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Abstract—We show how hippocampal replay could explain 
latent learning, a phenomenon observed in animals where 
unrewarded pre-exposure to an environment, i.e. habituation, 
improves task learning rates once rewarded trials begin. We first 
describe a computational model for spatial navigation inspired 
by rat studies. The model exploits offline replay of trajectories 
previously learned by applying reinforcement learning. Then, to 
assess our hypothesis, the model is evaluated in a “multiple T-
maze” environment where rats need to learn a path from the 
start of the maze to the goal. Simulation results support our 
hypothesis that pre-exposed or habituated rats learn the task 
significantly faster than non-pre-exposed rats. Results also show 
that this effect increases with the number of pre-exposed trials.  

I. INTRODUCTION 
More than a century ago, Small [1] recognized that 
unrewarded pre-exposure of rodents to the training 
environment significantly facilitated learning. His 
experimental protocols included letting rats explore a maze 
overnight before they began to learn a task. 

Nearly three decades later, Blodgett [2] studied this 
phenomenon quantitatively, showing how the unrewarded 
pre-exposure of a rat to the environment can increase the 
learning rate once rewarded trials begin, a phenomenon that 
came to be recognized as a form of latent learning. The task 
consisted in travelling a “multiple T-maze”, in order to get 
food. Rats were divided into three groups. The Control group 
started to learn the task without any pre-exposure to the maze. 
The other two groups had three and seven days of pre-
exposure respectively, where no food was given (non-
rewarded trials). Blodgett concluded that pre-exposure 
improved the learning rate of rats in the rewarded trials by 
observing a fast decrease in error counts. 

Since no reward was provided during habituation, 
Blodgett’s results posed an interesting challenge to the 
stimulus-response theory of learning. Tolman [3] proposed 
that the difference in learning rates was due to rats with pre-
exposure building a ’cognitive map’ of the environment that 
allowed them to learn the task faster. A number of 
experiments and mazes were designed to test Tolman’s  
different hypotheses (see Olton [4] for a review of these 
original mazes and experiments). 

In our present work, we hypothesize that the latent 
learning observed in Blodgett’s experiment could be 

explained in terms of enhancing hippocampal replay [5], [6]. 
Hippocampal replay is a phenomenon in which place cells 
involved in a task reactivate during periods of inactivity in the 
same or reversed order in which they were observed during 
the task [6], [7]. Replay during awake immobility at key 
decision points has been shown to be in part correlated with 
future paths taken by rats, and thus with decision making [8], 
[9], [10]. On the other hand, replay during sleep has been 
linked to memory consolidation [11], [12]. Here we 
hypothesize that by pre-exposing a rat to an unrewarded 
environment (habituation), intrahippocampal connections 
involved in replay are formed or strengthened. In turn, these 
connections later facilitate task learning by improving the 
quality of replay sequences during rewarded trials. 
Consequently, replay could be a mechanism capable of 
explaining the latent learning observed by Blodgett. 

To assess our hypothesis, we extend the computational 
model of replay presented by Johnson and Redish [13] and we 
use it to compare the learning rates of rats with and without 
habituation. During both rewarded and unrewarded trials, the 
model updates the connection strengths between hippocampal 
place cells in a Hebbian fashion. This creates a topological 
map of the environment stored in a connectivity matrix, which 
is then used to generate replay events. These events, in turn, 
are used to perform batch reinforcement learning [14].  

The simulations show that faster learning rates can be 
obtained through pre-exposure and replay events. As a result, 
this work provides a plausible mechanism for explaining the 
latent learning phenomenon observed by Blodgett [2].  

In the remainder of this document, section II presents the 
task, section III the model, section IV the simulation 
experiments and results and section V the conclusions and 
discussion. 

II. TASK 
The task consists on having two groups of rats learn a path from 
the starting position to the goal (location of the food) in a 
multiple T-maze configuration consisting of four T’s, as shown 
in Fig. 1. At each trial, rats start from the bottom T, and food is 
located at the top T’s left arm. The “No Habituation” group of 
rats receives food from the very first trial, while the 
“Habituation” group receives food only after trial N. Following 
the original experiment by Blodgett [2], in both rewarded and 
unrewarded trials, rats are removed from the maze when they 
reach the food location. A rat has reached the food location 
when it’s distance to the feeder is smaller or equal than 8cm 
(distance covered by the robot after each action or step). 
Alternatively, a trial ends if the rat performs a total of 2,000 
steps without reaching the goal. This timeout allows simulated 
rats to traverse a distance of 80m corresponding to 
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approximately 4 times the entire maze. Note that the horizontal 
portion of the maze measures 3.6m, the vertical 2.6m and the 
corridors have a width of 0.2m.  

III. MODEL 
The model consists of three components: 1) an actor critic 
component [14], associating preferences to all (state, action) 
pairs; 2) an action selection component that selects the next 
action to be performed after every step; and, 3) a replay 
component for offline learning.  

A. Actor Critic  
In our work, we model the spatial navigation process of a rat 
as an actor critic algorithm [14]. The algorithm executes over 
a continuous 2D state space, and a discrete action space with 
8 allocentric actions (move north, northeast, east, etc.). The 
state space is represented using Gaussian radial basis 
functions [14] which model our place cells, and are used with 
linear function approximation to compute the state and action 
value functions [14] as illustrated in Fig. 2.  

 
Place cells are modelled using Gaussians whose values 

are set to 0 outside of a given radius. Each Gaussian 
represents the average firing rate of a place cell whose 
preferred firing location corresponds to the Gaussian’s center. 
In total, 2000 place cells are used per rat. Their centers are 
chosen randomly from a uniform distribution over the area 
covered by the multiple T-maze. 

In order to calculate the state and action value functions for 
an arbitrary state (position), first the activation of each place 
cell is calculated according to eq 1. 

 

𝐴!(𝑥⃗) = '
0																																					𝑖𝑓	,|𝑥⃗ − 𝑥!|, > 2.3𝜎
𝑁5,|𝑥⃗ − 𝑥⃗!|,, 0, 𝜎7					otherwise																		

 (1) 

where Ai(x) is the activation of place cell 𝑖 for state  𝑥⃗,  𝑥⃗!  is the 
center of place field 𝑖, and 𝑁 is a gaussian with mean 0 and 
standard deviation 𝜎.  

Then, the state values can be calculated using eq 2. 

𝑉"(𝑥) = ∑ $!(&⃗))!
"

!
∑ $!(&⃗)!

     (2) 
 
where 𝑉"(𝑥) represents the state value function at time t for 
state x, and 𝑉!"  represents the associated state value for place 
cell 𝑖 at time t. In a similar way, the action value function is 
given by eq 3. 

 

𝑄"(𝑥, 𝜃*) =
∑ $!(&⃗)+!#

"
!

∑ $!(&⃗)!
    (3) 

 
where 𝑄"5𝑥⃗, 𝜃*7	represents the action value at time t for state  𝑥⃗, 
with action 𝜃*, while 𝑄!*"  represents the action value associated 
with cell 𝑖, at time t, for action 𝜃*. 

After calculating the action values for the current state, the 
values are sent to an action selection module that chooses the 
next action to be performed, denoted by 𝑎". Note that we use 
the symbols 𝜃*  and 𝑎"  to differentiate the possible actions from 
the actual actions performed. 

After performing action 𝑎", and observing reward 𝑟", the 
error in the estimated value δ(t) is calculated and used to update 
the values 𝑉!"  and 𝑄!*" , according to eq 4, 5, and 6 [14]. 

 
𝛿(𝑡) = 𝑟" + 𝛾𝑉"(𝑥⃗",-) − 𝑉"(𝑥⃗")   (4) 
 
𝑉!",- = 𝑉!" + 𝜆	𝛿(𝑡)	𝐴! 	(𝑥")   (5) 
 

𝑄!*",- = '
𝑄!*" + 𝜆	𝛿(𝑡)	𝐴! 	(𝑥⃗") if	𝑎" = 𝜃*
𝑄!*" 																															 otherwise

  (6) 

 
where, 𝛾 is the discounting factor, and 𝜆 is the learning rate. 
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Fig. 1 Multiple T-Maze environment and task. Rats start from the bottom of 
the first “T” and need to reach the food at the left end of the last “T”. Two 
groups are compared: “Habituation” and “No Habituation”. Rats in group 
“Habituation” perform N unrewarded trials (no food is present), followed 
by M rewarded trials. Rats in group “No Habituation” only perform the M 
rewarded trials. 
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Fig. 2 Place cell activation in the rat hippocampus and action values for 
the current state. The variables shown in the image correspond to the 
variables used in equations 1-6. 



B. Action Selection 
Actions are chosen randomly from a probability distribution 
obtained by first applying the softmax function to the action 
values, and then applying 2 transformations or “gates”that 
convert one distribution into another. The action selection 
process is shown in Fig. 3. 

The softmax function is shown in eq 7. 
 

𝑃.(𝜃*) =
/$%&''⃗ ,*#+

∑ /$%&''⃗ ,*#+#

    (7) 

 
Each gate redistributes the probabilities by assigning 

weights to the actions and normalizing the results as described 
by eq 8. 

𝑃0(𝜃*) =
1#
,2,-.(3#)

∑ 1#
,2,-.(3#)#

    (8) 

 
where 𝑃0(𝜃*) is the probability for action 𝜃*  after applying gate 
number k (or the output of the softmax if k = 0), and 𝑤*0  is the 
weight given to action 𝜃*  by gate k. 

The first gate uses the concept of affordances [15], 
weighting each probability by a function proportional to the 
distance to the wall in its corresponding direction (see Fig. 4). 
This assigns a probability of 0 to actions that cannot be 
performed, and gives preference to directions pointing along the 
corridors of the maze.   

The weights of the first gate are given by eq 9. 
 

𝑤*- = Mmin	{𝑑* , 𝐷} 𝑑* > 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (9) 

 
where dj represents the distance to the wall along direction j 
(direction associated to action θj), d represents the minimum 
distance to consider an action as possible, and D is a constant 
which limits the maximum weight given to an action. 

The second gate biases the movement of the rat using the 
concept of “coherent actions”. We define two actions to be 
coherent if their respective angles differ at most by 90 degrees. 
The gate biases the actions so that if the last two actions were 
coherent, then it gives preference to actions that are coherent 
with both of them. If the previous two actions were not coherent 
then the gate gives preference to actions coherent with the last 
action. The idea of this gate is to model a rat whose exploratory 
behavior is not a completely random walk, so that it looks closer 
to navigation paths observed in rats. Without this gate, one 
would observe trajectories such as “one step left, one step right, 

one step left, one step right, ...” and so on, which are not 
realistic.  

The weights for the second gate are computed using 
equations 10 and 11. Note that by assigning a minimum value 
to each weight, equation 11 prevents this gate from assigning 0 
probability to any action. 

𝑏! = #
(1 − "

#
)$ if	𝑎%&', 𝑎%&(	and	𝜃!	are	all	coherent	

(1 − )
#
)$ if	𝜃!	and	𝑎%&(	are	coherent, but	not	𝑎%&'	and	𝑎%&(

0 otherwise	

(10) 

 
𝑤*4 = 𝜖 + (1 − 𝜖) 5#

∑ 5!!
  (11) 

where k is a constant, α is the angle between 𝜃* and the bisector 
angle between at−2 and at−1, and β is the angle between 𝜃*  and 
at−1. Fig. 4 illustrates the definition of 𝛼 and 𝛽. 

Once the output of the softmax has passed through both 
gates, the resulting probability distribution is used to sample the 
next action to be performed (action at). 

C. Replay 
In our work, replay is used as a means to provide offline training 
sequences to a reinforcement learning algorithm. The replay 
model has been extended from the one originally presented by 
Johnson and Redish [13].  

To do so, during each trial, the model keeps track of a 
square matrix representing connection strengths between pairs 
of place cells. The matrix is meant to encode information 
regarding the paths traversed by the rat, thus we call it “the path 
matrix”. 

After each rewarded trial, while resting, the path matrix is 
used to generate sequences of place cell reactivations that, by 
converting them to sequences of (state, action) pairs, can be 
used to train the reinforcement learning algorithm. Fig. 5 
illustrates the concept. 

At the start of the simulation, the weights of the path matrix 
are initialized to 0. Then, as the rat moves through the maze, the 
weights are updated at every time step according to eq 12. 

𝑤*!%+( = 𝑤*!% + 𝑡𝑎𝑛&( A
,-!(/"#$)+,-!(/")

'
∙ C𝑃𝐶!(𝑥%+() − 𝑃𝐶!(𝑥%)GH  (12) 
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Fig. 4 Left: Affordances of a rat near an intersection. There are 8 possible 
directions. Right: Definition of the 𝜶 and 𝜷 angles used on gate 2. 𝜶 is 
the angle between action 𝜽𝒋 and the angle bisector of 𝒂𝒕&𝟏 and 𝒂𝒕&𝟐. 𝜷 
is the angle between action 𝜽𝒋 and 𝒂𝒕&𝟏. 
 

Fig. 3 Action selection process consisting of a softmax process followed 
by two gate transformations (“Gate 1” and “Gate 2”).  
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where 𝑤!* is the connection strength from place cell 𝑖 to place 
cell 𝑗. 

Eq 11 is a small variant of Johnson and Redish’s formula 
[13], that is in turn a discretization of the formula used by Blum 
and Abbott [16]. The difference between eq 11 and the original 
model is that we use the average value of the presynaptic neuron 
between times t and t + 1, rather than the value at time t + 1. In 
both models, the more often the rat moves from place cell 𝑖 to 
place cell j, the higher the connection strength 𝑤!* will be. Thus, 
frequently traversed paths will be better represented by the 
matrix. 

After each rewarded trial, when the rat is “resting”, the path 
matrix is used to generate 200 replay sequences. Each sequence 
is generated by first choosing a random place cell i0 to activate 
(chosen from a uniform distribution), and then using the path 
matrix to recursively propagate the activity until a termination 
criterion. Each time, the activity is propagated from the 
currently active place cell to its neighbor with highest 
connectivity as specified by eq 13. 
 
𝑖0,- = 𝑎𝑟𝑔𝑚𝑎𝑥*{𝑤!,*}  (13) 

where 𝑖0  and 𝑖0,- represent the indexes of the currently active 
place cell and its successor, and 𝑤!,* is the path matrix weight 
between cells 𝑖0   and j. 

The activity propagation is repeated until the replay 
sequence reaches a cell representing the place where the rat 
received food, the sequence forms a loop, or until no 
connections surpass the propagation threshold (max

:
𝑤!* > 𝑇). 

Fig. 6 exemplifies the process. 
After each replay sequence  {𝑖0} is generated, the sequence 

is converted to another sequence of state action pairs 
{(𝑥⃗0 , 𝑎0)}. Here, 𝑥⃗0 represents the center of place cell 𝑖0 , and 
𝑎0  represents the action whose angle best matches the direction 
of the displacement vector  (𝑥⃗0,- − 𝑥⃗0). Finally, this newly 
created sequence is used to train the reinforcement learning 
algorithm offline by updating the state and action values 
according to the equations presented in the “Actor Critic” 
section. 

IV. EXPERIMENTS & RESULTS 
In total 4 experiments were performed sharing a similar setup. 
In all cases, the performance of several rat groups was 
compared by measuring the number of steps taken to complete 
the task in the multiple T-maze. Each group consisted of one 
hundred simulated rats. The details of each experiment are 
given in the following subsections. Also, table 1 provides a 
summary of the values used for each model parameter, and a 
statistical analysis of the results is provided at the end of this 
section. 
 

Param Value 
𝝈 0.08 
𝒓𝒕 1 if found food 0 otherwise 
𝜸 0.99 
𝝀 0.6 
𝑫 2 
𝒌 1.5 
𝝐 0.001 
T 1 

Table 1 Model parameters used in the simulations. 

A. Habituation 
To test whether replay could account for latent learning, the first 
experiment compared two groups of rats: “Habituation” vs “No 
Habituation”. The “Habituation” group was allowed to explore 
the maze 10 times before rewarded trials begun, while the “no 
habituation” group received food from the very beginning. 
During both rewarded and unrewarded trials, rats were removed 
from the maze once they reached the feeder or once they moved 
2000 steps. In total, simulated rats in both groups performed 20 
rewarded trials each.  

Fig. 7 shows the results for the first experiment and 
contrasts the performance between the two groups (“Hab” and 
“NoHab”). The figure shows the median number of steps taken 
by each group along with the upper and lower quartiles as a 
function of the trial number. In both groups, trial 1 corresponds 
to the first rewarded trial. As it can be observed, the median 
number of steps decreases faster for the habituation group than 

Fig. 5 Replay Model. The rat generates a path during activity. The path is 
used to train RL and update the path matrix. After the activity, while 
resting, the path matrix is used to generate a replay sequence of place 
cells. The sequence is then converted to a sequence of positions and 
acions that are used to train RL 

Fig. 6 PC Activity Propagation. The red circles represents the active place 
cells. Arrow thickness represents the connection strength. On each step 
the activation propagates to the neighboring cell with the strengest 
connection. The propagation stops when: a) no connections surpass a 
given threshold, b) when a loop is formed, or c) the cell representing the 
place where the rat received food is reached 

Activate neighbor 
and propagate 

again. 
Activate neighbor. 
Weights too small to 
propagate. End replay. 

Activate initial cell 
and propagate to 
strongest neighbor. 



for the no habituation group. This suggests that habituation rats 
tend to learn faster, thus exhibiting latent learning, consistent 
with the results obtained by Blodgett [2].   

B. Pre-exposure 
The second experiment performed consisted in repeating the 
previous experiment, but varying the amount of pre-exposure, 
corresponding to the pre-exposure days in the original rat 
experiments, to evaluate their effect on performance. In this 
experiment, 5 groups were compared (“Hab00”, “Hab01”, 
“Hab03”, “Hab05” and “Hab10”). Each group received 0, 1, 3, 
5 and 10 pre-exposure days, respectively. 

Fig. 8 shows the median number of steps taken by the 
groups with 0, 1, 3, 5 and 10 habituation days (“Hab00”, 
“Hab01”, “Hab03”, “Hab05”, and “Hab10”). The figure shows 
that as the number of habituation trials increases, the rate at 
which the rats learn the task also increases.  

 

C. Removal 
Blodgett’s [2] original experiment removed rats at the end of 
the maze during unrewarded trials. In real rats, we would expect 
to see latent learning regardless of this condition being true. 
Thus, we repeated the experiment to evaluate if the model 
would exhibit latent learning even if the rats where not removed 
at the end of the maze during habituation trials. For this 
experiment, rats were removed only after walking 2,000 steps 
during habituation trials. 

Fig. 9 shows the results of the experiment “Rat removal vs 
no removal”. In the figure we only compare the groups using 10 
habituation trials and the group with no habituation. The figure 
shows the median number of steps taken by each group as a 
function of the trials, along with their upper and lower quartiles 
(shaded regions). As opposed to Fig. 7, Fig. 9 shows no 
significant difference between the two groups (see next 
subsection for a statistical analysis). Thus, the latent learning 
capabilities of the model seem to fade if habituation trials do not 
end at the final location. This result was also true for all other 
groups using fewer habituation days except for one (although it 
seems likely to be an outlier). 

To better assess the difference between the removal and 
non-removal groups, Fig. 10 compares the path matrices of both 
groups after the 10 habituation trials. As observed in the figure, 
particularly in the expanded views, there are three main 
differences between the matrices. First, the connections of the 
no-removal group are generally stronger than the removal 
group. This is likely due to the fact that no-removal rats spent 
more time exploring the maze than removal rats. Secondly, the 
connection strengths in the no-removal group look uniform 
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Fig. 7 The effect of habituation trials on learning. The plot shows the 
median completion times in number of actions for the group with 
habituation trials (Hab) and without (NoHab). The shaded areas indicate 
the upper and lower quartiles. 
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Fig. 8 The effect of the amount of habituation trials. The plot shows the 
median number of steps taken by the groups with 0, 1, 3, 5 and 10 
habituation trials. 
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Fig. 9 The effect of not removing the animal at the rewarding location 
during habituation trials. The plot shows completion times of the 
rewarded trials for the habituation group without removal at the end of 
the maze (Hab without removing), and for the group without habituation 
(NoHab). 
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Fig. 10 Path matrix for the removal and no-removal groups with 10 habitation days. For all cells that have a connection above the propagation threshold, an 
arrow is drawn from its center to  its neighbor with highest conectivity (replay weight) according to equation 13. Arrows indicate the direction in which the 
replay will propagate. Shaded circles indicate the value of the connection, the redder the color, the stronger the connection. The first row shows the matrix in 
the full maze. The second and third rows show an expanded view of boxes A and B respectively which correspond with the last T of the maze for each group.  
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across space, whereas in the removal group, cells corresponding 
to the optimal path have stronger connections than cells in the 
incorrect arms (dead ends in the maze) of the multiple T-maze. 
Finally, and most importantly, the directions of replay 
propagation for rats in the removal group have a distinct 
orientation pointing towards the goal in the optimal path. On the 
other hand, arrows for no-removal rats show no clear 
orientation. This is especially true along the last T of the 
multiple T-maze (expanded zone B), where arrows pointing in 
all directions can be observed. These differences are most likely 
due to where the rat is removed. When the rat is removed at the 
goal, connections oriented in the direction leading to the goal 
are likely to be strengthened more than in other direction. 

D. Group Statistical Analysis 
A Dunn test [17] was performed to test completion times during 
the 3rd rewarded trial in order to assess the learning rates after 
the rewards have started. A Benjamini-Hochberg adjustment 
[18] was made to account for “type I errors” [19]. 

Fig. 11 shows the results of the test. All but one of the 
habituation groups learn significantly faster than the group 
without habituation (i.e. have lower completion times during the 
3rd rewarded trial). The only habituation group that didn’t, was 
the group with a single habituation trial. Regarding removal, 
latent learning fades out when the rats are not removed at the 
end of the maze during non-rewarding trials (“NoRem” groups) 
for all but one number of habituation trials. Consistently, the 
Habituation groups with larger number of habituation trials 
perform significantly better than groups without removal. 

V. CONCLUSIONS AND DISCUSSION 
The computational model presented in this paper 

demonstrates how non-rewarded trials can speed up learning 
rate of rewarded trials. Consequently, we show another way in 
which replay may enhance spatial cognition. The model 
integrates replay events and reinforcement between place cells 
that fire concurrently, thus, forming a topological map of the 
environment [20], [21]. 

The original experiments presented by Blodgett [2] 
imposed restrictions on rat navigation. Once a rat had navigated 
an intersection in the correct direction, the intersection was 
closed. As a result, non-rewarded trials always ended in the 
“correct” location at the end of the maze. This restriction was 
imposed in order to decrease the amount of time taken by the 
experiment. However, the author argued that this restriction was 
not teaching the rats the path to the goal as they showed no 
significant decrease in errors throughout non-rewarded trials. 
At this time, the model reproduces the observed behaviors by 
requiring rats to be removed at the goal but the effect fades 
when the restriction is removed. It would be interesting to 
perform additional experiments to see if rats would display 
latent learning even under these circumstances. 

 Assessing the differences between removal and no 
removal of rats at the goal, we observed that the path matrix 
from the model does not precisely learn a map but instead it 
learns a specific path on each trial (thus the name we chose for 
the matrix). The path it learns on each trial is “a summary” of 

the path traversed. For example, if the rat moves left and then 
goes back and decides it wanted to go right, the matrix will only 
remember the move to the right. When removing the rat at the 
end of the maze, the matrix will learn the path from start to end, 
while if the rat is left to roam free, the matrix will learn the path 
from the starting position to the location where it was removed. 
In order for replay to display latent learning under more general 
circumstances, it would be desirable to have a model that stores 
both the topological relationship between places (the map), as 
well as the traveled paths. In such case, pre-exposure should 
help build the map, but not the path, as there is no obvious 
rewarding path in the absence of food. We hypothesize that a 
model that benefits from a more consolidated topological map 
to store the paths would show the same results with respect to 
improved replay events and faster learning. 

Additional latent learning experiments have shown how 
animals are able to learn the spatial distribution of different 
rewarding stimuli (e.g. food and water) during habituation, and 
then use the knowledge during tasks to navigate directly to a 
specific stimuli when in need, e.g. to food when hungry and to 
water when thirsty [22]. Our limited model is not able to 
reproduce these results as it lacks the concept of contextual 
valuation of actions. However, we argue that a learned 
topological map and pre-play events could assist downstream 
structures in the model-based decision of where to go. That is, 
a similar explanation as the one presented in this work could be 
used along with pre-play (which has been linked to action 
selection [9],[10]) to explain other latent learning phenomenon. 

In [23], an alternative explanation is provided for the latent 
learning discussed in this paper. Their work suggests that place 
cells may not encode the current rat’s location, but rather 
predictions of future states. To support their view, a 
computational model is provided and used to explain a wide 
variety of phenomena observed in rats, including latent 
learning. In their model, place cells provide a population code 
which encodes the successor representation in reinforcement 
learning [24] using a square matrix referred to as the successor 

Fig. 11 The result of the Dunn test for the completion times of a rewarded 
trial. The color codes for the sign of the difference between groups, and 
the intensity codes for the statistical soundness of the conclusion. Green 
means the group in the row took less step than the group in the column. 
An asterisk was added for corrected p-values lower than 0.05. 



representation (SR) matrix. The SR matrix coefficients are 
proportional to the expected number of visits to the states 
represented by the place cells, starting from the same set, and 
using the current movement policy. Much like in our work pre-
exposure allows to build the path matrix, in this framework pre-
exposure allows for the building of the SR matrix. This results 
in reduced learning time once rewarded trials begin as 
exemplified by their experiments. The main differences 
between both explanations is that our path matrix encodes intra-
hippocampal weights used for replay, while the SR matrix 
encodes place fields used to compute the value function. 

In our current replay model, replay sequences starting from 
the same “location” in the same episode generate identical 
sequences preventing the model from “exploring” alternative 
routes. This is the result of propagating a place cell’s activity to 
its neighbor with highest connectivity. Thus, in future research, 
it may be of interest to evaluate how different propagation 
methods affect the end-results. 

As part of future work, we plan to verify whether rats 
present latent learning in multiple T-mazes without the 
backward-movement restrictions. Furthermore, we would like 
to assess two predictions that can be derived from the results of 
the model. First, we predict that disrupting replay events will 
strongly decrease the speed-ups observed in latent learning. 
Secondly, we expect that rats habituated to an environment will 
present either longer or more replay sequences as compared 
with non-habituated rats. Finally, depending on the results we 
would also like to extend the model to include a topological map 
as well as pre-play events.  
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