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Abstract—We study fairness in supervised few-shot meta-
learning models that are sensitive to discrimination (or bias)
in historical data. A machine learning model trained based on
biased data tends to make unfair predictions for users from
minority groups. Although this problem has been studied before,
existing methods mainly aim to detect and control the dependency
effect of the protected variables (e.g. race, gender) on target
prediction based on a large amount of training data. These
approaches carry two major drawbacks that (1) lacking showing
a global cause-effect visualization for all variables; (2) lacking
generalization of both accuracy and fairness to unseen tasks. In
this work, we first discover discrimination from data using a
causal Bayesian knowledge graph which not only demonstrates
the dependency of the protected variable on target but also
indicates causal effects between all variables. Next, we develop
a novel algorithm based on risk difference in order to quantify
the discriminatory influence for each protected variable in the
graph. Furthermore, to protect prediction from unfairness, a
fast-adapted bias-control approach in meta-learning is proposed,
which efficiently mitigates statistical disparity for each task and it
thus ensures independence of protected attributes on predictions
based on biased and few-shot data samples. Distinct from existing
meta-learning models, group unfairness of tasks are efficiently
reduced by leveraging the mean difference between (un)protected
groups for regression problems. Through extensive experiments
on both synthetic and real-world data sets, we demonstrate that
our proposed unfairness discovery and prevention approaches
efficiently detect discrimination and mitigate biases on model
output as well as generalize both accuracy and fairness to unseen
tasks with a limited amount of training samples.

Index Terms—causal Bayesian network, statistic parity, few-
shot meta-learning, fairness generalization, bias discovery and
prevention

I. INTRODUCTION

Data-driven and big data technologies, nowadays, have

advanced many complex domains such as healthcare, finance,

social science, etc. With the development and increment of

data, it is necessary to extract the potential and significant

knowledge and unveil the messages hidden behind using

data analysis. In data mining and machine learning, biased

historical data are often learned and used to train a statistic

predictive model. Depending on the application field, even

though predictive models and computing process is fair, biased

training data or data containing discrimination may lead to

results with undesirability, inaccuracy, and even illegality. In

recent years, there have been a number of news articles that

discuss the concerns of bias and discrimination on crime

forecasting. However, there is a lack of work that provides

an extensive study on the potential bias and discrimination

in public crime data and provides solutions to help produce

predictive models that are free of discrimination towards the

protected groups, such as African Americans. For example,

911 call data was used to predict crimes by the Seattle Police

Department in 2016, but was late dropped due to potential

racial bias in the provided data [1].

Non-discrimination can be defined as follows: (1) people

that are similar in terms of non-sensitive characteristics should

receive similar predictions, and (2) differences in predictions

across groups of people can only be as large as justified by

non-sensitive characteristics [2]. The first condition is related

to direct discrimination. For example, a hotel turns a customer

away due to disability. The second condition ensures that there

is no indirect discrimination, also referred to as redlining.

For example, one is treated in the same way as everybody

else, but it has a different and worse effect because of one’s

gender, race or other sensitive characters. The Equality Act

[3] calls these characters as protected characteristics. In the

above-mentioned crime prediction example, even though race

was not formally used as a forecasting criterion, it appeared

that the geographic regions that have a much higher population

of African American people have higher counts of 911 calls.

Therefore, critics have voiced that human bias potentially has

an influence on nowadays technology, which leads to make

unfair decisions.

Machine learning models trained to give predicted outputs

based on historical data will naturally inherit the past biases.

With biased input, the main goal of training an unbiased model

is to make the output fair. In other words, the predicted out-

comes are statistically independent on protected variables (e.g.
race and gender). These may be ameliorated by attempting to

make the automated decision-maker blind to some attributes.

This however, is difficult, as many attributes may be correlated

with the protected one [4]. Statistical parity, also known as

group fairness, ensures that the overall proportion of members

in a protected group receiving predictions are identical to the

proportion of the population as a whole.

Fairness-aware in data mining is classified into unfairness

discovery and unfairness prevention. How we address unfair-
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Fig. 1: An overview of our proposed unfairness discovery and prevention approach in few-shot meta-learning. (Left)

Discriminatory patterns in the collected data are visualized through a developed causal Bayesian network (CBN), where

S and Y respectively denote protected attributes and target, and arrows represent causal effects between variables. (Right) A

few-shot unfairness prevention approach is shown. In the meta-training stage, in each task, support loss is optimized under

an unified mean-difference fairness constraint which performs a trade-off between accuracy and fairness (see the enlarged

figure). The meta-parameter φ is thus iteratively optimized and then applied to calculate the final outcome, i.e. average loss

and fairness, in the meta-testing stage. S and Q denote the support and query data, respectively.

ness detection from biased data has significant practical conse-

quences, which will further influence the following decision-

making of a machine learning model. Traditional methods for

discrimination discovery from data are under the assumption

that the protected variables are predefined. This does not stand

up to scrutiny because one or more variables may be correlated

with protected variables and have strong dependency effect on

predictions. We thus, in this paper, first reveal discriminatory

patterns from data through developing a causal Bayesian

network (CBN) which represents a flexible useful tool in this

respect as it can be used to formalize, measure, and deal with

different unfairness scenarios underlying a data set. The CBN

contains information of causal effect of all variables (protected

and explanatory variables).

In addition, to the best of our knowledge, unfortunately, the

majority of existing unfairness prevention machine learning

algorithms are under the assumption of giving abundant train-

ing examples. Learning quickly, however, is another significant

hallmark of human intelligence. In meta-learning, also known

as learning to learn, the goal of trained model is to quickly

learn a new task from a small amount of new data (i.e. few-

shot), and the model is trained by the meta-leaner to be able

to learn on a large number of different tasks [5]. In contrast

to traditional machine learning algorithms, such as multi-

task learning [6] and transfer learning [7], [8], meta-learning

framework has advantages: (1) it learns across tasks where

each task takes one or few samples as input; (2) it therefore

efficiently speeds up model adaptation (3) and generalizes

accuracy to unseen tasks. The overall idea of existing methods

of meta-learning is to train a model which is capability of

generalizing accuracy, rather than fairness, to unseen data

tasks. But techniques for unfairness prevention and bias con-

trol in the few-shot meta-learning study are challenging and

rarely touched. To ensure prediction without biases, another

contribution in this paper is that we feed each support set of

a task with unified group fairness constraints and minimize

meta-loss overall episodes. Specifically, we mitigate biases

in each episode during meta-training by controlling mean

difference [9] to a small threshold. Our experimental results

based on both synthetic and real-world data sets demonstrate

our approach is capability of controlling bias and decreasing

loss as well as generalize both to unseen tasks.

In summary, the main contributions of this paper are listed:

1) We first reveal unfairness from training data using a

novel causal Bayesian network and quantify the dis-

crimination effect of protected variables on target by

developing a novel algorithm.

2) For the first time the problem of bias control in a few-

shot meta-learning regression model is introduced. Our

approach efficiently mitigates the dependency of predic-

tions on the protected attribute using mean difference

from statistics.

3) We validate the performance of our proposed ap-

proach of unfairness prevention on state-of-the-art meta-

learning techniques through extensive experiments based

on both synthetic and real-world data sets. Our results

demonstrate the proposed approach is capability of

mitigating biases and generalizing both accuracy and

fairness to unseen tasks, even with minimal input.

II. RELATED WORK

In recent years, researches involving processing biased data

became increasingly significant. Fairness-aware in data mining

is classified into unfairness discovery and prevention. Based

on the taxonomy by tasks, it can be further categorized to

classification [10]–[14], regression [9], [15]–[17], clustering

[18], recommendation [19] and dimension reduction [20].
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Unfairness discovery aims at finding discriminatory patterns

in data using data mining methods. Data mining approach

for discrimination discovery typically mines association and

classification rules from the data, and then assesses those rules

in terms of potential discrimination [2]. A more traditional

statistical approach to discrimination discovery typically fits a

regression model to the data including the protected features,

and then analyzes the magnitude and statistical significance

of the regression coefficients at the protected attributes. If

those coefficients appear to be significant, then discrimination

is flagged. The existing techniques, however, only focused on

the dependency of the protected attributes on target prediction,

which blinded the causal effect of other explanatory variables

on target and the relationship between variables. To address

this flaw in unfairness detection, in this paper, we develop

a causal Bayesian network containing all variables and it

visually shows the causal effects among them.

Unfairness prevention develops machine learning algorithms

that would produce predictive models, ensuring that those

models are free from discrimination. Standard predictive mod-

els, induced by machine learning and data mining algorithms,

may discriminate groups of people because (1) data bias

comes from data being collected from different sources, or (2)

dependence on a socially sensitive attribute was identified in

the data mining community [9]. Even though techniques for

unfairness prevention on classification were well developed

[10]–[13], limited methods have been designed for regression

models and the problem on regression is more challenging.

Because (1) instead of evaluating the correlation between two

categorical attributes, regression aims to assess the the correla-

tion on the categorical protected attribute and continuous target

variable; (2) in classification the goal of modification led to the

change of one class label into another, however in a regression

task, fairness learning allows the continuous character of

targets for a continuous range of potential changes. [9] first

controlled bias in a regression model by restricting the mean

difference in predictions on several data strata divided using

the propensity scoring method from statistics. Furthermore,

[21] proposed a framework involving η-neutrality in which to

use a maximum likelihood estimation for learning probabilistic

models. Besides, [15]–[17] recently came up with convex and

non-convex optimization frameworks for fairness regression.

To the best of our knowledge, unfortunately, the majority of

existing fairness-aware machine learning algorithms are under

the assumption of giving abundant training examples. Learning

quickly, however, is another significant hallmark of human

intelligence. Several recent approaches have made significant

progress in meta-learning. [22] introduced Matching Networks

which employed ideas from k-nearest neighbors algorithm and

metric learning based on a bidirectional Long-Short Term

Memory (LSTM) to encode in the context of the support

set. Prototypical networks [23] learn a metric space in which

classification is able to be performed by computing Euclidean

distances to prototype representations of each class. In addi-

tion, gradient descent based algorithms, such as [5], [24]–[27],

aim to learn good model initialization so that the meta-loss

is minimum. The overall idea of these state-of-the-art is to

train a meta-learning model which is capability of generalizing

accuracy, but less attention on fairness generalization to unseen

data tasks. In this paper, our proposed approach makes up

for this regret of unfairness prevention using few-shot meta-

learning techniques in regression.

III. UNFAIRNESS DISCOVERY

Intuitively, an attribute effects the target variable if one

depends on the other. Strong dependency indicates strong

effects. Currently, most fairness criteria used for evaluating

and designing machine learning models focus on the relation-

ships between the protected attribute and the system output.

However, the training data can display different patterns of

unfairness depending on how and why the protected attribute

influences other variables. Using such criteria without fully

accounting for this could be problematic. The development

of technical solutions to fairness also requires considering the

different, potentially intricate, ways in which unfairness can

appear in the data. To this end, we construct a causal Bayesian

network (CBN) using an open-source software TETRAD [28].

A CBN is a graph formed by nodes representing random

variables, connected by links denoting causal influence. By

defining unfairness as the presence of a harmful influence

from the protected attribute in the graph, CBNs provide us

with a simple and intuitive visual tool for describing different

possible unfairness scenarios underlying a data set. It effec-

tively captures the existence of discrimination patterns and

can provide quantitative evidence of discrimination in decision

marking.

(a) (b) (c)

Fig. 2: CBN representing a hypothetical crime forecasting

process with three possible scenarios, where red and green

paths are used to indicate unfair and partially-unfair links,

respectively.

Consider a hypothetical crime count prediction example in

which crime are predicted based on times of being arrested

(A), ethnicity or race (R), and income (I). The predicting

process is represented by the CBN in Figure 2. Race has a

direct influence on crime through the causal path R→ C and

an indirect influence through the causal path R → I → C.

The direct influence captures the fact that individuals with the

same arrested times who have the same income level might

be treated differently based on their race (e.g. black and non-

black). The indirect influence captures differing crime counts

between black and non-black individuals due to differing

income levels.

Definition 1 (Causal Path). In a CBN, a path from node X
to node Z is defined as a sequence of linked nodes starting

139

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 16,2021 at 21:36:24 UTC from IEEE Xplore.  Restrictions apply. 



at X and ending at Z. X is a cause of (has an influence on)

Z if there exists a causal path from X to Z, namely a path

whose links are pointing from the preceding nodes toward the

following nodes in the sequence. For example, in Figure 2, the

path R → I → C is causal, but the path R → I → C ← A
is non causal.

We depict three possible scenarios in Figure 2(a) to (c).

In the first scenario, crime count is predicted according to

the percentage of African American residents only. In the

second scenario, crime counts are high in areas where African

Americans percentage is high. This is because the percentage

of African Americans determines the level of income and

therefore R → I is consider unfair (red). As a consequence,

the path I → C becomes partially unfair (green). In the

third scenario, crime counts are high in the African Amer-

ican communities where the income level is low. In other

words, for those communities with same percentage of African

Americans but have high income, the crime counts may be

low. This simplified example shows how CBNs can provide

us with a visual framework for describing different possible

unfairness scenarios. Understanding which scenario underlies

a data set can be challenging or even impossible, and might

require expert knowledge. It is nevertheless necessary to avoid

pitfalls when evaluating or designing a decision system.

Next, to quantify the discrimination effect for each protected

variable on target, we conducted the study from a data set

D = {(xj
i , y

j
i , s

j
i )}hi=1, j = 1, ..., r, i = 1, ...h, where xj

i ∈ R
n

denotes the i-th observation for the j-th task, yji denotes the

corresponding numeric output, sji ∈ R
m represents the contin-

uous protected attributes, and h is the number of observations

in each task. In order to reveal the causal effect from data,

all variables, including target and the protected attributes, are

discretized into three-bin categories (i.e. low, median, high) by

frequency. We considered the unfairness measure called risk

difference that is denoted as

ΔP |s,j(y|s1, s2) = |P (y|s1, j)− P (y|s2, j)|, ∀y|s, j (1)

where s1 and s2 refer to any two different sub-populations

(e.g. s1=“low” and s2=“high”) of a given protected variable

s ∈ sj . The risk difference, ΔP , thus estimates the distribution

shift for target Y under different protected sub-populations

with a given task. Taking Crime data set as an example, each

county is consider as a task and risk difference measures the

distribution shift of crime rate given two sub-populations that

the percentage of African American is high and low.

While the Supreme Court has resisted a “rigid mathematical

formula” defining discrimination, we adopted a generalization

of the 80 percent rule advocated by the US Equal Employment

Opportunity Commission (EEOC)1. Formally, we define a

fairness constraint of discrimination based on statistical parity:

P (P |j(y|s) ≤ ε) ≤ 80% (2)

where ε is a given threshold to account for a degree of

randomness in the decision making process and sampling. We

1https://www.eeoc.gov/

adopted the value ε = 0.05 as used in [29]. Key steps of

calculating risk difference are described in Algorithm 1.

Algorithm 1 Unfairness Discovery Using Risk Difference.

Require: All variables are discretized into three-category bin.

1: Initialization n = 0,m = 0
2: for each task j do
3: for each configuration y of Y do
4: for each different configurations {s1, s2} of S do
5: Calculate risk difference: ΔP |s,j(y|s1, s2) =
|P (y|s1, j)− P (y|s2, j)|

6: if ΔP |s,j(y|s1, s2) ≤ ε then
7: n = n+ 1
8: end if
9: m = m+ 1

10: end for
11: end for
12: end for
13: Calculate ratio: r = n/m.

14: return The ratio r.

IV. UNFAIRNESS PREVENTION IN FEW-SHOT REGRESSION

Unfairness prevention develops machine learning algorithms

that would produce predictive models, ensuring that those

models are free from discrimination. In contrast to traditional

regression settings, in this section, we introduce a novel

few-shot discrimination prevention learning model based on

the Model Agnostic Meta-Learning (MAML) framework [5],

which is able to quickly learn a new task from a small amount

of data (i.e. K-shot) and to generalize fairness onto unseen

tasks. For simplicity, we select the most representative pro-

tected variable s ∈ s which takes the greatest risk difference

and convert it into a binary variable {s+, s−}. However, our

ideas can be easily extended to many protected attributes with

multiple levels.

A. Evaluation of Statistical Parity

A learning model is considered illegal discrimination if

it has a disproportionately adverse effect on members of a

protected group (e.g. race, gender). In other words, statistical

parity ensures that the overall proportion of members in

a protected group receiving prediction is identical to the

proportion of the population as a whole.

To formulate, we split the data set for each task j into an

episode {DSj ,DQj }, where DSj and DQj are support and query

set, respectively. A K-shot learning set Dj = {xi, yi, si}Ki=1,

where si ∈ {s+, s−} is the binary protected attribute. For

regression problem, since yi ∈ R is a numeric scalar, it is

not possible to use typical same-type measures of dependency

like correlation coefficient and point-wise mutual information

to quantify the statistical dependency between s and y. To

quantify the effect of protected attribute s on its target y for

Dj , we apply Mean Difference (MD) for evaluating biases in

regression problems.
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Definition 2 (Mean Difference). The mean difference (MD)

of numeric target variable y in data set D, partition into D+

and D− by a binary protected variable s is given by:

MD(y, s;D) = |
∑

(x,y)∈D+
y

N+
−

∑
(x,y)∈D− y

N−
|

where N+ and N− are group sizes of D+ and D−. The mean

difference is a positive number with a value of zero indicating

no dependency of target on the protected variable.

B. Fair Model Agnostic Few-Shot Meta-Learning

Meta-learning is also known as learning to learn. In a

general meta-learning setting, it consists of meta-train and

meta-test stages where each contains a number of mini-batches

of episodes split into support and query sets. We consider a

distribution over tasks p(T ) that we want our model to be able

to adapt to. In a K-shot learning setting, a task Tj is sampled

from p(T ), where the subscript j represents the j-th task of a

mini-batch. In the supervised learning setting, supposing the

meta-model is a parameterized function fφ with parameters

φ. In a general meta-learning model, the goal is to learn an

optimized meta-parameter φ so that the summation of query

losses lTj (fφ) over all meta-training tasks is minimum.

φ∗ = argmin
φ

ET ∼p(T )lT (fφ) (3)

The use of only K training examples for learning a new task

is often referred to as K-shot learning. During meta-training,

φ is updated iteratively. The trained meta-model is evaluated

through a set of tasks that are not included in the meta-training

procedure. To formulate the supervised regression problem in

the context of the meta-learning model, the loss functions,

mean squared error, is applied. It is represented by the error

between the model’s output for x and the corresponding target

y. In order to control biases in prediction, it is required to

restrict a statistical parity score gTj (fφ) for each task with a

user-defined fairness threshold c > 0. The objective function

of a single task takes the form:

minimizeφj
lTj (fφ) =

∑
xi,yi∼Tj

||f(xi;φ)− yi||22 (4)

subject to gTj (fφ) ≤ c

where xi,yi are a pair of input feature vector and output

target sampled from task Tj , c is a small positive fairness re-

laxation, and gTj (fφ) is the mean difference of the continuous

prediction bounded by c.

gTj (fφ) =

∣∣∣∣∣

∑
(xi,yi∼Tj)∈D+

f(xi;φ)

N+
− (5)

∑
(xi,yi∼Tj)∈D− f(xi;φ)

N−

∣∣∣∣∣

To solve the optimization problem, we thus introduce an

unified Lagrange multiplier λ ≥ 0 for all tasks and the

Lagrange function LTj (φ, λ) of a single task is defined by

LTj (φ, λ) = lTj (fφ) + λ(gTj (fφ)− c) (6)

Therefore the original problem can be finally seen by mini-

mizing LTj (φ, λ) for each task and thus mitigates dependency

of prediction on the protected attribute.

The goal of training a single task is to output a local

parameter φj given the meta-parameter φ such that it min-

imizes the task loss lTj (fφ) subject to the task constraint

gTj (fφ) ≤ c. Next, to update the meta-parameter, we minimize

the generalization error Lmeta using query sets across every

task in the batch such that the query constraints are satisfied.

Formally, the learning objective across all tasks is

min
φ

Lmeta(
T∑

j=1

DQ
j , φ) =

T∑
j=1

lTj (fφj
)(DQ

j , φj) (7)

where φj = argminφj ,gTj (fφ)≤c lTj (fφ) is the local op-

timum for each task. A step-by-step learning algorithm for

the unfairness prevention approach in few-shot regression is

proposed in Algorithm 2.

Algorithm 2 Unfairness Prevention in Few-Shot Regression.

Require: p(T ): distribution over tasks.

Require: α, β: step size hyperparameters.

Require: q: inner gradient update steps.

1: Randomly initialize φ
2: while not done do
3: Sample batch of tasks Tj
4: for all Tj = {DSj ,DQj } do
5: Sample K datapoints from DSj = {xj , yj , sj}
6: φj ← φ
7: for q = 1, 2, ... do
8: Evaluate ∇φj

LTj (φj , λ) using DSj
9: φj ← φj − α∇φj

LTj (φj , λ)
10: end for
11: Sample datapoints from DQj = {xj , yj , sj}
12: Evaluate query loss lTj (fφj ) and query fairness

gTj (fφj
) using DQj

13: end for
14: Update φ← φ− β∇φ

∑
Tj∼p(T ) lTj (fφj

)
15: Evaluate training fairness mean(gTj (fφj

))
16: end while

V. EXPERIMENTS

In the section, we first demonstrate the individual utility of

unfairness discovery approach that introduced in section III

based on Crime data set. Then we conduct extensive experi-

ments to validate the proposed few-shot unfairness prevention

algorithm on both synthetic and real-world data sets.

141

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 16,2021 at 21:36:24 UTC from IEEE Xplore.  Restrictions apply. 



A. Unfairness Discovery from Crime Data Set
Chicago Communities and Crime data set [15] includes

information relevant to crime (e.g. household, unemploy-

ment) as well as demographic information (such as race and

gender) in different communities across the Chicago city

in 2015. These information were separately collected from

American FactFinder (AFF) 2 which is an online and self-

service database provided by the U.S. Census Bureau and then

aggregated various sources to the final data prepared for ex-

periments. More specifically, the economy related information

such as points of interests (such as businesses and attractions)

was extracted from location-based social networks (Foursquare

check-in data). While the crime and geographical information

in the data correspond to the specific crimes that occurred,

our investigations clearly indicate that the local neighborhood

information can provide strong indication about future crimes.

In this data set, resident population of various ethnicities are

considered as protected variables and crime count is the target

attribute that we need to detect discrimination from.

Fig. 3: Causal Bayesian network conducted using the Crime

data set. Red arrows are highlighted the causal effect between

variables that target (crime count) is dependent on.

Experimental Results. First, we reveal unfairness from the

Crime data set by conducting the causal Bayesian network

(CBN) shown in Figure 3, where “African American (%)”
refers to the percentage of African American residents in each

of census tract (geo-location unit) and “Other Ethnicity (%)”
is the percentage of ethnicity groups other than white, African

American, Asian, and American Indian groups. In the result

of CBN, the biases and discrimination are modeled based

on the causal paths from one variable to another. As shown

in Figure 3, highlighted paths demonstrate that crime count

is dependent on four variables, “Total Population”, “African
American (%)”, “Households Below Poverty (%)”, and “Busi-
ness Count”. We thus need to consider a correct partition of

the CBN network, in order to suppress all other influences

rather than discrimination. Some of these are spurious and

some although causal, can be explained by other attributes

and hence are not regarded as discrimination.
To quantify dependency effect of protected variable on

crime count, we block all causal paths from the protected

2https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml

TABLE I: Analysis of statistical parity on protected groups

for the Crime data set.

Protected Groups (%) Unfairness
African American 22.20%
American Indian 46.91%

Asian 40.70%
Other Ethnicity 40.70%

attribute s to target y in the CBN and analyze each protected

variables using statistical parity approach introduced in section

III. The estimated statistical parity measures of different

protected groups are shown in Table I. The result indicates

that the Crime data contains potential bias based on the 80%
rule. A lower statistical parity indicates a higher unfairness

causal effect of crime count towards the protected group.

(a) (b)( )

(c)

( )

(d)( )

(e)

( )

(f)

Fig. 4: Validation loss and mean difference stabilization over

iterations.

B. Unfairness Prevention with Few-Shot Learning

Synthetic Data. To evaluate, we start with a simple regres-

sion problem. We generated 12,000 synthetic data sets in total,

10,000 for training, 1000 for validation and 1000 for testing.

Each data set can be considered as a single task. Specifically,

for each data set, we generated 1000 data samples along with

binary protected attributes uniformly. Each observation was

uniformly assigned with a feature vector including seven ex-

planatory attributes. Targets were generated from two Gaussian

distributions with the same standard deviation of σ = 1 but

shifted means. To make each task unfair to some extent, targets
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(a) (b) (c) (d)( )

(e) (f) (g) (h)

Fig. 5: Experiment results of controlling biases and fairness generalization to unseen data for meta-learning regression problem.

from the unprotected group generated with arbitrary mean in

[0, 10], but targets means from protected group increased by

[1, 5] randomly.

The same Chicago Communities and Crime (Crime) data

[15] that was applied in unfairness discovery experiments

is continued to use for studying unfairness prevention in

few-shot meta-learning model. Different from the previous

setting, to simplify, we only keep one protected variable,

“African American (%)”, and treat the rest (i.e. “American
Indian (%)”, “Asian (%)”, and “Other Ethnicity (%)”) as

explanatory attributes. The Crime data set is divided into 801

sub-tasks according to different communities in the Chicago

city. All tasks were further split into 501 for training, 100 for

validation and 200 for testing. Each task contains 52 crime

records. Since the feature in the original data that described

the percentage of African American population is numeric,

in this experiment, we convert it into binary values based on

the majority (> 70%) population of Black and non-Black.

Thus, each record represents a weekly information including

13 numeric explanatory variables and one binary protected

variable.

All the attributes were standardized to zero mean and unit

variance for all data sets and prepared for experiments. Our

neural network trained follows the same architecture used by

[5], which contains 2 hidden layers of size of 40 with ReLU

activation functions. When training, we use only one step

gradient update with 2K samples of query set with a fixed

learning rate of 0.01 and use Adam as the meta-optimizer.

Similarly, we set the learning rate of 0.001 used to update the

meta-loss in the outer loop. Hyperparameters are selected by

held-out validation data. All experiments are repeated 10 times

with the same settings. Results shown with these two methods

in this paper are mean of experimental outputs followed by the

standard deviation.

To evaluate performance, we fine-tune a single meta-learned

model on varying numbers of K ∈ {5, 10, 20} examples, and

compare performance to two baselines: (a) the original MAML

model [5], and (b) the baseline method which pre-trains and

entails training the network to regress to random functions and

fine-tuning at the meta-testing stage using an automatically

tuned step size. Both MAML and the baseline (pre-trained)

models share the same neural network architecture and pa-

rameter settings. In order to distinguish our approach from

the two baselines, we add a prefix “Fair-” in Figure 4 and 5.

In addition, we introduce two off-the-shelf evaluation met-
rics to measure biases. These measurements come into play of

quantifying the extent of bias and are designed for indicating

indirect discrimination.

(1) The area under the ROC curve (AUC) [9].

AUC =

∑
(si,yi)∈D+

∑
(sj ,yj)∈D− I(yi > yj)

|D+| × |D−|
(8)

where I(·) is an indicator function which returns 1 if its

argument is true, 0 otherwise. AUC = 0.5 represents random

predictability, thus S is independent on Y .

(2) Impact Ratio (IR) [30].

IR =

∑
yi∈D+

yi

|D+|
/∑

yj∈D− yj

|D−|
(9)

It is defined as the ratio of mean over the protected and

unprotected group in data D. The decisions are deemed to

be discriminatory if the ratio of positive outcomes for the

protected attribute is below 80% [31]. IR = 1 indicates that

there is no bias of data D.

Experimental Results. We evaluate the performance of our

approach followed by [5] by fine-tuning the (Fair-) Baseline

and models learned by (Fair-) MAML on K = {5, 10, 20}
data points. Results of validation loss and mean difference of

each iteration are plotted in Figure 4. In terms of losses (see

Fig.4 (a), (c) and (e)), MAML is outperformed than baseline

methods and the gap between all methods is narrowing as

the number of training data increases. Although our proposed

approach (i.e. Fair-Baseline and Fair-MAML) returns a bit

bigger validation loss, this is due to the trade-off between
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fairness and accuracy. In Figure 4 (b), (d) and (f), our ap-

proach demonstrates success in controlling bias and decreasing

validation losses, even trained with few-shot samples.
More experimental results with synthetic (see Figure5(a)-

(d)) and real-world data set ((e)-(h)), as well as those are

examined with two fairness evaluation metrics (AUC and IR)

are shown in Figure 5. Results through the Crime data demon-

strate that our approach of controlling disparate treatment

significantly decreases AUC and MD, and hence increases IR

above the boundary of bias level of 80% rules [31] in contrast

to methods without adding “Fair-” constraints. Besides, the

larger K value (i.e. more samples are considered in the support

set), the better generalization capability of loss and fairness

based on a few novel instances performs. This demonstrates

the working efficiency of the proposed model
MAML became a famous meta-learning algorithm because

of its fast adaptation and good generalization performance on

losses. However, our results showed it fails to control biases

nor performs success in fairness generalization in a few-shot

meta-learning. Our approach nevertheless makes up for this

deficiency.

VI. CONCLUSION AND FUTURE WORK

In this paper, for the first time we discover unfairness based

on causal Bayesian network which reveals causal effect be-

tween all variables. In addition, we develop a novel algorithm

based on risk difference in order to quantify the discriminatory

influence for each protected variable in the graph. Besides,

to prevent prediction from intervention of the protected vari-

able, a fast-adapted bias-control approach by adding statistical

parity constraints is proposed, which significantly mitigates

dependence of prediction on the protected variable in each

task and generalize both accuracy and fairness to unseen tasks.

Due to the nature of MAML, which finds a task-specific model

parameter for each task, one of the goal of future researches in

few-shot learning is to design a fairness regulatory mechanism

such that it automatically designs a task-specific fairness

constraint through hyperparameter optimization techniques.
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