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Abstract—We show how hippocampal replay could explain
latent learning, a phenomenon observed in animals where
unrewarded pre-exposure to an environment, i.e. habituation,
improves task learning rates once rewarded trials begin. We first
describe a computational model for spatial navigation inspired
by rat studies. The model exploits offline replay of trajectories
previously learned by applying reinforcement learning. Then, to
assess our hypothesis, the model is evaluated in a “multiple T-
maze” environment where rats need to learn a path from the
start of the maze to the goal. Simulation results support our
hypothesis that pre-exposed or habituated rats learn the task
significantly faster than non-pre-exposed rats. Results also show
that this effect increases with the number of pre-exposed trials.

I. INTRODUCTION

More than a century ago, Small [1] recognized that
unrewarded pre-exposure of rodents to the training
environment  significantly  facilitated learning.  His
experimental protocols included letting rats explore a maze
overnight before they began to learn a task.

Nearly three decades later, Blodgett [2] studied this
phenomenon quantitatively, showing how the unrewarded
pre-exposure of a rat to the environment can increase the
learning rate once rewarded trials begin, a phenomenon that
came to be recognized as a form of latent learning. The task
consisted in travelling a “multiple T-maze”, in order to get
food. Rats were divided into three groups. The Control group
started to learn the task without any pre-exposure to the maze.
The other two groups had three and seven days of pre-
exposure respectively, where no food was given (non-
rewarded trials). Blodgett concluded that pre-exposure
improved the learning rate of rats in the rewarded trials by
observing a fast decrease in error counts.

Since no reward was provided during habituation,
Blodgett’s results posed an interesting challenge to the
stimulus-response theory of learning. Tolman [3] proposed
that the difference in learning rates was due to rats with pre-
exposure building a ’cognitive map’ of the environment that
allowed them to learn the task faster. A number of
experiments and mazes were designed to test Tolman’s
different hypotheses (see Olton [4] for a review of these
original mazes and experiments).

In our present work, we hypothesize that the latent
learning observed in Blodgett’s experiment could be
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explained in terms of enhancing hippocampal replay [5], [6].
Hippocampal replay is a phenomenon in which place cells
involved in a task reactivate during periods of inactivity in the
same or reversed order in which they were observed during
the task [6], [7]. Replay during awake immobility at key
decision points has been shown to be in part correlated with
future paths taken by rats, and thus with decision making [8],
[9], [10]. On the other hand, replay during sleep has been
linked to memory consolidation [11], [12]. Here we
hypothesize that by pre-exposing a rat to an unrewarded
environment (habituation), intrahippocampal connections
involved in replay are formed or strengthened. In turn, these
connections later facilitate task learning by improving the
quality of replay sequences during rewarded trials.
Consequently, replay could be a mechanism capable of
explaining the latent learning observed by Blodgett.

To assess our hypothesis, we extend the computational
model of replay presented by Johnson and Redish [13] and we
use it to compare the learning rates of rats with and without
habituation. During both rewarded and unrewarded trials, the
model updates the connection strengths between hippocampal
place cells in a Hebbian fashion. This creates a topological
map of the environment stored in a connectivity matrix, which
is then used to generate replay events. These events, in turn,
are used to perform batch reinforcement learning [14].

The simulations show that faster learning rates can be
obtained through pre-exposure and replay events. As a result,
this work provides a plausible mechanism for explaining the
latent learning phenomenon observed by Blodgett [2].

In the remainder of this document, section II presents the
task, section III the model, section IV the simulation
experiments and results and section V the conclusions and
discussion.

II. TASK

The task consists on having two groups of rats learn a path from
the starting position to the goal (location of the food) in a
multiple T-maze configuration consisting of four T’s, as shown
in Fig. 1. At each trial, rats start from the bottom T, and food is
located at the top T’s left arm. The “No Habituation” group of
rats receives food from the very first trial, while the
“Habituation” group receives food only after trial N. Following
the original experiment by Blodgett [2], in both rewarded and
unrewarded trials, rats are removed from the maze when they
reach the food location. A rat has reached the food location
when it’s distance to the feeder is smaller or equal than 8cm
(distance covered by the robot after each action or step).
Alternatively, a trial ends if the rat performs a total of 2,000
steps without reaching the goal. This timeout allows simulated
rats to traverse a distance of 80m corresponding to
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Fig. 1 Multiple T-Maze environment and task. Rats start from the bottom of
the first “T” and need to reach the food at the left end of the last “T”. Two
groups are compared: “Habituation” and “No Habituation”. Rats in group
“Habituation” perform N unrewarded trials (no food is present), followed
by M rewarded trials. Rats in group “No Habituation” only perform the M
rewarded trials.

approximately 4 times the entire maze. Note that the horizontal
portion of the maze measures 3.6m, the vertical 2.6m and the
corridors have a width of 0.2m.

III. MODEL

The model consists of three components: 1) an actor critic
component [14], associating preferences to all (state, action)
pairs; 2) an action selection component that selects the next
action to be performed after every step; and, 3) a replay
component for offline learning.

A. Actor Critic

In our work, we model the spatial navigation process of a rat
as an actor critic algorithm [14]. The algorithm executes over
a continuous 2D state space, and a discrete action space with
8 allocentric actions (move north, northeast, east, etc.). The
state space is represented using Gaussian radial basis
functions [14] which model our place cells, and are used with
linear function approximation to compute the state and action
value functions [14] as illustrated in Fig. 2.

Place cells are modelled using Gaussians whose values
are set to 0 outside of a given radius. Each Gaussian
represents the average firing rate of a place cell whose
preferred firing location corresponds to the Gaussian’s center.
In total, 2000 place cells are used per rat. Their centers are
chosen randomly from a uniform distribution over the area
covered by the multiple T-maze.

In order to calculate the state and action value functions for
an arbitrary state (position), first the activation of each place
cell is calculated according to eq 1.
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where Ai(x) is the activation of place cell i for state X, X; is the

center of place field i, and N is a gaussian with mean 0 and
standard deviation o.
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Fig. 2 Place cell activation in the rat hippocampus and action values for

the current state. The variables shown in the image correspond to the
variables used in equations 1-6.

Then, the state values can be calculated using eq 2.
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where V(x) represents the state value function at time ¢ for
state x, and V;’ represents the associated state value for place
cell i at time #. In a similar way, the action value function is
given by eq 3.
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where Q¢(%, 6]-) represents the action value at time ¢ for state X,
with action 6;, while Q/; represents the action value associated
with cell i, at time ¢, for action 6;.

After calculating the action values for the current state, the
values are sent to an action selection module that chooses the
next action to be performed, denoted by a,. Note that we use
the symbols 6; and a, to differentiate the possible actions from
the actual actions performed.

After performing action a;, and observing reward r;, the
error in the estimated value d(f) is calculated and used to update
the values V" and Qf;, according to eq 4, 5, and 6 [14].
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where, y is the discounting factor, and A is the learning rate.
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Fig. 3 Action selection process consisting of a softmax process followed
by two gate transformations (“Gate 1 and “Gate 2”).

B. Action Selection

Actions are chosen randomly from a probability distribution
obtained by first applying the softmax function to the action
values, and then applying 2 transformations or “gates’that
convert one distribution into another. The action selection
process is shown in Fig. 3.

The sofimax function is shown in eq 7.
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Each gate redistributes the probabilities by assigning
weights to the actions and normalizing the results as described
by eq 8.
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where Py (8;) is the probability for action 6; after applying gate
number & (or the output of the softmax if k = 0), and ij is the
weight given to action 6; by gate k.

The first gate uses the concept of affordances [15],
weighting each probability by a function proportional to the
distance to the wall in its corresponding direction (see Fig. 4).
This assigns a probability of 0 to actions that cannot be
performed, and gives preference to directions pointing along the
corridors of the maze.

The weights of the first gate are given by eq 9.
le _ {mln {d;, D} dj > d )
0 otherwise

where dj represents the distance to the wall along direction j
(direction associated to action 6)), d represents the minimum
distance to consider an action as possible, and D is a constant
which limits the maximum weight given to an action.

The second gate biases the movement of the rat using the
concept of “coherent actions”. We define two actions to be
coherent if their respective angles differ at most by 90 degrees.
The gate biases the actions so that if the last two actions were
coherent, then it gives preference to actions that are coherent
with both of them. If the previous two actions were not coherent
then the gate gives preference to actions coherent with the last
action. The idea of this gate is to model a rat whose exploratory
behavior is not a completely random walk, so that it looks closer
to navigation paths observed in rats. Without this gate, one
would observe trajectories such as “one step left, one step right,
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Fig. 4 Left: Affordances of a rat near an intersection. There are 8 possible
directions. Right: Definition of the & and f angles used on gate 2. & is
the angle between action 6; and the angle bisector of @;_y and a;_,. 8
is the angle between action 8; and a@;_;.
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one step left, one step right, ...” and so on, which are not
realistic.

The weights for the second gate are computed using
equations 10 and 11. Note that by assigning a minimum value
to each weight, equation 11 prevents this gate from assigning 0

probability to any action.

1- %)k if a;—,, ac—; and 6; are all coherent
by = aa- g)" if §; and a,_, are coherent, but not a;_, and at_l(1 0)
0 otherwise
w? =€+ (1-¢€) =L (11)
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where £ is a constant, « is the angle between 6; and the bisector
angle between a2 and ar1, and f is the angle between 6; and
ar1. Fig. 4 illustrates the definition of « and S.

Once the output of the softmax has passed through both
gates, the resulting probability distribution is used to sample the
next action to be performed (action a).

C. Replay

In our work, replay is used as a means to provide offline training
sequences to a reinforcement learning algorithm. The replay
model has been extended from the one originally presented by
Johnson and Redish [13].

To do so, during each trial, the model keeps track of a
square matrix representing connection strengths between pairs
of place cells. The matrix is meant to encode information
regarding the paths traversed by the rat, thus we call it “the path
matrix”.

After each rewarded trial, while resting, the path matrix is
used to generate sequences of place cell reactivations that, by
converting them to sequences of (state, action) pairs, can be
used to train the reinforcement learning algorithm. Fig. 5
illustrates the concept.

At the start of the simulation, the weights of the path matrix
are initialized to 0. Then, as the rat moves through the maze, the
weights are updated at every time step according to eq 12.

wit = wl + tan™ (w~ (PCj(le) - PCj(xt))) (12)
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Fig. 5 Replay Model. The rat generates a path during activity. The path is
used to train RL and update the path matrix. After the activity, while
resting, the path matrix is used to generate a replay sequence of place
cells. The sequence is then converted to a sequence of positions and
acions that are used to train RL

where w;; is the connection strength from place cell i to place
cell j.

Eq 11 is a small variant of Johnson and Redish’s formula
[13], that is in turn a discretization of the formula used by Blum
and Abbott [16]. The difference between eq 11 and the original
model is that we use the average value of the presynaptic neuron
between times ¢ and ¢ + 1, rather than the value at time ¢ + 1. In
both models, the more often the rat moves from place cell i to
place cell j, the higher the connection strength w;; will be. Thus,
frequently traversed paths will be better represented by the
matrix.

After each rewarded trial, when the rat is “resting”, the path
matrix is used to generate 200 replay sequences. Each sequence
is generated by first choosing a random place cell io to activate
(chosen from a uniform distribution), and then using the path
matrix to recursively propagate the activity until a termination
criterion. Each time, the activity is propagated from the
currently active place cell to its neighbor with highest
connectivity as specified by eq 13.
i1 = argmax{w;, ;} (13)
where i}, and i, represent the indexes of the currently active
place cell and its successor, and w;, ; is the path matrix weight

between cells i, and ;.

The activity propagation is repeated until the replay
sequence reaches a cell representing the place where the rat
received food, the sequence forms a loop, or until no
connections surpass the propagation threshold (mjax wi; > T).

Fig. 6 exemplifies the process.

After each replay sequence {i} is generated, the sequence
is converted to another sequence of state action pairs
{(%k, ax)}. Here, X, represents the center of place cell iy, and
a, represents the action whose angle best matches the direction
of the displacement vector (¥, — X;). Finally, this newly
created sequence is used to train the reinforcement learning
algorithm offline by updating the state and action values
according to the equations presented in the “Actor Critic”
section.

Activate neighbor.
Weights too small to
propagate. End replay.

i

Activate initial cell
and propagate to

Activate neighbor
and propagate

strongest neighbor. again.

Fig. 6 PC Activity Propagation. The red circles represents the active place
cells. Arrow thickness represents the connection strength. On each step
the activation propagates to the neighboring cell with the strengest
connection. The propagation stops when: a) no connections surpass a
given threshold, b) when a loop is formed, or ¢) the cell representing the
place where the rat received food is reached

IV. EXPERIMENTS & RESULTS

In total 4 experiments were performed sharing a similar setup.
In all cases, the performance of several rat groups was
compared by measuring the number of steps taken to complete
the task in the multiple T-maze. Each group consisted of one
hundred simulated rats. The details of each experiment are
given in the following subsections. Also, table 1 provides a
summary of the values used for each model parameter, and a
statistical analysis of the results is provided at the end of this
section.

Param Value \
o 0.08
T, 1 if found food 0 otherwise
4 0.99
A 0.6
D 2
k 1.5
€ 0.001
T 1

Table 1 Model parameters used in the simulations.

A. Habituation

To test whether replay could account for latent learning, the first
experiment compared two groups of rats: “Habituation” vs “No
Habituation”. The “Habituation” group was allowed to explore
the maze 10 times before rewarded trials begun, while the “no
habituation” group received food from the very beginning.
During both rewarded and unrewarded trials, rats were removed
from the maze once they reached the feeder or once they moved
2000 steps. In total, simulated rats in both groups performed 20
rewarded trials each.

Fig. 7 shows the results for the first experiment and
contrasts the performance between the two groups (“Hab” and
“NoHab”). The figure shows the median number of steps taken
by each group along with the upper and lower quartiles as a
function of the trial number. In both groups, trial 1 corresponds
to the first rewarded trial. As it can be observed, the median
number of steps decreases faster for the habituation group than



for the no habituation group. This suggests that habituation rats
tend to learn faster, thus exhibiting latent learning, consistent
with the results obtained by Blodgett [2].
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Fig. 7 The effect of habituation trials on learning. The plot shows the
median completion times in number of actions for the group with
habituation trials (Hab) and without (NoHab). The shaded areas indicate
the upper and lower quartiles.

B. Pre-exposure

The second experiment performed consisted in repeating the
previous experiment, but varying the amount of pre-exposure,
corresponding to the pre-exposure days in the original rat
experiments, to evaluate their effect on performance. In this
experiment, 5 groups were compared (“Hab00”, “Hab01”,
“Hab03”, “Hab05” and “Hab10). Each group received 0, 1, 3,
5 and 10 pre-exposure days, respectively.

Fig. 8 shows the median number of steps taken by the
groups with 0, 1, 3, 5 and 10 habituation days (“Hab00”,
“Hab01”, “Hab03”, “Hab05”, and “Hab10”). The figure shows
that as the number of habituation trials increases, the rate at
which the rats learn the task also increases.
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Fig. 8 The effect of the amount of habituation trials. The plot shows the
median number of steps taken by the groups with 0, 1, 3, 5 and 10
habituation trials.
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Fig. 9 The effect of not removing the animal at the rewarding location
during habituation trials. The plot shows completion times of the
rewarded trials for the habituation group without removal at the end of
the maze (Hab without removing), and for the group without habituation
(NoHab).

C. Removal

Blodgett’s [2] original experiment removed rats at the end of
the maze during unrewarded trials. In real rats, we would expect
to see latent learning regardless of this condition being true.
Thus, we repeated the experiment to evaluate if the model
would exhibit latent learning even if the rats where not removed
at the end of the maze during habituation trials. For this
experiment, rats were removed only after walking 2,000 steps
during habituation trials.

Fig. 9 shows the results of the experiment “Rat removal vs
no removal”. In the figure we only compare the groups using 10
habituation trials and the group with no habituation. The figure
shows the median number of steps taken by each group as a
function of the trials, along with their upper and lower quartiles
(shaded regions). As opposed to Fig. 7, Fig. 9 shows no
significant difference between the two groups (see next
subsection for a statistical analysis). Thus, the latent learning
capabilities of the model seem to fade if habituation trials do not
end at the final location. This result was also true for all other
groups using fewer habituation days except for one (although it
seems likely to be an outlier).

To better assess the difference between the removal and
non-removal groups, Fig. 10 compares the path matrices of both
groups after the 10 habituation trials. As observed in the figure,
particularly in the expanded views, there are three main
differences between the matrices. First, the connections of the
no-removal group are generally stronger than the removal
group. This is likely due to the fact that no-removal rats spent
more time exploring the maze than removal rats. Secondly, the
connection strengths in the no-removal group look uniform
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Fig. 10 Path matrix for the removal and no-removal groups with 10 habitation days. For all cells that have a connection above the propagation threshold, an
arrow is drawn from its center to its neighbor with highest conectivity (replay weight) according to equation 13. Arrows indicate the direction in which the
replay will propagate. Shaded circles indicate the value of the connection, the redder the color, the stronger the connection. The first row shows the matrix in
the full maze. The second and third rows show an expanded view of boxes A and B respectively which correspond with the last T of the maze for each group.



across space, whereas in the removal group, cells corresponding
to the optimal path have stronger connections than cells in the
incorrect arms (dead ends in the maze) of the multiple T-maze.
Finally, and most importantly, the directions of replay
propagation for rats in the removal group have a distinct
orientation pointing towards the goal in the optimal path. On the
other hand, arrows for no-removal rats show no clear
orientation. This is especially true along the last T of the
multiple T-maze (expanded zone B), where arrows pointing in
all directions can be observed. These differences are most likely
due to where the rat is removed. When the rat is removed at the
goal, connections oriented in the direction leading to the goal
are likely to be strengthened more than in other direction.

D. Group Statistical Analysis

A Dunn test [17] was performed to test completion times during
the 3™ rewarded trial in order to assess the learning rates after
the rewards have started. A Benjamini-Hochberg adjustment
[18] was made to account for “type I errors” [19].

Fig. 11 shows the results of the test. All but one of the
habituation groups learn significantly faster than the group
without habituation (i.e. have lower completion times during the
3 rewarded trial). The only habituation group that didn’t, was
the group with a single habituation trial. Regarding removal,
latent learning fades out when the rats are not removed at the
end of the maze during non-rewarding trials (“NoRem” groups)
for all but one number of habituation trials. Consistently, the
Habituation groups with larger number of habituation trials
perform significantly better than groups without removal.

V. CONCLUSIONS AND DISCUSSION

The computational model presented in this paper
demonstrates how non-rewarded trials can speed up learning
rate of rewarded trials. Consequently, we show another way in
which replay may enhance spatial cognition. The model
integrates replay events and reinforcement between place cells
that fire concurrently, thus, forming a topological map of the
environment [20], [21].

The original experiments presented by Blodgett [2]
imposed restrictions on rat navigation. Once a rat had navigated
an intersection in the correct direction, the intersection was
closed. As a result, non-rewarded trials always ended in the
“correct” location at the end of the maze. This restriction was
imposed in order to decrease the amount of time taken by the
experiment. However, the author argued that this restriction was
not teaching the rats the path to the goal as they showed no
significant decrease in errors throughout non-rewarded trials.
At this time, the model reproduces the observed behaviors by
requiring rats to be removed at the goal but the effect fades
when the restriction is removed. It would be interesting to
perform additional experiments to see if rats would display
latent learning even under these circumstances.

Assessing the differences between removal and no
removal of rats at the goal, we observed that the path matrix
from the model does not precisely learn a map but instead it
learns a specific path on each trial (thus the name we chose for
the matrix). The path it learns on each trial is “a summary” of

NoRem10
NoRem05
NoRem03
NoRem01
Hab10
Hab03

Hab03
Hab01

Fig. 11 The result of the Dunn test for the completion times of a rewarded
trial. The color codes for the sign of the difference between groups, and
the intensity codes for the statistical soundness of the conclusion. Green
means the group in the row took less step than the group in the column.
An asterisk was added for corrected p-values lower than 0.05.

the path traversed. For example, if the rat moves left and then
goes back and decides it wanted to go right, the matrix will only
remember the move to the right. When removing the rat at the
end of the maze, the matrix will learn the path from start to end,
while if the rat is left to roam free, the matrix will learn the path
from the starting position to the location where it was removed.
In order for replay to display latent learning under more general
circumstances, it would be desirable to have a model that stores
both the topological relationship between places (the map), as
well as the traveled paths. In such case, pre-exposure should
help build the map, but not the path, as there is no obvious
rewarding path in the absence of food. We hypothesize that a
model that benefits from a more consolidated topological map
to store the paths would show the same results with respect to
improved replay events and faster learning.

Additional latent learning experiments have shown how
animals are able to learn the spatial distribution of different
rewarding stimuli (e.g. food and water) during habituation, and
then use the knowledge during tasks to navigate directly to a
specific stimuli when in need, e.g. to food when hungry and to
water when thirsty [22]. Our limited model is not able to
reproduce these results as it lacks the concept of contextual
valuation of actions. However, we argue that a learned
topological map and pre-play events could assist downstream
structures in the model-based decision of where to go. That is,
a similar explanation as the one presented in this work could be
used along with pre-play (which has been linked to action
selection [9],[10]) to explain other latent learning phenomenon.

In [23], an alternative explanation is provided for the latent
learning discussed in this paper. Their work suggests that place
cells may not encode the current rat’s location, but rather
predictions of future states. To support their view, a
computational model is provided and used to explain a wide
variety of phenomena observed in rats, including latent
learning. In their model, place cells provide a population code
which encodes the successor representation in reinforcement
learning [24] using a square matrix referred to as the successor



representation (SR) matrix. The SR matrix coefficients are
proportional to the expected number of visits to the states
represented by the place cells, starting from the same set, and
using the current movement policy. Much like in our work pre-
exposure allows to build the path matrix, in this framework pre-
exposure allows for the building of the SR matrix. This results
in reduced learning time once rewarded trials begin as
exemplified by their experiments. The main differences
between both explanations is that our path matrix encodes intra-
hippocampal weights used for replay, while the SR matrix
encodes place fields used to compute the value function.

In our current replay model, replay sequences starting from
the same “location” in the same episode generate identical
sequences preventing the model from “exploring” alternative
routes. This is the result of propagating a place cell’s activity to
its neighbor with highest connectivity. Thus, in future research,
it may be of interest to evaluate how different propagation
methods affect the end-results.

As part of future work, we plan to verify whether rats
present latent learning in multiple T-mazes without the
backward-movement restrictions. Furthermore, we would like
to assess two predictions that can be derived from the results of
the model. First, we predict that disrupting replay events will
strongly decrease the speed-ups observed in latent learning.
Secondly, we expect that rats habituated to an environment will
present either longer or more replay sequences as compared
with non-habituated rats. Finally, depending on the results we
would also like to extend the model to include a topological map
as well as pre-play events.
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