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Abstract

In the coming years, next-generation space-based infrared observatories will significantly increase our samples of
rare massive stars, representing a tremendous opportunity to leverage modern statistical tools and methods to test
massive stellar evolution in entirely new environments. Such work is only possible if the observed objects can be
reliably classified. Spectroscopic observations are infeasible with more distant targets, and so we wish to determine
whether machine-learning methods can classify massive stars using broadband infrared photometry. We find that a
Support Vector Machine classifier is capable of coarsely classifying massive stars with labels corresponding to hot,
cool, and emission-line stars with high accuracy, while rejecting contaminating low-mass giants. Remarkably, 76%
of emission-line stars can be recovered without the need for narrowband or spectroscopic observations. We classify
a sample of ∼2500 objects with no existing labels and identify 14 candidate emission-line objects. Unfortunately,
despite the high precision of the photometry in our sample, the heterogeneous origins of the labels for the stars in
our sample severely inhibit our classifier from distinguishing classes of stars with more granularity. Ultimately, no
large and homogeneously labeled sample of massive stars currently exists. Without significant efforts to robustly
classify evolved massive stars—which is feasible given existing data from large all-sky spectroscopic surveys—
shortcomings in the labeling of existing data sets will hinder efforts to leverage the next generation of space
observatories.

Unified Astronomy Thesaurus concepts: Massive stars (732); Stellar classification (1589); Support vector machine
(1936); Infrared photometry (792); Emission line stars (460)

Supporting material: machine-readable tables

1. Introduction

Evolved massive stars are observed in a menagerie of exotic
evolutionary phases. While the challenge of connecting these
states with a self-consistent theory of stellar evolution has seen
rapid advancement since the original introduction of the “Conti
Scenario” (Conti et al. 1983), the effects of rotation, magnetic
fields, internal mixing processes, and binary interactions on the
evolution of massive stars are still the subject of much
theoretical effort (e.g., Ekström et al. 2012; Eldridge et al.
2017). While individual massive stars can be used as precision
probes of these processes, ensembles of evolved massive stars
can also significantly constrain stellar evolution. This can be
done by comparing the integrated spectra of massive stars (e.g.,
Levesque et al. 2012), or by studying the detailed makeup of
resolved populations of massive stars (Dorn-Wallenstein &
Levesque 2018, 2020; Stanway et al. 2020).

Using the demographics of stellar populations to constrain
stellar evolution requires large and accurately classified
samples of evolved massive stars. Such samples will be
achievable in the coming years with the launch of the James
Webb Space Telescope (Webb) and the Nancy Grace Roman
Space Telescope (Roman). Among the instrumentation on
Webb and the proposed instrumentation for Roman are
photometers equipped with filters spanning a broad wavelength
baseline from 0.5 to 28 μm. The resolution of Webb will allow
us to identify and study in detail individual luminous stars to
great distances (e.g., Jones et al. 2017), while the impressive
0.218 deg2 field of view of Roman will allow us to efficiently

survey nearby galaxies in a small number of pointings (Spergel
et al. 2013). Combined, observations from both missions will
give astronomers access to precise infrared measurements of
vast numbers of evolved massive stars. But without sophisti-
cated methods of identifying and classifying these stars, the
science return afforded by such a large increase in expected
sample sizes will be significantly reduced.
Classification of stars from broadband photometry is often

done by adopting simple linear cuts in color–magnitude space
(e.g., Massey et al. 2006, 2009) and—most critically—does not
include rare emission-line objects, whose classification requires
dedicated narrowband surveys (sometimes with custom-
designed filters; e.g., Neugent et al. 2018b), often accompanied
by follow-up spectroscopy, both of which require extensive
telescope time. These objects are often the post-main-sequence
evolved states of massive stars, in which the effects of rotation,
binary interactions, and chemical mixing are the most
pronounced; the stars that place the most valuable constraints
on unknown stellar physics are also the hardest to detect via
traditional means. Therefore, it is worthwhile to determine
whether there are alternative ways to classify massive stars that
avoid using traditional and expensive methods.
At present, we can mimic the observing capabilities of Webb

and Roman by combining data from Gaia (which has a red–
optical bandpass), the Two Micron All Sky Survey (2MASS;
Skrutskie et al. 2006; near-infrared), and the Wide Field
Infrared Survey Explorer (WISE; Wright et al. 2010; mid-
infrared [MIR]). WISE provides the additional benefit of
having scanned the sky approximately every 6 months,
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yielding light curves spanning a ∼7 yr baseline from which we
can extract variability metrics for most stars observed. While
Roman and Webb will not be observing the entire sky in this
fashion, determining whether variability can aid in the
classification of evolved massive stars will determine whether
observers should seek repeated observations of a stellar
population.

We wish to determine whether we can

1. assemble a sample of evolved massive stars with
available classifications as a training data set;

2. construct a machine-learning classifier that can reject
low-mass red contaminants and identify likely emission-
line objects in order to optimize available telescope time
on the most promising targets;

3. determine whether variability metrics estimated from
WISE light curves can aid in these tasks; and

4. determine which photometric bandpasses and variability
metrics contribute the most to making accurate
classifications.

Here we utilize a Support Vector Machine classifier (SVC)
trained only on broadband photometry and simple metrics
derived from WISE light curves to classify a large sample of
evolved massive stars. We describe our sample selection and
labeling method in Section 2. Section 3.1 details the calculation
of the simple metrics derived from the WISE light curves and
describes the overall behavior of the stars in our sample. We
explain our classification algorithm, discuss its successes and
shortcomings, and apply it to a training sample of 2500 stars
in Section 4, before presenting our recommendations and
concluding in Section 5.

2. Sample Selection and Labeling

For any machine-learning algorithm, a high-quality training
set with accurate labels is necessary. The second data release
(DR2) of the Gaia mission (Gaia Collaboration et al. 2018a)
contains precise photometry in three bands (G, GBP, and GRP)
and geometric parallaxes (ϖ) for 1.3 billion stars in the Milky
Way (MW) and Magellanic Clouds. Because the parallax
measurements suffer from some systematics (Lindegren et al.
2018), and many objects have high fractional errors (σϖ/ϖ) or
negative measured parallax, Bailer-Jones et al. (2018) calcu-
lated Bayesian distance estimates for the majority of stars in
Gaia DR2, using a prior based on the spatial distribution of
stars in the MW. Figure 1 shows the difference between the
distance inferred by Bailer-Jones et al. (2018), rest, and a naive
distance derived by inverting the reported Gaia measurements
of ϖ for ∼10,000 putative massive stars (as described below).
The dashed line indicates where rest= 1/ϖ. While the two
distance estimates are roughly consistent for nearby stars, more
distant stars are biased much farther away in the naive distance
estimates.

We first perform a cross-match between the Bailer-Jones
et al. (2018) catalog and the existing cross-match between Gaia
DR2 and the ALLWISE data release. ALLWISE (Cutri et al.
2013) contains photometry in four MIR bands—W1 (3.4 μm),
W2 (4.6 μm), W3 (12 μm), and W4 (22 μm)—derived from co-
added images obtained during the original WISE mission, as
well as W1 and W2 images obtained in the post-cryogenic
NEOWISE mission (Mainzer et al. 2011). We select all stars
with successful distance estimates (i.e., where result_flag= 1
if the distance estimate is the mode of the posterior distribution,

2 if it is the median, and 0 for a failed estimate; see Bailer-Jones
et al. 2018 for more details) that satisfy
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Since Bailer-Jones et al. (2018) used a Galactic prior,
stars in the Large and Small Magellanic Clouds (LMC and
SMC, respectively) have distances that are considerably
underestimated. Thus, we also match the catalog in Gaia
Collaboration et al. (2018b) to the ALLWISE/Gaia cross-match
and select stars with W1< 14 and MG�− 1.5, assuming
distance moduli of 19.05 and 18.52 for the SMC and LMC,
respectively (Kovács 2000a, 2000b), and combining the two
cross-matches while dropping duplicate stars. This results in a
total of 452,283 stars.
We then estimate the reddening in the Gaia bandpasses using

the published estimate for AG from Gaia DR2 and coefficients
from Malhan et al. (2018) to calculate E(GBP−GRP). For
Galactic stars without AG estimates, we assume AG= 0, and for
stars in the Magellanic Clouds, we assume the average value of
AG and E(GBP−GRP) using RV measurements from Gordon
et al. (2003) and E(B− V ) from Massey et al. (2007). Using
these quantities, we calculate the intrinsic GBP−GRP and MG

for all stars.
We can then construct color–magnitude diagrams (CMDs) in

the Gaia filters, which we can use to select massive stars—i.e.,
stars with initial mass Mi� 8 Me. We use the MESA
Isochrones & Stellar Tracks (MIST; Dotter 2016; Choi et al.
2016; Paxton et al. 2011, 2013, 2015) isochrones with
metallicity [Fe/H]= 0, − 0.5, and − 1 for the Galaxy, LMC,
and SMC, respectively, and rotation speed relative to critical of
v/vcrit= 0.4. We then selected the faintest isochrone point of
any age with Mi� 8 Me in 100 equally spaced bins in the
range− 0.25�GBP−GRP� 3. We note that the oldest MIST
time bin is 1010.3 yr (older than the age of the universe), but by
selecting points withMi� 8Me, none of the selected points are
older than ∼40 Myr. These isochrone points form a boundary
in the Gaia CMD that represents the faintest luminosities
reached by any massive star at any point during its evolution,
and no fainter massive stars are expected to be found—note

Figure 1. Distance from Bailer-Jones et al. (2018) vs. distance inferred via
inverting the reported ϖ from Gaia DR2 for ∼10,000 putative massive stars.
The dashed line shows where rest = 1/ϖ.
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that many isochrone points with Mi< 8 Me lie above this
boundary, so our sample is not constructed to be free of
contamination. The left panel of Figure 2 shows the logarithmic
density on the sky of all stars selected from the Gaia DR2
database; the Galactic plane and Magellanic Clouds are clearly
visible. The right panel shows the Gaia CMD, zoomed in to
show only stars brighter than MG=−2.75, where blue, orange,
and green points are individual stars in the Galaxy, LMC, and
SMC, respectively. The solid, dashed, and dotted black lines
show the MIST luminosity threshold for the Galaxy, LMC, and
SMC, respectively. Note that the thresholds accurately capture
the slope of the main sequence for all three galaxies, as well as
the GBP−GRP color corresponding to the Hayashi limit.

We select all stars brighter than the corresponding
luminosity threshold for their host galaxy, resulting in 9784
objects. From this sample, we select all stars fainter than the
saturation limit in W1 (8) and W2 (7) with valid measurements
listed in the ALLWISE catalog for the three bluest WISE bands
(excluding W4, where the signal-to-noise ratio is often poor).

We also convert the W1 and W2 magnitudes (and uncertainties)
to fluxes and filter for stars with signal-to-noise ratio greater
than 3. This results in a final sample of 6484 objects. Table 1
lists the names, coordinates, host galaxies, distances from
Bailer-Jones et al. (2018), and Gaia photometry for these stars.
We query Vizier (Ochsenbein et al. 2000) using astro-
query to download JHKs photometry from the Two Micron
All Sky Survey (2MASS; Skrutskie et al. 2006) for all stars.
We also query SIMBAD (Wenger et al. 2000) and download
the common name (MAIN_ID), spectral type (contained in the
MK_Spectral_Type and SP_Type fields), and object type
(OType) for each star, the last two of which we use to assign
labels.

2.1. Label Assignment

For our final sample of ∼6500 stars, we wish to assign the
best available estimate of its evolutionary state. These labels
can be used to compare to the predictions of stellar population

Figure 2. Left: density of stars selected from the Gaia database on the sky. Intensity of the color map corresponds to the logarithm of the number of stars in each bin.
Right: Gaia CMD for stars selected from the Gaia DR2 database brighter than MG = −1.5 (though we only plot stars brighter than MG = −2.75 to highlight the likely
massive stars). Galactic stars are in blue, LMC stars are in orange, and SMC stars are in green. The solid, dashed, and dotted lines represent our minimum-luminosity
criteria to select massive stars in the Galaxy, LMC, and SMC, respectively.

Table 1
Common Names, Gaia DR 2 Source IDs, Coordinates, Host Galaxies, and Gaia Measurements of 6484 Putative Massive Stars, Ordered by R.A.

Common Name Gaia DR2 R.A. (deg) Decl. (deg)
Host
Galaxy rest [kpc] G [mag] AG [mag]

GBP − GRP

[mag]

HD 236270 420521729725089408 0.17442287 55.72245665 MW 2.162 9.07 0.94 0.24
LS I+64 10 431766950542328448 0.38838658 64.51219232 MW 5.305 11.55 1.33 0.57
LS I+60 69 429346100814866944 0.55506135 60.43828347 MW 5.866 11.85 1.23 0.61
BD+62 2353 430076176533095936 0.59458742 62.90087875 MW 5.243 9.81 0.48 0.37
HD 73 384823335942218240 1.40408512 43.40139506 MW 1.869 8.19 0.12 −0.15
HD 240496 423076307551376512 1.42175475 58.49541068 MW 2.499 9.70 1.55 0.68
WISE J000559.28

−790653.3
4635404653198890880 1.49713706 −79.11483482 SMC L 13.94 0.21 1.05

LS I+59 30 429255116226234240 1.70503555 59.85955733 MW 4.006 10.86 1.19 0.50
BD+57 2870 423061979540546048 1.82960982 58.33785301 MW 3.893 9.84 1.42 0.82
BD+62 1 431515810905725952 1.88805102 63.08030731 MW 2.893 10.29 1.30 0.53

Note. Parameter rest from Bailer-Jones et al. (2018) is given for Galactic stars. Listed values of G and GBP − GRP are uncorrected for extinction.

(This table is available in its entirety in machine-readable form.)
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models. Note that these evolutionary states (which are
theoretical concepts) are mostly tied to spectral appearance
(which is an observable quantity). Therefore, we are assuming
that, e.g., all stars with Wolf-Rayet (W-R) spectra are in the
same evolutionary state (namely, the descendants of massive
stars with high luminosities that have lost their envelopes via
strong winds) and that all stars in that evolutionary state are
observed as W-R stars. We know that at least the former is not
true, as some stars lose their envelopes owing to interactions
with a binary companion (Eldridge et al. 2017), and the latter is
also questionable since such stars may or may not appear
similar to classical W-R stars (Götberg et al. 2018). Never-
theless, we assume that the assigned labels are a reasonable
approximation for a star’s evolutionary state with this caveat
in mind.

At present, a database of homogeneously classified massive
stars does not exist. While all-sky spectroscopic surveys have
observed many massive stars, the machine-learning pipelines
that produce the effective temperatures, surface gravities, and
chemical compositions that would allow us to accurately
classify our sample do not cover the parameter regime in which
massive stars reside (e.g., García Pérez et al. 2016). As a result,
we must use the heterogeneous classification data available on
SIMBAD. For each star, we apply a decision tree that results in
the star receiving a single label. Figure 3 shows a flowchart that
summarizes our labeling scheme. Note that this process is
highly tailored to this data set, and some branches in the
decision tree serve only to accurately label very small numbers

of stars with unique spectral types (e.g., spectroscopically
peculiar stars or X-ray binaries). Deriving labels for known
massive stars using existing sources is not trivial, and our
labeling scheme would be entirely different if a large sample of
massive stars with well-measured temperatures, surface
gravities, and chemical abundances were available.
We first use the common name and Gaia source_id of the

star to determine whether the star belongs to the catalog of
confirmed luminous blue variables (LBVs) presented in
Richardson & Mehner (2018). Non-LBVs are classified as
W-R stars if “W” is in the spectral type, or the SIMBAD
OType is “

*WR.” Non-W-R stars with “K” or “M” in their
spectral type are classified as either red supergiants (RSGs) or
“C/S/Giant” if their SIMBAD SP_Type contains “III”—we
keep all such low-mass contaminants in our sample, as
distinguishing between RSGs and luminous low-mass giants
is still a difficult problem (Massey et al. 2009; Yang et al. 2019;
Neugent et al. 2020). The resulting sample of RSGs is pure; of
the five RSGs that do not have luminosity class I, all of them
are luminosity class Ia−II, Ib−II, or Iab−II, which are
consistent with bona fide RSGs (Levesque et al. 2005). This
is a good test of the Gaia DR2 parallaxes and Bailer-Jones et al.
(2018) distances, as cool subgiants and dwarfs with luminosity
class IV or V would have been erroneously classified as RSGs
using our criteria had they been included in our sample owing
to inaccurate distance and MG measurements.

Non-RSGs with “F” or “G” in their spectral type are
classified as yellow supergiants (YSGs). However, this

Figure 3. Flowchart illustrating the process by which stars are assigned labels, as described in text. Each star begins in the top left and is assigned a label by following
a series of binary decisions. This process is complex and demonstrates the difficulty in deriving useful labels for massive stars. For example, some stars with F or G in
their spectral types are actually hot OBA stars (as described in text) and require special handling.
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includes a number of blue stars. Further inspection of these
stars reveals a number of objects whose MK_Spectral_Type
field contradictorily indicates that these are hot stars, with
spectral type O, B, or A. As these stars have Gaia photometry
consistent with hot stars, we classify them as such (see below).
Eight low-mass yellow stars are also included in our sample.
Stars with “III” or “V” in their spectral types are classified as
yellow dwarfs. While luminosity class III formally denotes
giant stars, only one yellow giant is in the sample, and so we
assign it the yellow dwarf label. We note that for extragalactic
samples foreground dwarfs can usually be filtered based on
proper motions, while dwarfs belonging to the stellar
population under study can be excluded just based on their
apparent magnitudes. Nonetheless, we retain this class to avoid
confusion between these stars and true YSGs. All YSGs that
are not hot stars or dwarfs keep their YSG label.

Of the objects that have not yet been classified, stars with
“[e]” in their spectral type are classified as OB[e] stars, while
non-OB[e] stars with spectral types including an “e” (without
brackets, and without “pec” in their spectral type) are classified
as OBAe stars. If the star is not yet classified and O, B, or A are
in the spectral type with no additional information, they are
classified as generic OBA stars. OBA stars with “III” or “IV” in
their spectral type are classified as evolved OBA stars, stars
with “V” in their spectral type are classified as OBA main-
sequence stars, and stars with “I” in their spectral type are
labeled as OBA supergiants. All stars that have not been
assigned a label at this stage are either C/S stars (which are
assigned the C/S/Giant class); stars labeled only as variables
in SIMBAD (e.g., LPVs, semiregular variables, or just
variables, without other spectral information), which are
assigned the miscellaneous variable classification; or stars with
no identifying information/no confirmed designation (e.g., the
SIMBAD OType is “Star” or contains “Candidate”), which are
classified as unknown/candidate.

Finally, we include an “Is Binary” flag for all stars, which is
1 for stars classified as eclipsing or spectroscopic binaries,
high-mass X-ray binaries, or ellipsoidal variables, or if they
have a compound spectral type (e.g., WN8 + O6V),5 and 0
otherwise; 102 stars are flagged as binaries. This flag is
separate from the labeling process shown in Figure 3. Because
photometry of binary systems can be misleading (Neugent et al.
2018a) and binary systems exhibit a broad range of variability
that is not intrinsic to the individual components, we exclude
these stars from our classifier.

Figure 4 shows the makeup of our sample. Approximately
30% of our sample (2550 stars) belong to the miscellaneous
variable and unknown/candidate classes, which we do not use
to train our classifier; instead, we use the classifier to assign
tentative classifications in Section 4. The rest of the sample is
dominated by luminous OBA stars and cool supergiants, with
very few LBVs, OB[e] stars, and W-R. This is unsurprising
given these stars’ high luminosity in the Gaia bandpass and the
expected lifetimes of these evolutionary phases relative to the
lifetimes of exotic emission-line objects (Ekström et al. 2012).
The imbalances in available training data across different
classes, along with the extreme sparsity of training data in the
rare classes, will impact the performance of the classifier if not

properly addressed (Chawla 2010). We discuss this issue for
this particular sample in Section 4.1.
The left panel of Figure 5 shows the MG versus G− J CMD

for all stars in our sample that are not labeled as miscellaneous
variables or unknown/candidate, colored by their label. G− J
correlates reasonably well with effective temperature in main-
sequence stars (Davenport & Covey 2018), and in this case it is
especially useful for distinguishing from the near-vertical main-
sequence/blue supergiants and the significantly cooler yellow
and red supergiants. From this plot, it is clear that many stars
are misclassified in SIMBAD (the worst example is one
particular red star classified as an OBA star), reducing the
effectiveness of any machine-learning algorithm, and propagat-
ing biases into the results. Yellow supergiants are especially
prone to this problem: 81/212 YSGs in the sample (38%) have
G− J< 1, consistent with the optical colors of much hotter
stars. Indeed, this problem would have been worse had we not
corrected for the presence of OBA stars in the initial sample of
YSGs. This issue may originate from bad distance estimates for
individual stars (which explains why our sample includes F and
G dwarfs), bad estimates of reddening (given our usage of
monochromatic extinction coefficients), previously unidentified
variability, or the fact that many of these spectral types were
determined via stellar spectra taken on photographic plates
(e.g., many spectral types for stars in the LMC come from
Ardeberg et al. 1972). We expect this issue to propagate into
our results, increasing the confusion between YSGs and hot
stars.6

Figure 4. Makeup of our sample of massive stars. Note that the sample is
dominated by OBA stars and cool supergiants. Non-OBAe emission-line stars
—OB[e] stars, W-R stars, and LBVs—are the rarest massive stars in our
sample, despite being stars of great scientific interest. For readability, we have
used a logarithmic y-axis to display our sample statistics. Note that, in practice,
differences in the number of stars per class are much larger than they might
appear here.

5 This does not include stars with the “OB+” spectral type, which is an
outdated class that describes OB stars with weaker absorption lines that would
now be classified as OB supergiants.

6 It would certainly be possible to tailor our data set by removing the “worst”
stars, thus cleaning up the boundaries between classes. However, by doing this
we would be making several assumptions about where different classes of stars
reside in our feature space, with no way of knowing whether these enforced
boundaries actually divide stars into physically different evolutionary states.
Indeed, we expect the boundaries between classes to be fuzzy, because our
discrete labels are an approximation of a continuum of evolutionary states—a
fact that we have otherwise swept under the rug. That said, a significant amount
of the overlap between classes is due to the poor quality of existing labels.
Instead of trying to guess which stars are poorly labeled, and which ones truly
reside in the overlap between classes, we instead wish to see how the quality of
existing labels impacts the performance of our classifier.
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Because we expect objects in some classes—especially those
with an evolutionary link such as main-sequence, evolved, and
supergiant OBA stars—to appear similar in the training data
set, we also assign all stars a coarse label: all classes of OBA
stars excluding OB[e] and OBAe are labeled “Hot”; RSGs and
YSGs are labeled “Cool”; W-R stars, LBVs, and both OB[e]
and OBAe stars are labeled “Emission” (EM for short); C/S/
Giant stars and yellow dwarfs are labeled “Contaminant”; and
miscellaneous variables and unknown/candidates are labeled
“Unknown/Candidate.” The results of this labeling scheme are
summarized in Table 2, which shows the number of stars with a
given refined class that are assigned a particular coarse label.
The right panel of Figure 5 shows the same CMD, with points
colored by their coarse label. This leads to some improvement:
each coarse class lies in the approximate region of the CMD
that one would expect. Regardless, it is evident that selecting
any one of these classes solely from this optical photometry
would be difficult: the “cool” class has significant overlap with
the “hot” class—largely driven by the YSGs—emission-line

stars can be found at a range of GBP−GRP colors, and there is
significant overlap between low-mass contaminants that will
end their lives as white dwarfs and true massive stars that will
end their lives in supernova explosions. This point is
emphasized by the contours, which correspond to 0.5 and 0.1
times the maximum value of a kernel density estimate of the
distribution of each class, which replaces each point with a
kernel function (in this case a two-dimensional Gaussian
centered on the point) and sums the kernels to estimate the
underlying distribution. We do this using the KernelDen-
sity estimator from sklearn and use a similar cross-
validation scheme described below to find a suitable bandwidth
for the kernel (i.e., the width parameter of the Gaussian).
We use these coarse labels to train a second classifier. While

these coarse labels lose some specificity, each coarse class
contains more stars, hopefully increasing the performance of a
classifier trained on these labels. Furthermore, they still retain
physical information while increasing the number of stars in
each class: the “cool” label contains stars with convective
envelopes, while “hot” stars contain radiative envelopes.
Meanwhile, emission-line stars are notable for their variability.
It is our hope that this second classifier will still address two of
our stated goals: to identify emission-line stars, and to reject
contaminating low-mass stars.

3. WISE Light Curves

Variability in evolved massive stars has been well
characterized at timescales from minutes to decades (e.g.,
Conroy et al. 2018; Dorn-Wallenstein et al. 2019; Soraisam
et al. 2020). In a study of massive stars in the Whirlpool Galaxy
(M51), Conroy et al. (2018) found that almost half of the stars
brighter than MI=−7 were variable, with red stars nearing a
variability fraction of 1. Both red and extremely luminous blue
stars exhibited quite high amplitude (ΔI� 0.3) variability. For
spectral energy distributions (SEDs) dominated by purely
stellar light, MIR flux measurements (and thus variability) are
sensitive to (variations in) the bolometric luminosity. However,
for stars with significant circumstellar dust components in their
SEDs, MIR variability is correlated with both intrinsic
bolometric variability and dust creation/destruction processes

Figure 5. MG vs. G − J for putative massive stars. Left: stars are colored by their label. While we also use shapes to distinguish between stars in different classes, this
illustrates a key difficulty faced by our classifier: the classes have significant overlap with each other in the CMD. For example, the coolest/warmest YSGs have
identical optical photometry to RSGs/OBA supergiants, respectively, while the different classes of hot stars are impossible to distinguish from one another by eye.
Right: stars are colored by their coarse label. Contours for each coarse class correspond to 0.5 and 0.1 times the maximum value of a kernel density estimate of the
distribution of each class in the CMD. Even in the coarse labels, the contours for hot stars and emission-line stars are nearly identical.

Table 2
Number of Stars in a Class That Are Assigned a given Coarse Label, Not

Including the Miscellaneous Variable or Unknown/Candidate Labels

Coarse Label

Refined Label Hot Emission Cool Contaminant

Main-sequence OBA 187
Evolved OBA 409
Supergiant OBA 798
OBA 915
OBAe 383
OB[e] 12
W-R 37
LBV 8
YSG 212
RSG 847
C/S/Giant 118
Yellow dwarf 8

Total 2309 440 1059 126
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in the circumstellar medium (e.g., in RSGs, where it is
correlated with the mass-loss rate; e.g., Yang et al. 2018).

The WISE mission provides light curves from stars in all
parts of the sky, observed over a ∼7 yr baseline. Due to the
scanning law adopted by WISE (Wright et al. 2010), most stars
not on the ecliptic poles are visited approximately every ∼180
days. All stars have a ∼3 yr data gap from when WISE was
placed in hibernation in 2011 February and when it was
reactivated in 2013 December. WISE initially observed
simultaneously in four filters during its primary mission: W1
(3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm).
However, it was reduced to using only the two bluest bands
in its post-cryogenic survey mode called “NEOWISE.” The
time, duration, and number of individual observations during
each ∼180-day visit depend on spatial geometry of the WISE
scanning program, i.e., stars closer to the ecliptic poles have
longer-duration visits (often exceeding a week) with many
epochs per visit, while stars near the equator have very short
visits (typically a couple of days) with only a few epochs per
visit. Because WISE light curves possess such nonuniform
cadence, extracting detailed physics for most individual stars is
difficult. However, the WISE light curves place fantastic
constraints on MIR variability amplitudes on longer timescales,
especially for evolved massive stars whose highest-amplitude
variability occurs over ∼year timescales. Such amplitude and
timescale estimates are related to the physical parameters of the
star, potentially aiding in classification.

For every star selected in Section 2 we queried the Single-
Exposure (“L1b”) source databases for all phases of the WISE
mission, including the original four-band, partial cryogenic
three-band, and post-cryogenic two-band NEOWISE tables.
We used astroquery to pull data in the region within 3″ of
the known source location. To ensure high-quality data for all
recovered epochs, we require the photometric quality flag to be
PH_QUAL = A, the contamination flag to be CC_FLAGS = 00,
the number of deblended sources flag to be NB = 1, and the
PSF photometry fit quality (defined as the reduced χ2) in W1 to
be w1rchi2< 5.

Only two of our stars did not have usable data from WISE:
WISE J074911.48−102000.2 (HD 63554), which has no light
curve available online, and WISE J050128.62−701120.2,
which does not have any corresponding object nearby on
SIMBAD. When calculating each of the variability metrics
below, we instead record a value of NaN (i.e., missing data).
For the remaining stars, we ignore the W3 and W4 data here
owing to the lower signal-to-noise ratio and significantly
shorter observing baselines due to the loss of cryogenic
observations after the original WISE mission. As WISE
observes simultaneously in all bands, we can construct
W1−W2 light curves without any interpolation and simply
subtract the W2 data from the W1 data to obtain the W1−W2
color curve. The left panels of Figure 6 show an example set of
light curves for WISE J000536.97+432405.0 (=HD 73), a
B1.5IV star that illustrates the typical observing cadence and
variability of a bright star in our sample.

3.1. Variability Metrics

3.1.1. Amplitude

For each of the three light curves of each object, we wish to
extract simple metrics that describe the amplitude and timescale
of variability. We choose χ2 about the median defined as

åc
s

=
-M M

2i

i

2
2

⎜ ⎟
⎛
⎝

⎞
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˜
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and the reduced-χ2

c c= -N 1 , 3red
2 2 ( ) ( )

where Mi is a magnitude measurement, M̃ is the median of the
light curve, σi is the corresponding error on the data point, and
N is the number of points in the light curve. We also calculate
the median absolute deviation (MAD) and error-weighted

Figure 6. Example light curve for WISE J000536.97+432405.0. Top left: raw light curve, with W1 points plotted as blue error bars and W2 points plotted in orange.
Bottom left: variability in W1 − W2 plotted as green error bars. Top right: binned W1 light curve. Blue points are binned data (error bars are smaller than the points).
Black dotted line is the B-spline interpolation. Time has been adjusted so the light curve is centered on t = 0. Bottom right: first derivative of the interpolant. Vertical
blue lines show the times where the derivative crosses zero, indicated by the horizontal blue line.
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If the filtered and cleaned light curve only contains one good
measurement (or no good measurements), we automatically
give it c c= = = =MAD EWM2

red
2 NaN. We describe our

method for treating missing data below.
The top panels of Figure 7 show the distributions of cred

2 and
EWM derived for our sample. Values from W1 light curves are
in blue, W2 in orange, and W1−W2 in green. The bottom left
panel shows a scatter plot of cred

2 versus EWM for all three
light curves. While the two measures correlate reasonably well
with each other, there is a branch of stars whose light curves
have high cred

2 and low EWM; because the EWM is robust to
outliers, cred

2 is an effective probe of light curves with sudden
brightening/fading events, while EWM is an effective selector
for light curves that display consistent variability. The bottom
right panel shows a scatter plot of cred

2 in W1 versus in W2,
with each point colored by its coarse label. A distinct branch of
stars that are much more variable in W2 than W1 is clearly
evident; oddly, the distributions of classes, EWM, and
broadband colors in this branch are consistent with the whole
sample, and no similar branch exists in the measured EWM
values.

Visual inspection of the light curves of stars with c < 10red
2

in W1 and c > 100red
2 in W2 shows that these stars appear to

have higher signal-to-noise ratio W2 measurements than W1
and have one observation during which the star apparently
becomes considerably redder, achieving W1−W2 values as
high as ∼4. Examining the times at which these extreme
reddening events occur shows a preference for times during the
cryogenic WISE survey, implying that this behavior is likely
instrumental in origin, despite our filtering using the provided
quality flags. Nonetheless, we include cred

2 , as it does not map
perfectly onto EWM, and only 98 stars fall in this regime. We
do not yet know whether cred

2 , EWM, both metrics, or neither

are useful features for classification, so we keep both with the
intent of exploring their importance below.

3.1.2. Timescale

Many methods exist for estimating dominant timescales in
light curves. Conroy et al. (2018) use the Lomb–Scargle
periodogram (Lomb 1976; Scargle 1982) to search for periodic
variables. However, this approach suffers from numerous, well-
known issues (including accurate period recovery at low signal-
to-noise ratio), and false peaks can easily be mistaken for real
timescales, especially in highly irregularly sampled data, as is
the case for the WISE light curves. Soraisam et al. (2020) use a
Gaussian process (GP) interpolation scheme coupled with a
wavelet analysis to estimate timescales in massive stars in M31
observed by the Palomar Transient Factory (PTF). However,
with so few data points, we found it difficult to obtain a reliable
fit with a GP, and even when the fit was successful, the
resulting interpolant had a large standard deviation in between
WISE visits. The resulting measurements of the characteristic
timescale were more reflective of the kernel used.
Instead, we turn to a a spline-based interpolation method,

which is analogous to certain GP methods (Kimeldorf &
Wahba 1970). We first subtract half of the sum of the times of
the first and last available observations, so that the light curve is
centered at t= 0. We then bin the observations in each visit.
Visits are defined as sets of points separated in time by less
than a defined threshold. Due to the WISE scanning law, some
stars near the ecliptic poles have visits separated by less than
the typical ∼180 days. Therefore, we adopt 50 days as the
threshold for visits. Two stars in our sample are close enough to
the ecliptic pole to be observed nearly continuously such that
we erroneously record two “visits”: one each during the
cryogenic and post-cryogenic surveys. However, neither star is
strongly variable, and thus this small edge case does not
substantially impact our subsequent analyses.
For all observations in a given visit, we calculate the mean

time and W1/W2/W1−W2 measurement. We use scipy.
interpolate.splrep in Python to find the third-order
basis spline (aka B-spline, which performs a spline fit using
spline basis functions; de Boor 1978) representation of the
binned light curves, adopting a smoothing factor s = 10. This
returns the knots, B-spline coefficients, and degree of the
spline. By definition, third-order splines are differentiable, so
we use scipy.interpolate.splev to evaluate the first
derivative of the spline interpolant and find the times when the
derivative changes sign—i.e., when the light curve reaches a
maximum or minimum. As metrics of the characteristic
timescale of the light curve, we calculate the frequency of
zero-crossings of the first derivative of the spline interpolant, ν0
(calculated as the number of times the derivative passes
through zero, divided by the time baseline of the light curve);
〈Δt〉, the mean of the differences between successive zero-
crossings; and the standard deviation of the differences
between successive zero-crossings, σΔt. For stars with fewer
than four visits, we automatically assign ν0= 〈Δt〉= σΔt=
NaN. The right panels of Figure 6 show this process on the W1
light curve plotted in the left panels. The blue points are the
binned W1 measurements (the errors are smaller than the size
of the points), and the dotted black lines are the spline
interpolant (top right) and corresponding derivative (bottom
right).

Figure 7. Top row: distribution of derived cred
2 (left) and EWM (right) values

in the W1 (blue), W2 (orange), and W1 − W2 (green) light curves. Bottom row:
scatter plots comparing different amplitude metrics. The left panel shows EWM
versus cred

2 in the W1, W2, and W1 − W2 light curves (using the same color-
coding). The right panel shows cred

2 in W2 vs. cred
2 in W1, with each point

colored by its coarse label.
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While this is a simple method that yields multiple estimates
of variability timescale, it is important to note that it is
dependent on both the variability amplitude and the sampling.
For example, a nonvariable object whose light curve is poorly
sampled may appear to be variable owing to measurement
noise (which does not have a characteristic timescale), and the
derived timescale from this method will thus be more reflective
of the sampling than anything else. Thankfully, in many cases
such a variable would have a low EWM value. However, it is
possible that a star may enter a period of low-amplitude
variability, resulting in false zero-crossings of the first
derivative of the spline interpolant (e.g., the first three WISE
visits in light curve in Figure 6; it is possible that the first few
zero-crossings in the bottom right panel may not be real). These
systematics are difficult to work around in sparsely sampled
light curves and are an important caveat to keep in mind.

4. Machine Learning

4.1. Classifier Selection

The problem of classification based on broadband photo-
metry has a rich history in the literature. With the advent of
large surveys like the Sloan Digital Sky Survey (SDSS; York
et al. 2000), optical data could be coupled with space-based
MIR data to find the stellar locus in a 10-dimensional color
space (Davenport et al. 2014). Recent efforts to separate stars
from quasars, or perform a regression on effective temperature
with machine learning on photometric data, have been
successful (Makhija et al. 2019; Bai et al. 2019); however,
these studies are often focused on main-sequence, low-mass
stars. This is an understandable choice given the rarity of
evolved, high-mass stars, the absence of reliable distances to
calculate luminosities from which to select putative massive
stars, and the fact that follow-up spectroscopy is necessary in
order to confirm a star’s membership in many important
classes.

With the advent of Gaia DR2, luminosities can be easily
determined, and putative massive stars can be confirmed, as we
do in Section 2. We wish to train an algorithm that takes as
input the broadband photometry and variability metrics derived
for our sample and outputs spectral type classifications. Many
machine-learning classifiers exist; of these, we wish to choose a
flexible model with well-understood mathematics, while
avoiding techniques like neural networks that can be difficult
to interpret. Of the classifiers available in the sklearn
package, we decided to test a Random Forest (RF) classifier
(which consists of a collection of decision trees trained on
random subsets of samples and features; Breiman 2001), a
Support Vector Machine (SVM) classifier (which identifies
hyperplanes in the feature space that separate different classes;
Cortes & Vapnik 1995), and a GP classifier (which models the
function determining the probability of a star being a given
class at a location in the feature space as a multidimensional
Gaussian distribution whose properties are determined entirely
by a covariance function, aka a kernel function, coupled with a
linking function, usually the logit function, to make discrete
class predictions; Rasmussen & Williams 2006). We refer the
reader to these publications, as well as to the sklearn
documentation,7 for the mathematics and implementation
details of each classifier. In the multiclass case, a collection

of classifiers are trained on each possible pair of classes (one-
versus-one or “ovo”), generating a total of Nclasses(Nclasses−
1)/2 classifiers, where Nclasses is the number of classes. Labels
are assigned to test samples by allowing each classifier to vote,
and the label with the most votes is chosen (Knerr et al. 1990).
Each type of classifier has a number of hyperparameters that

affect the performance of the classifier. For the RF classifier,
n_estimators specifies the number of trees in the forest,
max_depth specifies how many branches each decision tree
in the forest can have, and max_features specifies the
maximum number of features each tree is trained on. We also
set class_weight=balanced, which weighs samples
when fitting to account for the different frequencies of each
class in the data.
For the SVM classifier (SVC), C is a regularization

parameter that governs the trade-off between maximizing the
margin and misclassifications in the training set. Higher values
of C will force the SVC to correctly classify every point,
resulting in poor generalization (i.e., overfitting). The SVC
requires that the distance between two points in the feature
space is defined as the inner product of two vectors in the
feature space, 〈Xi, Xj〉. Because the boundaries between classes
in our sample are not guaranteed to be linear, one can project
the samples into a much higher dimension space via a mapping
function, Φ, where distances between two vectors in this space
are calculated as 〈Zi, Zj〉= 〈Φ(Xi), Φ(Xj)〉. In reality, the
transformed feature space can be incredibly high dimensional,
and explicitly mapping the data into this high-dimensional
space is computationally inefficient. Instead, we can adopt a
kernel function, K, that defines distances in the higher-
dimensional space, e.g., K(Xi, Xj)= 〈Zi, Zj〉. Because the
kernel only takes the measured features as input and outputs a
number, using a kernel function implicitly maps the input
feature space into a high-dimensional space without specify-
ing Φ.
Common choices of the kernel function include a linear

kernel (i.e., the Euclidean distance between individual samples
in the feature space) and the “radial basis function” (RBF)
kernel:

= g- -X XK e, , 5X X
i j i j

2( ) ( )∣∣ ∣∣

where γ governs the influence of the kernel function; lower
values result in increasingly linear boundaries, while high
values result in the decision function being entirely dependent
on individual points, creating small islands of a given class
centered on each training point. The advantage of nonlinear
models like an SVM with an RBF kernel over linear methods is
that the decision boundaries can be much more flexible; the
trade-off is that the contribution of individual features to the
classifier cannot be easily calculated without the unknown
function Φ (see Section 4.3.1). The “optimum” kernel and
hyperparameters are chosen via a cross-validation strategy
described below. Finally, we also set class_weight=ba-
lanced for the SVC, which automatically sets the value C for
class i to CN N Nisamples classes( ), where Nsamples is the size of the
sample, Nclasses is the number of classes, and Ni is the number
of objects in the sample belonging to the class. This serves to
weight rarer classes more heavily. The GP classifier’s only
hyperparameter is a choice of kernel, which defines the
covariance function of the GP.7 https://scikit-learn.org/stable/index.html
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To fit our classifiers, we first remove all stars labeled as
miscellaneous variables or unknown/candidates, as well as
known binaries, and one star with bad J photometry, the Be star
HD 53032. For features, we use the intrinsic calculated value of
MG, as well as (uncorrected for extinction) G− J, J−H,
H−Ks, Ks−W1, W1−W2, W3−W4, and cred

2 , EWM, ν0,
〈Δt〉, and σΔt in all three light curves—we indicate the WISE
band or color that each variability metric corresponds to with a
subscript hereafter. The input features and a brief description
where relevant are listed in Table 3. Because cred

2 , EWM, 〈Δt〉,
and σΔt have significant dynamic range, we use the base-10
logarithm of these features. Feature values and labels for each
star in our sample are given in Table 4. We note that only a
subset of the features from Table 3 are listed here owing to the
number of features. The table in its entirety will be made
available in a machine-readable format.

We now randomly split our sample into a training set with
70% of the samples and a test set with the remaining 30%,
using a stratification strategy to ensure that the proportions of
the classes in both sets are equal. The test set is withheld until
we are ready to assess the performance of the chosen classifier.
We then use sklearn.preprocessing.StandardS-
caler in Python to scale the training data such that each
feature has 0 mean and unit variance. Because the data have
missing values, we then use sklearn.impute.Iterati-
veImputer, which uses a Bayesian ridge regression to
predict and replace missing values.

To test the accuracy of the imputer, we select only the rows
from the training set with no missing data. For each feature
with missing data ( c -log W Wred, 1 2

2 , log EWMW1−W2, sDlog t W, 1,
sDlog t W, 2, and sD -log t W W, 1 2) we randomly choose 200

objects, replace the value of the feature with NaN for only
these objects, transform the data using the scaler and imputer,
and calculate the fractional error between the true value and the
imputed value. The returned fractional errors for each feature

centered around 0 and had a low scatter with the exception of
log EWMW1−W2. However, this has little impact on the
classifier, as only two objects in the actual training set have
missing values for log EWMW1−W2. We also repeated this
procedure for coarse labels: we select 200 random objects with
a given coarse label, replace a random feature from the list of
features with missing data with NaN for each object, and again
calculate the fractional error between the true and imputed
values. We find that the imputer performs poorly on Cool and
Contaminant stars. Given that all of the features with missing
data are linked to variability, a significant fraction of red
supergiants display high amplitude variability (Conroy et al.
2018), the MIR variability of AGB stars (which make up the
bulk of the Contaminants) is higher than RSGs in a given
magnitude range (Yang et al. 2018), and our sample of Cool
and Contaminant stars contains objects in quite different
evolutionary states that nevertheless have similar colors and
magnitudes, it is unsurprising that the imputer is unable to
predict the variability properties of these stars. In Section 4.3.1,
we will discuss the impact of these features on the overall
performance of our classifier.
For each classifier, we then initialize a corresponding

sklearn classifier object (e.g., sklearn.svm.SVC). To
settle on the best values for the hyperparameters, we use
sklearn.model_selection.GridSearchCV to per-
form a cross-validation search on a grid of hyperparameters,
using a stratified K-fold strategy with k= 5 to ensure that each
fold has a representative distribution of classes. For the RF, we
search for n_estimators between 10 and 150 in steps of 10,
search for max_depth between 10 and 100 in steps of 10, and
allow max_features to be either sqrt, log2, or None
(where the maximum number of features individual trees are
trained on is the square root of, is the base-2 logarithm of, or is
equal to the number of features, respectively; see the
documentation for details). We also allow max_depth to
take on the default value (None), such that individual trees can
be grown until each leaf only contains one sample.
For the SVC, we search for values of C on a logarithmic grid

with 1 dex spacing between 0.01 and 100, and for the RBF
kernel, we search for values of γ on a similar grid between 0.01
and 10. Additionally, we allow γ to be the default values of
1/n_features (where n_features is the number of
features). For the GP classifier, we only vary the kernel, as the
GaussianProcessClassifier object automatically opti-
mizes the kernel hyperparameters. We let the kernel be either
linear, RBF, or the default (a special case of the RBF kernel
with the length scale equal to 1).
Each classifier object has a default method to score each set of

hyperparameters, e.g., the accuracy of predicted labels compared
to true labels. However, the classes in our training set are
unbalanced (e.g., Figure 4), so inaccurately classifying every
single LBV, for example, would have little impact on the overall
accuracy of the classifier. To account for this, we instead use the
balanced accuracy (Mosley 2013; Guyon et al. 2015), which
weighs each sample by the frequency of that sample’s class in
the training set. Other options for scoring criteria exist, including
some that help maximize the classifier’s precision such as the
weighted F1 score and Cohen’s kappa (Cohen 1960). We
experimented with using these scores and found that using the
balanced accuracy minimizes misclassifications across all classes
(reflected in the diagonal in the left panels of Figures 9 and 12).
Note that this choice implicitly selects a classifier that performs

Table 3
List of Features Passed to Our Machine-learning Classifiers, as Well as

Clarifying Definitions Where Relevant

Feature Definition
Colors and Magnitudes

MG Absolute magnitude in Gaia G band
G − J From Gaia and 2MASS photometry
J − H From 2MASS photometry
H − Ks From 2MASS photometry
Ks − W1 From 2MASS and WISE photometry
W1 − W2 From WISE photometry
W2 − W3 From WISE photometry
W3 − W4 From WISE photometry
MW1 Absolute magnitude in WISE W1 band

Variability Metrics

clog red
2 Log of the reduced χ2

log EWM Log of the error-weighted MAD
ν0 Frequency of zero-crossings of the first derivative of the

spline interpolant
áD ñtlog Log of the average time between zero-crossings

sDlog t Log of the standard deviation of zero-crossing times

Note. WISE photometry used to calculate colors and magnitudes is from the
ALLWISE data release (Cutri et al. 2013). All variability metrics are calculated
from the WISE W1, W2, and W1 − W2 light curves.
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well across all classes and is not optimized for specific classes.
Future work will explore the possibility of tuning a classifier to
find specific classes of rare stars.

Finally, we explore three variations of a voting classifier. Such
a classifier consists of an ensemble of individual classifiers, each
of which “votes” by assigning a class to a given sample. The final
assigned class can be chosen with either a “hard” (the class with
the most votes wins) or a “soft” (class assignments are weighted
by the probabilities output by each classifier) strategy. We
construct two voting classifiers that each use a different voting
strategy, using RF, SVC, and GP classifiers as the individual
components. We refer to these as the Voting (Hard) and Voting
(Soft) classifiers. We also make a third voting classifier that also
uses a soft voting strategy, but the votes from each component
classifier are weighted by the balanced accuracy determined via
cross-validation. We refer to this as the Voting (Weighted)
classifier. We score each voting classifier by averaging the
balanced accuracy taken from five stratified folds of the data.
Figure 8 shows the balanced accuracy for the three optimized
classifiers, as well as the three voting classifiers; the SVC
performs “best,” though all classifiers return similarly low
balanced accuracies between ∼0.4 and 0.55. Both the Voting
(Soft) and Voting (Weighted) classifiers perform comparably with
the worst classifier, the GP. This is due to the fact that, while the
SVC often selects one individual class with high probability, both
the RF and GP tend to select multiple classes with high
probability (with the GP sometimes selecting all classes with
roughly equal probability, usually slightly favoring the classes
selected by the RF). This can result in both the RF and GP voting
for the wrong class with higher probability than the correct vote
from the SVC, leading to the poor observed performance.

4.2. SVC Performance

The procedure above results in values for the SVC
hyperparameters of kernel=linear and C = 0.01. With
these hyperparameters, we fit the SVC to the training set, use
the StandardScaler and IterativeImputer that were
previously fit to the training set to transform the test set, and
use the SVC to predict the labels of the test set. The left panel
of Figure 9 shows the raw number of stars in the test set, with
the true label given on the y-axis and the predicted label given
on the x-axis. The middle and right panels show this matrix,
where each row/column is normalized by the total number of
stars in that row/column, yielding the confusion/efficiency

matrices, respectively. The i, j entry in the confusion matrix
(middle panel) corresponds to the fraction of objects in the test
set belonging to class i (shown on the y-axis) that are assigned
class j (shown on the x-axis). Entries along the diagonal are the
completeness (also called the recall in some contexts), i.e., the
percentage of a given class that is accurately recovered by the
classifier. The i, j entry in the efficiency matrix (right panel) is
the fraction of objects in the test set classified as j that belong to
class i. Entries along the diagonal are equivalent to the
precision (equivalent to one minus the contamination), i.e., the
percentage of an observed class that is made up of true
members of that class. Figure 10 shows the completeness
versus the contamination for each class. Completeness is just
the diagonal of the corresponding row/column of the confusion
matrix, and contamination is one minus the diagonal of the
corresponding row in the efficiency matrix.8

Table 4
Feature Values and Assigned Labels for All Stars in our Sample, Ordered by R.A.

Common Name MG (mag) G − J (mag) W1 − W2 (mag) clog Wred, 1
2 áD ñtlog W1 (days) Label Coarse Label

HD 236270 −3.54 0.35 0.14 0.389 - Cool
LS I+64 10 −3.41 0.72 0.00 - - Hot
LS I+60 69 −3.22 0.88 −0.03 0.061 - EM
BD+62 2353 −4.27 0.47 −0.04 0.110 2.816 Hot
HD 73 −3.29 −0.66 −0.05 3.157 2.701 Hot
HD 240496 −3.84 1.01 0.01 −0.064 2.764 Hot
WISE J000559.28−790653.3 −5.33 1.34 −0.04 0.072 3.162 Unknown/Candidate
LS I+59 30 −3.34 0.67 −0.04 0.234 - Hot
BD+57 2870 −4.53 1.17 0.00 0.046 3.135 Hot
BD+62 1 −3.31 0.90 0.27 1.622 2.813 Hot

Note. Missing numbers are indicated with “-.” We note that only a subset of the features listed in Table 3 are shown here. All features are listed in the machine-
readable version.

(This table is available in its entirety in machine-readable form.)

Figure 8. Balanced accuracy for each optimized classifier, averaged over five
foldings of the data. The SVC is the best overall, with a balanced accuracy of
0.53. Among the three voting classifiers, the Voting (Hard) classifier performs
best with a balanced accuracy of 0.49, still below the SVC.

8 We note that a variety of terms are used in the classification problem, some
of which (i.e., completeness and contamination) are familiar to astronomy,
which we briefly summarize here. The completeness (or recall) is also referred
to as the true positive rate in the binary classification case. The accuracy refers
to the sum of the diagonal in the left panel of Figure 9 divided by the number of
objects in the test set. The contamination is also called the false-positive rate in
the binary classification case; the precision refers to one minus the
contamination.
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The SVC performs poorly on nonsupergiant OBA stars. This
is perhaps unsurprising given that both the observed colors and
interior structures of OBA stars as they evolve from the zero-
age main sequence (ZAMS) to the terminal-age main sequence
(TAMS) do not change drastically compared to the much more
evolved states that we also consider. The classifier classifies
OBAe stars with somewhat lower contamination compared to
main-sequence and evolved OBA stars, though with compar-
ably low completeness. True OBAe stars are misclassified
either as other types of OBA star or as W-R stars, while stars
falsely labeled as OBAe are mostly true OBA stars, with the
exception of one true W-R star. A total of 75% of W-R stars are
recovered, but only 6/30 stars identified as W-R stars in the test
set are true W-R stars; given the importance of W-R stars for
both the physics of mass loss and studying evolved massive
stellar populations (Dorn-Wallenstein & Levesque 2018, 2020),

future work will focus on developing a classifier specifically for
identifying W-R stars.
All LBVs in the test set are recovered; while such high

accuracy is often seen as a sign of overfitting, we choose not to
focus on this subclass, given both the disputed evolutionary
status of LBVs (Smith & Tombleson 2015; Humphreys et al.
2016; Aadland et al. 2018) and the fact that only two LBVs
exist in the training set. Yellow supergiants are only classified
with 27% accuracy. As discussed in Section 2 and shown in
Figure 5, the yellow supergiant label is assigned to stars with
optical colors consistent with hot stars as well as RSGs. This is
reflected in the types of stars that YSGs are mistaken for, as
well as the stars that are mistaken for YSGs. Overall, the
classifier performs best on the coolest stars in the sample. RSGs
are classified with 96% accuracy and only 10% contamination.
Meanwhile, the classifier performs exceptionally well at
identifying low-mass contaminants, at the cost of misclassify-
ing four RSGs, two OBAe stars, and one OBA star.
Overall, an SVC trained on these refined labels appears to

have little use. With the exception of RSGs and low-mass
giants, the remaining classes have low accuracy, high
contamination, or both. We nonetheless use the SVC to predict
labels for the 2550 stars initially labeled as “Miscellaneous
Variable” or “Unknown/Candidate.” We identify 79 candidate
RSGs and 36 candidate C/S/Giant stars, of which we expect
∼71 and 30 to be genuine, respectively, given the efficiency
matrix. We list the candidate RSGs in Table 5. A small
spectroscopic observing campaign would easily confirm the
ability of this classifier to correctly identify RSGs and low-
mass giants.

4.3. Performance on Coarse Labeling

Examining Figures 9 and 10, we see that while the classifier
is not especially accurate except for the coolest stars, the
classifier is roughly useful for sorting the test set into broad
categories: different types of OBA stars are mostly (mis)
classified as other classes of OBA stars; the same is true for
emission-line stars (OBAe, OB[e], W-R, and LBV) and cool
stars (YSG, RSG, C/S/Giant).

Figure 9. Left: matrix showing the number of stars in the test set with true label indicated on the y-axis that are assigned the label on the x-axis. Middle: confusion
matrix for the SVC, calculated by normalizing each row of the left panel by the total number of stars in that row. Values correspond to the fraction of samples in the
test set with true label indicated on the y-axis that are assigned the label on the x-axis, such that the values along the diagonal are the fraction of each class that is
correctly classified. Right: efficiency matrix for the SVC, calculated by normalizing each column of the left panel by the total number of stars in that column. Values in
each box correspond to the fraction of samples in the test set assigned the label on the x-axis that belong to the class on the y-axis, such that the values along the
diagonal correspond to the precision (one minus the contamination). Darker colors in all panels correspond to more/a higher fraction of stars.

Figure 10. Completeness vs. contamination of each class in the test set, as
classified by the SVC. A high completeness value implies that members of that
class are accurately classified, while a low contamination value implies that an
object classified as such is likely to belong to that class. The figure is roughly
divided into four quadrants; stars with classes in the bottom right quadrant can
be considered to be well classified, in the sense that they have high
completeness and low contamination.
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For this reason, we also utilize the coarse labels introduced
in Section 2. We repeat the entire process described above,
beginning with the selection of the classifier. Figure 11 shows
the balanced accuracy for each of the classifiers discussed
above, trained on the coarse labels, using a fivefold cross-
validation to optimize the hyperparameters of each classifier.
We find that, once again, the SVC yields the highest balanced
accuracy (0.876).

We keep the same scaled and imputed training and testing
sets and perform a fivefold cross-validation as before to find the
optimal hyperparameters, which are kernel = rbf, C = 1,
and gamma = 1/n_features. With these hyperparameters,
we fit the SVC to the training set before predicting labels for
the test set. Figure 12 shows the confusion and efficiency
matrices similar to Figure 9, while Figure 13 shows the
completeness versus the contamination similar to Figure 10. All
told, the SVC performs significantly better compared to the
classifier trained on the refined labels, recovering all classes
with �75% completeness and �30% contamination.

Of the emission-line stars that are correctly identified, 83 are
OBAe stars, 3 are OB[e] stars, 8 are W-R stars, and 2 are
LBVs. This is 73%, 75%, 100%, and 100%, respectively, of
these stars that are in the test set, implying that the performance
of the SVC on emission-line stars is not dominated entirely by
OBAe stars (which compose the majority of emission-line stars
in the test set). Of the stars mislabeled as contaminants, two are

OBA stars and two are RSGs. One true C/S/Giant star and two
yellow dwarfs are misclassified.
We then use the SVC to predict the coarse labels for the

same 2550 stars as above. Figure 14 shows the distribution of
these predicted labels. The majority (2472 stars) are labeled as
“Hot.” A total of 63 stars are labeled as “Cool,” three of which
are already identified in SIMBAD as candidate AGBs or RGBs.
A total of 14 of these stars are labeled as emission-line stars, of
which 9−10 are likely to actually be emission-line stars,
assuming 30% contamination. We list all 2550 stars’ common
names, coordinates, and predicted coarse label in Table A1.

4.3.1. Feature Importance

We can also identify which features contribute most to the
overall performance of the classifier on the coarse labels. To do
this, we initialize a new SVC object with the same
hyperparameters and perform a “greedy search” over features,
defined as follows: For each feature in the scaled and imputed
training set, we train the SVC on just this feature across five
stratified folds of the training set and record the average and
standard deviation of the balanced accuracy. We select the
feature that yields the highest average balanced accuracy. This
has the advantage of ensuring that the contribution of each
feature to the balanced accuracy is stable across subsets of the
data. We then train the SVC on all combinations of this feature
and the remaining features, selecting which combination again
yields the highest average balanced accuracy. This process is
repeated until all features are used.
Figure 15 illustrates this process. The x-axis shows the

feature that is selected at each stage of the greedy search. The y-
axis shows the mean balanced accuracy of the SVC at that
stage. Error bars show the standard deviation of the balanced
accuracy across the five folds of the training set. The balanced
accuracy reaches a maximum after the first seven features:
J−H, W1−W2, MW1, Ks−W1, EWMlog W2, clog Wred, 2

2 , and
-EWMlog W W1 2. However, the contribution to the balanced

accuracy from all but the first four features is small. This
suggests that variability amplitude is a useful, though not
critical, metric to obtain, while variability timescales are not
necessary. Finally, this suggests that photometry bluer than J
band is also unnecessary.
We can also examine the importance of each feature for

classifying individual classes. We perform the same greedy
search over the features, instead calculating a performance
metric that focuses on the performance on a specific class. One
option is the Fβ measure:

b
b

= +
+

bF 1
completeness precision

completeness precision
, 62

2
( ) ·

·
( )

where β is a free parameter that sets the relative importance
of completeness compared to precision. Common choices
are β= 1 (i.e., F1, a harmonic mean of completeness and
precision), β= 0.5, and β= 2 (Chinchor 1992). We adopt F2

(i.e., β= 2), because we prioritize generating complete samples
of rare massive stars.
The left panels of Figure 16 show the F2 measure as a

function of successively added features, calculated specifically
for hot stars (top), emission-line stars (second panel), cool stars
(third panel), and contaminants (bottom). The results for both
hot and cool stars are mostly similar to the results for the
overall classifier in Figure 15, in the sense that the best

Table 5
Common Names and Coordinates of Stars Predicted to Be RSGs by the SVC

Trained on Refined Labels

Common Name R.A. (deg) Decl. (deg)

SP77 48-11 81.07900941 −70.43417562
WISE J185608.58−163255.1 284.03575762 −16.54867009
W61 19-14 83.07777354 −67.52941938
OGLE BRIGHT-LMC-MISC-169 72.94711333 −69.32348227
WISE J194127.64+385155.3 295.36520609 38.86536427
NGC 2004 BBBC 431 82.69161818 −67.29036242
[KWV2015] J045626.51−692350.6 74.11062177 −69.39740804
W61 6-54 85.54018822 −69.21978048
WISE J064232.30−715243.3 100.63462144 −71.87871874
W61 6-34 85.51621031 −69.21870016

(This table is available in its entirety in machine-readable form.)

Figure 11. Similar to Figure 8, but for classifiers trained on the coarse labels.
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performance is reached after including a mix of near-IR and
MIR colors and magnitudes. The main difference is that MG is
the fourth most important feature for classifying hot stars.

For emission-line stars, a maximum in the mean F2 is
reached after 11 features: W1−W2, MW1, GJ, áD ñtlog W1,

áD ñtlog W2, sDlog t W, 2, W3−W4, W2−W3, Ks−W1, ν0,W2,
and J−H. However, given the error bars, only the first three
features contribute meaningfully, with the remaining features
consistent with a constant value of F2. Interestingly, compared
to its contribution to the overall balanced accuracy of the
classifier, bluer photometry (signified by the presence of G− J
in the above list) is much more important for identifying
emission-line stars. While variability metrics are included in the
above list, they do not significantly contribute to the F2 score.
For contaminants, a total of 15 features are required in order

to maximize F2: J−H, sD -log t W W, 1 2, sDlog t W, 2, áD ñtlog W1,
áD ñ -tlog W W1 2, ν0,W2, sDlog t W, 1, ν0,W1−W2, MW1, H− Ks,

Ks−W1, log EWMW2, c -log W Wred, 1 1
2 , log EWMW1−W2, and

clog Wred, 1
2 . Notably, the F2 measure first decreases as features

are added, before increasing to the maximum after MW1. This
trend is unintuitive compared to the other panels in the figure. It
may be a result of the fact that increased features improve the
precision of the classifier at the cost of completeness, resulting
in a decrease in F2 due to the increased weighting of
completeness.
To demonstrate the capabilities of the classifier using a

limited set of features, we plot the scaled and imputed test set—
which was not used in the greedy search algorithm—in the
right panels of Figure 16, using only the two most important
features in each row. Stars belonging to the corresponding
coarse class are plotted as larger, colored points, with gray
points in the background corresponding to stars in the test set
with different coarse labels. In all cases, most members of the
test set with that label are well separated from the other stars.
As expected from the left panels, most of the separation is
along the x-axis, which corresponds to the most important
feature, with the second most important feature plotted on the
y-axis providing some additional differentiation, especially for
hot stars. In the case of contaminants, the second most
important feature provides little to no additional information,
consistent with the lack of change in F2 with increased features.
We conclude that while small numbers of features can be

used to classify hot, cool, and (remarkably) emission-line stars
with high accuracy and precision (F2 0.9 for hot and cool
stars, and F2 0.8 for emission-line stars), a large number of
features are necessary in order to maximize the number of
accurately identified contaminants. This includes time domain
features, where the drastically different structures of old AGB

Figure 12. Similar to Figure 9, but for the SVC trained using the coarse labels. Note that significantly more stars fall along the diagonal of each plot, reflecting the
improved performance of the SVC on the coarse labels.

Figure 13. Similar to Figure 10, but for the SVC trained using the coarse
labels. All coarse classes have high completeness and low contamination.

Figure 14. Distribution of coarse labels assigned to 2550 stars with no
previously known class.
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Figure 15. Mean balanced accuracy of the SVC for coarse labels trained on successively added features, calculated from five stratified folds of the data. The balanced
accuracy reaches a maximum after the first seven features. Error bars indicate the standard deviation of the balanced accuracy across folds.

Figure 16. Left panels are similar to Figure 15, except using the F2 measure calculated for hot stars (top), emission-line stars (second panel), cool stars (third panel),
and contaminants (bottom). The right panel in each row shows a scatter plot of only the first and second most important features (indicated with blue and red text,
respectively) drawn from the test set, with stars belonging to the corresponding class in each row highlighted. Note that the features plotted are the scaled and imputed
values, not the original values listed in Table 4.
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and RGB stars compared to massive cool supergiants may be
imprinted. Already extragalactic massive star samples are
contaminated by foreground giants in the MW halo; distant
stars that can be resolved by Webb and Roman will have
comparable brightnesses to cool dwarfs that are too faint to be
filtered out using astrometry from Gaia. Developing the
infrastructure to reliably remove these contaminating objects
from massive star samples will be that much more critical.

5. Discussion and Conclusion

In the coming decades, space-based infrared observatories
like Webb and Roman will give us access to unprecedentedly
large samples of evolved massive stars. Therefore, we need to
be prepared to leverage these data to search for stars in the most
interesting evolutionary states. Obtaining spectroscopy of
individual stars does not scale well at the size of the expected
samples, while linear cuts in color–magnitude space are too
simplistic and ignore emission-line objects. Here we have
demonstrated the promising performance of an SVM trained
on∼ 0.5–22 μm photometry and simple variability metrics.
However, with currently available labels, we are not able to
construct a classifier that performs well at the level of
granularity needed for many science cases.

Our main results are summarized as follows:

1. We have assembled a large sample of evolved massive
stars using distances from Gaia DR2 and Bailer-Jones
et al. (2018), with high-precision infrared photometry
from Gaia, 2MASS, and WISE.

2. Using SIMBAD, we assign labels to all stars and find that
the sample contains a number of low-mass contaminants.

3. We find that, of the classification methods we applied, an
SVC algorithm is best at accurately labeling evolved
massive stars. The SVC is fast and has the added benefit
that the underlying mathematics are well understood.

4. The SVC trained on refined labels is capable of
identifying low-mass red giant contaminants with high
accuracy. However, the overall performance of this
classifier is quite poor, and we do not recommend its
use at present.

5. The SVC trained using coarse spectral types performs
better, as measured with the balanced accuracy score. We
find higher completeness and lower contamination
(Figures 12 and 13) compared to the SVC trained on
the refined labels (Figures 9 and 13). With this classifier,
we identify 14 candidate emission-line stars from a
sample of ∼2500 unlabeled stars. We plan to obtain
spectroscopy of these stars to confirm our results.

6. We find that the SVC performs equally as well with only
a small subset of features. These features are mostly
infrared colors and absolute magnitudes—i.e., those least
affected by reddening—with small contributions from
infrared variability metrics. However, if we change our
performance metric to one that focuses on emission-line
stars, optimal performance of the classifier requires some
red–optical photometry. We find that the added benefit of
using variability metrics may not be worth the investment
in telescope time in order to measure them. Of course,
this is only the case for the sparsely sampled light curves
in our sample; with the advent of the Legacy Survey of
Space and Time (LSST) conducted at the Vera Rubin
Observatory, multicolor variability metrics can be

estimated from well-sampled optical light curves for a
significantly larger sample of evolved massive stars, and
this claim can be reevaluated.

Ultimately, the performance of the SVC trained on the
refined labels is poor. All stars in the sample are bright
(W1< 14), and the input features we use are easily measured,
implying that the classifier is not limited by the quality of the
data. However, the labeling itself is not of sufficient accuracy,
as can be seen in Figure 5. Labels are derived inhomogen-
eously, and many are from spectroscopy that is now more than
50 yr old. Unfortunately, these are the best labels available for
this sample. At present, though curated lists of different
subclasses of massive stars exist (e.g., Richardson &
Mehner 2018), no unified catalog of massive stars in our
Galaxy or the Magellanic Clouds exists.
Modern all-sky surveys have already given us access to

precision photometric and spectroscopic measurements of
unprecedented numbers of stars. Massive stars are bright, and
so the existing data are of suitable signal-to-noise ratio to
perform spectroscopic classification. However, they are
often excluded from analyses that provide value-added
measurements like effective temperatures, surface gravities,
compositions, radial velocities, and more that can be used to
accurately classify massive stars. In order to prepare ourselves
for the era of Webb and Roman, we must develop pipelines
specifically tuned for evolved massive stars. This is especially
true for the classes that are underrepresented in our data set,
i.e., rare emission-line stars.
Along with better labels, more data will become available

via future data releases of the Gaia mission. The recent early
third Gaia release contains modest improvements in precision
and sample size that are unlikely to affect our results given the
high quality of the photometry in our sample. However, the full
Gaia DR3 will contain low-resolution spectra, as well as epoch
photometry for a limited number of sources, which have the
potential to significantly improve the performance of a
machine-learning classifier. On the horizon, the LSST
conducted at the Vera Rubin Observatory will measure the
multicolor variability of massive stars at higher cadence, while
its large telescope aperture will help define a much larger
sample. As we demonstrate with Figure 16, it is possible to
select features that maximize the performance of the SVC for
specific classes. With a larger sample, we may be able to
optimize the SVC to search for specific classes of evolved
massive stars.
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Appendix
Coarse Labels for 2550 Stars

Table A1 lists all 2550 stars with no known label, as well as
predicted labels generated by the SVC trained on coarse labels.

Table A1
Common Names, Coordinates, and Predicted Labels of 2550 Stars Input to the SVC Trained on Coarse Labels

Common Name R.A. (deg) Decl. (deg) Predicted Coarse Label

WISE J000559.28−790653.3 1.49713706 −79.11483482 Hot
TYC 4500-1480-1 2.86210879 79.08686958 Hot
BD+61 45 5.25504760 62.77064970 Hot
NGC 104 LEE 2520 5.41170226 −72.21106679 Hot
WISE J002203.44−693554.7 5.51434821 −69.59851087 Hot
WISE J002207.43−742212.1 5.53102165 −74.37003199 Hot
WISE J002318.05−742326.4 5.82523611 −74.39068759 Hot
WISE J002340.20−750446.9 5.91756693 −75.07972556 Hot
WISE J002758.92−764527.2 6.99552600 −76.75757402 Hot
WISE J002759.32−742119.8 6.99734043 −74.35552728 Hot

(This table is available in its entirety in machine-readable form.)
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