respectively the number of outer
and inner iterations, and ¢ is gradient steps of inner loop. For
a N-way-K-shot learning, the best accuracy is achieved when
IVO|| < O(6/VNK), where 6 = Er,(1)l7(fs), l7 is the
query loss of task 7, o is a bound on the standard deviation
of VL (0:, ) from its mean VL(6, 1), and & is a bound on
the standard deviation of estimating V L. (6;, u1+) using a single
data point.

V. A CLASSIFICATION EXAMPLE IN UNFAIRNESS
PREVENTION

In the previous section, we derived a theoretically principled
algorithm under the assumption that the convexity always holds
for both f;(-) and g.(-). However, many problems of interest
in machine learning and deep learning have a non-convex
landscape due to the non-linearity of neural networks, where
theoretical analysis is challenging. Nevertheless, algorithms
originally developed for convex optimization problems like
gradient descent have shown promising results in practical
non-convex settings. Taking inspiration from these successes,
in this section, we respectively describe practical instantiations
of our unfairness prevention for classification problems, and
empirically evaluate the performance in Section VII.

Intuitively, an attribute affects the target variable if one
depends on the other. Strong dependency indicates strong
effects. Currently, most fairness criteria used for evaluating and
designing machine learning models focus on the relationships
between the protected attribute and the system output. For
simplicity, we consider one binary protected attribute (e.g.
white and black) in this work. However, our ideas can be easily
extended to many protected attributes with multiple levels. We
thus modify the introduced setting by letting Z = X x ) be the
data space, where X = £ U S. Here £ C R is an input space,
S ={0,1} is a protected space, and ) = {0, 1} is an output
space for binary classification. For each task t € {1,2,...,T},
we let {e i, Y4, 5t,i 1y € (€ X Y x S) be the corresponding
task data and m is the number of datapoints in the support set.
In a N-way-K-shot classification problem, since we assume
all the tasks to be binary labeled, in this example, all of our
tasks are 2-way (i.e. N = 2). In referencing K-shot fairness,
we mean that we are using K training examples irrespective
of class label, with the assumption that all tasks are 2-way.
A fine-grained measurement to ensure fairness in class label
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prediction is to design fair classifiers by controlling the decision
boundary covariance (DBC) [3].

Definition 1 (Decision Boundary Covariance [3]). The co-
variance between the protected variables s = {s;}"_, and

the signed distance from the feature vectors to the decision
boundary, dg(e) = {dg(e;)}1,,

DBC(s,dy(e)) = E[(s — 8)dg(e)] — E[s — 5]dy(e)

1 h
~ Z(si —38)dg(e) ©
=1

where E[s — §]dg(e) is cancels out since E[s — 5] = 0 and
h = N x K is the sample size of a support set of a single task.
In a linear model for classification, such as logistic regression,
the decision boundary is simply the hyperplane defined by
6Te = 0. A point 6; in the domain of a task is feasible if it
satisfies the constraint g:(f;) < 0. More concretely, g.(6;) is
defined by the definition of DBC in Eq.(9), i.e.

1

500 = |5 D (s = S)du(e)] —c

si,ei~Tt

10)

where c is a small positive fairness relaxation. To formalize
the supervised classification problem in the context of meta-
learning definitions, a cross-entropy loss function is used to
describe the adapted loss over a support set for each task.
Integrated with DBC fairness constraint, the classification
problem of a single task is formulated as follow

> y'logg(e’,6:)

(et,y")~Te
+ (1 —y")log(l —g(e’, 6:))

5{2% fe(0y) = (I

1
. . _§ Il <
subject to oK E (si —8)dy, ()| < c

si,ei~Tt

where (e’,y") are an input/output pair sampled from task
T: and g is a predicted outcome. The goal of a single task
optimization is to approximate a good parameter pair (6}, 1)
by applying the proposed dual subgradient method and further
pass the pair to evaluate accuracy and fairness (i.e. DBC)
over the query data. As the original meta-learning problem
in Eq.(2) is decomposed into a batch of single tasks, meta-
parameters (6, i) are iteratively updated using the proposed
dual decomposition approach outlined in Algorithm 2.

VI. EXPERIMENTAL SETTINGS

To validate our approach of unfairness prevention in few-
shot meta-learning models, we conduct experiments with three
real-world datasets which are available from the UCI ML-
repository.
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TABLE I: Key characteristics and statistics of real dataset.

Data Adult Communities Bank
and Crime
Black, Married,
s M, F} noEl»Black} noEl»Married}
income crime rate deposit
4 {>or < 50K} | {> or < 50%} {Yes, No}
# of instance 48,842 2,216 41,188
tasks countries states months and dates
# of total tasks 34 46 50
# of input features 12 98 17
tasks for training 22 30 40
tasks for validation 6 8 5
tasks for testing 6 8 5
DBC 0.043 0.052 0.067
Discrimination 0.195 0.214 0.028
Consistency 0.485 0.222 0.377
A. Data

The Adult income dataset [42] contains a total of 34 tasks
according to different countries and regions, totally 48,842
instances with 14 features (e.g., age, educational level) and a
binary label, which indicates whether a subject’s incomes is
above or below 50K dollars. We consider gender, i.e. male and
female, as the protected attribute.

Communities and Crime dataset [43] includes information
relevant to crime (e.g., police per population, income) as well
as demographic information (such as race and sex) in different
communities across the U.S. We convert this dataset to a few-
shot fairness setting by using each state as a different task.
Following the same setting in [33], since the violent crime rate
is a continuous value, we convert it into a binary label based
on whether the community is in the top 50% violent crime rate
within a state. Additionally, we add a binary sensitive column
that receives a protected label if African-Americans are the
highest or second highest population in a community in terms
of percentage racial makeup.

Bank Marketing dataset [44] contains a total 41,188
subjects, each with 20 attributes (e.g. loan, housing, efc.) and a
binary label, which indicates whether the client has subscribed
or not to a term deposit. In this case, we consider the marital
status as the binary protected attribute, which is discretized
to indicate whether the client is married or not. Since the
dataset contains information of different months (i.e. January
to December) and dates (i.e. Monday to Friday), we combine
them as task labels and thus the dataset contains 50 tasks.

B. Evaluation Metrics

To evaluate the proposed techniques for fairness learning, we
introduced two classic evaluation metrics to measure data biases.
These measurements came into play that allows quantifying
the extent of bias taking into account the protected attribute
and were designed for indicating indirect discrimination.

Discrimination measures the bias with respect to the
protected attribute S in the classification:

Zi:s,;:l QZ Zi;si:() 7)1

Disc = -
Zi:si=1 1 Zi:si=0 1

This is a form of statistical parity that is applied to the
binary classification decisions. It measures the difference in

the proportion of positive classifications of individuals in the
protected and unprotected groups. Disc = 0 indicates there is
no discrimination.

Consistency [14] compares a model’s classification predic-
tion of a given data item to its k-nearest neighbors:

|D|

1
cOns:l—m;yi— >

JjE€kLNN (e;)

where |D| is the sample size, k is the number of nearest
neighbors, and a nearest neighbor is defined based on a
similarity measure (i.e. euclidean distance) of unprotected
attributes e. As demonstrated in [14], we applied the kNN
function to the full set of examples to obtain the most accurate
estimate of each point’s nearest neighbors. The consistency is
a real number with a value of one signifying a fair prediction.

C. Baseline Methods

We evaluate all datasets — the proposed approach against
various baselines — by comparing the results of generalization
on both classification accuracy and fairness applied to:

1) MAML: The model-agnostic meta-learning model with
no fairness constraints proposed by Finn et al., [1].

2) Masked MAML: Similar to MAML, this approach is
applied to modified datasets by removing the protected
attributes.

3) pretrain: In computer vision, models pre-trained on
large-scale image classification have been shown to learn
effective features [46]. In this paper, the pre-train baseline
trains a single network on all tasks and in each task an
unified fairness constraint is added to ensure DBC is
satisfied.

4) fair-MAML: [35] controls unfairness for each task and
tunes a shared Lagrangian multiplier across tasks by
simply applying grid search.

5) F-MAML,,: is a fair meta-learning approach proposed
in [33]. In this baseline, Slack et al., proposed a simple
regularization term aimed at achieving demographic
parity for each task. All tasks share an unified regu-
larization term in which the fairness hyperparameter is
tuned through grid search, where the demographic parity
regularizer Rq, =1 — p(§ = 1|s = 0).

6) F-MAML,,,: is another fair meta-learning approach
proposed in [33], in which the demographic parity regu-
larizer is replaced with the one aimed at improving equal
opportunity, where Reop =1 —p(g =1|s =0,y = 1).

7) LAFTR [45]: is a transferring fair machine learning ap-
proach across domains that uses an adversarial approach
to create an encoder that can be used to generate fair
representations of datasets and demonstrate the utility of
the encoder for fair transfer learning.

D. Experiment Setup and Parameter Tuning

Our neural network trained follows the same architecture
used by [1], which contains 2 hidden layers of size of 40 with
ReLU activation functions. When training, we use only one
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TABLE II: Consolidated overall result for few-shot classification.

Adult Data Communities and Crime Bank Marketing
K | Approach Acc DBC Disc Cons Acc DBC Disc Cons Acc DBC Disc Cons
- | Data - 0.043 0.195 048385 - 0.052 0.214 0.222 - 0.067 0.028 0.377
MAML [1] 82.1% 0.046 0227 0883 | 984% 0.039 0450 0.726 | 61.1% 0.026 0.122 0.884
Masked MAML 79.9% - 0.157 0916 | 85.8% - 0322 0.846 | 57.6% - 0.083  0.926
pretrain 76.5%  0.024 0.239 0907 | 84.5% 0.030 0337 0815 | 57.1% 0.018 0.106 0.923
E fairMAML [35] 59.7%  0.028 0.146 0909 | 772% 0.026 0358 0.758 | 56.2% 0.012 0.057 0.952
& | F-MAMLg, [33] 82.8% 0.030 0.159 0913 | 95.1% 0.039 0442 0.757 | 59.3% 0.017 0.081 0.929
F-MAMLcop [33] | 79.5%  0.029 0.153 0916 | 95.0% 0.041 0387 0.775 | 57.0% 0.017 0.083 0.927
LAFTR [45] 72.0% 0.035 0.188 0.891 | 89.2% 0.050 0.440 0.787 | 621% 0.030 0.100 0.865
Ours 782%  0.003 0.026 0.937 | 79.0% 0.013 0.200 0.893 | 559% 0.005 0.026 0.950
MAML [1] 81.9% 0.045 0211 0900 | 99.6% 0.038 0.463 0.760 | 59.7% 0.020 0.089  0.898
Masked MAML 80.0% - 0.143  0.930 | 86.5% - 0.275 0.864 | 57.7% - 0.059 0941
« | pretrain 78.8%  0.023 0.125 0.923 | 832% 0.030 0.293 0.849 | 583% 0.008 0.039 0.969
£ | fairMAML [35] 70.0%  0.030 0.146 0.925 | 83.6% 0.035 0.356 0.797 | 602% 0.016 0.061 0.942
£ F-MAML g, [33] 782%  0.025 0.114 0.943 | 97.6% 0.036 0432 0.781 | 593% 0.013 0.058 0.945
™ | FMAMLcop [33] | 719% 0.028 0.134 0927 | 941% 0.032 0.253 0901 | 57.3% 0.012 0.054 0.941
LAFTR [45] 723%  0.030 0.179 0912 | 90.1% 0.050 0401 0.790 | 62.3% 0.025 0.098 0.877
Ours 83.8% 0.011 0.123 0943 | 90.1% 0.016 0215 0.927 | 61.3% 0.010 0.027 0.973
MAML [1] 82.7% 0.039 0.179 0909 | 99.1% 0.047 0380 0.788 | 60.4% 0.016 0.068 0.903
Masked MAML 80.2% - 0.141 0934 | 86.2% - 0.246  0.870 | 58.1% - 0.049  0.947
« | pretrain 80.6% 0.024 0.117 0927 | 848% 0.029 0264 0859 | 57.6% 0.014 0.063 0.939
% fairMAML [35] 654%  0.022  0.103 0924 | 834% 0.021 0221 0.895 | 562% 0.010 0.044 0.960
v, | FFMAML, [33] 81.0% 0.030 0.141 0935 | 948% 0.039 0313 0.812 | 579% 0.011 0.046 0.946
™ | FFMAMLcop [33] | 80.8% 0.028 0.129 0938 | 953% 0.040 0320 0.815 | 584% 0.011 0.050 0.946
LAFTR [45] 75.5%  0.029 0.159 0915 | 912% 0.030 0.299 0.825 | 61.1% 0.012 0.089 0.892
Ours 80.4%  0.005 0.011 0985 | 80.6% 0.009 0.093 0959 | 57.0% 0.005 0.010 0.989
MAML [1] 825% 0.044 0.185 0914 | 998% 0.048 0380 0.774 | 60.8% 0.014 0.062 0912
Masked MAML 80.8% - 0.137 0938 | 84.8% - 0.242  0.876 | 57.8% - 0.042 0952
« | pretrain 80.4%  0.021 0.100 0935 | 849% 0.027 0229 0869 | 57.5% 0.012 0.053 0.942
£ | fair-MAML [35] 69.7%  0.018 0.083 0.931 | 86.0% 0.018 0229 0.891 | 552% 0.005 0.044 0.964
£ F-MAML g, [33] 80.6% 0.028 0.132 0939 | 98.0% 0.042 0314 0816 | 67.4% 0.010 0.042 0951
| F-MAMLcop [33] | 83.3% 0029 0.135 0936 | 957% 0.038 0318 0817 | 58.1% 0.010 0.041 0.948
LAFTR [45] 76.2%  0.032 0.175 0911 | 89.8% 0.029 0.353 0.810 | 62.1% 0.015 0.095 0.875
Ours 79.2%  0.001 0.018 0.988 | 85.7% 0.008 0.076 0.965 | 57.5% 0.006 0.006 0.991

step gradient update (i.e. ¢ = 1) and k£ = 10 inner primal-
dual updates with 2N K samples of query set, and a fixed
primal and dual learning rate of v = 0.01 and o = 0.01. We
use Adam as the meta-optimizer. Because we only consider
a binary classification problem, all of tasks are 2-way, i.e.
N = 2. Similarly, we set meta-learning rates of = 0.001 and
B = 0.01 used to update the meta-loss in the outer loop. For
three datasets, all the unprotected attributes are standardized
to zero mean and unit variance and prepared for experiments.
Besides, taking few-shot learning into account, we set a meta
batch-size of 8 tasks and 4000 meta-iterations for all datasets.
Some key characteristics for all real data are listed in Table I.

All baseline models used to compare with our proposed
approach share the same neural network architecture and
parameter settings. Hyperparameters are selected by a held-out
validation procedure. All experiments are repeated 10 times
with the same settings. Results shown with these methods in
this paper are mean of experimental outputs.

VII. EXPERIMENT RESULTS

This section evaluates the effectiveness of the proposed
approach and its competitors on a classification task. We focus
on generalization of statistical parity on unseen tasks and trade-
off between validation loss and fairness that the proposed dual
subgradient method alleviates when used to train classifiers. For
all baseline methods, wherever applicable, hyper-parameters
were tuned via grid search. Specifically, we chose the models
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that were Pareto-optimal with regard to DBC and all other
evaluation metrics.

Consolidated and detailed performance of the different
techniques over real-world data are listed in Table II. We
evaluate performance by fine-tuning the model learned by all
methods on K -shot of {5,10,15,20} datapoints of each class
for each dataset. Best performance in each experimental unit
are labeled in bold. We first observe that there is a considerable
amount of unfairness in the original datasets, which are reflected
in the results of Data in the table. Experiment results in Table
II demonstrates our proposed approach out-performs than other
baseline methods in terms of controlling biases. It efficiently
reduces DBC from the original dataset and values of DBC are
limited to close zero that signify a fair prediction. In addition,
fairness results based on two fair evaluation metrics, i.e. Disc
(Figure 2 (a-c)) and Cons (Figure 2 (d-f)), are plotted in Figure
2. Each trail was repeated 10 times and results shown in the
figure are mean of experimental outputs followed by error bars
representing one standard deviation of uncertainty.

MAML became a famous meta-learning algorithm because
of its fast adaptation and good generalization performance on
losses [1]. However, our results shows it fails to control biases
nor performs success in fairness generalization in a few-shot
meta-learning, although MAML is stably able to produce high
generalization accuracy. Masked MAML shows an improvement
in fairness; however, there is still substantial unfairness hidden
in the data in the form of correlated attributes. F-MAML,
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Fig. 2: Experiment results of real-world datasets in controlling biases.
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Fig. 3: The validation loss/fairness trade off sweeping over a range of dual variables.

and F-MAML.,,, proposed by Slack et al., in [33] intuitively
control unfairness by taking advantage of demographic parity
and equal opportunity, respectively. Our results in Figure 2
demonstrate that these two baseline methods fail to show
fairness generalization onto unseen tasks in contrast to the
proposed approach, in terms of reducing Disc and promoting
Cons. Furthermore, though LAFTR offers a way to transfer
machine learning models between tasks, consistent with [33],
we observe it is unsuccessful in very data light situations.
Besides, it is worth noting that we outperform baseline methods
in bias controlling with better results as the number of training
data increases.

Although our proposed approach, PDFM, returns a bit
smaller predictive accuracies (see Table II), this is due to
the trade-off between losses and fairness. To this end, we
train each method and sweep over a range of seven dual
variables: [0.001,0.01,0.1,1, 10, 100, 1000]. Taking 10-shot as
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an example, results presented in Figure 3 is the mean across 10
runs on each set of dual variable using randomly selected hold
out validation tasks. The fairness, i.e. DBC, presented is the
ratio between the protected and unprotected groups. Smaller
validation loss and fairness values closer to zero (i.e. bottom
left in each sub-figure) indicate more successful outcomes.
Here, as MAML does not have hyper-parameters to control
the loss/fairness trade-off, its outcomes across three datasets
are presented with very low validation losses but high fairness
values. In the proposed problem setting, the pretrain neural
network shows some ability to learn the new task using little
data and fine-tuning epochs and as the dual variable increases,
its validation losses decrease and thus DBC increases. Moreover,
LAFTR is not successful at learning with minimal data and a
small number of fine-tuning epochs for the new task. At low
values, fair-MAML, F-MAML;),, and F-MAML.,,, are able to
achieve lower validation losses than the pretrain and LAFTR
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baselines. Crucially, the results stated in Figure 3 confirm and
further illustrate the findings that our proposed PDFM is able
to learn more accurate representations that are also fairer for
the swept range than all baseline techniques.

VIII. CONCLUSION AND FUTURE WORK

Techniques in meta-learning have been shown effectiveness
for adaption of deep learning models on accuracy generalization
to new tasks. These methods, however, are unable to ensure
fairness adaption. In this paper, for the first time a novel Primal-
Dual Fair Meta-learning (PDFM) framework is proposed,
in which a good pair of primal-dual meta-parameters is
optimally learned. To be specific, the meta-parameter pair
is trained over a variety of learning tasks with a small amount
of training samples. To produce the best performance, we
implement two optimization strategies for both inner and
meta subgradient update. Theoretical analysis justifies the
efficiency and effectiveness of the proposed algorithms to
support existence of solutions and algorithmic convergence
guarantee. Results from extensive experiments demonstrate
substantial improvements over the best prior work and our
proposed framework is capable of generalization both accuracy
and fairness onto new tasks. Further research in this area can
make multitask parameters a standard ingredient in explainable
fairness transfer learning.
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