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Abstract 

In the past two decades, the field of additive manufacturing (AM) has seen tremendous growth, especially in the production of functional parts.  
Unfortunately, improving the dimensional accuracy of these printed parts to the point where they can be used for a broad range of applications 
has proven challenging.  Several methodologies to improve the dimensional accuracy of 3D printed parts have been proposed in the literature.  
One approach that has seen a considerable amount of work in recent years is product design adjustment based on predictive modeling.  Under 
this approach, predictions of geometric deviations across the surface of a part are used to modify the shape of a part before printing so as to 
counteract or compensate for the predicted deviations.  However, a majority of compensation methods aim at minimizing expected geometric 
and dimensional error, with a lack of consideration of cost and uncertainty.  This study presents a new strategy based on multi-attribute utility 
theory to account for cost and inherent uncertainty associated with a compensation decision. By establishing manufacturer preferences and prior 
beliefs about the efficacy of a predictive model, the proposed decision-making strategy for compensation significantly increases the value of a 
given print to a manufacturer under simulated preferences. 
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1. Introduction 

1.1. Background 

One consequence of the increasing use of additive 
manufacturing (AM) to produce functional parts is a significant 
need to ensure high dimensional accuracy for printed objects.  
Unfortunately, a gap still remains between the required 
accuracy for many applications and the achievable accuracy on 
many AM machines.  A significant amount of work in the 
literature has been directed towards improving the geometric 
and dimensional accuracy of 3D printed parts.  This research 
can be divided into several broad fields, the most popular of 
which include process planning and print process parameter 
optimization [1–5], online monitoring [6–12], and product 
design adjustment based on predictive modeling [13–19].   

Efforts to optimize a printing process’ parameters frequently 
adopt experimental design approaches to select the process 
settings that produce parts with the greatest overall accuracy.  

The parameters to be optimized vary greatly from machine to 
machine and process to process, thus necessitating a new 
experiment for each machine model, or when the process is 
fundamentally changed, i.e. when the software is updated.     

Work in the area of online monitoring has sought to capture 
in situ data during a printing process and leverage it to 
proactively stop processes that are likely to produce poor 
quality parts, or to trigger actions intended to improve the 
quality of a part.  Examples of a possible action for a laser 
powder bed fusion (LPBF) process could include remelting a 
layer or removing a layer with a defect and resuming the print.  
Process parameters could also be adjusted on the fly. 

Finally, approaches utilizing predictive product design 
adjustment seek to generate predictions for the geometric 
inaccuracies of a manufactured part, and then adjust the 
dimensions of the part before printing so as to compensate for 
them, producing a part with the intended dimensions. Below 
we provide a detailed review of design adjustment methods.  
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1.2. Predictive product design adjustment 

This approach was utilized by Tong, et al. [13] to improve 
the accuracy of parts produced using stereolithography (SLA).  
The proposed process started with a kinematic model designed 
to predict the dimensional inaccuracies of the printed part 
caused by inaccuracies in the motion of a mirror that reflects 
the printer’s laser beam into the resin vat.  A test artifact was 
designed, produced, and measured to determine the coefficients 
in the kinematic model.  With the fitted model, Tong, et al. 
generated predictions for the inaccuracies of a new part that 
was similar to the test artifact.  These predictions were used to 
modify each vertex in the part’s STL file, which is a triangular 
mesh representation of the 3D shape that is to be printed.  This 
file format is widely used in the field of additive 
manufacturing.  An illustration of such a file is shown in Figure 
1.  Each vertex in the triangular mesh was translated in the 
direction opposite to the predicted translation due to kinematic 
error.  A part produced using the compensated STL file was 
compared to one produced using the original STL file, and was 
found to have significantly less volumetric error.  Tong, et al. 
[14] then extended this work for use with a fused deposition 
modeling (FDM) printer by developing a separate kinematic 
error model for that machine.  They further demonstrated the 
application of compensation to the part’s slice file. 
 

 

Fig. 1. Simplified illustration of an STL file, including vertices, faces, and 
normal vectors. 

Huang, et al. [15,16,18–20] proposed a strategy to optimally 
compensate for a part’s predicted deformation based on the 
analysis that a design incorporating compensation might have 
a slightly different distortion pattern than the original design.  
The proposed method addresses this by accounting for the 
predicted additional deviations caused by adding 
compensation.  Huang, et al. employed this compensation 
strategy along with a parametric function-based predictive 
modeling approach to generate predictions of geometric errors 
for 2D freeform shapes [15,16,18] and 3D primitive shapes 
[19].  Using this method, dimensional accuracy for 2D freeform 
shapes was shown to increase by fifty percent or more. 

Decker, et al. [21] developed a data-driven modeling 
approach that used past geometric accuracy data from a printer, 
along with several predictor variables calculated from 
triangular mesh shape representations of printed parts in order 
to train a machine learning model.  This model was then used 

to generate predictions of accuracy for new shapes that were to 
be printed, which were dissimilar to those in the training set.  
Compensation based on the predictions was applied in a 
manner similar to Tong, et al. [13], however vertices were 
translated along the median vector calculated using the 
adjacent normal vectors to each vertex on the triangular mesh 
as opposed to utilizing a vertex correspondence approach.  This 
is illustrated in Figure 2.  Decker, et al. [21] demonstrated a 
forty percent improvement of dimensional error for a printed 
part using training data from different shapes. 
 

 

Fig. 2. Compensation strategy used in Decker, et al [21]. 

Chowdhury, et al. [22,23] used a thermal modeling based 
approach to predict thermal deformations generated in parts 
produced using selective laser sintering (SLS).  Predictions of 
distortion from a thermo-mechanical finite element analysis 
(FEA) model were used to train a neural network.  For the 
network, an instance in the model was a vertex on the part’s 
STL file.  During training, the post-deformation positions of 
vertices were used as predictor variables, and the pre-
deformation position of those vertices treated as a response.  
Once this model was trained, the network was used to predict 
the proper compensated position of each vertex on a part’s 
designed STL file.  This worked by having the neural network 
predict what staring vertex position would result in the desired 
vertex position once distortion was added. 

McConaha and Anand [24] iterated on this approach, using 
a sacrificial build instead of a predictive model.  Under this 
strategy, a part is printed and then 3D scanned, with the 
measured distortions then used instead of predicted distortions.  
McConaha and Anand used a neural network compensation 
approach similar to Chowdhury, et al. [22,23], but instead used 
the post-deformation positions of vertices to train a network 
that would predict the reverse of vectors describing the 
transformation between design and deformed  points.  This was 
done so as to mitigate issues due to extrapolation. 

Zhang, et al. [25] further built on this line of work, and 
proposed applying the distortion predictions produced using a 
thermo-mechanical FEA simulation to a non-uniform rational 
basis spline (NURBS) surface instead of an STL file so as to 
preserve accuracy. 

One unifying theme found in each of the presented works is 
a desire to most effectively reduce the magnitude of geometric 
deviations based on the prior belief of the manufacturer as to 
what these deviations will be.  In the literature, this prior belief 
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can be defined by a predictive model or simply the results of 
one or several sacrificial parts.   

While this is a reasonable and beneficial goal, there are two 
aspects to these approaches worth considering.  First, because 
all additive manufacturing methods are inherently complex 
combinations of several physical processes and engineered 
systems subject to constant variation, no model or sacrificial 
part will perfectly predict the magnitude of deviations across 
the surface of a given part.  As a result, all predictions come 
with inherent uncertainty.  Further, the effects of compensation 
itself are subject to natural variations in the printing process.  
Therefore, knowledge regarding uncertainty of these outcomes 
would be worth considering when determining when and where 
to apply compensation.  If information regarding how the 
model performs on previously unseen data is known, it would 
be desirable that this prior probability distribution influences 
the compensation that is performed. 

Second, not all improvements or reductions in geometric 
accuracy are equal in the eyes of a manufacturer.  A 
manufacturer might be able to employ a tools such as a grinder, 
or a hybrid manufacturing system [26] to correct for 
dimensions that are too large, but unable to correct for 
dimensions that are too small in post-processing.  In this case, 
inaccurate compensation that produces dimensions that are too 
small is far more costly than inaccurate compensation 
producing dimensions that are too large.  A manufacturer might 
also have to meet certain tolerance requirements.  In this case, 
compensation that puts a part within the required tolerances 
would be far preferable to compensation that leaves or puts the 
part’s dimensions outside of them.  Similarly, asymmetric 
tolerances [27] might be encountered, which could influence 
the significance of certain compensation errors.  Intuitively, an 
ideal compensation strategy should take these considerations 
into account. 

1.3. Multi-attribute utility theory 

One possible tool for performing compensation while 
incorporating information regarding a method’s uncertainty 
and a manufacturer’s preferences is Multi-Attribute Utility 
Theory (MAUT) [28].  Under this approach, a decision maker 
starts by constructing a model that ascribes a dollar value to a 
set of conditions.  In this case, these conditions might be the 
overall accuracy of the print, or whether it is within certain 
tolerances.  Then, a von Neumann-Morgenstern utility is 
calculated from the given value function and the probability 
distribution of the various outcomes.  The optimal 
compensation strategy is that which maximizes the expected 
utility. 

Several examples of MAUT being applied to manufacturing 
decisions exist in the literature.  One cluster of work has 
focused on the application of MAUT and Bayesian analysis to 
subtractive manufacturing.  Abbas, et al. [29] demonstrated the 
use of decision analysis in order to optimize profit for a 
manufacturer performing a milling operation.  The decisions 
considered included which tools to use, and which process 
parameters should be selected.  The cost due to tool wear and 
labor to perform the milling operation were both major parts of 
this study.  Hupman, et al. [30] build on this approach by 

evaluating the effectiveness of different incentive structures for 
achieving optimal value for a manufacturer by properly 
incentivizing milling machine operators.  Schmitz, et al. [31] 
go into greater depth in describing the application of Bayesian 
analysis for this application while Zapata-Ramos et al. [32] 
studied the value of information and experimentation in context 
of efforts to optimize profit.  Finally, Karandikar, et al. [33] 
utilized Bayesian updating to predict tool life in these systems.  

Xu and Huang [34] applied MAUT to analyze setup plans in 
the field of process planning.  Their work provided a case study 
illustrating how to define optimality of a setup plan by 
combining manufacturing error simulation with MAUT.  
Pergher and Teixeira de Almeida [35] applied MAUT to 
choose the proper parameters for a production plan under 
uncertainty.  They later developed a multi-attribute utility 
model for choosing which dispatching rules to use in a job shop 
environment [36].  Other methods of decision analysis such as 
the Analytic Hierarchy Process (AHP) and the weight and rate 
method have been applied to AM, specifically for decisions 
related to which AM method or material to use, or which 
process settings to employ [37–39]. 

1.4. Scope and contributions 

The main contribution of this paper is to propose a 
methodology by which the efficacy of a compensation strategy 
for AM can be evaluated given prior beliefs about the model’s 
performance, and a manufacturer’s priorities.  To our 
knowledge, no study has reported on the use of decision 
analysis to support optimal decision-making for a 3D shape 
compensation strategy in AM.  This allows a manufacturer to 
evaluate whether a given compensation strategy should be 
employed, or which should be chosen given multiple options.  
A further benefit of this approach is that the utility to the 
manufacturer of producing a given part with or without a 
compensation strategy is calculated as a dollar value.  This 
would aid in determining pricing strategies for both the parts 
themselves in a job shop setting, and for software and models 
that enable compensation.  The proposed methodology was 
evaluated on experimental data from [21].  This paper shows 
that the conventional compensation strategy frequently fails to 
maximize a manufacturer’s utility, and demonstrates how a 
simple modification to the strategy can greatly increase 
expected utility of a given compensated print. 

The remainder of this paper is structured as follows.  First, 
considerations for constructing a value function describing a 
manufacturer’s preferences are discussed, and example 
functions are given.  Second, a methodology for calculating the 
expected utility is described.  Third, the compensation strategy 
used in the study is introduced.  Finally, results demonstrating 
the method are given.  The proposed strategy is shown to 
significantly increase the expected utility of a print. 

2. Methodology 

2.1. Constructing a value function 

The first step in the proposed approach is to develop a value 
function that describes the preferences a manufacturer has for 
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a specific print.  These preference attributes could include the 
overall accuracy of the part, specific tolerances, and more, and 
seek to account for the unique challenges and constraints 
brought on by using additive manufacturing.  The value 
function seeks to express the dollar value to a manufacturer of 
a completed print as a function of these attributes.  One 
situation where these values and costs are particularly well 
defined is in the case of an AM service provider.  These 
businesses accept print jobs from a wide range of companies 
for a predefined price and with prenegotiated quality 
requirements.  These parts are then manufactured by the service 
provider at a specific cost, and then returned to the customer, 
ideally at a profit.  Several different value functions will be 
discussed below, which represent only a small fraction of the 
possible functions that could be utilized to express 
manufacturer preferences. 

The first value function might be used in a situation where a 
manufacturer must meet certain tolerances, has no ability to fix 
an out-of-tolerance print, and derives no benefit from 
improving the accuracy of the part within the tolerances: 
 
𝑉𝑉! 	= 	𝑉𝑉"#$%	𝐼𝐼&!"" 	−	𝐶𝐶'             (1) 
 

𝑉𝑉"#$% is the base value of a successful print of the part.  For 
instance, if the manufacturer is a 3D printing service provider, 
this would be the price paid by a customer for the part, 
assuming it met the tolerance requirements.  𝐼𝐼&!"" is an indicator 
variable that is equal to one if the required tolerances have been 
met, and zero otherwise.  Here, tolerance requirements are 
considered met if each dimension on the part is measured to be 
within the intended dimension plus 𝑡𝑡( or minus 𝑡𝑡), the upper 
and lower tolerance bounds. 
  Finally, 𝐶𝐶'  is the cost to manufacture the part, including 
materials, energy, machine maintenance, etc.  It can be seen 
here that the value of the print is the difference between the 
benefits and the cost, and will be negative if the print fails to 
meet the tolerance requirements.  In this situation, the part will 
either be worth all or nothing to the manufacturer depending on 
whether it meets tolerance requirements.  It should be noted 
that outside meeting tolerances, increasing or decreasing 
accuracy doesn’t financially impact the manufacturer.  This 
reflects the very common case where tolerances are the only 
geometric quality metric that must be met by a manufacturer in 
a contract with a customer. 

The second value function might be used in a situation 
where the manufacturer has no tolerance requirements, but is 
penalized for errors according to a quadratic loss function: 
 
𝑉𝑉* 	= 	𝐵𝐵+#, 	− 	𝛼𝛼 ∑ (‖𝒙𝒙- 	− 	𝒙𝒙. -‖*)*.

-	0	! 	+	𝑉𝑉"#$% 	−	𝐶𝐶1       (2) 
 
𝐵𝐵+#, is the maximum additional value over the base value that 
would be derived from a perfectly accurate part.  The second 
term sums the squares of geometric deviations at each point 
over each of the n points that are evaluated, and is then 
multiplied by the scaling term 𝛼𝛼  to determine the accuracy 
penalty.  Error is defined as the Euclidean norm between the 
measured position of the point 𝒙𝒙. and the designed position of 
the point 	𝒙𝒙...  An absolute value could be used instead of a 
square of the error terms if that better reflected the 
manufacturer’s preference.  It is desirable that the number of 

points evaluated across the STL file be made uniformly dense 
through remeshing, and the constant 𝛼𝛼 be set according to n, so 
as to not bias the calculation.  In this instance, the manufacturer 
no longer has to meet a set of fixed tolerances, but is instead 
incentivized financially to minimize the overall error with an 
exponentially increasing penalty for increasing error 
magnitudes.  This might be the case when a part is being built 
for prototyping and visualization purposes as opposed to 
functional end-use.  The manufacturer would still value a less 
accurate part to a lower degree, as a low-quality product would 
be more likely to leave a customer unsatisfied.  

Finally, a third value function might be used in a situation 
where a manufacturer has tolerance requirements, derives no 
benefit for improving accuracy within the tolerances, and has 
an ability to fix an out-of-tolerance dimension if it is larger than 
the design, albeit at a cost: 
 
𝑉𝑉! = 𝑉𝑉"#$%	𝐼𝐼&! + 𝛾𝛾∑ (𝑡𝑡' −𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡', ‖𝒙𝒙( − 	𝒙𝒙2 (‖))4*

(	,	- − 𝐶𝐶.      (3) 
 
𝐼𝐼&" is equal to one if the lower tolerance requirement has been 
met, and zero otherwise.  There is also a cost for physically 
repairing geometric deviations that are above the upper 
tolerance 𝑡𝑡(, scaled by 𝛾𝛾.  In this situation, the part is worth 
nothing to the manufacturer if a given dimension violates the 
lower tolerance bound, as they can no longer make that 
dimension larger once the print is completed.  In this way, the 
manufacturer’s incentives are similar to those laid out in the 
first value function.  In this situation, however, a deviation 
resulting in a dimension that is too large can be fixed using 
some form of subtractive manufacturing, which could be as 
simple as a bench grinder and as complex as a CNC machine.  
Because of the cost for these repairs, the incentive to have no 
dimension fall below the lower tolerances will have to be 
weighed against the cost of making some too large. 

2.2. Determining a proper utility function 

Once a function describing the value of a certain outcome 
has been established, it is necessary to determine the expected 
utility over that value function.  This is because there is 
uncertainty as to which outcome will materialize, and decision 
makers may value different situations differently based on the 
distribution of risk.    

In the case of a service provider manufacturing hundreds if 
not thousands of part orders a day, it might be reasonable to 
assume that in the case of a single print with a value in the range 
of ~$10 to $1,000 they follow the delta property [40]: 
 
𝑦𝑦32 = 𝑦𝑦3 + 𝛿𝛿              (4) 
 
Here, 𝑦𝑦3  is the greatest amount of money a decision maker 
would pay for a deal that pays 𝑦𝑦! dollars with probability p and 
𝑦𝑦*  dollars with probability 1-p.  Similarly, 𝑦𝑦32  is the greatest 
amount of money a decision maker would pay for a deal that 
pays 𝑦𝑦! + 𝛿𝛿 dollars with probability p and 𝑦𝑦* + 𝛿𝛿 dollars with 
probability 1-p.   This is illustrated in Figure 3. 
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Fig. 3. Lottery modified by shifting the payout. 

It might also be reasonable to assume that in the range of ~$10 
to $1,000 the manufacturer is risk neutral.  This would suggest 
a linear utility function.  As a result, we might determine that a 
manufacturer’s utility is equal to their value function [40].  For 
this situation, the task of calculating expected utility is greatly 
simplified.  It should be noted that these assumptions will not 
be reasonable for all manufacturers, especially when the 
potential value of a part increases significantly.  In these cases, 
a more elaborate utility function will be required. 

2.3. Calculating expected utility 

With this in place, it is possible to calculate the expected 
utility of the value functions defined above.  The expected 
utility of the first function becomes 
 
𝐸𝐸[𝑈𝑈(𝑉𝑉!)] = 𝑉𝑉"#$%𝑃𝑃(𝐼𝐼𝐼𝐼	𝑇𝑇𝑇𝑇𝑇𝑇. ) − 𝐶𝐶'            (5) 
 
where 𝑃𝑃(𝐼𝐼𝐼𝐼	𝑇𝑇𝑇𝑇𝑇𝑇. ) is the probability that all points on the part 
are within the required tolerances.  The expected utility over 
the second value function can be expressed as: 
 
𝐸𝐸[𝑈𝑈(𝑉𝑉))] 	= 	−𝛼𝛼𝛼𝛼 ∫ 𝑓𝑓%//(𝑚𝑚)	𝑚𝑚)𝑑𝑑𝑑𝑑

0
10	 + 𝐵𝐵2#3 + 𝑉𝑉"#$% − 𝐶𝐶.      (6)   

 
where 𝑓𝑓%33(𝑥𝑥) is the probability density function of the prior 
belief distribution of geometric deviation magnitudes after 
compensation.  Finally, the third expected utility can be 
expressed as: 
 
𝐸𝐸[𝑈𝑈(𝑉𝑉4)] 	= 	𝑉𝑉"#$%	𝑃𝑃(𝐼𝐼𝐼𝐼	𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝑇𝑇𝑇𝑇. ) 	+ 	𝛾𝛾	𝑛𝑛	 E	𝑡𝑡( 	−

	E	𝑡𝑡(	𝐹𝐹%33(𝑡𝑡() 	+	∫ 𝑓𝑓%33(𝑥𝑥)	𝑥𝑥	𝑑𝑑𝑑𝑑5
&#

	I	I 	−	𝐶𝐶'		                       (7) 
 
where 𝑃𝑃(𝐼𝐼𝐼𝐼	𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝑇𝑇𝑇𝑇. ) is the probability that all points on 
the part are within the required lower tolerances (not too 
small).  In order to determine each of these expected values, it 
is necessary to determine 𝑃𝑃(𝐼𝐼𝐼𝐼	𝑇𝑇𝑇𝑇𝑇𝑇. ), 𝑃𝑃(𝐼𝐼𝐼𝐼	𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝑇𝑇𝑇𝑇. ), and 
𝑓𝑓%33(𝑥𝑥).  Methodologies for determining these probabilities 
and distributions will be given in the next two sections. 

2.4. Generation of prior belief distributions 

The probability density function of the prior belief 
distribution of geometric deviation magnitudes after 
compensation 𝑓𝑓%33(𝑥𝑥) for this example is empirically generated 
from a dataset of vertices from a part compensated according 
to the method proposed in [21].  This reflects the belief of the 
manufacturer as to the probability of achieving certain 
magnitudes of vertex deviations on a part compensated using 
the predictive model and compensation strategy given in [21].  
This greatly simplifies the task of understanding uncertainty, 
since uncertainty regarding the efficacy of predictions, 
compensation and measurement can all be accounted for in one 
distribution that focuses on the metric of ultimate interest: 
deviation.  This empirically generated distribution is shown in 
Figure 4.  It can be seen here that this distribution is slightly 
skewed to the left.  Because the distribution is generated 
empirically, this will cause challenges when determining the 
joint probability distribution of multiple points, as will be seen 
later.  In an industrial setting, the use of big data analytics 
would be an enabling technology in this effort, as it would 
facilitate the collection of large amounts of data representing 
the efficacy of compensation on individual machines and 
varying process parameters.  This would allow for the use of 
prior belief distributions that are conditional on the most 
relevant information available. 

2.5. Calculating tolerance probabilities given spatial 
autocorrelation 

Next, it is necessary to determine 𝑃𝑃(𝐼𝐼𝐼𝐼	𝑇𝑇𝑇𝑇𝑇𝑇. ) and 
𝑃𝑃(𝐼𝐼𝐼𝐼	𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝑇𝑇𝑇𝑇. )  for a new part for which tolerance 
probabilities are desired based on the data used to generate 
𝑓𝑓%33(𝑥𝑥).  The part will be evaluated at a set of n locations on its 
surface: 𝐋𝐋	 = 	 {𝐥𝐥𝟏𝟏, 𝐥𝐥𝟐𝟐, . . . , 𝐥𝐥𝒏𝒏} 	∈ ℝ.	×	4   One challenge faced 
here is that vertices on the surface of the shape within close 
proximity of each other will likely exhibit some degree of 
spatial autocorrelation.  This was confirmed for the given 
dataset using Moran’s I test [41].  One way to account for this 
issue is to only measure points across the surface of the part 
that are sufficiently separated so as to not be influenced by 
spatial autocorrelation.  A semivariogram of the compensation 
deviation data is given in Figure 5.  It can be seen that after 
points are roughly 20 mm apart, the effect of spatial 
autocorrelation becomes negligible.  If one wishes to simplify 
the calculation of these probabilities by assuming 
independence, all measured points must be greater than this 
distance apart for this dataset. 
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Fig. 4. Probability distribution of geometric deviations of compensated 
vertices from [21]. 

 

 

Fig. 5. Semivariogram of the compensation deviation data (mm). 

However, it is more likely that the points on the surface of 
the part that will be measured, often using a coordinate 
measurement machine or 3D scanner, will be significantly 
closer than the limit for spatial independence due to their large 
number (thousands).   In this instance, a method for calculating 
𝑃𝑃(𝐼𝐼𝐼𝐼	𝑇𝑇𝑇𝑇𝑇𝑇. )  and 𝑃𝑃(𝐼𝐼𝐼𝐼	𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝑇𝑇𝑇𝑇. )  while accounting for 
dependency between the deviation magnitudes of nearby points 
should be utilized.  One will be illustrated below.  In it, a Monte 
Carlo approach is used to determine the percentage of 
simulated parts that are within and outside of the 
manufacturer’s predefined tolerance requirements, allowing 
for the determination of 𝑃𝑃(𝐼𝐼𝐼𝐼	𝑇𝑇𝑇𝑇𝑇𝑇. ) and 𝑃𝑃(𝐼𝐼𝐼𝐼	𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝑇𝑇𝑇𝑇. ).  In 
order to do this, a large number of sets containing simulated 

deviations at each of the points to be evaluated on the 
prospective part are generated and then screened against the 
manufacturer’s predefined tolerancing criteria.  For a given set 
of vertices, it is necessary to draw a random sample of points 
from the deviation distribution 𝑓𝑓%33(𝑥𝑥).  However, since the 
magnitude of deviations at nearby points are dependent on their 
neighbors, it is necessary to construct and draw magnitudes 
from a joint probability distribution that takes this correlation 
into account.  This necessitates the simulation of a joint 
distribution with empirically defined marginals. 

One preliminary task that must be done beforehand is to 
determine the degree of expected covariance between points to 
be evaluated on the new part to be manufactured.  First, 
functions describing the semivariogram and covariogram are 
fit to the manufacturer’s previous compensation deviation data.  
These functions seek to describe the relationship between 
distance between points and covariance for magnitude of 
deviation.  In this example, the spherical variogram model will 
be utilized, where semivariance 𝛾𝛾 is a function of distance h 
given by: 
 

𝛾𝛾(ℎ; 𝑟𝑟, 𝑠𝑠, 𝑎𝑎) 	= 	U	
0																																													ℎ	 = 	0						
𝑎𝑎	 +	(𝑠𝑠 − 𝑎𝑎) E4(

*3
− ($

*3$
I 			0 < ℎ ≤ 𝑟𝑟

𝑠𝑠																																														ℎ > 𝑟𝑟									
      (8) 

 
where a is the nugget of the semivariogram, s is the sill, and r 
is the range [42].  The spherical covariogram model is given as: 
 

𝐶𝐶(ℎ; 𝑟𝑟, 𝑠𝑠, 𝑎𝑎) 	= 	U	
𝑠𝑠																																															ℎ	 = 	0					
(𝑠𝑠 − 𝑎𝑎) E1 − 4(

*3
− ($

*3$
I 							0 < ℎ ≤ 𝑟𝑟

0																																															ℎ > 𝑟𝑟								
     (9) 

 
These are fit to the compensated deviation data from [21], and 
shown in Figure 6.  Using the spherical covariogram model, it 
is possible to determine a covariance matrix Σ describing the 
covariance between each of the points L on the part to be 
evaluated given the distances between them. 
    With this established, simulated sets of deviation 
measurements for all of the vertices on the part can be generated 
by drawing samples from a multivariate distribution with 
marginals based on the probability distribution 𝑓𝑓%33(𝑥𝑥) shown 
in Figure 4.  This can be a challenging task, since 𝑓𝑓%33(𝑥𝑥) is an 
empirical, non-normal distribution.  Further, because thousands 
of points will be evaluated across the surface of the part, the 
high dimensionality of the data will present an additional 
hurdle.  One useful tool for addressing these challenges is a 
copula structure, which allows users to describe multivariate 
joint distributions in terms of univariate marginal distributions 
and the ‘link’ between them.  In simpler terms, copulas allow 
for the modeling of dependence between random variables, 
which is needed for this application.  While there are a number 
of classes of copulas that have been utilized in the literature, 
one of the more popular copula structures in the Gaussian 
copula, which is generated from the multivariate normal 
distribution.  Given a correlation matrix 𝐑𝐑	 ∈ 	 [−1,1]:,:  the 
Gaussian copula can be written as:     
 
𝐶𝐶;<#=$$(𝑢𝑢) 	= 	Φ;_Φ>!(𝑢𝑢!), . . . Φ>!(𝑢𝑢:)`         (10) 
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where Φ; is the joint cumulative distribution function (CDF) 
of the multivariate normal distribution with a mean of zero and 
covariance matrix corresponding to the correlation matrix R, 
while Φ>! is the inverse of the CDF of the normal distribution.  
This structure was chosen because of the flexibility with which 
it can be used to model complex situations like the one 
encountered in this application. 
 

 

Fig. 6. Semivariogram and covariogram of compensated deviation data. 

One method for doing this, which was illustrated in [43] will 
be utilized here.  First, K samples 𝒙𝒙!, 𝒙𝒙*, . . . 𝒙𝒙?  of the n-
dimensional vector were generated from a multivariate normal 
distribution with a covariance matrix Σ.  Here, K = 10000 and 
n = 5000.  The cumulative probability of each value is 
determined using the normal cumulative distribution function 
𝑡𝑡.,- =	ΦA,-_𝑥𝑥A,-` where k = 1,...,10000 and i = 1,...,5000.  
Finally, the simulated values of deviation at each evaluated 
point for each simulated part are generated using the inverse of 
the cumulative distribution function for the distribution shown 
in Figure 4: 𝑦𝑦A,- 	= 	𝐹𝐹A,->!_𝑡𝑡A,-`.   The probabilities 
𝑃𝑃(𝐼𝐼𝐼𝐼	𝑇𝑇𝑇𝑇𝑇𝑇. )and 𝑃𝑃(𝐼𝐼𝐼𝐼	𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿	𝑇𝑇𝑇𝑇𝑇𝑇. ) can be determined from the 
proportion of the generated sets from the multivariate 
distribution that are entirely within the required tolerances.  For 
the purposes of this work, a part is considered out of tolerance 
if the deviation at one of its vertices is outside the given 
constraints, however this same methodology could be applied 
to other schemes.  Once these probabilities are determined, 
expected utility can be calculated as given in Equations 5-7.  It 
should be noted that one potential downside to the use of 
Gaussian copulas is their weak tail dependence, which implies 
that the probability of clusters of extreme events can be 
underestimated using this approach [44].  It is important that 
this be weighed against the definition of a part being out of 
tolerance that is defined by a manufacturer to ensure that the 
distribution that is described using the copula structure is well 
suited for estimation. 
 

2.6. Alternative compensation strategy 

In order to demonstrate the usefulness of this methodology, 
a simple alternative compensation strategy is proposed.  In this 
strategy, which is illustrated in Figure 7, each vertex is 
translated along a vector normal to the surface a distance equal 
to the opposite of the predicted deviation plus a constant c, 
which will be the same for every point on the surface of the 
part.  Because 𝑦𝑦a  will vary for each point, the amount of 
compensation applied to each point will differ as well.  This 
constant c is simply a parameter of the strategy that will be 
optimized by choosing the value that maximizes expected 
utility as calculated using the proposed methodology.  The 
prior belief distribution for the results of the alternative 
compensation scheme can be approximated by translating the 
distribution 𝑓𝑓%33(𝑥𝑥) by the value c. 

 
 

 

Fig. 7. Alternative compensation strategy. 

3. Results 

An example scenario is presented below, in order to 
demonstrate the proposed approach.  A manufacturer will build 
a part, but wishes to employ compensation with an expected 
distribution of remaining deviations represented in Figure 4.  
The expected value of the printed part will be evaluated for 
varying values of the hyperparameter of the compensation 
strategy c using the three proposed value functions.  Parameters 
for each of the three value functions are chosen in order to 
reflect a potential situation a manufacturer might face.  They 
are given in Table 1.  The expected utility of the compensated 
part for each value function as a function of different values of 
c is shown in Figures 8-10.  Expected utilities are calculated 
using the proposed method to account for spatial 
autocorrelation.  The maximum of each function is indicated 
by a blue circle.  It can be seen that in each case, the value of c 
(mm) that maximizes the expected utility of the compensated 
part is not zero.  The maximum expected utility values using 
the alternative compensation strategy are compared against the 
expected utility values from the standard compensation 
strategy in Table 2. 

 
 
 
 
 



	 Nathan Decker  et al. / Procedia Manufacturing 53 (2021) 348–358� 355
8 Decker and Huang / Procedia Manufacturing 00 (2021) 000–000 

Table 1. Example parameters for value functions. 

Parameter Value 

𝑉𝑉"#$% $300 

𝐶𝐶& $100 

𝐵𝐵'#( $20 

𝑡𝑡) 0.225 mm 

𝑡𝑡* - 0.225 mm 

𝛼𝛼 3 

𝛾𝛾 30 

𝑛𝑛 5000 

 
 

 

Fig. 8. Expected utility for value function #1 as a function of c. 

 

 

Fig. 9. Expected utility for value function #2 as a function of c. 

 

Fig. 10. Expected utility for value function #3 as a function of c. 

Table 2. Maximum expected utility. 

Value Function Maximum 
Expected Utility 

Standard 
Expected Utility 
(at c = 0) 

Difference 
in Utility 
Values 

#1 $89.93  

(at c = 0.014) 

$81.56 

 

$8.37 

#2 $179.90 

(at c = 0.013) 

$177.50 $2.40 

#3 $143.30 

(at c = 0.119) 

$85.39 $57.91 

 
 

Value function #1 simply penalizes prints that are out of the 
required tolerances, meaning that a value of c that minimizes 
this likelihood will maximize expected utility.  Since the 
distribution of 𝑓𝑓%33(𝑥𝑥) shown in Figure 4 is skewed slightly to 
the left, we can conclude that the compensation 
procedure/model utilized in [21] has a slight tendency to 
produce compensated dimensions that are too small.  As a 
result, a value of c that is positive can help to offset this effect, 
and thus maximize utility.  Similarly, value function #2 is 
maximized when the overall sum of squares of deviations is 
minimized.  Therefore, the optimal value of c is also positive 
to account for the skew in 𝑓𝑓%33(𝑥𝑥).  Finally, value function #3 
seeks to keep all absolute deviations above the lower tolerance 
bound (i.e. no dimensions that are too small) while also 
minimizing the sum of deviations above the upper tolerance 
bound (i.e. dimensions that are too large).  When c is less than 
-0.1 mm, the value function flattens out to −𝐶𝐶' as the part is 
guaranteed to fail the lower tolerance test.  When c is greater 
than -0.1 mm, the likelihood of failing the lower tolerance test 
decreases, increasing the expected utility.  However, as c 
increases beyond 0.119 mm, the effect of the increasing cost to 
repair above tolerance deviations outweighs the effect of the 
decreasing likelihood of lower tolerance failure, and the 
expected utility decreases rapidly. 

Because the value functions are significantly impacted by 
the manufacturer’s preferences, and therefore choice of 𝛼𝛼 and 
𝛾𝛾 , a sensitivity analysis of the two coefficients is useful to 
determine the generalizability of these results to situations with 
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differing preferences.  Figure 12 illustrates the optimal value of 
c for value function # 3 as a function of 𝛾𝛾.  Value function 1 
does not utilize 𝛼𝛼  or 𝛾𝛾 , and is therefore not analyzed here.  
Since value function #2 only penalizes the sum of squares of 
deviations, and has no other criteria, the optimal value of c is 
not sensitive to changes in the 𝛼𝛼 coefficient.  We can also see 
that the optimal value of c for value function #3 is sensitive to 
the value of 𝛾𝛾.  This is because increasing cost for repairs on 
dimensions that are too large causes the optimal value of c to 
decrease to compensate. Figure 11 illustrates the difference 
between the maximum expected utility and standard expected 
utility as a function of 𝛼𝛼 and 𝛾𝛾.  We can see that this difference 
increases linearly with 𝛼𝛼 in the case of value function #2 and 
decreases with increasing 𝛾𝛾 in the case of value function #3. 

 

 

Fig. 11. Sensitivity analysis for the difference in optimal utility values to 𝛼𝛼 
and 𝛾𝛾 for Equations 2 and 3. 

 

Fig. 12. Sensitivity analysis for the optimal value of c to 𝛾𝛾 for Equation 3. 

4. Conclusion 

It can be seen from these results that the conventional 
compensation strategy, which seeks to minimize a part’s 
deviations, does not necessarily optimize the expected utility of 
a produced part.  Further, even with a relatively simple change 
to the conventional compensation strategy, it is possible to 
significantly increase the expected utility of a given print. 

Because each manufacturer will have different incentives 
and tolerance for risks of different magnitudes, the value 
functions and utility functions determined over the value 
functions will need to be adjusted accordingly. 

This general methodology can also be used for other 
applications.  It could useful for a manufacturer to determine 
whether they should attempt to print a part on a given machine 
or with a specific predictive model.  It could also be used to 
help a service provider determine whether it should accept a 
specific job, or how it should price contracts for prints with 
certain tolerances and requirements. 

There are two limitations to the proposed methodology that 
should be highlighted.  First, the calculations of expected utility 
are only as accurate as the data they are based on.  In the 
absence of adequate data, or when using deviation data that is 
not representative of the situation the manufacturer will be 
facing, recommendations based on this methodology will not 
be useful.  Second, constructing a value function describing a 
manufacturer’s preferences can be difficult.  While three 
different functions that account for relevant outcomes are 
proposed here, real world value functions can be highly 
complex, and difficult to pin down.  There is a significant body 
of work that should be consulted on how best to elicit 
information for constructing a value function while avoiding 
biases and pitfalls. 
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