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Abstract—Artificial intelligence nowadays plays an increas-
ingly prominent role in our life since decisions that were once
made by humans are now delegated to automated systems. A
machine learning algorithm trained based on biased data, how-
ever, tends to make unfair predictions. Developing classification
algorithms that are fair with respect to protected attributes of the
data thus becomes an important problem. Motivated by concerns
surrounding the fairness effects of sharing and few-shot machine
learning tools, such as the Model Agnostic Meta-Learning [1]
framework, we propose a novel fair fast-adapted few-shot meta-
learning approach that efficiently mitigates biases during meta-
train by ensuring controlling the decision boundary covariance
that between the protected variable and the signed distance
from the feature vectors to the decision boundary. Through
extensive experiments on two real-world image benchmarks over
three state-of-the-art meta-learning algorithms, we empirically
demonstrate that our proposed approach efficiently mitigates
biases on model output and generalizes both accuracy and
fairness to unseen tasks with a limited amount of training
samples.

Index Terms—decision boundary covariance, statistical parity
,few-shot, meta-learning

I. INTRODUCTION

In data mining and machine learning, the information sys-

tem is becoming increasingly reliant on statistical inference

and learning to give automated prediction and decision-making

to solve regression and classification problems. Biased histor-

ical data or data containing biases, however, are often learned

and thus lead to results with undesirability, inaccuracy, and

even illegality. In recent years, there are increasing numbers of

news reported that human bias is revealed in an artificial intel-

ligence system applied by high-tech companies. [2] reported

that a picture of two African Americans was automatically

tagged as “Gorillas” by Google Photos. A 2016 study [3]

found that the data-driven system developed by Amazon that

used to determine the neighborhoods in which to offer free

same-day delivery is highly biased and unfair to African

American communities due to the stark disparities in the

demographic makeup of neighborhoods: white residents were

more than twice as likely as African American residents to live

in one of the qualifying neighborhoods. Critics have voiced

that human bias potentially has an influence on nowadays

technology, which leads to outcomes with unfairness. Another

example for biased image classification problem is shown in

Figure 1: a dog classifier is trained with images of dogs lying

on the grass. The training process goes through a feature

Fig. 1: An example of biased image classification problem.

A dog classifier is trained using images of dogs lying on the

grass. Features learned from the neural network, however, are

not fully concentrated on the target objects (i.e. dogs). As a

consequence, the biased learner leads to unfair or uncertain

decision-makings: (a) a dog on the grass; (b) a dog running

on the beach; (c) a dog on the stone step; (d) a goat on the

grass.

extractor, but the captured features used for classifier training

are not totally concentrated on target objects (i.e. dogs).

As a consequence, the decision-making accuracy for testing

images does not turn out well. To investigate the reason, we

deduce that there is a non-negligible relationship between the

predicted outcome and the protected feature (i.e. grass in this

example), which leads to an unfair result.

To ameliorate this unfairness problem, one may attempt

to make the automated decision-maker blind to the protected

attributes [4]. This however, is difficult, as many attributes may

be correlated with the protected one [5]. With biased input, the

main goal of training an unbiased model is to make the output

fair. In other words, the predicted outcomes are statistically

independent on protected variables. Statistical parity, also

known as group fairness, ensures that the overall proportion

of members in a protected group receiving predictions (i.e.
positive/negative classification) are identical to the proportion

of the population as a whole.

To the best of our knowledge, unfortunately, the majority

of existing fairness-aware machine learning algorithms are

under the assumption of giving abundant training examples.

Learning quickly, however, is another significant hallmark of
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Fig. 2: An overview of our proposed bias controlling approach in few-shot meta-learning. (Left) The meta-learning framework

include two processes: meta-train and meta-test, where each includes multiple tasks. (Right) Taking 5-way-5-shot classification

problem as an example, γ(φ) refers to a discrimination measure function, and c is a predefined small threshold to account

for a degree of randomness in the decision making process and sampling. The constraint here is considered to ensure no

discrimination on the prediction model for each task.

human intelligence. In meta-learning, also known as learning

to learn, the goal of trained model is to quickly learn a new

task from a small amount of new data (i.e. few-shot), and the

model is trained by the meta-leaner to be able to learn on a

large number of different tasks [1]. In contrast to traditional

machine learning algorithms, such as multi-task learning [6]–

[9] and transfer learning [10]–[13], meta-learning framework

has advantages: (1) it learns across tasks where each task takes

one or few samples as input; (2) it therefore efficiently speeds

up model adaptation (3) and generalizes accuracy to unseen

tasks.

The overall idea of existing methods of meta-learning,

however, is to train a model which is capability of generalizing

accuracy, rather than fairness, to unseen data tasks. But tech-

niques for unfairness prevention and bias control in the few-

shot meta-learning study are challenging and rarely touched.

To ensure prediction without biases, the main contribution to

this paper is that we feed each support set of a task with unified

group fairness constraints and minimize meta-loss overall

episodes. Specifically, we mitigate biases in each episode

during meta-training by controlling the decision boundary

covariance [14] which is defined as the covariance between

the protected attribute and the signed distance from the feature

vectors to the decision boundary. A value of zero signifying

no dependency or attribute effect. Our experimental results

demonstrate our approach is capability of controlling bias and

decreasing loss as well as generalizing both to unseen tasks. In

the context of classification, for example, as shown in Figure

2, each support set of a task used for training contains images

sampled from 5 different classes (N = 5 ways) and each

class includes 5 images (K = 5 shots). By giving an unified

meta-initialization for each task, a task specific local model

parameter is learned through one or few steps gradient update

of the loss function that is constrained by fairness condition.

To update the meta-parameter, the generalization error, i.e. the

summation of the query loss across all tasks, is minimized. In

summary, the main contributions of this paper are listed:

• For the first time the issue of bias control in meta-

learning multi-class classification problem is applied to

image data sets. We mitigate biases by controlling the

decision boundary covariance.

• We develop a novel algorithm to solve this constrained

classification problem under the Model Agnostic Meta-

Learning (MAML) few-shot framework.

• We validate the performance of our proposed approach of

controlling biases on three state-of-the-art meta-learning

techniques through extensive experiments based on real-

world data sets. Our results demonstrate the proposed ap-

proach is capability of mitigating biases and generalizing

both accuracy and fairness to unseen tasks, with the input

training data is minimal.

In Section 2, some related works are referred. In Section

3, we see how unfairness is important in a machine learning

model by introducing a simple causal based knowledge graph

and how a statistical parity constraint, i.e. decision boundary

covariance, is able to be used for bias-control in a single

task. In Section 4, the fair few-shot meta-learning problem

is formulated and how to solve it by applying the Model-

Agnostics Meta-Learning framework is presented in detail.

In Section 5, to validate the proposed approach, we conduct

experiments by using two real-world benchmarks and three

cutting-edge techniques, and we conclude this paper in Section

6.

II. RELATED WORK

In recent years, researches involving processing biased data

became increasingly significant. Fairness-aware in data mining

is classified into unfairness discovery and prevention. Based

on the taxonomy by tasks, it can be further categorized to

classification [14]–[22], regression [9], [23]–[26], clustering

[27], [28], recommendation [29]–[31] and dimension reduction

[32].

A. Unfairness Prevention in Classification

Majority of works in unfairness prevention is concentrated

on data classification. According to approaches studied in
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fairness, bias-prevention in classification is subcategorized

into pre-processing [15], in-processing [14], [16] and post-

processing [17]–[19]. Recent works [20] and [21] developed

new approaches resulting in increasing the binary classification

accuracy through reduction of fair classification to a sequence

of cost-sensitive problems and applications of multi-task tech-

niques with convex fairness constraints, respectively.

Non-discrimination (unfairness-free) can be defined as fol-

lows: (1) people that are similar in terms of non-sensitive

characteristics should receive similar predictions, and (2) dif-

ferences in predictions across groups of people can only be

as large as justified by non-sensitive characteristics [33]. The

first condition is related to direct discrimination. The second

condition ensures that there is no indirect discrimination, also

referred to as redlining. These types of discrimination (direct

and indirect) are supported by two legal frameworks applied in

large bodies of cases, disparate treatment and disparate impact

[34]. The disparate treatment framework enforces procedural

fairness, namely, the equality of treatments that prohibits

the use of the protected attribute in the decision process.

The disparate impact framework guarantees outcome fairness,

namely, the equality of outcomes among protected groups

[35]. Many of the prior studies, however, suffer from one

or more of the following limitations: (i) they are restricted

to a narrow range of classifiers, (ii) they only accommodate a

single, binary sensitive attribute, and (iii) they cannot eliminate

disparate treatment and disparate impact simultaneously. To

overcome such limitations, in this paper, we consider the

measure of decision boundary fairness [14], which enables

us to ensure fairness with respect to one or more sensitive

attributes, in terms of both disparate treatment and disparate

impact.

B. Few-shot Meta-learning

To the best of our knowledge, the majority of existing

fairness-aware machine learning algorithms are under the

assumption of giving abundant training examples. Learning

quickly, however, is another significant hallmark of human

intelligence. Much efforts have been devoted to overcome

the data efficiency issue. One popular category of few-shot

learning techniques is distance metric learning based method,

which addresses the few-shot classification problem by “learn-

ing to compare”. The intuition is that if a model can determine

the similarity of two images, it can classify an unseen input

image with the labeled instances. [36] introduced Matching

Networks which employed ideas from k-nearest neighbors

algorithm and metric learning based on a bidirectional Long-

Short Term Memory (LSTM) to encode in the context of the

support set. Prototypical networks [37] learn a metric space

in which classification is able to be performed by computing

Euclidean distances to prototype representations of each class.

In addition, gradient descent based algorithms, such as [1],

[38]–[42], aim to learn good model initialization so that the

meta-loss is minimum.

The overall idea of these state-of-the-art is to train a meta-

learning model which is capability of generalizing accuracy,

Fig. 3: A simple diagram demonstrates the causal relationship

in fairness learning. X,S, and Y represent input feature, the

protected attribute and target outcome, respectively.

but less attention on fairness generalization to unseen data

tasks. In this paper, our proposed approach makes up for this

regret of unfairness prevention using few-shot meta-learning

techniques in multi-class classification problems.

III. MODELING OF FAIRNESS BASED ON CAUSAL

KNOWLEDGE GRAPH

In this section, we first present how unfairness/bias affects

decision-making by introducing a simple causal knowledge

graph and then explain the mechanism of mitigating bias in a

single task using the decision boundary covariance.

A. Causation in Fairness Learning

To understand how past decisions may bias a prediction

model, we must first understand how the protected attribute

may have affected the outcome by answering such questions:

What would this outcome have been under different protected

values? How would the outcome change if the protected

attribute were changed, all else being equal? These questions

are core to the mission of learning fair systems which aim to

inform decision-making.

Unfairness can be broadly partitioned into two types: direct

and indirect. The directed bias is concerned with settings

where individuals received less favorable treatments on the

basis of the protected attribute. The indirect one is concerned

with individuals who receive treatments on the basis of inad-

equately justified factors that are somewhat related with the

protected attribute [35].

For simplicity, we consider one binary protected attribute

(e.g. white and black) in this work. However, our ideas can

be easily extended to many protected attributes with multiple

levels. Let Z = X × S × Y be the data space, where X ⊂ R
n

is an input space, S = {0, 1} is a protected space, and Y =
{1, 2, ..., N} is an output space for multi-class classification

where N is the number of classes. We consider a single task

data D = {(xi, yi, si)}hi=1, i = 1, ...h, where xi ∈ R
n denotes

the i-th observation, yi denotes the corresponding output, si ∈
{s+, s−} represents the binary protected attribute, and h is the

number of observations in each task. A practical definition of

fair causality is:
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Definition 1 (Fair Causality and Causal Effect). X causes Y if

and only if changing X leads to a change in Y , while keeping

everything else (i.e. S) constant. Causal effect is defined as the

magnitude by which Y is changed by a unit change in X .

Therefore, a fair prediction, shown in Figure 3, indicates

there is no either direct (S → Y ) or indirect (S → X → Y )

dependency effect of outcome on the protected attribute. These

types of discrimination (direct and indirect) are supported by

two legal frameworks applied in large bodies of cases through-

out the disparate treatment and disparate impact [34]. The

disparate treatment framework enforces procedural fairness,

namely, the equality of treatments that prohibits the use of

the protected attribute in the decision process. The disparate

impact framework guarantees outcome fairness, namely, the

equality of outcomes among protected groups [35].

To comply with disparate treatment criterion we specify

that sensitive attributes are not used in decision making,

i.e. {xi}hi=1 and {si}hi=1 consist of disjoint feature sets. As

discussed in [14], our definition of disparate impact leverages

the 80%-rule [43]. A decision boundary satisfies the 80%-rule

if the ratio between the percentage of users with a particular

protected attribute value having dα(x) ≥ 0, where α is the

decision boundary parameter, and the percentage of users

without that value having dα(x) ≥ 0 is no less than 0.8 [14].

min
(P (dα(x) ≥ 0|s = 1)

P (dα(x) ≥ 0|s = 0)
,
P (dα(x) ≥ 0|s = 0)

P (dα(x) ≥ 0|s = 1)

)
≥ 0.8

(1)

B. Decision Boundary Covariance in Statistical Parity

In this section, we introduce a measure of decision boundary

fairness, which enables us to ensure fairness with respect

to one or more protected attributes, in terms of both dis-

parate treatment and disparate impact. The decision boundary

covariance (DBC) which measures the decision boundary

(un)fairness is defined as

Definition 2 (Decision Boundary Covariance [14]). The co-

variance between the protected variables s = {si}hi=1 and

the signed distance from the feature vectors to the decision

boundary, dα(x) = {dα(xi)}hi=1, where α is the decision

boundary parameter.

DBC(s, dα(x)) = E[(s− s̄)dα(x)]− E[s− s̄]d̄α(x)

≈ 1

h

h∑
i=1

(si − s̄)dα(x) (2)

where E[s− s̄]d̄α(x) is cancels out since E[s− s̄] = 0.

Taking linear model as an example, the decision boundary is

simply the hyperplane defined by αTx = 0. Then the DBC

reduces to 1
h

∑h
i=1(si − s̄)αTx.

An example of fair binary classification with a linear deci-

sion boundary is given in Figure 4. Red markers represent the

protected group (i.e. s = 1) and blue ones are the unprotected

group (i.e. s = 0). In the left of Figure 4, we calculate

P (dα(x) ≥ 0|s = 1) = 1/4 = 0.25, where dα(x) ≥ 0

Fig. 4: An example of fair binary classification (unfair (left)

and fair (right) classifier) by controlling the decision boundary

covariance between the protected variable and the signed

distance from from user’s feature to the decision boundary.

indicates the triangle class and P (dα(x) ≥ 0|s = 0) =
7/(16 − 4) = 0.583. By applying the 80%-rule indicated

in Eq.(1), the disparate impact value of the left classifier is

0.25/0.583 = 0.43, which is lower than the threshold of 0.8
and returns an unfair classification prediction. Similarly, in

the right case of Figure 4, however, P (dα(x) ≥ 0|s = 1) =
P (dα(x) ≥ 0|s = 0) = 0.5 and thus the disparate impact is

1.0. Note that, if a decision boundary satisfies the 100%-rule,

i.e.

P (dα(x) ≥ 0|s = 1) = P (dα(x) ≥ 0|s = 0)

then the empirical covariance will be approximately zero for

a sufficiently large training set.

IV. FAIR META-LEARNING

Meta-learning for few-shot learning aims to train a meta-

learner which is able to learn on a large number of various

tasks from a small amount of data. MAML (Model-Agnostic

Meta-Learning) proposed by [1] is one of the popular gradient

based meta-learning frameworks, which leads to state-of-

the-art performance and fast adaptation to unseen tasks. To

generalize fairness in a classification problem with minimal

samples, we propose a novel approach by modifying MAML

in which we uniformly control DBC for each task. The goal of

the proposed approach is to estimate a good meta-parameter

such that the summation of empirical risks for each task is

minimized and meanwhile each task is fair.

A. Settings

In this work, we consider a collection of supervised learning

tasks T = {(DS
j ,DQ

j )}Tj=1 which distributions over Z and T
is denoted as the number of tasks. T is often referred to as

a meta-training set as well as an episode (DS
j ,DQ

j ) explicitly

contains a pair of a support DS
j and a query DQ

j data sets.

For each task j ∈ {1, 2, ..., T}, we let {xj,i, yj,i, sj,i}mi=1 ∈
(X × Y × S) be the corresponding task data and m is the

number of datapoints in the support set. For example, standard

few-shot learning benchmarks evaluate model in N -way K-

shot classification tasks and thus m = N × K indicates, in

the support set of the j-th task, it contains N categories and

each consists of K datapoints. We emphasize that we need to

sample without replacement, i.e., DS
j ∩ DQ

j = ∅.
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In a general meta-learning setting, it consists of meta-train

and meta-test partitions where each contains a number of mini-

batches of episodes (see Figure 2). We consider a distribution

over tasks p(T ) that we want our model to be able to adapt

to. In a N -way-K-shot learning setting, a task Tj is sampled

from p(T ), where the subscript j represents the j-th task of a

mini-batch. In the supervised learning setting, supposing the

meta-model is a parameterized function fφ with parameters

φ. In a general meta-learning model, the goal is to learn an

optimized φ so that the summation of query losses lTj (fφ) over

all meta-training tasks is minimum. During meta-training, φ
is updated iteratively.

φ∗ = argmin
φ

ET ∼p(T )lT (fφ) (3)

B. Model-Agnostic Meta-Learning with convex constraints

Meta-learning approaches for few-shot learning are often

assumed that the support and query sets of a task are sampled

from the same distribution. In our work, for each single task,

the objective is to minimize the predictive error Linner(DS
j , φ)

such that it is constrained by a function gj(φ).

min
φj

Linner(DS
j , φ) (4)

subject to gj(φ) ≤ 0

where Linner : Rn → R is a loss function, such as cross-

entropy for classification, and g : Rn → R is an appropriate

complexity function ensuring the existence and the uniqueness

of the above minimizer. A point φ in the domain of the

problem is feasible if it satisfies the constraint gj(φ) ≤ 0.

Specifically, gj(φ) is defined by the definition of decision

boundary covariance in Eq.(2), i.e.

gj(φ) =

∣∣∣∣∣∣
1

N ×K

∑
si,xi∼Tj

(si − s̄)dα(xi)

∣∣∣∣∣∣
− c (5)

where c is a small positive fairness relaxation, dα(xi) ≈
max{pn ∈ [0, 1]N} and p denotes the class probabilities of

xi. Here, for a N -way-K-shot classification task, we include

N ×K data points in the support set DS of each task Tj .

To solve the optimization problem, we thus introduce an

unified Lagrange multiplier λ ≥ 0 for all tasks and the

Lagrange function LTj (φ, λ) for each task is defined by

LTj (φ, λ) = Linner(φ) + λ(gj(φ)) (6)

Therefore the original problem can be finally seen by mini-

mizing LTj (φ, λ) for each task and thus mitigates dependency

of prediction on the protected attribute. The goal of training a

single task is to output a local parameter φj given the meta-

parameter φ such that it minimizes the task loss Linner subject

to the task constraint gj(φ) ≤ 0. Next, to update the meta-

parameter, we minimize the generalization error Lmeta using

query sets across every task in the batch such that the query

constraints are satisfied. Formally, the learning objective across

all tasks is

min
φ

Lmeta(
T∑

j=1

DQ
j , φ) =

T∑
j=1

Linner(DQ
j , φj) (7)

where φj = argminφj ,gj(φ)≤0 Linner is the local optimum

for each task. A step-by-step learning algorithm for unfairness

prevention in few-shot regression is proposed in Algorithm 1.

Algorithm 1 Unfairness Prevention in Few-Shot Classifica-

tion.

Require: p(T ): distribution over tasks.

Require: α, β: step size hyperparameters.

Require: q: inner gradient update steps.

1: Randomly initialize φ
2: while not done do
3: Sample batch of tasks Tj
4: for all Tj = {DSj ,DQj } do
5: Sample N -way-K-shot datapoints from DSj =
{xj , yj , sj}

6: φj ← φ
7: for q = 1, 2, ... do
8: Evaluate ∇φjLTj (φj , λ) using DSj
9: Compute adapted local parameter φj ← φj −

α∇φj
LTj (φj , λ)

10: end for
11: Sample datapoints from DQj = {xj , yj , sj}
12: Evaluate query loss lTj (φj) and query fairness

gTj (φj) using DQj
13: end for
14: Update φ← φ− β∇φ

∑
Tj∼p(T ) lTj (φj)

15: Evaluate training fairness mean(gTj (φj))
16: end while

C. Algorithm Analysis

Since the proposed Algorithm 1 is modified following [1],

the convergence is guaranteed and detailed analysis is stated

in [44]. Accessing to sufficient samples, the running time of

the algorithm is O(n · b · q) , where n is the number of outer

iterations, b is batch-size, and q is gradient steps of inner loop.

For a N -way-K-shot learning, the best accuracy is achieved

when ||∇φ|| ≤ O(σ̃/
√
NK), where φ = ET ∼p(T )lT (fφ), σ

is a bound on the standard deviation of ∇LTj (φj , λ) from its

mean ∇LT (φ, λ), and σ̃ is a bound on the standard deviation

of estimating ∇LTj (φj , λ) using a single data point.

V. EXPERIMENTS

To validate our approach of unfairness prevention in few-

shot meta-learning models, we conduct experiments with two

real-world image data sets.
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A. Data

Omniglot [45] is a data set of 1623 handwritten charac-

ters collected from 50 alphabets. To avoid overfitting, data

augmentation is used on images in the form of rotations of

90 degrees increments, i.e. 90, 180, and 270 degrees. Rotated

class samples are considered new classes and thus we have

1623×4 classes in total. We shuffle all character classes and

randomly split the data set into three sets, 1150×4 for the

training set, 50×4 for validation, and 423×4 for testing. We

follow the procedure of [36] by resizing the grayscale images

to 28×28. In order to study fairness, an arbitrary probability

p(x|s = 1) is assigned to each class and thus each image

sample is given a protected attribute s ∈ {0, 1}.

TABLE I: Key Characteristics of Experimental Data

Omniglot mini-ImageNet
images grey color

augmentation yes no

scale 28× 28 84× 84
classes for training 1150× 4 64
classes for validation 50× 4 12
classes for test 423× 4 24
N -way 5 20 5

local gradient step(s)

for training

1 5 5

local gradient step(s)

for evaluation

3 5 10

local learning rate

for training

0.4 0.1 0.01

local learning rate

for evaluation

0.4 0.1 0.01

meta batch-size 32 16 4 (1-shot), 2 (5-shot)

mini-ImageNet is originally proposed by [36]. It consists of

60,000 color images scaled down to 84×84 divided into 100

classes with 600 examples each. We use the split proposed in

[38], which consists of 64 classes for training, 12 classes for

validation and 24 classes for testing. The protected attribute

is randomly added following the same procedure stated in our

Omniglot settings.

B. Parameter Tuning

In order to provide a fair comparison for all methods, our

embedding architecture mirrors that used by [36]. It consists of

four modules and each comprises a 64-filter 3×3 convolution,

batch normalization layer [46], a ReLU nonlinearity and a 2×2
max-pooling layer. For Omniglot, since each image is resized

to 28×28, it results in a 64-dimensional output space. Due to

the increased size of images in mini-ImageNet, the resulting

feature map is 1600-dimensional. All models are trained with

Adam optimizer.

For N -way, K-shot classification, each gradient is computed

using a batch size of N ×K examples. For Omniglot, the 5-

way convolutional model is trained with 1 gradient step with

step size of α = 0.4, and a meta batch-size of 32 tasks. The

network is evaluated using 3 gradient steps with the same step

size α = 0.4. The 20-way convolutional model is trained and

evaluated with 5 gradient steps with step size of α = 0.1.

During training, the meta batch-size is set to 16 tasks. For

MiniImagenet, the model is trained using 5 gradient steps

of size α = 0.01, and evaluated using 10 gradient steps at

test time. Following [38], 15 examples per class are used

for evaluating the post-update meta-gradient. We used a meta

batch-size of 4 and 2 tasks for 1-shot and 5-shot training

respectively. All model are trained for 60000 iterations.

Besides, to comply with disparate treatment criterion, we

specify that protected attributes are not used in the decision

making, i.e. protected and explanatory attributes consist of

disjoint feature sets. Key characteristics for all data set are

listed in Table I.

C. Baseline Methods

We compared our work with three well known meta-

learning state-of-the-arts, MAML [1], Matching Networks

[36], and Prototypical Networks [37]. These methods apply

the same meta-learning framework but differ in their strategies

to make predictions conditioned on the support set. MAML is

a gradient based meta-learning algorithm, where each support

set is used to adapt a uniformed initialized model parameters

using one or few gradient steps. After several updates, the

meta-loss reaches the minimum along with each episode loss

reaching its local minimum.

For both Matching and Prototypical Networks (i.e. Match-

ingNet and ProtoNet), the prediction of the samples in a query

set is based on comparing the distance between embedded

query feature and support feature within each class. Match-

ingNet was the first to both train and test on N -way-K-shot

tasks. The appeal of this is training and evaluating on the

same tasks lets us optimise for the target task in an end-to-

end fashion. Different from earlier approaches such as siamese

networks [47], MatchingNet combines both embedding and

classification to form an end-to-end differentiable nearest

neighbours classifier. Specifically, it applied a bidirectional

Long-Short Term Memory (LSTM) to encode in the context

of the support set and compares cosine distance between the

query feature and each support feature.

In Prototypical Networks, the authors apply a compelling

inductive bias in the form of class prototypes to achieve

impressive few-shot performance that exceeds Matching Net-

works without the complication of full context embeddings

or FCE for short. The key assumption is that there exists

an embedding in which samples from each class cluster

around a single prototypical representation which is simply the

mean of the individual samples. This idea streamlines K-shot

classification in the case of K > 1 as classification is simply

performed by taking the label of the closest class prototype.

In order to output fair predictions, fairness constraints are

applied. Experimental results shown with prefix “Fair-” in the

front indicate models adjusted using our proposed approach.
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TABLE II: Consolidated overall result for few-shot classification accuracies and fairness. Methods with superscript ∗ and ‡
respectively indicates results reported by the original paper and our local replication with addition of protected attributes.

Omniglot 5-way 20-way
1-shot 5-shot 1-shot 5-shot

Approach Accuracy DBC Accuracy DBC Accuracy DBC Accuracy DBC
MAML∗ 98.7±0.4% - 99.9±0.1% - 95.8±0.3% - 98.9±0.2% -

MAML‡ 98.1±0.5% 0.39±0.01 98.1±0.1% 0.59±0.09 96.2±0.6% 0.50 ±0.10 98.7±0.4% 0.59±0.03

Fair-MAML 89.4±0.5% 0.18±0.01 92.2±0.4% 0.19±0.01 85.4±0.3% 0.21±0.03 90.4±0.4% 0.27 ±0.01

MatchingNet∗ 98.1% - 98.9% - 93.8% - 98.7% -

MatchingNet‡ 98.0±0.4% 0.45±0.02 98.6±0.3% 0.45±0.01 95.2±0.5% 0.47±0.02 97.9±0.3% 0.48±0.03

Fair-MatchingNet 96.5±0.5% 0.14±0.01 98.0±0.5% 0.15±0.01 94.1±0.5% 0.13±0.03 98.5±0.5% 0.13±0.01

ProtoNet∗ 98.8% - 99.7 % - 96.0% - 98.9% -

ProtoNet‡ 98.5±1.8% 0.44±0.01 99.1±0.3% 0.44±0.03 96.6±1.7% 0.46±0.01 98.6±0.1% 0.48±0.01

Fair-ProtoNet 86.4±2.0% 0.10±0.07 94.3±0.5% 0.10±0.02 88.7±1.5% 0.03±0.02 89.4±0.5% 0.02±0.01

mini-ImageNet 5-way 1-shot 5-shot
Approach Accuracy DBC Accuracy DBC
MAML∗ 48.7±1.8% - 63.1±0.9% -

MAML‡ 44.2±1.1% 0.91±0.01 61.1±0.8% 0.89±0.01

Fair-MAML 35.5±0.9% 0.61±0.05 54.5±0.8% 0.58±0.07

MatchingNet∗ 43.6±0.8% - 55.3±0.7% -

MatchingNet‡ 44.8±0.1% 0.10±0.01 60.9±1.0% 0.13±0.03

Fair-MatchingNet 37.1±2.0% 0.06±0.05 56.5±2.0% 0.07±0.05

ProtoNet∗ 49.4±0.8% - 68.2±0.7% -

ProtoNet‡ 43.3±2.9% 0.09±0.03 64.2±1.0% 0.14±0.01

Fair-ProtoNet 39.9±1.0% 0.05±0.02 59.9±2.0% 0.06±0.05

D. Experimental Results

Table II showcases results experimented through three

cutting-edge meta-learning methods and those associated with

our proposed unfairness prevention approach (noted with

“Fair-”), which examined with two real-world image data sets,

i.e. Omniglot [45] and mini-ImageNet [36]. The problem of

N -way classification is set up as follows: select N unseen

classes, provide the model with K different instances of each

of the N classes, and evaluate the model’s ability to classify

new instances within the N classes.

In order to check the generalized fairness of these state-

of-the-arts on unseen tasks, we produce local replications

labeled with superscript ‡ that are used to compare with the

results reported in the original paper labeled with ∗. Note

that for local replication methods, input images are slightly

different, where in this paper we additionally consider the

protected attribute as one of the input features. Besides, in

the proposed unfairness prevention approach (labeled with the

prefix “Fair-” in Table II), cross-entropy losses are calculated

with using images without the protected attribute, as the

fairness constraint is applied to control the covariance between

the protected variable and the signed distance from the feature

vectors to the decision boundary.

Besides, our approaches (Fair-MAML, Fair-MatchingNet,

and Fair-ProtoNet) are outperformed than the original methods

and the gap between all methods is narrowing as the number

of training data increases (i.e. from 1-shot to 5-shot). However,

in Omniglot data, as more image classes are considered

in the experiment, accuracy decreases. Even in the 20-way

classification problem, our approach is able to control the

decision boundary covariance efficiently.

Our proposed approach is empirically shown to reduce DBC

and thus improve outcome fairness in multi-class decision-

making for all selected meta-learning methods. Another no-

table observation is that decreasing unfairness is brought at the

sacrifice of classification accuracy in a bit. This comes down

to the trade-off between accuracy and fairness. In summary,

our approach significantly controls biases for few-shot meta-

learning models and generalizes to unseen tasks.

VI. CONCLUSION AND FUTURE WORK

In this paper, for the first time we develop deep into the

few-shot supervised meta-learning classification model and

propose a bias-control approach by adding statistical parity

constraint, namely decision boundary covariance, which sig-

nificantly mitigates dependence of prediction on the protected

variable in each task and generalize both accuracy and fairness

to unseen tasks. Experimental results on two real-world image

data sets indicate the proposed approach works for three

cutting-edge few-shot meta-learning models with multi-class

classification problems. Further research in this area can make

multitask parameters a standard ingredient in deep fairness

learning.
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