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Abstract

In the past two decades, the field of additive manufacturing (AM) has seen tremendous growth, especially in the production of functional parts.
Unfortunately, improving the dimensional accuracy of these printed parts to the point where they can be used for a broad range of applications
has proven challenging. Several methodologies to improve the dimensional accuracy of 3D printed parts have been proposed in the literature.
One approach that has seen a considerable amount of work in recent years is product design adjustment based on predictive modeling. Under
this approach, predictions of geometric deviations across the surface of a part are used to modify the shape of a part before printing so as to
counteract or compensate for the predicted deviations. However, a majority of compensation methods aim at minimizing expected geometric
and dimensional error, with a lack of consideration of cost and uncertainty. This study presents a new strategy based on multi-attribute utility
theory to account for cost and inherent uncertainty associated with a compensation decision. By establishing manufacturer preferences and prior
beliefs about the efficacy of a predictive model, the proposed decision-making strategy for compensation significantly increases the value of a
given print to a manufacturer under simulated preferences.
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1. Introduction The parameters to be optimized vary greatly from machine to
machine and process to process, thus necessitating a new
1.1. Background experiment for each machine model, or when the process is

fundamentally changed, i.e. when the software is updated.

Work in the area of online monitoring has sought to capture
in situ data during a printing process and leverage it to
proactively stop processes that are likely to produce poor
quality parts, or to trigger actions intended to improve the
quality of a part. Examples of a possible action for a laser
powder bed fusion (LPBF) process could include remelting a
layer or removing a layer with a defect and resuming the print.
Process parameters could also be adjusted on the fly.

Finally, approaches utilizing predictive product design
adjustment seek to generate predictions for the geometric
inaccuracies of a manufactured part, and then adjust the
dimensions of the part before printing so as to compensate for
them, producing a part with the intended dimensions. Below
we provide a detailed review of design adjustment methods.

One consequence of the increasing use of additive
manufacturing (AM) to produce functional parts is a significant
need to ensure high dimensional accuracy for printed objects.
Unfortunately, a gap still remains between the required
accuracy for many applications and the achievable accuracy on
many AM machines. A significant amount of work in the
literature has been directed towards improving the geometric
and dimensional accuracy of 3D printed parts. This research
can be divided into several broad fields, the most popular of
which include process planning and print process parameter
optimization [1-5], online monitoring [6—12], and product
design adjustment based on predictive modeling [13-19].

Efforts to optimize a printing process’ parameters frequently
adopt experimental design approaches to select the process
settings that produce parts with the greatest overall accuracy.
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1.2. Predictive product design adjustment

This approach was utilized by Tong, et al. [13] to improve
the accuracy of parts produced using stereolithography (SLA).
The proposed process started with a kinematic model designed
to predict the dimensional inaccuracies of the printed part
caused by inaccuracies in the motion of a mirror that reflects
the printer’s laser beam into the resin vat. A test artifact was
designed, produced, and measured to determine the coefficients
in the kinematic model. With the fitted model, Tong, et al.
generated predictions for the inaccuracies of a new part that
was similar to the test artifact. These predictions were used to
modify each vertex in the part’s STL file, which is a triangular
mesh representation of the 3D shape that is to be printed. This
file format is widely used in the field of additive
manufacturing. An illustration of such a file is shown in Figure
1. Each vertex in the triangular mesh was translated in the
direction opposite to the predicted translation due to kinematic
error. A part produced using the compensated STL file was
compared to one produced using the original STL file, and was
found to have significantly less volumetric error. Tong, et al.
[14] then extended this work for use with a fused deposition
modeling (FDM) printer by developing a separate kinematic
error model for that machine. They further demonstrated the
application of compensation to the part’s slice file.

Fig. 1. Simplified illustration of an STL file, including vertices, faces, and
normal vectors.

Huang, et al. [15,16,18-20] proposed a strategy to optimally
compensate for a part’s predicted deformation based on the
analysis that a design incorporating compensation might have
a slightly different distortion pattern than the original design.
The proposed method addresses this by accounting for the
predicted additional deviations caused by adding
compensation. Huang, et al. employed this compensation
strategy along with a parametric function-based predictive
modeling approach to generate predictions of geometric errors
for 2D freeform shapes [15,16,18] and 3D primitive shapes
[19]. Using this method, dimensional accuracy for 2D freeform
shapes was shown to increase by fifty percent or more.

Decker, et al. [21] developed a data-driven modeling
approach that used past geometric accuracy data from a printer,
along with several predictor variables calculated from
triangular mesh shape representations of printed parts in order
to train a machine learning model. This model was then used

to generate predictions of accuracy for new shapes that were to
be printed, which were dissimilar to those in the training set.
Compensation based on the predictions was applied in a
manner similar to Tong, et al. [13], however vertices were
translated along the median vector calculated using the
adjacent normal vectors to each vertex on the triangular mesh
as opposed to utilizing a vertex correspondence approach. This
is illustrated in Figure 2. Decker, et al. [21] demonstrated a
forty percent improvement of dimensional error for a printed
part using training data from different shapes.
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Fig. 2. Compensation strategy used in Decker, et al [21].

Chowdhury, et al. [22,23] used a thermal modeling based
approach to predict thermal deformations generated in parts
produced using selective laser sintering (SLS). Predictions of
distortion from a thermo-mechanical finite element analysis
(FEA) model were used to train a neural network. For the
network, an instance in the model was a vertex on the part’s
STL file. During training, the post-deformation positions of
vertices were used as predictor variables, and the pre-
deformation position of those vertices treated as a response.
Once this model was trained, the network was used to predict
the proper compensated position of each vertex on a part’s
designed STL file. This worked by having the neural network
predict what staring vertex position would result in the desired
vertex position once distortion was added.

McConaha and Anand [24] iterated on this approach, using
a sacrificial build instead of a predictive model. Under this
strategy, a part is printed and then 3D scanned, with the
measured distortions then used instead of predicted distortions.
McConaha and Anand used a neural network compensation
approach similar to Chowdhury, et al. [22,23], but instead used
the post-deformation positions of vertices to train a network
that would predict the reverse of vectors describing the
transformation between design and deformed points. This was
done so as to mitigate issues due to extrapolation.

Zhang, et al. [25] further built on this line of work, and
proposed applying the distortion predictions produced using a
thermo-mechanical FEA simulation to a non-uniform rational
basis spline (NURBS) surface instead of an STL file so as to
preserve accuracy.

One unifying theme found in each of the presented works is
a desire to most effectively reduce the magnitude of geometric
deviations based on the prior belief of the manufacturer as to
what these deviations will be. In the literature, this prior belief
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can be defined by a predictive model or simply the results of
one or several sacrificial parts.

While this is a reasonable and beneficial goal, there are two
aspects to these approaches worth considering. First, because
all additive manufacturing methods are inherently complex
combinations of several physical processes and engineered
systems subject to constant variation, no model or sacrificial
part will perfectly predict the magnitude of deviations across
the surface of a given part. As a result, all predictions come
with inherent uncertainty. Further, the effects of compensation
itself are subject to natural variations in the printing process.
Therefore, knowledge regarding uncertainty of these outcomes
would be worth considering when determining when and where
to apply compensation. If information regarding how the
model performs on previously unseen data is known, it would
be desirable that this prior probability distribution influences
the compensation that is performed.

Second, not all improvements or reductions in geometric
accuracy are equal in the eyes of a manufacturer. A
manufacturer might be able to employ a tools such as a grinder,
or a hybrid manufacturing system [26] to correct for
dimensions that are too large, but unable to correct for
dimensions that are too small in post-processing. In this case,
inaccurate compensation that produces dimensions that are too
small is far more costly than inaccurate compensation
producing dimensions that are too large. A manufacturer might
also have to meet certain tolerance requirements. In this case,
compensation that puts a part within the required tolerances
would be far preferable to compensation that leaves or puts the
part’s dimensions outside of them. Similarly, asymmetric
tolerances [27] might be encountered, which could influence
the significance of certain compensation errors. Intuitively, an
ideal compensation strategy should take these considerations
into account.

1.3. Multi-attribute utility theory

One possible tool for performing compensation while
incorporating information regarding a method’s uncertainty
and a manufacturer’s preferences is Multi-Attribute Utility
Theory (MAUT) [28]. Under this approach, a decision maker
starts by constructing a model that ascribes a dollar value to a
set of conditions. In this case, these conditions might be the
overall accuracy of the print, or whether it is within certain
tolerances. Then, a von Neumann-Morgenstern utility is
calculated from the given value function and the probability
distribution of the various outcomes. The optimal
compensation strategy is that which maximizes the expected
utility.

Several examples of MAUT being applied to manufacturing
decisions exist in the literature. One cluster of work has
focused on the application of MAUT and Bayesian analysis to
subtractive manufacturing. Abbas, et al. [29] demonstrated the
use of decision analysis in order to optimize profit for a
manufacturer performing a milling operation. The decisions
considered included which tools to use, and which process
parameters should be selected. The cost due to tool wear and
labor to perform the milling operation were both major parts of
this study. Hupman, et al. [30] build on this approach by

evaluating the effectiveness of different incentive structures for
achieving optimal value for a manufacturer by properly
incentivizing milling machine operators. Schmitz, et al. [31]
go into greater depth in describing the application of Bayesian
analysis for this application while Zapata-Ramos et al. [32]
studied the value of information and experimentation in context
of efforts to optimize profit. Finally, Karandikar, et al. [33]
utilized Bayesian updating to predict tool life in these systems.

Xu and Huang [34] applied MAUT to analyze setup plans in
the field of process planning. Their work provided a case study
illustrating how to define optimality of a setup plan by
combining manufacturing error simulation with MAUT.
Pergher and Teixeira de Almeida [35] applied MAUT to
choose the proper parameters for a production plan under
uncertainty. They later developed a multi-attribute utility
model for choosing which dispatching rules to use in a job shop
environment [36]. Other methods of decision analysis such as
the Analytic Hierarchy Process (AHP) and the weight and rate
method have been applied to AM, specifically for decisions
related to which AM method or material to use, or which
process settings to employ [37-39].

1.4. Scope and contributions

The main contribution of this paper is to propose a
methodology by which the efficacy of a compensation strategy
for AM can be evaluated given prior beliefs about the model’s
performance, and a manufacturer’s priorities. To our
knowledge, no study has reported on the use of decision
analysis to support optimal decision-making for a 3D shape
compensation strategy in AM. This allows a manufacturer to
evaluate whether a given compensation strategy should be
employed, or which should be chosen given multiple options.
A further benefit of this approach is that the utility to the
manufacturer of producing a given part with or without a
compensation strategy is calculated as a dollar value. This
would aid in determining pricing strategies for both the parts
themselves in a job shop setting, and for software and models
that enable compensation. The proposed methodology was
evaluated on experimental data from [21]. This paper shows
that the conventional compensation strategy frequently fails to
maximize a manufacturer’s utility, and demonstrates how a
simple modification to the strategy can greatly increase
expected utility of a given compensated print.

The remainder of this paper is structured as follows. First,
considerations for constructing a value function describing a
manufacturer’s preferences are discussed, and example
functions are given. Second, a methodology for calculating the
expected utility is described. Third, the compensation strategy
used in the study is introduced. Finally, results demonstrating
the method are given. The proposed strategy is shown to
significantly increase the expected utility of a print.

2. Methodology
2.1. Constructing a value function

The first step in the proposed approach is to develop a value
function that describes the preferences a manufacturer has for
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a specific print. These preference attributes could include the
overall accuracy of the part, specific tolerances, and more, and
seek to account for the unique challenges and constraints
brought on by using additive manufacturing. The value
function seeks to express the dollar value to a manufacturer of
a completed print as a function of these attributes. One
situation where these values and costs are particularly well
defined is in the case of an AM service provider. These
businesses accept print jobs from a wide range of companies
for a predefined price and with prenegotiated quality
requirements. These parts are then manufactured by the service
provider at a specific cost, and then returned to the customer,
ideally at a profit. Several different value functions will be
discussed below, which represent only a small fraction of the
possible functions that could be utilized to express
manufacturer preferences.

The first value function might be used in a situation where a
manufacturer must meet certain tolerances, has no ability to fix
an out-of-tolerance print, and derives no benefit from
improving the accuracy of the part within the tolerances:

Vi = Viase Ita” - Cp )]

Vpase 18 the base value of a successful print of the part. For
instance, if the manufacturer is a 3D printing service provider,
this would be the price paid by a customer for the part,
assuming it met the tolerance requirements. I, is an indicator
variable that is equal to one if the required tolerances have been
met, and zero otherwise. Here, tolerance requirements are
considered met if each dimension on the part is measured to be
within the intended dimension plus t;, or minus t;, the upper
and lower tolerance bounds.

Finally, Cp is the cost to manufacture the part, including
materials, energy, machine maintenance, etc. It can be seen
here that the value of the print is the difference between the
benefits and the cost, and will be negative if the print fails to
meet the tolerance requirements. In this situation, the part will
either be worth all or nothing to the manufacturer depending on
whether it meets tolerance requirements. It should be noted
that outside meeting tolerances, increasing or decreasing
accuracy doesn’t financially impact the manufacturer. This
reflects the very common case where tolerances are the only
geometric quality metric that must be met by a manufacturer in
a contract with a customer.

The second value function might be used in a situation
where the manufacturer has no tolerance requirements, but is
penalized for errors according to a quadratic loss function:

VZ = Bmax - a2?=1(”xi - /jillz)z + Vbase - Cp (2)
Bpax 18 the maximum additional value over the base value that
would be derived from a perfectly accurate part. The second
term sums the squares of geometric deviations at each point
over each of the n points that are evaluated, and is then
multiplied by the scaling term a to determine the accuracy
penalty. Error is defined as the Euclidean norm between the
measured position of the point x,, and the designed position of
the point X,. An absolute value could be used instead of a
square of the error terms if that better reflected the
manufacturer’s preference. It is desirable that the number of

points evaluated across the STL file be made uniformly dense
through remeshing, and the constant a be set according to n, so
as to not bias the calculation. In this instance, the manufacturer
no longer has to meet a set of fixed tolerances, but is instead
incentivized financially to minimize the overall error with an
exponentially increasing penalty for increasing error
magnitudes. This might be the case when a part is being built
for prototyping and visualization purposes as opposed to
functional end-use. The manufacturer would still value a less
accurate part to a lower degree, as a low-quality product would
be more likely to leave a customer unsatisfied.

Finally, a third value function might be used in a situation
where a manufacturer has tolerance requirements, derives no
benefit for improving accuracy within the tolerances, and has
an ability to fix an out-of-tolerance dimension if it is larger than
the design, albeit at a cost:

Vs = Vpase I, + Y 2i= 1(th —max(ty, ||x; — 3‘1”2)) -G 3

Iy, is equal to one if the lower tolerance requirement has been
met, and zero otherwise. There is also a cost for physically
repairing geometric deviations that are above the upper
tolerance t, scaled by y. In this situation, the part is worth
nothing to the manufacturer if a given dimension violates the
lower tolerance bound, as they can no longer make that
dimension larger once the print is completed. In this way, the
manufacturer’s incentives are similar to those laid out in the
first value function. In this situation, however, a deviation
resulting in a dimension that is too large can be fixed using
some form of subtractive manufacturing, which could be as
simple as a bench grinder and as complex as a CNC machine.
Because of the cost for these repairs, the incentive to have no
dimension fall below the lower tolerances will have to be
weighed against the cost of making some too large.

2.2. Determining a proper utility function

Once a function describing the value of a certain outcome
has been established, it is necessary to determine the expected
utility over that value function. This is because there is
uncertainty as to which outcome will materialize, and decision
makers may value different situations differently based on the
distribution of risk.

In the case of a service provider manufacturing hundreds if
not thousands of part orders a day, it might be reasonable to
assume that in the case of a single print with a value in the range
of ~$10 to $1,000 they follow the delta property [40]:

Js=y+6 “4)

Here, 7 is the greatest amount of money a decision maker
would pay for a deal that pays y; dollars with probability p and
y, dollars with probability 1-p. Similarly, yi5 is the greatest
amount of money a decision maker would pay for a deal that
pays y, + & dollars with probability p and y, + & dollars with
probability 1-p. This is illustrated in Figure 3.
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Fig. 3. Lottery modified by shifting the payout.

It might also be reasonable to assume that in the range of ~§10
to $1,000 the manufacturer is risk neutral. This would suggest
a linear utility function. As a result, we might determine that a
manufacturer’s utility is equal to their value function [40]. For
this situation, the task of calculating expected utility is greatly
simplified. It should be noted that these assumptions will not
be reasonable for all manufacturers, especially when the
potential value of a part increases significantly. In these cases,
a more elaborate utility function will be required.

2.3. Calculating expected utility

With this in place, it is possible to calculate the expected
utility of the value functions defined above. The expected
utility of the first function becomes

E[UWV)] = VpasePUn Tol.) = Cp )
where P(In Tol.) is the probability that all points on the part

are within the required tolerances. The expected utility over
the second value function can be expressed as:

E[U(Vz)] = —an f_oooo ferr(x) x*dx + Bmax + Vbase - CP (6)
where f,,.-(x) is the probability density function of the prior
belief distribution of geometric deviation magnitudes after

compensation. Finally, the third expected utility can be
expressed as:

E[U(V3)] = Vyese P(In Lower Tol.) + yn (th -

( ty Ferr(th) + f:: ferr(x) x dx ) ) - CP (7)

where P(In Lower Tol.) is the probability that all points on
the part are within the required lower tolerances (not too
small). In order to determine each of these expected values, it
is necessary to determine P(In Tol.), P(In Lower Tol.), and
forr(x). Methodologies for determining these probabilities
and distributions will be given in the next two sections.

2.4. Generation of prior belief distributions

The probability density function of the prior belief
distribution of geometric deviation magnitudes after
compensation f,,..(x) for this example is empirically generated
from a dataset of vertices from a part compensated according
to the method proposed in [21]. This reflects the belief of the
manufacturer as to the probability of achieving certain
magnitudes of vertex deviations on a part compensated using
the predictive model and compensation strategy given in [21].
This greatly simplifies the task of understanding uncertainty,
since uncertainty regarding the efficacy of predictions,
compensation and measurement can all be accounted for in one
distribution that focuses on the metric of ultimate interest:
deviation. This empirically generated distribution is shown in
Figure 4. It can be seen here that this distribution is slightly
skewed to the left. Because the distribution is generated
empirically, this will cause challenges when determining the
joint probability distribution of multiple points, as will be seen
later. In an industrial setting, the use of big data analytics
would be an enabling technology in this effort, as it would
facilitate the collection of large amounts of data representing
the efficacy of compensation on individual machines and
varying process parameters. This would allow for the use of
prior belief distributions that are conditional on the most
relevant information available.

2.5. Calculating tolerance probabilities given spatial
autocorrelation

Next, it is necessary to determine P(InTol.) and
P(In Lower Tol.) for a new part for which tolerance
probabilities are desired based on the data used to generate
ferr(x). The part will be evaluated at a set of n locations on its
surface: L = {I3,1,,...,1,} € R®*3 One challenge faced
here is that vertices on the surface of the shape within close
proximity of each other will likely exhibit some degree of
spatial autocorrelation. This was confirmed for the given
dataset using Moran’s I test [41]. One way to account for this
issue is to only measure points across the surface of the part
that are sufficiently separated so as to not be influenced by
spatial autocorrelation. A semivariogram of the compensation
deviation data is given in Figure 5. It can be seen that after
points are roughly 20 mm apart, the effect of spatial
autocorrelation becomes negligible. If one wishes to simplify
the calculation of these probabilities by assuming
independence, all measured points must be greater than this
distance apart for this dataset.
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Fig. 4. Probability distribution of geometric deviations of compensated
vertices from [21].
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Fig. 5. Semivariogram of the compensation deviation data (mm).

However, it is more likely that the points on the surface of
the part that will be measured, often using a coordinate
measurement machine or 3D scanner, will be significantly
closer than the limit for spatial independence due to their large
number (thousands). In this instance, a method for calculating
P(InTol.) and P(InLower Tol.) while accounting for
dependency between the deviation magnitudes of nearby points
should be utilized. One will be illustrated below. In it, a Monte
Carlo approach is used to determine the percentage of
simulated parts that are within and outside of the
manufacturer’s predefined tolerance requirements, allowing
for the determination of P(In Tol.) and P(In Lower Tol.). In
order to do this, a large number of sets containing simulated

deviations at each of the points to be evaluated on the
prospective part are generated and then screened against the
manufacturer’s predefined tolerancing criteria. For a given set
of vertices, it is necessary to draw a random sample of points
from the deviation distribution f,,,.(x). However, since the
magnitude of deviations at nearby points are dependent on their
neighbors, it is necessary to construct and draw magnitudes
from a joint probability distribution that takes this correlation
into account. This necessitates the simulation of a joint
distribution with empirically defined marginals.

One preliminary task that must be done beforehand is to
determine the degree of expected covariance between points to
be evaluated on the new part to be manufactured. First,
functions describing the semivariogram and covariogram are
fit to the manufacturer’s previous compensation deviation data.
These functions seek to describe the relationship between
distance between points and covariance for magnitude of
deviation. In this example, the spherical variogram model will
be utilized, where semivariance y is a function of distance h
given by:

0 h =0
3
yrsa) ={a+ (s—a)(3-75) 0<hsr @®
s h>r

where a is the nugget of the semivariogram, s is the sill, and r
is the range [42]. The spherical covariogram model is given as:

s h=0
3
Ch;r,s,a) = (s—a)(l—%—zh?) 0<h<r (9
0 h>r

These are fit to the compensated deviation data from [21], and
shown in Figure 6. Using the spherical covariogram model, it
is possible to determine a covariance matrix X describing the
covariance between each of the points L on the part to be
evaluated given the distances between them.

With this established, simulated sets of deviation
measurements for all of the vertices on the part can be generated
by drawing samples from a multivariate distribution with
marginals based on the probability distribution f,,..(x) shown
in Figure 4. This can be a challenging task, since f,,,-(x) is an
empirical, non-normal distribution. Further, because thousands
of points will be evaluated across the surface of the part, the
high dimensionality of the data will present an additional
hurdle. One useful tool for addressing these challenges is a
copula structure, which allows users to describe multivariate
joint distributions in terms of univariate marginal distributions
and the ‘link’ between them. In simpler terms, copulas allow
for the modeling of dependence between random variables,
which is needed for this application. While there are a number
of classes of copulas that have been utilized in the literature,
one of the more popular copula structures in the Gaussian
copula, which is generated from the multivariate normal
distribution. Given a correlation matrix R € [—1,1]4*¢ the
Gaussian copula can be written as:

CgauSS(u) — q)R((D—l(ul),...(b_l(ud)) (10)



354 Nathan Decker et al. / Procedia Manufacturing 53 (2021) 348-358

where ®p, is the joint cumulative distribution function (CDF)
of the multivariate normal distribution with a mean of zero and
covariance matrix corresponding to the correlation matrix R,
while @1 is the inverse of the CDF of the normal distribution.
This structure was chosen because of the flexibility with which
it can be used to model complex situations like the one
encountered in this application.
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Fig. 6. Semivariogram and covariogram of compensated deviation data.

One method for doing this, which was illustrated in [43] will
be utilized here. First, K samples xq,x,,...x; of the n-
dimensional vector were generated from a multivariate normal
distribution with a covariance matrix X. Here, K = 10000 and
n = 5000. The cumulative probability of each value is
determined using the normal cumulative distribution function
tni = Pri(x;) where k = 1,..,10000 and i = 1,...,5000.
Finally, the simulated values of deviation at each evaluated
point for each simulated part are generated using the inverse of
the cumulative distribution function for the distribution shown
in Figure 4: y,; = Fo; '(tx;)-  The probabilities
P(InTol.)and P(In Lower Tol.) can be determined from the
proportion of the generated sets from the multivariate
distribution that are entirely within the required tolerances. For
the purposes of this work, a part is considered out of tolerance
if the deviation at one of its vertices is outside the given
constraints, however this same methodology could be applied
to other schemes. Once these probabilities are determined,
expected utility can be calculated as given in Equations 5-7. It
should be noted that one potential downside to the use of
Gaussian copulas is their weak tail dependence, which implies
that the probability of clusters of extreme events can be
underestimated using this approach [44]. It is important that
this be weighed against the definition of a part being out of
tolerance that is defined by a manufacturer to ensure that the
distribution that is described using the copula structure is well
suited for estimation.

2.6. Alternative compensation strategy

In order to demonstrate the usefulness of this methodology,
a simple alternative compensation strategy is proposed. In this
strategy, which is illustrated in Figure 7, each vertex is
translated along a vector normal to the surface a distance equal
to the opposite of the predicted deviation plus a constant c,
which will be the same for every point on the surface of the
part. Because y will vary for each point, the amount of
compensation applied to each point will differ as well. This
constant ¢ is simply a parameter of the strategy that will be
optimized by choosing the value that maximizes expected
utility as calculated using the proposed methodology. The
prior belief distribution for the results of the alternative
compensation scheme can be approximated by translating the
distribution f,,.-(x) by the value c.
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Fig. 7. Alternative compensation strategy.
3. Results

An example scenario is presented below, in order to
demonstrate the proposed approach. A manufacturer will build
a part, but wishes to employ compensation with an expected
distribution of remaining deviations represented in Figure 4.
The expected value of the printed part will be evaluated for
varying values of the hyperparameter of the compensation
strategy c using the three proposed value functions. Parameters
for each of the three value functions are chosen in order to
reflect a potential situation a manufacturer might face. They
are given in Table 1. The expected utility of the compensated
part for each value function as a function of different values of
¢ is shown in Figures 8-10. Expected utilities are calculated
using the proposed method to account for spatial
autocorrelation. The maximum of each function is indicated
by a blue circle. It can be seen that in each case, the value of ¢
(mm) that maximizes the expected utility of the compensated
part is not zero. The maximum expected utility values using
the alternative compensation strategy are compared against the
expected utility values from the standard compensation
strategy in Table 2.



Table 1. Example parameters for value functions.
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Parameter Value
Viase $300
Cp $100
Bmax $20
th 0.225 mm
t -0.225 mm
a 3
Y 30
n 5000
Value Function #1
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Fig. 8. Expected utility for value function
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Fig. 9. Expected utility for value function #2 as a function of c.

Value Function #3
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Fig. 10. Expected utility for value function #3 as a function of c.

Table 2. Maximum expected utility.

Value Function ~ Maximum Standard Difference

Expected Utility Expected Utility in Utility
(atc=0) Values

#1 $89.93 $81.56 $8.37
(atc=0.014)

#2 $179.90 $177.50 $2.40
(atc=0.013)

#3 $143.30 $85.39 $57.91
(atc=0.119)

Value function #1 simply penalizes prints that are out of the
required tolerances, meaning that a value of ¢ that minimizes
this likelihood will maximize expected utility. Since the
distribution of f,,..(x) shown in Figure 4 is skewed slightly to
the left, we can conclude that the compensation
procedure/model utilized in [21] has a slight tendency to
produce compensated dimensions that are too small. As a
result, a value of ¢ that is positive can help to offset this effect,
and thus maximize utility. Similarly, value function #2 is
maximized when the overall sum of squares of deviations is
minimized. Therefore, the optimal value of ¢ is also positive
to account for the skew in f,,,.(x). Finally, value function #3
seeks to keep all absolute deviations above the lower tolerance
bound (i.e. no dimensions that are too small) while also
minimizing the sum of deviations above the upper tolerance
bound (i.e. dimensions that are too large). When c is less than
-0.1 mm, the value function flattens out to —Cp as the part is
guaranteed to fail the lower tolerance test. When c is greater
than -0.1 mm, the likelihood of failing the lower tolerance test
decreases, increasing the expected utility. However, as c
increases beyond 0.119 mm, the effect of the increasing cost to
repair above tolerance deviations outweighs the effect of the
decreasing likelihood of lower tolerance failure, and the
expected utility decreases rapidly.

Because the value functions are significantly impacted by
the manufacturer’s preferences, and therefore choice of @ and
y, a sensitivity analysis of the two coefficients is useful to
determine the generalizability of these results to situations with
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differing preferences. Figure 12 illustrates the optimal value of
¢ for value function # 3 as a function of y. Value function 1
does not utilize @ or ¥, and is therefore not analyzed here.
Since value function #2 only penalizes the sum of squares of
deviations, and has no other criteria, the optimal value of ¢ is
not sensitive to changes in the a coefficient. We can also see
that the optimal value of ¢ for value function #3 is sensitive to
the value of y. This is because increasing cost for repairs on
dimensions that are too large causes the optimal value of ¢ to
decrease to compensate. Figure 11 illustrates the difference
between the maximum expected utility and standard expected
utility as a function of @ and y. We can see that this difference
increases linearly with a in the case of value function #2 and
decreases with increasing y in the case of value function #3.

8 Sensitivity of Difference in Utility to « for Value Function #2

Difference in Utility Values ($)
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Fig. 11. Sensitivity analysis for the difference in optimal utility values to a
and y for Equations 2 and 3.
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Fig. 12. Sensitivity analysis for the optimal value of ¢ to y for Equation 3.
4. Conclusion

It can be seen from these results that the conventional
compensation strategy, which seeks to minimize a part’s
deviations, does not necessarily optimize the expected utility of
a produced part. Further, even with a relatively simple change
to the conventional compensation strategy, it is possible to
significantly increase the expected utility of a given print.

Because each manufacturer will have different incentives
and tolerance for risks of different magnitudes, the value
functions and utility functions determined over the value
functions will need to be adjusted accordingly.

This general methodology can also be used for other
applications. It could useful for a manufacturer to determine
whether they should attempt to print a part on a given machine
or with a specific predictive model. It could also be used to
help a service provider determine whether it should accept a
specific job, or how it should price contracts for prints with
certain tolerances and requirements.

There are two limitations to the proposed methodology that
should be highlighted. First, the calculations of expected utility
are only as accurate as the data they are based on. In the
absence of adequate data, or when using deviation data that is
not representative of the situation the manufacturer will be
facing, recommendations based on this methodology will not
be useful. Second, constructing a value function describing a
manufacturer’s preferences can be difficult. While three
different functions that account for relevant outcomes are
proposed here, real world value functions can be highly
complex, and difficult to pin down. There is a significant body
of work that should be consulted on how best to elicit
information for constructing a value function while avoiding
biases and pitfalls.
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