
2
0
2
1

 I
E

E
E

 S
ec

u
ri

ty
 a

n
d

 P
ri

v
a
cy

 W
o

rk
sh

o
p

s
(S

P
W

)
| 9

7
8

-1
-6

6
5

4
-3

7
3

2
-5

/2
0

/$
3

1
.0

0
 ©

2
0
2
1

 I
E

E
E

 |
D

O
I:

1

0
.1

1
0

9
/S

P
W

5
3

7
6

1
.2

0
2

1
.0

0
0

2
1

2021 IEEE Symposium on Security and Privacy Workshops

Binary Black-Box Attacks Against Static Malware

Detectors with Reinforcement Learning in Discrete

Action Spaces

1st Mohammadreza Ebrahimi
School of Information Systems and Management

University of South Florida

Tampa, USA

ebrahimim@usf.edu

2nd Jason Pacheco

Department of Computer Science

University of Arizona

Tucson, USA

pachecoj@cs.arizona.edu

3rd Weifeng Li

Department of Management Information Systems

University of Georgia

Athens, USA

weifeng.li@uga.edu

4th James Lee Hu

Artificial Intelligence Lab

University of Arizona

Tucson, USA

jameshu@email.arizona.edu

5th Hsinchun Chen

Artificial Intelligence Lab

University of Arizona

Tucson, Arizona

hchen@eller.arizona.edu

Abstract—Recent machine learning- and deep learning-based
static malware detectors have shown breakthrough performance
in identifying unseen malware variants. As a result, they are
increasingly being adopted to lower the cost of dynamic mal-
ware analysis and manual signature identification. Despite their
success, studies have shown that they can be vulnerable to
adversarial malware attacks, in which an adversary modifies a
known malware executable subtly to fool the malware detector
into recognizing it as a benign file. Recent studies have shown
that automatically crafting these adversarial malware variants at
scale is beneficial to improve the robustness of malware detectors.
For conciseness, we refer to this process as Adversarial Malware
example Generation (AMG). Most AMG methods rely on prior
knowledge about the architecture or parameters of the detector,
which is not often available in practice. Moreover, the majority of
these methods are restricted to additive modifications that append
contents to the malware executable without modifying its original
content. In this study, we offer a novel Reinforcement Learning
(RL) method, AMG-VAC, which extends Variational Actor-Critic
(VAC) to non-continuous action spaces where modifications are
inherently discrete. We evaluate the evasion performance of the
proposed AMG-VAC on two reputable machine learning-based
malware detectors. While the proposed method outperforms
extant non-RL and RL-based AMG methods by statistically
significant margins, we show that the obtained evasive action
sequences are useful in shedding light on malware detectors’
vulnerabilities.

This material is based upon work supported by the National Science
Foundation (NSF) under the grants SaTC-1936370 and SFS-1921485. We
would like to thank VirusTotal for providing the malware dataset and granting
access to the APIs for malware functionality assessment.

Index Terms—binary black-box attack, adversarial malware
generation, static malware detection, reinforcement learning,
variational actor-critic, approximate sampling

I. In t r o d u c t i o n

With the recent increase in the scale of malware attacks,

machine learning (ML) and deep learning (DL) have been

adopted to enable static malware detection based on the

features automatically extracted from (parts of or the entire)

malware executable [1]. Static malware detectors have gained

attention due to being faster and far less resource intensive than

dynamic malware analysis [2]. These malware detectors have

shown breakthrough performance in detecting unseen malware

variants at an unprecedented scale. However, these ML-based

malware detectors have shown to be vulnerable to adversarial

attacks - functional malware executables meticulously mod-

ified by an adversary to fool the detector into recognizing

them as benign [3]. This process is known as Adversarial

Malware Generation (AMG) [4]. Although AMG is construed

as a major threat when conducted by the adversary, it can

be helpful to autonomous malware detection when performed

on the defender side [5]. AMG can provide an effective way

to improve malware detectors by learning from adversarial

attacks and identifying the vulnerabilities of malware detectors

[6]. Thus, studying the characteristics of adversarial attacks

through AMG is a viable defense mechanism [7].

© 2021, Mohammadreza Ebrahimi. Under license to IEEE.
DOI 10.1109/SPW53761.2021.00021

85

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore. Restrictions apply.

However, existing studies on AMG has three major lim-

itations. First, most AMG methods require prior knowledge

about the malware detector architecture, its parameters, or

its confidence score [2], [8]-[10]. These assumptions are not

in accordance with realistic attack scenarios in which the

detector’s information is often unknown [11]. Second, existing

AMG research mostly focuses on the additive modifications,

which involves appending content to the empty space at the

end of the malware executable [12]. In reality, human adver-

saries can choose from a broad range of editing adversarial

actions in modifying malware to evade detection. Third, while

the sequential order of adversarial modifications is important

to understand the vulnerabilities of malware detectors and

detect modified malware, this aspect of AMG has not been ex-

tensively studied. To address these limitations, in this study, we

propose a new threat model featuring a novel Reinforcement

Learning (RL) method, AMG-VAC, to automatically construct

realistic malware variants for evading ML- and DL-based static

malware detectors. AMG-VAC enables more realistic AMG

to help discover vulnerabilities of malware detectors. Drawing

upon the state of the art in RL, AMG-VAC extends Variational

Actor-Critic (VAC), to effectively emulate evasive malware

variants. AMG-VAC applies a set of allowable additive and

editing modifications (i.e., actions) on malware executables to

generate evasive sequences of actions aiming to maximize the

chance of evading malware detectors. The resultant evasive

action sequences from AMG-VAC enable further analysis for

better understanding the detector’s vulnerabilities.

The main contributions of this paper are twofold. AMG-

VAC offers an automated vulnerability discovery method

for both advanced ML-based and DL-based static malware

detectors without requiring any prior knowledge about their

architecture or parameters. Furthermore, AMG-VAC extends

VAC to operate in non-continuous action spaces where discrete

sequential modifications on a malware executable can lead to

evasive malware variants.

II. Re l a t e d W o r k a n d Ba c k g r o u n d

A. Adversarial Malware Example Generation
Adversarial Malware example Generation (referred to as

AMG for brevity), is a specific type of adversarial example

generation, an emerging deep learning research area [7],

[13]. Adversarial example generation often aims at generating

input data that misleads a model into incorrect classifications.

A large body of studies on adversarial example generation

focuses on image applications. Unlike image applications in

which adversarial modifications are continuous (e.g., applying

a noise signal), the modifications for malware executables are

inherently discrete. Moreover, applying arbitrary modifications

(common in adversarial example generation for images) to

a malware executable is likely to affect the functionality of

the executable. Accordingly, AMG concerns automatically

generating such discrete functionality-preserving modifications

to evade malware detectors. It is critical to verify malware

detectors against AMG and improve their robustness as a

viable defense mechanism [7]. This verification goes beyond

current evaluation practices such as precision, recall, accuracy,

and Fi-score. Overall, while AMG is damaging when utilized

by adversaries, it could be beneficial for defenders to gain

insights into their vulnerabilities and improve their robustness.

Motivated by the importance of AMG, numerous AMG

methods have been proposed in the recent literature [2], [8]-

[10], [14]-[20]. A large body of these studies target white-
box attack scenario in which the attacker has full knowledge

about the targeted DL-based static malware detector [2], [8],

[21], [22]. These methods often rely on the gradient errors

obtained from the malware detector, which are not accessi-

ble in real-world attacks. As a result, adversarial malware

variants generated by these methods could be unrealistic.

Another group of AMG studies target a more realistic black-
box scenario, in which the adversary only has access to the

confidence score produced by the detector or malware features

that are important to the detector [9], [10], [14]-[17], [20],

[23]. Few studies consider a binary black-box scenario in

which the only information known to the attacker is whether

a generated malware variant is able to evade the detector or

not [12], [18], [19], [24]. Binary black-box attack scenario is

the most realistic type of AMG due to its minimal reliance

on the insider knowledge about the target malware detector.

The binary black-box AMG approaches proposed by Dey et

al. [12] and Ebrahimi et al. [24] rely on additive actions,

which only allow adversaries to append additional content to

the executable. However, human adversaries can leverage a

number of other types of actions in developing adversarial

attacks. For example, editing actions can create a wider range

of modifications such as renaming the code sections in a

malware executable. Anderson et al. [18] and Fang et al.

[19] have shown that deep RL can model the interactions

between the adversary and malware detector in order to learn

effective editing actions that mislead the detector in binary

black-box settings. However, tackling AMG with RL requires

handling environments with combinatorially large state spaces

(i.e., all possible permutations of editing a section name of a

malware executable). These two studies employ mainstream

Actor-Critic RL [18] and deep Q-learning [19], which are not

specifically designed to handle very large state spaces [25].

To address this issue, and motivated by the benefits of RL in

AMG applications, we next review state of the art in RL with

high dimensional state spaces.

B. Deep Reinforcement Learning for AMG
RL features a Markov decision process in which an agent

iteratively interacts with an environment [26]. Given a state

st £ S , the agent takes an action at £ A. In response, the

environment produces the reward r(st ,at). The ultimate goal

of RL is to learn a policy n (a t |s t) that maximizes the expected

reward (i.e., accumulated reward in the long run). Learning

the policy is accompanied with estimating the state-action

value Qn(s, a) = E [R|s, a]. Deep RL has shown breakthrough

performance in estimating n and Q using neural networks

[27]. Accordingly, learning the behavior of an adversary is

equivalent to learning a neural network that parameterizes the

86

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore. Restrictions apply.

policy n. Finding the policy n (a t |s t , 0) parametrized by vector

0 that maximizes the reward leads to solving an optimization

problem given in Eq. 1.

J(0) max E E r [r(st,at)] (1)
t=0

where t = s0,a0, ... , s t ,a t denotes the trajectory (se-

quence of state-actions). As seen in Eq. 1, unlike black-box

AMG methods, utilizing the reward signal eliminates the need

for the confidence score from the malware detector. Thus, deep

RL is naturally suited for modeling the interactions between

the adversary and malware detector in AMG. Fig. 1 shows the

RL framework for modeling these interactions.

Fig. 1. Illustration of AMG in RL Settings

As shown in Fig. 1, the RL agent aims to mimic the adver-

sary by applying functionality-preserving actions to different

parts of a malware executable. At the highest level, a malware

executable consists of Header (i.e., metadata), Sections (i.e.,

executable code and data), and Overlay (i.e., the free space at

the end of the file that is often not executed). Static malware

detectors extract features from these parts to classify the file

either as malicious or benign. The RL agent is rewarded only

when the series of applied actions lead to a functional malware

variant that evades the detector. The states are modeled as

the set of all possible features from the malware executable

[28]. To model the adversary’s actions with deep RL, two

considerations are needed. First, as the attack vector is discrete

(e.g., editing malware timestamp), the action space (i.e., set

of possible modifications that an adversary can apply to a

malware executable) is inherently discrete [2]. Consequently,

Anderson et al. [18] and Fang et al. [19] utilize Actor-Critic

with Experience Replay (ACER) [29] and Double Deep Q

Network (D-DQN) [30] as two recently proposed RL methods

suitable for discrete action spaces to conduct AMG. Second, as

AMG involves large sequences of bytes, deep RL is required

to process a combinatorially large number of states [18] in the

environment. The number of states, for instance, amounts to

at least 162048 states for a 2KB modification in a hex-coded

malware executable. While useful, ACER and DDQN are not

specifically designed for very large state spaces. Recently,

Fellows et al. [25] have proposed Variational Actor-Critic

(VAC) that has yielded the state-of-the-art performance in

tasks with very large number of states. VAC results in 33%

more cumulative reward over ACER and DDQN on average

[25]. However, VAC is not directly applicable to discrete

action spaces. Motivated by its success in high-dimensional

state spaces, we propose a novel method to extend VAC to

discrete action spaces. We next introduce a threat model to

conduct AMG and discuss core VAC framework. Finally, we

introduce our proposed AMG-VAC to conduct AMG using

VAC on discrete action spaces.

III. Me t h o d

A. Threat Model
Following [18] and [31], we define the threat model for

binary black-box AMG attacks against static malware detec-

tors. Unlike the threat model in [18], our threat model is able

to launch attacks against both traditional machine learning-

and deep learning-based malware detectors. our threat model

consists of three components:

• Adversary's Goal: Automatically generating mal-

ware variants that evade static ML- and DL-based detec-

tors.

• Adversary's Capability: Applying allowable

(i.e., functionality preserving) additive and editing actions

on malware binary.

• Adversary's Knowledge: The parameters and

deep learning architecture of the malware detector are

not available to the adversary. Moreover, the adversary

does not have access to any real-valued confidence score

generated by the detector. The only available information

is whether the generated malware variant can evade the

detector or not (binary black-box scenario).

To implement this threat model, we first introduce the

baseline VAC method and then show how AMG-VAC builds

on VAC to accomplish AMG by discretizing the action space

using approximate sampling.

B. Preliminary: Variational Actor-Critic (VAC)
VAC builds upon Actor-Critic (AC) model [32]. AC has

two main iterative steps carried out by two complementary

components called actor and critic:

1) Policy improvement, in which the actor finds a policy

n that is compatible with current action value function

Q . The actor is characterized by a neural network that

accepts states and outputs actions to estimate the policy

distribution ng (a|s)

2) Policy evaluation, in which the critic estimates the action

value function consistent with the current policy n. The

critic is characterized by a neural network that accepts

state-action pair and outputs the expected value of state-

action pairs to estimate Qw (s ,a).
Derived from Eq. 1, this iterative process translates to AC’s

objective given in Eq. 2:

O

J (0) = E t [£ log ng(a tlst)Qw(st, a t)] (2)
t=0

in which, ng (at |st) is learned by the actor network, while

Qw(st ,a t) is learned by the critic network. In their seminal

87

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore. Restrictions apply.

work, Fellow et al. [25] show that AC’s learning objective is

solved more effectively via variational inference and propose

Variational AC (VAC). Variational inference approximates the

action posterior ng (at |st) with a tractable family of distri-

butions suitable for large number of states. However, VAC’s

policy is assumed to have a continuous distribution, and thus

is not directly applicable to discrete action spaces required in

AMG [25].

C. The Proposed Variational Actor-Critic for Discrete Adver-
sarial Malware Generation (AMG-VAC)

Our proposed AMG-VAC aims to emulate the adversary’s

evasion behavior, given a set of discrete actions that do not

change the functionality of malware executable. To this end,

AMG-VAC discretizes continuous actions from the VAC’s

actor network to accommodate for discrete additive and editing

actions via an approximate sampling operator. The overview

of AMG-VAC and the approximate sampling is depicted in

Fig. 2.

Fig. 2. Abstract view of the proposed AMG-VAC

The RL agent consists of actor and critic network explained

earlier. The components of the malware environment were

depicted in Fig. 1. The approximate sampling component

outputs approximated actions given the policy ng. We next

characterize the action space and the procedure of approximate

sampling in AMG-VAC.
1) Action Space: Following Anderson et al. [18] and Fang

et al. [19], we identified ten functionality-preserving actions

including five additive and five editing actions shown in Table

I. Additive and editing actions are denoted by A and E,

respectively.
2) Approximate Sampling of Actions with Concrete Dis-

tribution: As mentioned above, the actor network in VAC

performs policy improvement and outputs actions to interact

with the environment. The policy improvement translates into

estimating ng (a|s) via the actor neural network (shown in

Fig. 2). The actor network learns a distribution over actions.

Learning this action distribution in AMG involves sampling

from discrete actions described in Table I. As the sampling

operation is not differentiable, it inhibits gradient propagation

in stochastic gradient ascent - required for learning the neural

network parameters [33]. That is, the discrete stochastic ac-

tion sampling precludes the gradient flow needed for policy

improvement in the actor network. Maddison et al. [34]

TABLE I
Disc r e t e Ac t io n Spa ce f o r AMG-VAC

Action Name Description Type
Add Import (AI) Adds a library or function to the

import table
A

Add Section (AS) Adds a new section to
executables

A

Break Checksum (BC) Sets file’s checksum E
Change Timestamp

(TS)
Sets timestamp E

Overlay Append (OA) Appends Bytes to the end of PE
file

A

Remove Debug (RD) Unlinks debug section from
header

A

Remove Signature

(RS)

Unlinks digital signature from
certificate table

A

Section Rename (SR) Change sections’ name in
malware executable

E

UPX Compression
(UC)

Compress malware executables E

UPX Decompression
(UD)

Decompress malware
executables

E

showed that discrete samples can be approximated via using a

differentiable Concrete distribution. Concrete distribution, also

known as Gumbel-Softmax distribution, is a well-established

differentiable distribution in statistical machine learning [33].

Inspired by Maddison et al. [34], we propose to approximate

the discrete action distribution over discrete AMG modifica-

tions (shown in Table I) by Concrete distribution.

Let nk denote the probability assigned to each action ak
by the policy (i.e., actor) network. Approximate sampling

from discrete actions with Concrete distribution entails a few

sequential steps. First, the probability of the sampled discrete

action from the actor network is projected to a logarithmic

scale for numerical stability [34]. Second, independent and

identically distributed (i.i.d.) random variables are sampled

from Gumbel distribution Gk. Third, the obtained sample

from Gumbel distribution is combined with the discrete action

probabilities via component-wise addition and a softmax op-

erator. The softmax operator is parameterized by temperature

t that could be hand-tuned. Following this process leads to

a Concrete distribution over the outputs of the actor network,

which is expressed via Eq. 3.

= exp((log nk + Gk)/T)

° 'k E "=i exP((log ni + Gk)/ t)

where the obtained output (i.e., action sample ak) is dif-

ferentiable and thus can be used in learning the parameters

of the actor network via gradient ascent. Such an approxi-

mate sampling process enables AMG-VAC to learn policies

on discrete action spaces seen in modifications on malware

executables. The discrete samples are approximated via using

a differentiable Concrete distribution over the attack vectors

after receiving the discrete actions from the actor network. The

novelty of AMG-VAC lies in extending VAC via approximate

sampling to handle discrete action environments in AMG

88

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore. Restrictions apply.

applications while still benefiting from stochastic gradient

ascent.

IV. Ev a l u a t i o n

We conducted a series of evaluation experiments to rig-

orously assess AMG-VAC on emulating adversarial malware

files in comparison with baseline AMG methods.

A. Research Testbed
Following the malware testbed construction in [18], [19],

our research testbed comprised approximately 19,650 (15.38

GB) recent Windows malware executables from VirusTotal -

a renowned aggregator of emerging malware from multiple

contributors worldwide [18], [35]. The date of these malware

executables ranges from 2017 to 2019. About 3,429 (1.68

GB) of the malware executables were dedicated for training

the AMG-VAC. The testbed included five types of common

malware files, including botnet, ransomware, rootkit, spyware,

and virus. The distribution of these types is given in Table II.

t a b l e ii
Dis t r ib u t io n o f Ma l w a r e Ty pe s in Ou r Te s t b e d

M alware Type Train Size
Botnet 526 (151.2 MB)

Ransomware 900 (454.2 MB)

Rootkit 731 (511.1 MB)

Spyware 640 (377.2 MB)

Virus 659 (186.3 MB)

Total 3,429 (1.68 GB)

B. Experimental Setup
The performance of AMG-VAC was evaluated in compar-

ison with the state-of-the-art AMG methods. In our exper-

iment, all AMG methods were trained on the 1.68 GB of

training malware testbed. The generated adversarial malware

variants of these trained AMG methods were tested against

two renowned malware detectors: EMBER and MalConv.

Endgame Malware Benchmark for Research (EMBER) is

a well-established malware detector developed by Endgame

Inc. EMBER leverages gradient boosting and gradient-based

sampling for malware detection [18], [36]. MalConv is a

premier deep learning-based malware detector, developed by

the Laboratory of Physical Sciences [1]. MalConv uses a large

convolutional neural network (CNN), which was trained on

over a million malware executables.

We adopted the evasion rate metric as our performance

evaluation criterion. Evasion rate is a widely used metric for

measuring the AMG performance [18], [24], [37]. The evasion

rate of an AMG method against a given malware detector is

defined as follows:

Evasion Rate \E n F \
N (4)

Where E is the set of generated adversarial malware variants

capable of evading the malware detector, F is the set of

generated adversarial malware variants that are functional,

and N is the total number of adversarial malware variants

generated by the AMG method. A higher evasion rate suggests

that the AMG method is capable of evading the malware

detector more effectively.

AMG-VAC was compared against three state-of-the-art

black-box and binary black-box AMG methods: Benign

Feature Append (BFA) [9], [17], Double Deep Q-Network

(DDQN) [19], [30], and Actor-Critic with Experience Replay

(ACER) [18], [29]. BFA is a widely-adopted non-RL method

that appends parts of benign files to the end of malware

executables to generate evasive malware variants. BFA is a

black-box attack method and has access to the confidence

score of the malware detector. Therefore, BFA benefits from

more insider information than binary black-box benchmark

methods (i.e., DDQN, ACER, and AMG-VAC). Double Deep

Q-Network (DDQN) is a well-established RL-based binary

black-box method that leverages two neural networks for

better estimation of the action-value function. Actor-Critic

with Experience Replay (ACER) is an effective RL-based

binary black-box method that yields the malware variant by

applying variance reduction techniques to reduce the instability

of learned policies in the baseline AC model [29]. Consistent

with [18] and [19], all experiments were implemented using

a modified version of the openAI Gym environment with the

same parameter settings and neural network sizes.

1) Functionality Preservation: The functionality of all gen-

erated adversarial malware variants were checked using the

academic license of VirusTotal API. The API provides a

malware behavior report, including static and dynamic analysis

of the malware file. The report reflects the network behavior

of the malware file, file access patterns, etc. We compared the

behavior reports of the modified malware variants with the

unmodified malware files to ensure that the behavior stays the

same after modification. With this process, we assured that the

modified malware files can be executed on Windows operating

system while maintaining their malicious behavior.

C. Results
Table III summarizes the benchmark evaluation results,

comparing AMG-VAC’s performance against two renowned

ML- and DL-based malware detectors (EMBER and MalConv)

across five malware types. We identified two major findings

from these results. First, while RL-based AMG methods

(DDQN and ACER) did not use the confidence score from the

malware detector for generating malware variants, the malware

variants generated by these methods were more effective (e.g.,

average of 28.44% and 37.18% for EMBER) than those

generated by the confidence score-based BFA (e.g., average

of 3.90% for EMBER). This finding highlights the general

effectiveness of RL in AMG. Second, and more importantly,

AMG-VAC outperformed the state-of-the-art baseline methods

across all malware types and on both malware detectors with

statistically significant margins as measured by paired t-test.

Overall, while BFA had the lowest evasion rate across all

malware categories, RL-based AMG methods had significantly

higher evasion rates for all malware types. on average, AMG-

89

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore. Restrictions apply.

t a b l e III
Co mpa r in g AMG-VAC’s per f o r ma n c e (Eva sio n Ra t e) a g a in s t t wo r en o wn ed ma l wa r e d et ec t o r s a c r o ss f ive ma l wa r e t y pes

Malware
Detector

Method Botnet Ransomware Rootkit Spyware Virus Average

EMBER
BFA 3.02% 4.44% 4.73% 5.34% 6.16% 3.90%

DDQN 23.00% 44.33% 39.12% 19.80% 27.77% 28.44%
ACER 30.99% 60.11% 27.51% 26.87% 62.82% 37.18%

AMG-VAC
(Ours)

48.29%* 65.22%* 61.15%* 29.53%* 82.40%* 51.67%*

MalConv
BFA 3.90% 4.42% 2.96% 3.28% 5.56% 3.76%

DDQN 6.08% 11.89% 16.83% 27.50% 30.50% 16.63%
ACER 37.07% 25.33% 29.41% 56.09% 44.76% 35.04%

AMG-VAC
(Ours)

44.68%* 26.89%* 50.48%* 65.31%* 48.41%* 44.01%*

Best performances are highlighted in boldface fonts. Asterisks denote that P-values evaluated by paired t-test are significant at 0.05.

TABLE IV
Mo st Ev a siv e Ac t io n Seq u en c es Pr o d u c ed by AMG-VAC f o r Gen er a t in g Ad v er sa r ia l Ma l wa r e At t a cks

Malware
Detector

Most Evasive Action Sequences

Append Import ^ Break Checksum ^ Section Rename ^ Section Rename
EMBER Change Timestamp ^ Add Import ^ Change Timestamp ^ Compression

Remove Signature ^ Overlay Append ^ Compression ^ Section Rename
Compression ^ Remove Debug ^ Overlay Append ^ Overlay Append ^Section Rename

MalConv Add Import ^ Overlay Append ^ Change Timestamp
Remove Debug ^ Remove Signature ^ Add Import ^ Compression

VAC’s evasion rate across all five malware types and against

both malware detectors was considerably higher than all

baseline methods with 51.67% for EMBER, and 44.01% for

MalConv. Specifically, AMG-VAC outperformed the second

best-performing method (ACER) by 14% (51.67% vs. 37.18%)

for EMBER and by 9% (44.01% vs. 35.04%) for MalConv on

average. These results indicate that enhancing VAC to operate

on discrete action spaces via our proposed AMG-VAC yielded

considerably stronger adversarial malware variants that are

capable of evading malware detectors.

D. Discussion
To gain further insight into the vulnerabilities of malware

detectors, we qualitatively analyzed AMG-VAC’s output by

examining its action sequences that led to evasive malware

variants. To this end, we obtained the most frequent actions

leading to the creation of evasive malware variants against the

EMBER and MalConv malware detectors. Table IV shows the

top three most frequent action sequences for each malware

detector.

For EMBER, two editing actions (i.e., Compression and

Section Rename; boldfaced in Table IV) were the most fre-

quent actions. Compression and Section Rename appeared

in 16% and 14% of the evasive sequences, respectively. For

MalConv, while Compression was also the most frequent

action in evasive attacks with 39% occurrence, Import Append

(boldfaced in Table IV) was the second most frequent additive

action with 12% occurrence. In sum, the sequences generated

by AMG-VAC provided three useful observations about the

examined malware detectors. First, the Compression action

affected both ML- and DL-based malware detectors as the

most effective action in generating malware variants. Second,

EMBER was more vulnerable to editing actions (e.g., Section

Rename). This is expected since EMBER’s decisions are

mainly based on the features extracted from the executable’s

metadata, which is not modified by additive actions (e.g., Add

Import). Third, unlike EMBER, MalConv was more vulnerable

to additive actions as MalConv is based on automated repre-

sentation learning from the whole malware executable. Such

observations from examining AMG-VAC’s sequences can lead

to better adversarial attack mitigation for static deep learning-

based malware detectors.

V. Co n c l u s i o n

It is vital to defend malware detectors against evolving

adversaries who can generate adversarial attacks at scale. This

calls for automated adversarial malware generation (AMG) at

the defender side. To emulate adversarial malware attacks, we

propose AMG-VAC, a novel RL method designed specifically

to support discrete modifications of malware executables in

AMG tasks. Through rigorous evaluation, we show that AMG-

VAC outperforms extant RL-based and non-RL-based AMG

methods. AMG-VAC contributes to deep learning research

community by offering a novel approach to extending the

state-of-the-art RL framework to AMG. Furthermore, AMG-

VAC is an effective and explainable AMG technique that

contributes to the malware analysis research community. A

promising future direction could be a rigorous procedure for

using the adversarial malware variants generated by AMG-

90

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore. Restrictions apply.

VAC to enhance the robustness of DL-based malware detectors

against adversarial attacks.

Re f e r e n c e s

[1] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole exe,” in Workshops at
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[2] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, “Adversarial examples on discrete sequences for beating
whole-binary malware detection,” arXiv preprint arXiv:1802.04528, pp.
490-510, 2018.

[3] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE transactions on neural networks and
learning systems, vol. 30, no. 9, pp. 2805-2824, 2019, publisher: IEEE.

[4] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti, “Addressing
Adversarial Attacks Against Security Systems Based on Machine Learn-
ing,” in 2019 11th International Conference on Cyber Conflict (CyCon),
vol. 900. IEEE, 2019, pp. 1-18.

[5] R. Goosen, A. Rontojannis, S. Deutscher, J. Rogg, W. Bohmayr, and
D. Mkrtchian, “Artificial Intelligence Is a Threat to Cybersecurity. It’s
Also a Solution,” Boston Consulting Group (BCG), Tech. Rep., 2018.
[Online]. Available: https://image-src.bcg.com/Images/BCG-Artificial-
Intelligence-Is-a-Threat-to-Cyber-Security-Its-Also-a-Solution-Nov-
2018_tcm9-207468.pdf

[6] W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li, “Adversarial Attacks
on Deep Learning Models in Natural Language Processing: A Survey,”
2019.

[7] I. Goodfellow, P. McDaniel, and N. Papernot, “Making machine learning
robust against adversarial inputs,” Communications of the ACM, vol. 61,
no. 7, 2018.

[8] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in 26th European Signal
Processing Conference (EUSIPCO). IEEE, 2018, pp. 533-537.

[9] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in 2019 IEEE Security and Privacy Workshops
(SPW). IEEE, 2019, pp. 8-14.

[10] D. Park, H. Khan, and B. Yener, “Generation & evaluation of adver-
sarial examples for malware obfuscation,” in 18th IEEE International
Conference On Machine Learning And Applications (ICMLA). IEEE,
2019, pp. 1283-1290.

[11] W. Hu and Y. Tan, “Black-box attacks against rnn based malware detec-
tion algorithms,” in Workshops at the Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[12] S. Dey, A. Kumar, M. Sawarkar, P. K. Singh, and S. Nandi, “EvadePDF:
Towards Evading Machine Learning Based PDF Malware Classifiers,”
in International Conference on Security & Privacy. Springer, 2019,
pp. 140-150.

[13] J. Monteiro, I. Albuquerque, Z. Akhtar, and T. H. Falk, “General-
izable Adversarial Examples Detection Based on Bi-model Decision
Mismatch,” in 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC), 2019, pp. 2839-2844.

[14] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Ef-
ficient black-box optimization of adversarial windows malware with
constrained manipulations,” arXiv preprint arXiv:2003.13526, 2020.

[15] R. L. Castro, B. Biggio, and G. Dreo Rodosek, “Attacking malware
classifiers by crafting gradient-attacks that preserve functionality,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2565-2567.

[16] R. L. Castro, C. Schmitt, and G. D. Rodosek, “Armed: How automatic
malware modifications can evade static detection?” in 2019 5th Interna-
tional Conference on Information Management (ICIM). IEEE, 2019,
pp. 20-27.

[17] B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial examples for
cnn-based malware detectors,” IEEE Access, vol. 7, pp. 54360-54371,
2019.

[18] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static pe machine learning malware models via reinforcement
learning,” arXiv preprint arXiv:1801.08917, 2018.

[19] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, “Evading
anti-malware engines with deep reinforcement learning,” IEEE Access,
vol. 7, pp. 48 867^8 879, 2019, publisher: IEEE.

[20] M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, “Adversarial
attacks on mobile malware detection,” in 2019 IEEE 1st International
Workshop on Artificial Intelligence for Mobile (AI4Mobile). IEEE,
2019, pp. 17-20.

[21] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in 2018
IEEE Security and Privacy Workshops (SPW). IEEE, 2018, pp. 76-82.

[22] L. Chen, Y. Ye, and T. Bourlai, “Adversarial machine learning in
malware detection: Arms race between evasion attack and defense,”
in 2017 European Intelligence and Security Informatics Conference
(EISIC). IEEE, 2017, pp. 99-106.

[23] M. Sharif, K. Lucas, L. Bauer, M. K. Reiter, and S. Shintre,
“Optimization-guided binary diversification to mislead neural networks
for malware detection,” arXiv preprint arXiv:1912.09064, 2019.

[24] M. Ebrahimi, N. Zhang, J. Hu, M. T. Raza, and H. Chen, “Binary Black-
box Evasion Attacks Against Deep Learning-based Static Malware
Detectors with Adversarial Byte-Level Language Model,” in AAAI
workshop on Robust, Secure, and Efficient machine Learning (RSEML).
AAAI, 2021. [Online]. Available: arXiv preprint arXiv:2012.07994

[25] M. Fellows, A. Mahajan, T. G. Rudner, and S. Whiteson, “Virel: A vari-
ational inference framework for reinforcement learning,” in Advances in
Neural Information Processing Systems, 2019, pp. 7120-7134, reporter:
Advances in Neural Information Processing Systems.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[27] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, and others, “A general
reinforcement learning algorithm that masters chess, shogi, and Go
through self-play,” Science, vol. 362, no. 6419, pp. 1140-1144, 2018.

[28] H. S. Anderson and P. Roth, “Ember: an open dataset for training static
pe malware machine learning models,” arXiv preprint arXiv:1804.04637,
2018.

[29] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample Efficient Actor-Critic with Experience
Replay,” 2017, meeting Name: International Conference on Learning
Representations (ICLR).

[30] H. v. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence. AAAI Press, 2016, pp. 2094-2100.

[31] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp. 317-
331, 2018.

[32] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Ap-
proximation Error in Actor-Critic Methods,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmassan, Stockholm Sweden: PMLR, 2018, pp. 1587-1596,
reporter: Proceedings of the 35th International Conference on Machine
Learning.

[33] E. Jang, S. Gu, and B. Poole, “Categorical Reparameterization with
Gumbel-Softmax,” 2017, meeting Name: International Conference on
Learning Representations (ICLR).

[34] C. J. Maddison, A. Mnih, and Y. W. Teh, “The Concrete Distribution: A
Continuous Relaxation of Discrete Random Variables,” 2017, meeting
Name: International Conference on Learning Representations (ICLR).

[35] A. Kyadige, E. Rudd, and K. Berlin, “Learning from Context:
A Multi-View Deep Learning Architecture for Malware Detection,”
in 3rd Deep Learning and Security Workshop. IEEE, May 2020.
[Online]. Available: https://ai.sophos.com/presentations/learning-from-
context-a-multi-view-deep-learning-architecture-for-malware-detection/

[36] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, pp. 3146-
3154, 2017.

[37] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, “Automatic
generation of adversarial examples for interpreting malware classifiers,”
arXiv preprint arXiv:2003.03100, 2020.

91

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore. Restrictions apply.

