2012.07994v1 [cs.CR] 14 Dec 2020

arxiv

Binary Black-box Evasion Attacks Against Deep Learning-based Static Malware
Detectors with Adversarial Byte-Level Language Model

Mohammadreza Ebrahimi,! Ning Zhang,? James Hu,! Muhammad Taqi Raza,' Hsinchun Chen!
! Artificial Intelligence Lab, The University of Arizona
2Covax Data Inc., Arizona
{ebrahimi, jameshu, taqi, hsinchun} @email.arizona.edu; ning.zhang @covaxdata.com

Abstract

Anti-malware engines are the first line of defense
against malicious software. While widely used, feature
engineering-based anti-malware engines are vulnerable
to unseen (zero-day) attacks. Recently, deep learning-
based static anti-malware detectors have achieved suc-
cess in identifying unseen attacks without requiring fea-
ture engineering and dynamic analysis. However, these
detectors are susceptible to malware variants with slight
perturbations, known as adversarial examples. Gener-
ating effective adversarial examples is useful to re-
veal the vulnerabilities of such systems. Current meth-
ods for launching such attacks require accessing either
the specifications of the targeted anti-malware model,
the confidence score of the anti-malware response, or
dynamic malware analysis, which are either unrealis-
tic or expensive. We propose MalRNN, a novel deep
learning-based approach to automatically generate eva-
sive malware variants without any of these restrictions.
Our approach features an adversarial example gener-
ation process, which learns a language model via a
generative sequence-to-sequence recurrent neural net-
work to augment malware binaries. MalRNN effec-
tively evades three recent deep learning-based malware
detectors and outperforms current benchmark methods.
Findings from applying our MalRNN on a real dataset
with eight malware categories are discussed.

Introduction

Malware attacks pose a massive threat to the security of
companies and individuals. The average annual cost of
malware attacks has increased to $2.6 million per mid-
sized company worldwide (Bissell and Ponemon 2018).
Anti-malware engines are essential to proactively prevent
these attacks (Tounsi and Rais 2018). Most anti-malware
engines mainly rely on signature-based approaches that
match manually-defined patterns against known malicious
files (Anderson et al. 2018). The success of signature-based
methods significantly depends on the quality and recency of
the pre-defined rules that are often handcrafted by malware
analysts. While useful, signature-based engines suffer from
two significant deficiencies: first, they could be ineffective
in dealing with newly evolved variants of malware, and thus,
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vulnerable to ‘unseen’ variants known as zero days (Chen et
al. 2019a); second, they rely on manually defined rules that
cannot keep up with the rapid evolution of malware variants.

Due to the deficiencies of signature-based anti-malware
engines, researchers have presented machine learning-based
malware detection. However classic machine learning algo-
rithms often require manual feature engineering. Recently,
a new stream of Deep Learning (DL)-based malware detec-
tor has emerged that can consume the whole raw malware
binary as input and extract the salient features automati-
cally, without relying on manually defined rules or feature
engineering. As a result, successful DL-based anti-malware
engines have emerged (Raff et al. 2018), (Fleshman et al.
2019), (Kréal et al. 2018). However, DL-based anti-malware
engines have shown to be susceptible to small perturba-
tions in their input, featured by automated attacks known
as Adversarial Example Generation (AEG) (Demetrio et
al. 2019). These attacks yield slightly perturbed malware
variants that can mislead the DL-based engines into miss-
classifying them as benign. Given the crucial role of anti-
malware in preventing cyber-attacks and improving the se-
curity posture of many organizations, there is a vital need
to devise automatic ways to protect anti-malware engines
against the AEG attacks.

Although AEG can negatively affect the performance of
DL-based engines, it can also be utilized to further im-
prove their performance. Anti-Malware Evasion (AME) has
emerged as a promising method to automate the AEG pro-
cess for this purpose (Chen et al. 2019b). Malware variants
that successfully evade the DL-based malware detectors can
be employed in re-training and improving them. Moreover,
verifying DL-based anti-malware engines against AEG is a
viable defense mechanism (Goodfellow, McDaniel, and Pa-
pernot 2018). In effect, automatic emulation of AEG attacks
can help strengthen the ability of DL-based engines to detect
malware.

AME methods often rely on additive approaches, which
inject bytes into the malware binary, known as append at-
tacks (Suciu, Coull, and Johns 2019). Append attacks are a
natural fit for AME because they do not affect the function-
ality of the malware since their injected payload is not exe-
cuted by the operating system and thus they do not interfere
with the malware execution (Castro, Biggio, and Dreo Ro-
dosek 2019), (Suciu, Coull, and Johns 2019). Nevertheless,



current approaches for launching these attacks suffer from
two major issues that limit their applicability. First, many
attacks assume full knowledge about the anti-malware ar-
chitecture, its parameters, or the confidence level of the anti-
malware response. These assumptions do not apply to realis-
tic attack scenarios in which the information is hidden from
the adversary (Hu and Tan 2018). Second, since they often
rely on brute-force mechanisms to craft new malware vari-
ants, they require a high volume of appended bytes (i.e., pay-
load) to evade the anti-malware engine (Suciu, Coull, and
Johns 2019).

Deep learning methods have shown promise in generat-
ing smaller and more effective perturbations (Kreuk et al.
2018). Recently, among deep learning methods, deep lan-
guage models have shown promise in malware analysis by
treating the malware binary sequence as characters in a writ-
ten language (Awad, Nassar, and Safa 2018). Generative Re-
current Neural Network (RNN) is a powerful architecture to
learn such language models (Mogren and Johansson 2019).
Motivated by the importance of finding the vulnerabilities
of current DL-based anti-malware engines, we propose a
new threat model that utilizes a novel RNN-based method
to automatically construct adversaries for evading several
DL-based anti-malware engines simultaneously. To this end,
we focus on how to automatically generate evasive malware
samples on a large scale. Our study offers a novel approach
to directly learn a language model on binary executables
and generate benign-looking content without requiring any
knowledge of the targeted anti-malware. To our knowledge,
the proposed method contributes to the first automated at-
tack against DL-based anti-malware engines without these
restrictive assumptions. Furthermore, our approach does not
require expensive dynamic malware analysis. To foster re-
producibility, we made the code and the dataset available to
the Al-enabled security research community on GitHub at
https://github.com/johnnyzn/MalRNN.

Background and Related Work
Adversarial Example Generation (AEG)

Deep learning models have been recently shown to fail when
an adversary carefully modifies their input data with sub-
tle perturbations. Adversarial examples are instances with
meticulous feature perturbations that can cause a target ma-
chine learning model to make wrong decisions. Automati-
cally crafting such instances by an adversary against a spe-
cific class of target machine learning models is an emerging
task in artificial intelligence, referred to as AEG (Goodfel-
low, McDaniel, and Papernot 2018). This concept of AEG
that we use in this study is not meant to be confused with
Automatic Exploit Generation). Verifying machine learning
models against AEG is a crucial defense mechanism that
not only helps improve the resistance of these models, but
also provides insights for designing better machine learning
models (Goodfellow, McDaniel, and Papernot 2018).
Depending on the information available to the adversary
from the targeted machine learning model, AEG is car-
ried out under four possible scenarios (Qiu et al. 2019;
Anderson et al. 2018). In the first scenario, known as a

white-box attack, the adversary has full access to the struc-
ture and parameters of the attack target. The second AEG
scenario is referred to as gray-box AEG and pertains to sit-
uations in which the parameters of the attacked neural net-
work model are not available but the adversary has access to
the features that are important for decision making by tar-
get classifier. The third scenario, called black-box AEG, re-
lates to when the adversary cannot access the model’s spec-
ification, features, or parameters; however, it can obtain a
real-valued feedback, also known as confidence score, from
the attack target. Finally, binary black-box AEG applies to a
black-box scenario in which not only no a priori knowledge
is assumed about the target, but also the adversary does not
have access to a real-valued feedback from the attack target.
Instead, in binary black-box scenario, the adversary can only
observe a binary response associated with the success or fail-
ure of the crafted instance in evading the attack target. This
type of attack is also known as binary black box (Anderson
et al. 2018). Binary black-box AEG is the most restrictive
and the most common scenario in real-world (Fleshman et
al. 2019), since oftentimes the specification and confidence
score of the attack target are unknown.

Anti-Malware Evasion

Conducting AEG in the Malware detection domain gives
rise to anti-malware evasion (AME) attacks, a new stream
of research that employs AEG to perturb malware sam-
ples and generate variants that evade anti-malware engines
while still preserving the functionality of the original mal-
ware. AME attacks can be categorized based on the type of
threat model they implement (i.e., white, gray, black, and
binary black-box). Consistent with our goal of proposing
a more realistic AME attack scenario in our study, we ex-
amine the past AME studies that support black-box and bi-
nary black-box attacks. Among these studies, AME stud-
ies that offer black-box attacks do not require knowing
the specifications of the targeted anti-malware (Demetrio
et al. 2020; Castro, Biggio, and Dreo Rodosek 2019;
Castro, Schmitt, and Rodosek 2019; Chen et al. 2019a;
Park, Khan, and Yener 2019; Suciu, Coull, and Johns 2019;
Hu and Tan 2018). These studies employ a wide range of
methods such as genetic algorithm (Demetrio et al. 2020),
random perturbations (Castro, Schmitt, and Rodosek 2019;
Chen et al. 2019a), dynamic programming (Park, Khan, and
Yener 2019), and RNN (Hu and Tan 2018). However, these
methods heavily rely on the confidence score feedback ob-
tained from anti-malware engines to craft their perturba-
tions. The confidence score is a real value ranging between
0 and 1, which indicates the probability that the input is mal-
ware. This value is interpreted as the confidence of the de-
cision made by the anti-malware engine. While black-box
attacks are more realistic than white-box attacks, the confi-
dence score is internal to the anti-malware engine and thus
not visible to the adversary. This issue restricts the usability
of these methods (Rosenberg et al. 2019).

Binary black-box attacks, on the other hand, do not re-
quire observing the anti-malware’s confidence score (Dey
et al. 2019; Fang et al. 2019; Rosenberg et al. 2019;
Anderson et al. 2018), and thus, are applicable to real at-



tack scenarios. Nevertheless, most current binary black-box
AME studies target signature-based anti-malware engines
(Dey et al. 2019; Fang et al. 2019; Anderson et al. 2018).
Although Rosenberg et al. (Rosenberg et al. 2019) pro-
pose a binary black-box attack on DL-based anti-malware
engines, their approach requires an API call sequence ob-
tained from expensive and time-consuming dynamic analy-
sis of malware binary in a sandbox. We also note that Hu
and Tan (Hu and Tan 2018) propose a black-box AME at-
tack that is based on training an RNN. However, similar
to (Rosenberg et al. 2019), their approach requires a se-
quence of API calls obtained during the dynamic analy-
sis in a sandbox. Another practical limitation of the cur-
rent binary black-box AME methods relates to the brute-
force operationalization of append attacks, which requires
a large size of binary content to be appended to the orig-
inal malware file (e.g., three times larger than the size
of the original malware) (Suciu, Coull, and Johns 2019;
Castro, Schmitt, and Rodosek 2019). This results in generat-
ing abnormally large malware variants that can be detected
by anti-malware engines due to the suspicious size of the
resulting malware variant. Furthermore, most AME studies
on attacking DL-based anti-malware engines are designed to
only target a specific anti-malware architecture with certain
parameter settings. Focusing on evading one specific archi-
tecture limits the generalizability of such methods to other
anti-malware models. We expect that learning a universal
language model from benign executables can facilitate at-
taining more generalizable AME methods.

Generative RNN-based Language Models

Constructing a language model amounts to learning a prob-
ability distribution over a sequence of strings or characters.
Once learned, a language model can be used to generate the
next element in a given sequence. Neural language models
with recurrent architectures have shown promise in gener-
ating high-quality sequences in Natural Language Process-
ing (NLP) tasks (Kim et al. 2016). A generative RNN pro-
cesses sequential input while preserving temporal patterns
in the sequence. At each time step ¢, an RNN takes an in-
put z; and the current hidden state h; to emit a continu-
ous value. This value is used to generate/predict future el-
ements in the sequence. This generative nature of RNNs
makes them suitable for sequence analysis tasks such as
language modeling (Belletti, Chen, and Chi 2019), where
the elements of the input are time-dependent. Once trained,
RNNS yield effective language models on short natural lan-
guage text and binary content (Zuo et al. 2018) that are
able to predict the next element based on a given input se-
quence. Two major challenges arise in utilizing RNN-based
language models on malware content. First, using RNN lan-
guage models for learning long sequences of malware con-
tent is challenging (Raff et al. 2018) due to the large num-
ber of time steps, which leads to the attenuation of the er-
ror signal during training, widely known as vanishing gra-
dient problem (Goldberg 2017). Adding gating mechanism
to the input and output of RNN units can address this is-
sue and yields an effective variant of RNN, Gated Recur-
rent Units (GRU) (Goldberg 2017). Generative RNNs re-

quire the input and output sequences to have the same di-
mensions. While this is useful in machine learning tasks
such as part of speech tagging, it limits their applicability
in the malware domain. Among RNN-based architectures
for language modeling, sequence-to-sequence models ad-
dress this issue by adding an additional encoding step be-
fore feeding the data to the generative RNN. Sequence-to-
sequence models have recently yielded breakthrough results
in many sequence analysis tasks such as machine transla-
tion (Ono, Utiyama, and Sumita 2019) and speech recogni-
tion (Irie et al. 2019). They can map the input sequence of
a fixed length to a generated output sequence of a different
length. Given their recent success in other machine learning
fields, we expect that sequence-to-sequence RNN-based lan-
guage models can provide an effective tool to automatically
generate benign-looking adversarial examples for AME ap-
plications. Accordingly, we propose to construct an RNN
language model directly on the binary content (as opposed
to the sequence of API calls in a sandbox) to accomplish ad-
versarial malware generation in a binary black-box scenario
without requiring dynamic analysis.

Proposed Method (MalRNN )

As noted in Section 2, most black-box AME methods rely
on a brute-force approach in which they inject bytes into a
malware sample until the generated variant evades the anti-
malware. The brute-force property of these methods leads to
crafting variants with large payload size that renders AME
less effective. This issue motivates a threat model that lim-
its the volume of injected bytes, as opposed to the one that
allows adding an indefinite length of perturbations.

Threat Model

Consistent with (Anderson et al. 2018), we define the threat
model for launching binary black-box AME attacks against
static anti-malware models. Nevertheless, unlike the threat
model proposed in (Anderson et al. 2018), which targets
feature-based anti-malware engines, our threat model fo-
cuses on launching attacks against DL-based anti-malware
engines. Three major components of our threat model are:

e Adversary’s Goal: Automatically crafting mal-
ware variants that are capable of evading DL-based anti-
malware.

e Adversary’s Knowledge: The structure and pa-
rameters of the anti-malware model are unknown to the
adversary. Furthermore, the adversary does not have ac-
cess to the confidence score produced by anti-malware.
The only information available to the adversary is whether
the generated malware variant can evade the anti-malware
or not.

* Adversary’s Capability: Applying functional-
ity preserving append modifications on malware binary,
while the maximum modification size is limited. We fo-
cus on append modifications, since they very often do not
interfere with the functionality of the malware.

To realize this threat model, we propose MalRNN, a byte-
level sequence-to-sequence generative model that learns a
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Figure 1: Abstract view of MalRNN malware evasion architecture

language model on benign samples and injects benign-
looking byte sequences into the original malware binary in
order to obtain evasive malware variants.

MalRNN Design

In accordance with the above threat model, it can be ex-
pected that that mimicking the patterns of benign executa-
bles could be a viable attack approach. We incorporate
this insight into our design of MalRNN. Specifically, this
is achieved through learning a language model on bytes
that can generate benign-looking samples. Such a language
model significantly contributes to alleviating brute-force
trial and error for generating evasive variants. Figure 1 il-
lustrates the major components of our MalRNN malware
evasion architecture. We describe each component in the re-
maining of this section.

Data Acquisition

Developing MalRNN requires two datasets of binary exe-
cutables: 1) a malware executable dataset that serves as the
initial seed to generate evasive malware variants, and 2) a
benign executable dataset to train the language model. To
obtain the former dataset, we compiled an up-to-date collec-
tion with recent real malware samples from the last three
years. The dataset includes over 6,000 malware binaries
from eight common malware categories. The distribution of
the dataset is described later. To obtain the benign executable
dataset, following (Raff et al. 2018), we collected 4,329
benign executables from a clean installation folder of Mi-
crosoft Windows. In both datasets, we converted the binary
input to hexadecimal characters suitable for processing by a
character-level language model. Furthermore, to avoid inef-
ficient training with long input byte sequences in malicious
and benign executables, we employed systematic sampling.
This process samples the input binary sequence in fixed in-
tervals to reduce the input size for generative sequence-to-
sequence RNN language model.

Generative Sequence-to-Sequence RNN Language
Model

Our model employs a character-level sequence-to-sequence
RNN to learn a language model from benign malware bi-
naries. We adopt Gated Recurrent Units (GRU) (Goldberg
2017) as the building block of our sequence-to-sequence
model to alleviate the gradient vanishing problem in pro-
cessing long sequences,(Dey and Salemt 2017). MalRNN
aims to maximize the adversarial loss (Madry et al. 2017)
of the anti-malware model, which is formulated in the fol-
lowing equation:

magceirglize L(Ho(x+9),y) (1)

where x is the input malware sample, Hy is the attacked
DL-based anti-malware model parameterized by 6, and § €
A denotes the allowable perturbations that preserve func-
tionality (appending byte sequences in our case). The loss
function L represents binary cross-entropy loss in most DL-
based anti-malware engines. However, in a (binary) black-
box setting the exact loss function from the anti-malware
is not accessible and thus, cannot be incorporated into the
model’s loss. Accordingly, directly maximization of Eq. 1
is impractical. The key idea behind our model is that maxi-
mizing the loss in Eq. 1 translates to minimizing the loss of
an adversarial model in generating benign-looking samples
that can bypass the anti-malware. The middle box in Fig-
ure 1 shows our character-level generative RNN for learning
such an adversarial model serving as a binary content gener-
ator.

Inspired by the recent sequence-to-sequence RNN in lan-
guage modeling, MalRNN ’s generator consists of two main
RNN components: An encoder RNN and a decoder RNN.
The encoder aims to encapsulate the salient features of the
input byte sequence into a feature vector. This vector is ob-
tained from the final hidden state of the last RNN unit in the



encoder architecture and is fed to the decoder RNN (shown
in the vertical inner box in Figure 1).

The encoder’s current hidden states h; is obtained as a
function of both its previous state h;_1 and the current input
element z,;. More formally, h; is given by Equation 2:

he = f(W"hy 1 + W?xy) 2

where W denotes the network weights between the hidden
units and and W* represents the network weights between
hidden units and the input elements. Function f is a non-
linear activation such as tanh(.). The decoder receives the
feature vector from the encoder and reconstructs the byte
sequence that minimizes a cross-entropy loss between the
generated bytes and benign samples (Lgyn) at each time
step. Unlike the encoder, the decoder’s hidden state at each
time step is only a function of the previous hidden state and
is given by Equation 3:

he = f(W"hy_y) A3)

After training is complete, the generator learns to append
benign-looking binary content to the malware binary in or-
der to maximize the adversarial loss and construct an evasive
malware variant. To craft a candidate malware variant, after
completion of each training iteration, the generated byte se-
quence from MalRNN’s generator is attached to the original
malware. The candidate malware variant is checked against
one or more black-box anti-malware models to assess if it
can evade them. The output of the anti-malware is a binary
output with 1 and 0 denoting detection and evasion, respec-
tively. If the generated malware variant successfully evades
the detectors, the candidate sample is saved as an evasive
variant and will be further processed for ensuring its func-
tionality.

Such a model is suitable for launching binary black-box
attacks described in our threat model since it depends neither
on the gradients obtained from a differentiable anti-malware
model, as in (Castro, Biggio, and Dreo Rodosek 2019;
Kolosnjaji et al. 2018), nor on the confidence score received
from the anti-malware engine, as in (Chen et al. 2017). This
amounts to achieving an adversary that is agnostic to the tar-
geted anti-malware’s deep learning architecture. It is worth
noting that, following (Anderson et al. 2018), in order to
comply with the binary black-box attack scenario, the con-
fidence score provided by anti-malware architectures was
masked to mimic a binary output from anti-malware.

In each iteration, MalRNN is trained on a sample of be-
nign executables and generates a byte sequence that is ap-
pended to the end of the original anti-malware to form a
new variant, which subsequently is tested against the tar-
geted black-box anti-malware models. In each iteration, the
RNN is trained on a sample of benign files, and generates
the new bytes based on a given malware sequence. This pro-
cess repeats until the new variant evades the anti-malware
or the maximum number of attempts is reached. In case the
maximum number of attempts for a specific input sample is
reached the model proceeds to the next malware sample.

We implemented MalRNN using PyTorch. MalRNN was
run on a single Nvidia RTX 2080 GPU with 4,352 CUDA

cores and 8 GB internal memory. The code is designed to
run on both GPU and CPU environments. The data com-
prises the full testbed including the benign executables for
training the language model and also the malware binary
dataset. MalrRNN’s specifications, including the architec-
ture and (hyper) parameter settings are given in Appendix
A.

Ensuring the Functionality of Generated Malware
Variants

We used VirusTotal’s API, which supports large-scale mal-
ware analysis, for assessing the functionality of malware
samples after modification. VirusTotal provides a malware
behavior report that includes static and dynamic analysis
of the malware sample. These reports describe network be-
havior, file access behavior, etc. Using the VirusTotal API,
we compare the behavior reports for the modified evasive
variants and original (i.e., unmodified) malware samples.
Through this process, we ensure that the key parts of the
Virus Total’s report stay the same after modification, show-
ing that the modified malware samples can be executed on
the operating system and are fully functional. All 6,037 mal-
ware samples in our dataset were checked to be functional
after appending bytes to their overlay. That is, the non-
functional samples in the original dataset (more than 90%)
were excluded from the evaluation.

Implementation and Evaluation
Testbed and Evaluation Criterion

We obtained an academic license of VirusTotal and ex-
tracted 6,307 recent malware binaries from the past three
years (2017-2019) in eight categories, including botnet, ran-
somware, spyware, adware, virus, dropper, backdoor, and
rootkit. Table 1 shows the distribution of the dataset by mal-
ware category. To be able to gain insight into each specific
malware category, we evaluate MalRNN ’s performance on
each category separately. Utilizing the functionality assess-
ment process described earlier, we checked the functionality
of all modified malware binary samples to ensure they retain
their functionality after modification.

Table 1: Breakdown of testbed based on different malware

categories
Malware Examples # of Malware
Category Samples
Adware eldorado, razy, gator 1,947
Backdoor lunam, rahack, symmi 678
Botnet virut, salicode, sality 526
Dropper dunwod, gepys, doboc 904
Ransomware vtflooder, msil, bitman 900
Rootkit onjar, dqqd, shipup 53
Spyware mikey, qqpass, scar 640
Virus nimda, shodi, hematite 659
Total All subtypes 6,307

As our attack target, we selected three renowned DL-
based static malware detectors. All three are cited frequently



by security researchers and are made available by authors
through GitHub repositories.

* MalConv (Raff et al. 2018), is among the most suc-
cessful DL-based malware detectors, developed through
a collaboration between the Laboratory for Physical Sci-
ences (LPS) and NVIDIA. The model incorporates a deep
convolutional neural network architecture that is trained
on approximately half a million malware binaries and
achieves an area under the ROC curve (AUC) of 98.5%
on an unseen test set.

¢ NonNeg (Fleshman et al. 2019) is a successor of Mal-
Conv developed by LPS, which modifies MalConv’s
architecture with non-negative weight constraints. The
model was trained on 2 million malware binaries and ob-
tained the AUC of 95.3% on a holdout sample.

* ConvNet (Krcdl et al. 2018) was developed by Avast re-
search group and features a deeper neural network than
MalConv and NonNeg, with a total of eight layers. It was
trained on 20 million proprietary malware samples from
Avast and achieved 70.4% AUC.

Both MalConv and NonNeg were featured as recent mal-
ware detector architectures in an AME competition hosted
by Endgame in 2019 (Anderson 2019). It is important to
note that all malware samples in our dataset were recog-
nized as malware by all three anti-malware models. Follow-
ing (Fleshman et al. 2019; Anderson et al. 2018), we adopt
evasion rate as our evaluation criterion. The evasion rate of
an AME method against a given anti-malware is defined as
follows: ENF

N “
where E and F' denote the sets of evasive and functional
modified malware obtained from the AME method, respec-
tively. N denotes the total number of malware samples given
as input to the AME method. This statistic yields the effi-
cacy of a given AME method in evading a malware detector.
We use this metric to evaluate MalRNN against other bench-
mark methods later in this section.

Fvasion Rate =

Experiment Setup

We conduct three different experiments. In the first experi-
ment, we examine the number of attempts MalRNN requires
to generate evasive variants. In the second experiment, we
measure the changes of MalRNN’s performance by vary-
ing the append size for each malware category. Finally, in
the third experiment, we compare MalRNN ’s performance
on all three malware detectors to that of other AME bench-
marks for a fixed append volume (determined in our second
experiment). For comparison, we identified two state-of-the-
art binary black-box and one black-box AME benchmarks:

* Random Append (RA) (Suciu, Coull, and Johns
2019; Castro, Schmitt, and Rodosek 2019): Appends se-
quences of random bytes to the end of a malware sample
until the evasion occurs.

* Benign Append (BA) (Castro, Biggio, and Dreo Ro-
dosek 2019): Appends random sections from benign files
to the end of a malware sample until evasion occurs.

e Enhanced Benign Append (EBA) (Chen et al.
2019a): Appends specific byte sequences that lower the
confidence score of the anti-malware in a brute-force
manner.

It is worth noting that since EBA requires access to the
confidence score, it is qualified as black-box and has an un-
fair advantage compared to the other two benchmarks and
our proposed method. The following subsections describe
each experiment and its corresponding results in detail.

Can MalRNN Learn to Generate Evasive Variants?

It is often desirable to verify if a machine learning model
learns during training by monitoring the training loss or
number of iterations required to solve the problem at hand.
In order to assess whether MalRNN learns to generate eva-
sive bytes, we monitor the number of attempts (i.e, itera-
tions) required for evasion during the training of MalRNN
(Figure 2).
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Figure 2: Running average of the number of iterations re-
quired to bypass the anti-malware engine for each sample.

As seen in Figure 2, when training starts MalRNN needs
around 20 attempts to modify a given malware sample such
that it can evade the anti-malware. However, as the training
proceeds, this number significantly decreases. As a result,
at the latest stages of training (after processing almost 300
malware samples) the number of required attempts reduces
to around eight. This behavior is consistent among all eight
categories and suggests that MalRNN improves during the
training process and learns to generate evasive content.

How Does the Append Size Affect the Evasion
Rate?

As noted, very large append sizes can defeat the purpose of
developing an effective AME method that is able to accom-
plish an evasion attack through minimal modification of the
original malware. As such, in practice, it is crucial to limit
the maximum append size of AME methods. To empirically
observe the effect of append size on the evasion rate, we
track the changes in evasion rate for various append sizes in
the virus category as it is one of the most damaging malware
types. Table 2 summarizes the results.



Table 2: Evasion rates and number of required training iter-
ations obtained at different append sizes

AVG AVG # of Evasion # of
Append Append Evaded Rate Training
Size (%) Size (KB) Samples Iterations

5 7.5 763 82.4% 14,357
10 15 862 93.09% 8,588
20 30 882 95.25% 5,133
40 66 906 97.84% 3,169
80 132.8 910 98.27% 3,065
100 166 912 98.49% 3,205
120 199.2 919 99.24% 2,840
180 298.8 921 99.46% 2,406

Two major observations are made from Table 2. First, it is
seen that by appending only 7.5 KB on average to an origi-
nal malware binary, MalRNN is able to achieve the evasion
rate of 82.4%. This speaks to the effectiveness of the bytes
generated by the proposed method, as will be thoroughly
investigated in our third experiment. Second, and more im-
portantly, as the append size increases from 5% to 40% of
the original malware size, the evasion rate rapidly increases
to 97.84%. After this point, the rate of increase almost stabi-
lizes. Also, the total number of training iterations required to
evade the anti-malware decreases and exhibits the same be-
havior at 40% append size. Figure 3 visualizes this behavior
by plotting the evasion rate against the changes in append
size.
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Figure 3: Evasion rate vs. append volume

The 40% append size has been shown as an elbow point,
which denotes where the evasion rate stops to increase sig-
nificantly. We thus fix the append size for all methods in
the benchmark evaluations to 40%. Although our proposed
model yields satisfactory results at much lower append sizes
(i.e., 5% and 10%), we selected 40% append size in favor
of the benchmark methods involved in our third experiment.
Moreover, even though our model implements the black-box
threat model, the amount of bytes it appends are compara-
ble to white-box gradient-based attacks in (Kolosnjaji et al.
2018), which is around 1% to achieve 60-70% evasion rate.

How Does MalRNN Compare to the
State-of-the-Art Black-Box AME Benchmarks?

We conduct four benchmark evaluations, each focusing on
specific malware detectors. The first three evaluations com-
pare MalRNN s ability to conduct targeted AME attacks
on a specific DL-based malware detector (i.e., MalConv,
NoNeg, or ConvNet) individually. The last benchmark eval-
uation targets MalRNN ’s capability to evade all three anti-
malware engines simultaneously. That is, the evasion occurs
only if the variant can successfully evade all three malware
detectors. Such a benchmark evaluation allows us to verify
MalRNN ’s generalizability to different DL-based models.
To provide evasion rates specific to each category, we con-
ducted benchmark evaluations separately on each malware
category. Table 3 summarizes the results of all four bench-
mark evaluations.

From Table 3, it is observed that MalRNN outperforms
all other AME benchmarks in almost all of the categories for
all three malware detectors. Interestingly, not only does Mal-
rNN outperform its binary black-box AME counterparts, but
it also outperforms EBA, which has access to the confi-
dence scores, with the exception of adware and ransomware
for evading MalConv. In addition to comparison with AME
benchmarks, it is helpful to measure the performance of
MalRNN on evading all three DL-based malware detectors
across all eight malware types. Figure 4 illustrates our Mal-
RNN ’s evasion rate for collectively evading all three mal-
ware detectors for each malware type.
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Figure 4: MalRNN ’s averaged evasion rate against three
DL-based malware detectors across eight malware types

As shown in Figure 4, ransomware and botnet have the
lowest overall evasion rate with 29.33% and 23.57%, respec-
tively, which may suggest that these categories are less sen-
sitive to AME append attacks. This could be attributed to the
fact that ransomware binaries have significant sections ded-
icated to data encryption routines, which could be uniquely
distinguished with DL-based classifiers. Similarly, botnet bi-
naries are often unique in the sense that they incorporate
a considerable amount of code devoted to establishing and
maintaining the network of malicious devices on the inter-
net. Such unique characteristics can render adversarial mod-
ifications less effective in causing these types of malware



Table 3: Comparing MalRNN ’s performance on three renowned DL-based anti-malware detectors with black-box AME bench-

mark methods across eight malware categories

Detector | Method Adware Backdoor | Botnet | Dropper | Ransomware Rootkit Spyware Virus | Average
RA 14.34% 9.88% 8.56% 14.16% 11.78% 13.21% 10.16% 11.53%| 12.29%
Malconv BA 49.15% 41.30% 20.34% | 41.92% 38.44% 11.32% 3531% 28.22%| 39.43%
EBA 75.55% 68.29% 46.58% | 69.69% 80.22% 56.60% 63.31% 61.76%| 69.54%
MalRNN| 68.75% 72.72% 53.66% 64.28% 69.23% 80% 85.71%| 73.24%
RA 0.67% 0.44% 0.19% 0.44% 5.66% 0.63% 0.76% | 0.67%
NonNeg BA 96.61% 99.41% 99.05% | 94.91% 99.00% 90.57% 93.91% 88.47%| 96.04%
EBA 96.10% 94.40% 95.25% | 98.78% 96.56% 100% 94.38% 89.38%| 95.45%
MalRNN| 99.87% 100% 100% 99.87 % 100% 100% 100% | 99.97%
RA 30.71% 25.96% 69.01% | 26.77% 10.67% 16.98% 46.88% 54.17%| 33.95%
ConvNet BA 33.23% 27.43% 66.16% | 35.62% 17.67% 35.85% 47.03% 49.92%| 36.64%
EBA 38.46% 35.29% 4375% | 47.83% 24.00% 45.28% 46.3% 51.22%| 40.03%
MalRNN| 76.49% 100% 87.1% 69.23% 35.56% 64.15% 73.8% 70.59%| 72.03%
RA 0.00% 0.00% 0.00% 0.55% 0.00% 1.89% 0.00% 0.00% | 1.49%
All Three BA 15.56% 14.31% 5.30% 5.63% 9.33% 5.66% 3.75% 0.00% | 8.51%
EBA 23.52% 23.15% 20.53% 19.58% 23.44% 15.09% 34.69% 22.91%| 22.86%
MalRNN | 34.77% 54.28% 23.57% | 46.57% 29.33% 41.51% 45.47 % 34.75%| 38.78%

to evade. On the contrary, it is also observed that backdoor
and dropper with 54.28% and 46.57%, respectively, have the
highest evasion rate. This suggests that, overall, DL-based
anti-malware models may be more susceptible to modifi-
cations of backdoor and dropper samples. This aligns with
the fact that backdoor samples often contain malicious bi-
nary that is embedded into a variety of benign programs to
bypass regular authentication and provide remote unautho-
rized access to a system. As a result, their content may be
similar to non-detrimental content that are more likely to
evade the DL-based anti-malware models. Similarly, drop-
pers are also benign-looking malicious tools that are de-
signed to embed other hidden malicious code (e.g., virus)
to bypass anti-malware engines. Consequently, both back-
door and dropper malware types are difficult to identify for
DL-based anti-malware models that operate on the entire bi-
nary content with large portions of benign code. This finding
aligns with the intuition that crafting adversarial examples
for malware executables that are already embedded in be-
nign executables could be less difficult than other malware
categories with larger portions of conspicuously malicious
content (e.g., botnet and ransomware).

Conclusion and Future Work

Recently, static DL-based malware detectors have shown
promise in detecting unseen malware without manual rule
definition and feature engineering. However, they can them-
selves be vulnerable to AME attacks. We can strengthen
these anti-malware engines by emulating AME attacks. Au-
tomating this process is crucial for improving anti-malware
engines at a higher pace. Current approaches to this end un-
realistically assume full or partial knowledge about targeted
anti-malware. In this study, by treating adversarial malware
generation as language modeling, we developed a novel
method, MalRNN, to craft adversarial examples without re-
quiring any knowledge of the targeted anti-malware. Mal-
RNN directly learns a language model on binary executables

and generates effective benign-looking byte sequences that
can evade several DL-based anti-malware models simulta-
neously. MalRNN neither depends on the gradients of a dif-
ferentiable anti-malware model, nor on the confidence score
received from the anti-malware engine. The results signify
the vulnerability of DL-based anti-malware models to ad-
versarial append attacks and reveal that significant future re-
search in this area is needed. Future research is needed for
devising more sophisticated AME methods. One promising
direction is extending the perturbations from append attacks
to editing modifications to help provide more powerful AME
methods. However, it should be noted that it is often harder
to ensure the functionality of the malware variants obtained
from editing modifications as opposed to additive ones.

Due to nature of our study, its dual use is crucial to attend
to. MalRNN contributes to emulating adversarial attacks as
a viable defense mechanism to gain insight on the adver-
sary’s capabilities. Though the ultimate goal of our study
is reinforcing the robustness of anti-malware engines, pre-
cautionary measures should be taken to monitor and prevent
large scale misuse of such Al techniques during the deploy-
ment of technology. Software-as-service deployment is one
way to provide the monitoring so that the benevolent usage
of the technology outweighs its malicious usage.
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Appendix A - MalRNN Specifications

Both encoder and decoder in MalRNN consist of 100 GRUs
with Tanh activation functions as their building blocks. All
biases of the GRU units were initialized to zero. The di-
mension of the emebedding layer (i.e., vocabulary size) in
the encoder was set to 256. Also, the size of the fully
connected output layer in the decoder was set to 128. Pa-
rameter settings of MalRNN were fixed throughout all ex-
periments. The learning rate and systematic sampling rate
were set to le~2 and le™ 3, respectively. Also, the batch
size was fixed to 10 throughout all experiments. The max-
imum append size was set to 40% for all benchmark meth-
ods and MalRNN. Lastly, the maximum number of attempts
was set to 50 for all benchmark methods and MalRNN. To
facilitate reproducability, the code, corresponding dataset,
and benchmark methods were made available on GitHub at
https://github.com/johnnyzn/MalRNN.



	Introduction
	Background and Related Work
	Adversarial Example Generation (AEG)
	Anti-Malware Evasion
	Generative RNN-based Language Models

	Proposed Method (MalRNN )
	Threat Model
	MalRNN Design
	Data Acquisition
	Generative Sequence-to-Sequence RNN Language Model
	Ensuring the Functionality of Generated Malware Variants

	Implementation and Evaluation
	Testbed and Evaluation Criterion
	Experiment Setup
	Can MalRNN Learn to Generate Evasive Variants?
	How Does the Append Size Affect the Evasion Rate?
	How Does MalRNN Compare to the State-of-the-Art Black-Box AME Benchmarks?

	Conclusion and Future Work
	 Acknowledgments
	Appendix A - MalRNN Specifications

