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Abstract—Recent machine learning- and deep learning-based 
static malware detectors have shown breakthrough performance 
in identifying unseen malware variants. As a result, they are 
increasingly being adopted to lower the cost of dynamic mal-
ware analysis and manual signature identification. Despite their 
success, studies have shown that they can be vulnerable to 
adversarial malware attacks, in which an adversary modifies a 
known malware executable subtly to fool the malware detector 
into recognizing it as a benign file. Recent studies have shown 
that automatically crafting these adversarial malware variants at 
scale is beneficial to improve the robustness of malware detectors. 
For conciseness, we refer to this process as Adversarial Malware 
example Generation (AMG). Most AMG methods rely on prior 
knowledge about the architecture or parameters of the detector, 
which is not often available in practice. Moreover, the majority of 
these methods are restricted to additive modifications that append 
contents to the malware executable without modifying its original 
content. In this study, we offer a novel Reinforcement Learning 
(RL) method, AMG-VAC, which extends Variational Actor-Critic 
(VAC) to non-continuous action spaces where modifications are 
inherently discrete. We evaluate the evasion performance of the 
proposed AMG-VAC on two reputable machine learning-based 
malware detectors. While the proposed method outperforms 
extant non-RL and RL-based AMG methods by statistically 
significant margins, we show that the obtained evasive action 
sequences are useful in shedding light on malware detectors’ 
vulnerabilities.

This material is based upon work supported by the National Science 
Foundation (NSF) under the grants SaTC-1936370 and SFS-1921485. We 
would like to thank VirusTotal for providing the malware dataset and granting 
access to the APIs for malware functionality assessment.

Index Terms—binary black-box attack, adversarial malware 
generation, static malware detection, reinforcement learning, 
variational actor-critic, approximate sampling

I. In t r o d u c t i o n

With the recent increase in the scale of malware attacks, 

machine learning (ML) and deep learning (DL) have been 

adopted to enable static malware detection based on the 

features automatically extracted from (parts of or the entire) 

malware executable [1]. Static malware detectors have gained 

attention due to being faster and far less resource intensive than 

dynamic malware analysis [2]. These malware detectors have 

shown breakthrough performance in detecting unseen malware 

variants at an unprecedented scale. However, these ML-based 

malware detectors have shown to be vulnerable to adversarial 

attacks -  functional malware executables meticulously mod-

ified by an adversary to fool the detector into recognizing 

them as benign [3]. This process is known as Adversarial 

Malware Generation (AMG) [4]. Although AMG is construed 

as a major threat when conducted by the adversary, it can 

be helpful to autonomous malware detection when performed 

on the defender side [5]. AMG can provide an effective way 

to improve malware detectors by learning from adversarial 

attacks and identifying the vulnerabilities of malware detectors 

[6]. Thus, studying the characteristics of adversarial attacks 

through AMG is a viable defense mechanism [7].

© 2021, Mohammadreza Ebrahimi. Under license to IEEE. 
DOI 10.1109/SPW53761.2021.00021
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However, existing studies on AMG has three major lim-

itations. First, most AMG methods require prior knowledge 

about the malware detector architecture, its parameters, or 

its confidence score [2], [8]-[10]. These assumptions are not 

in accordance with realistic attack scenarios in which the 

detector’s information is often unknown [11]. Second, existing 

AMG research mostly focuses on the additive modifications, 

which involves appending content to the empty space at the 

end of the malware executable [12]. In reality, human adver-

saries can choose from a broad range of editing adversarial 

actions in modifying malware to evade detection. Third, while 

the sequential order of adversarial modifications is important 

to understand the vulnerabilities of malware detectors and 

detect modified malware, this aspect of AMG has not been ex-

tensively studied. To address these limitations, in this study, we 

propose a new threat model featuring a novel Reinforcement 

Learning (RL) method, AMG-VAC, to automatically construct 

realistic malware variants for evading ML- and DL-based static 

malware detectors. AMG-VAC enables more realistic AMG 

to help discover vulnerabilities of malware detectors. Drawing 

upon the state of the art in RL, AMG-VAC extends Variational 

Actor-Critic (VAC), to effectively emulate evasive malware 

variants. AMG-VAC applies a set of allowable additive and 

editing modifications (i.e., actions) on malware executables to 

generate evasive sequences of actions aiming to maximize the 

chance of evading malware detectors. The resultant evasive 

action sequences from AMG-VAC enable further analysis for 

better understanding the detector’s vulnerabilities.

The main contributions of this paper are twofold. AMG- 

VAC offers an automated vulnerability discovery method 

for both advanced ML-based and DL-based static malware 

detectors without requiring any prior knowledge about their 

architecture or parameters. Furthermore, AMG-VAC extends 

VAC to operate in non-continuous action spaces where discrete 

sequential modifications on a malware executable can lead to 

evasive malware variants.

II. Re l a t e d  W o r k  a n d  Ba c k g r o u n d

A. Adversarial Malware Example Generation
Adversarial Malware example Generation (referred to as 

AMG for brevity), is a specific type of adversarial example 

generation, an emerging deep learning research area [7], 

[13]. Adversarial example generation often aims at generating 

input data that misleads a model into incorrect classifications. 

A large body of studies on adversarial example generation 

focuses on image applications. Unlike image applications in 

which adversarial modifications are continuous (e.g., applying 

a noise signal), the modifications for malware executables are 

inherently discrete. Moreover, applying arbitrary modifications 

(common in adversarial example generation for images) to 

a malware executable is likely to affect the functionality of 

the executable. Accordingly, AMG concerns automatically 

generating such discrete functionality-preserving modifications 

to evade malware detectors. It is critical to verify malware 

detectors against AMG and improve their robustness as a 

viable defense mechanism [7]. This verification goes beyond

current evaluation practices such as precision, recall, accuracy, 

and Fi-score. Overall, while AMG is damaging when utilized 

by adversaries, it could be beneficial for defenders to gain 

insights into their vulnerabilities and improve their robustness.

Motivated by the importance of AMG, numerous AMG 

methods have been proposed in the recent literature [2], [8]- 

[10], [14]-[20]. A large body of these studies target white- 
box attack scenario in which the attacker has full knowledge 

about the targeted DL-based static malware detector [2], [8], 

[21], [22]. These methods often rely on the gradient errors 

obtained from the malware detector, which are not accessi-

ble in real-world attacks. As a result, adversarial malware 

variants generated by these methods could be unrealistic. 

Another group of AMG studies target a more realistic black-
box scenario, in which the adversary only has access to the 

confidence score produced by the detector or malware features 

that are important to the detector [9], [10], [14]-[17], [20], 

[23]. Few studies consider a binary black-box scenario in 

which the only information known to the attacker is whether 

a generated malware variant is able to evade the detector or 

not [12], [18], [19], [24]. Binary black-box attack scenario is 

the most realistic type of AMG due to its minimal reliance 

on the insider knowledge about the target malware detector. 

The binary black-box AMG approaches proposed by Dey et 

al. [12] and Ebrahimi et al. [24] rely on additive actions, 

which only allow adversaries to append additional content to 

the executable. However, human adversaries can leverage a 

number of other types of actions in developing adversarial 

attacks. For example, editing actions can create a wider range 

of modifications such as renaming the code sections in a 

malware executable. Anderson et al. [18] and Fang et al.

[19] have shown that deep RL can model the interactions 

between the adversary and malware detector in order to learn 

effective editing actions that mislead the detector in binary 

black-box settings. However, tackling AMG with RL requires 

handling environments with combinatorially large state spaces 

(i.e., all possible permutations of editing a section name of a 

malware executable). These two studies employ mainstream 

Actor-Critic RL [18] and deep Q-learning [19], which are not 

specifically designed to handle very large state spaces [25]. 

To address this issue, and motivated by the benefits of RL in 

AMG applications, we next review state of the art in RL with 

high dimensional state spaces.

B. Deep Reinforcement Learning for AMG
RL features a Markov decision process in which an agent 

iteratively interacts with an environment [26]. Given a state 

st £ S , the agent takes an action at £ A. In response, the 

environment produces the reward r(st ,at). The ultimate goal 

of RL is to learn a policy n (a t |s t ) that maximizes the expected 

reward (i.e., accumulated reward in the long run). Learning 

the policy is accompanied with estimating the state-action 

value Qn(s, a) = E [R|s, a]. Deep RL has shown breakthrough 

performance in estimating n and Q using neural networks 

[27]. Accordingly, learning the behavior of an adversary is 

equivalent to learning a neural network that parameterizes the
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policy n. Finding the policy n (a t |s t , 0) parametrized by vector 

0 that maximizes the reward leads to solving an optimization 

problem given in Eq. 1.

J(0  ) max E  E r [r(st,at)] (1)
t=0

where t  =  s0,a0, ... , s t ,a t denotes the trajectory (se-

quence of state-actions). As seen in Eq. 1, unlike black-box 

AMG methods, utilizing the reward signal eliminates the need 

for the confidence score from the malware detector. Thus, deep 

RL is naturally suited for modeling the interactions between 

the adversary and malware detector in AMG. Fig. 1 shows the 

RL framework for modeling these interactions.

Fig. 1. Illustration of AMG in RL Settings

As shown in Fig. 1, the RL agent aims to mimic the adver-

sary by applying functionality-preserving actions to different 

parts of a malware executable. At the highest level, a malware 

executable consists of Header (i.e., metadata), Sections (i.e., 

executable code and data), and Overlay (i.e., the free space at 

the end of the file that is often not executed). Static malware 

detectors extract features from these parts to classify the file 

either as malicious or benign. The RL agent is rewarded only 

when the series of applied actions lead to a functional malware 

variant that evades the detector. The states are modeled as 

the set of all possible features from the malware executable 

[28]. To model the adversary’s actions with deep RL, two 

considerations are needed. First, as the attack vector is discrete 

(e.g., editing malware timestamp), the action space (i.e., set 

of possible modifications that an adversary can apply to a 

malware executable) is inherently discrete [2]. Consequently, 

Anderson et al. [18] and Fang et al. [19] utilize Actor-Critic 

with Experience Replay (ACER) [29] and Double Deep Q 

Network (D-DQN) [30] as two recently proposed RL methods 

suitable for discrete action spaces to conduct AMG. Second, as 

AMG involves large sequences of bytes, deep RL is required 

to process a combinatorially large number of states [18] in the 

environment. The number of states, for instance, amounts to 

at least 162048 states for a 2KB modification in a hex-coded 

malware executable. While useful, ACER and DDQN are not 

specifically designed for very large state spaces. Recently, 

Fellows et al. [25] have proposed Variational Actor-Critic 

(VAC) that has yielded the state-of-the-art performance in 

tasks with very large number of states. VAC results in 33% 

more cumulative reward over ACER and DDQN on average

[25]. However, VAC is not directly applicable to discrete 

action spaces. Motivated by its success in high-dimensional 

state spaces, we propose a novel method to extend VAC to 

discrete action spaces. We next introduce a threat model to 

conduct AMG and discuss core VAC framework. Finally, we 

introduce our proposed AMG-VAC to conduct AMG using 

VAC on discrete action spaces.

III. Me t h o d

A. Threat Model
Following [18] and [31], we define the threat model for 

binary black-box AMG attacks against static malware detec-

tors. Unlike the threat model in [18], our threat model is able 

to launch attacks against both traditional machine learning- 

and deep learning-based malware detectors. our threat model 

consists of three components:

•  Adversary's Goal: Automatically generating mal-

ware variants that evade static ML- and DL-based detec-

tors.

•  Adversary's Capability: Applying allowable

(i.e., functionality preserving) additive and editing actions 

on malware binary.

•  Adversary's Knowledge: The parameters and

deep learning architecture of the malware detector are 

not available to the adversary. Moreover, the adversary 

does not have access to any real-valued confidence score 

generated by the detector. The only available information 

is whether the generated malware variant can evade the 

detector or not (binary black-box scenario).

To implement this threat model, we first introduce the 

baseline VAC method and then show how AMG-VAC builds 

on VAC to accomplish AMG by discretizing the action space 

using approximate sampling.

B. Preliminary: Variational Actor-Critic (VAC)
VAC builds upon Actor-Critic (AC) model [32]. AC has 

two main iterative steps carried out by two complementary 

components called actor and critic:

1) Policy improvement, in which the actor finds a policy 

n that is compatible with current action value function 

Q . The actor is characterized by a neural network that 

accepts states and outputs actions to estimate the policy 

distribution ng (a|s)

2) Policy evaluation, in which the critic estimates the action 

value function consistent with the current policy n. The 

critic is characterized by a neural network that accepts 

state-action pair and outputs the expected value of state- 

action pairs to estimate Qw (s ,a ).
Derived from Eq. 1, this iterative process translates to AC’s 

objective given in Eq. 2:

O

J (0) = E t [£  log ng(a tlst)Qw(st, a t)] (2)
t=0

in which, ng (at |st) is learned by the actor network, while 

Qw(st ,a t) is learned by the critic network. In their seminal

87

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore.  Restrictions apply. 



work, Fellow et al. [25] show that AC’s learning objective is 

solved more effectively via variational inference and propose 

Variational AC (VAC). Variational inference approximates the 

action posterior ng (at |st) with a tractable family of distri-

butions suitable for large number of states. However, VAC’s 

policy is assumed to have a continuous distribution, and thus 

is not directly applicable to discrete action spaces required in 

AMG [25].

C. The Proposed Variational Actor-Critic for Discrete Adver-
sarial Malware Generation (AMG-VAC)

Our proposed AMG-VAC aims to emulate the adversary’s 

evasion behavior, given a set of discrete actions that do not 

change the functionality of malware executable. To this end, 

AMG-VAC discretizes continuous actions from the VAC’s 

actor network to accommodate for discrete additive and editing 

actions via an approximate sampling operator. The overview 

of AMG-VAC and the approximate sampling is depicted in 

Fig. 2.

Fig. 2. Abstract view of the proposed AMG-VAC

The RL agent consists of actor and critic network explained 

earlier. The components of the malware environment were 

depicted in Fig. 1. The approximate sampling component 

outputs approximated actions given the policy ng. We next 

characterize the action space and the procedure of approximate 

sampling in AMG-VAC.
1) Action Space: Following Anderson et al. [18] and Fang 

et al. [19], we identified ten functionality-preserving actions 

including five additive and five editing actions shown in Table 

I. Additive and editing actions are denoted by A and E, 

respectively.
2) Approximate Sampling of Actions with Concrete Dis-

tribution: As mentioned above, the actor network in VAC 

performs policy improvement and outputs actions to interact 

with the environment. The policy improvement translates into 

estimating ng (a|s) via the actor neural network (shown in 

Fig. 2). The actor network learns a distribution over actions. 

Learning this action distribution in AMG involves sampling 

from discrete actions described in Table I. As the sampling 

operation is not differentiable, it inhibits gradient propagation 

in stochastic gradient ascent -  required for learning the neural 

network parameters [33]. That is, the discrete stochastic ac-

tion sampling precludes the gradient flow needed for policy 

improvement in the actor network. Maddison et al. [34]

TABLE I
Disc r e t e  Ac t io n  Spa ce f o r  AMG-VAC

Action Name Description Type
Add Import (AI) Adds a library or function to the 

import table
A

Add Section (AS) Adds a new section to 
executables

A

Break Checksum (BC) Sets file’s checksum E
Change Timestamp 

(TS)
Sets timestamp E

Overlay Append (OA) Appends Bytes to the end of PE 
file

A

Remove Debug (RD) Unlinks debug section from 
header

A

Remove Signature

(RS)

Unlinks digital signature from 
certificate table

A

Section Rename (SR) Change sections’ name in 
malware executable

E

UPX Compression 
(UC)

Compress malware executables E

UPX Decompression 
(UD)

Decompress malware 
executables

E

showed that discrete samples can be approximated via using a 

differentiable Concrete distribution. Concrete distribution, also 

known as Gumbel-Softmax distribution, is a well-established 

differentiable distribution in statistical machine learning [33]. 

Inspired by Maddison et al. [34], we propose to approximate 

the discrete action distribution over discrete AMG modifica-

tions (shown in Table I) by Concrete distribution.

Let nk denote the probability assigned to each action ak 
by the policy (i.e., actor) network. Approximate sampling 

from discrete actions with Concrete distribution entails a few 

sequential steps. First, the probability of the sampled discrete 

action from the actor network is projected to a logarithmic 

scale for numerical stability [34]. Second, independent and 

identically distributed (i.i.d.) random variables are sampled 

from Gumbel distribution Gk. Third, the obtained sample 

from Gumbel distribution is combined with the discrete action 

probabilities via component-wise addition and a softmax op-

erator. The softmax operator is parameterized by temperature 

t  that could be hand-tuned. Following this process leads to 

a Concrete distribution over the outputs of the actor network, 

which is expressed via Eq. 3.

=  exp((log nk +  Gk)/T  )

° 'k E "=i exP((log ni +  Gk)/ t )

where the obtained output (i.e., action sample ak) is dif-

ferentiable and thus can be used in learning the parameters 

of the actor network via gradient ascent. Such an approxi-

mate sampling process enables AMG-VAC to learn policies 

on discrete action spaces seen in modifications on malware 

executables. The discrete samples are approximated via using 

a differentiable Concrete distribution over the attack vectors 

after receiving the discrete actions from the actor network. The 

novelty of AMG-VAC lies in extending VAC via approximate 

sampling to handle discrete action environments in AMG
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applications while still benefiting from stochastic gradient 

ascent.

IV. Ev a l u a t i o n

We conducted a series of evaluation experiments to rig-

orously assess AMG-VAC on emulating adversarial malware 

files in comparison with baseline AMG methods.

A. Research Testbed
Following the malware testbed construction in [18], [19], 

our research testbed comprised approximately 19,650 (15.38 

GB) recent Windows malware executables from VirusTotal -  

a renowned aggregator of emerging malware from multiple 

contributors worldwide [18], [35]. The date of these malware 

executables ranges from 2017 to 2019. About 3,429 (1.68 

GB) of the malware executables were dedicated for training 

the AMG-VAC. The testbed included five types of common 

malware files, including botnet, ransomware, rootkit, spyware, 

and virus. The distribution of these types is given in Table II.

t a b l e  ii
Dis t r ib u t io n  o f  Ma l w a r e  Ty pe s  in  Ou r  Te s t b e d

M alware Type Train Size
Botnet 526 (151.2 MB)

Ransomware 900 (454.2 MB)

Rootkit 731 (511.1 MB)

Spyware 640 (377.2 MB)

Virus 659 (186.3 MB)

Total 3,429 (1.68 GB)

B. Experimental Setup
The performance of AMG-VAC was evaluated in compar-

ison with the state-of-the-art AMG methods. In our exper-

iment, all AMG methods were trained on the 1.68 GB of 

training malware testbed. The generated adversarial malware 

variants of these trained AMG methods were tested against 

two renowned malware detectors: EMBER and MalConv. 

Endgame Malware Benchmark for Research (EMBER) is 

a well-established malware detector developed by Endgame 

Inc. EMBER leverages gradient boosting and gradient-based 

sampling for malware detection [18], [36]. MalConv is a 

premier deep learning-based malware detector, developed by 

the Laboratory of Physical Sciences [1]. MalConv uses a large 

convolutional neural network (CNN), which was trained on 

over a million malware executables.

We adopted the evasion rate metric as our performance 

evaluation criterion. Evasion rate is a widely used metric for 

measuring the AMG performance [18], [24], [37]. The evasion 

rate of an AMG method against a given malware detector is 

defined as follows:

Evasion Rate \E n F \ 
N (4)

Where E  is the set of generated adversarial malware variants 

capable of evading the malware detector, F is the set of 

generated adversarial malware variants that are functional,

and N  is the total number of adversarial malware variants 

generated by the AMG method. A higher evasion rate suggests 

that the AMG method is capable of evading the malware 

detector more effectively.

AMG-VAC was compared against three state-of-the-art 

black-box and binary black-box AMG methods: Benign 

Feature Append (BFA) [9], [17], Double Deep Q-Network 

(DDQN) [19], [30], and Actor-Critic with Experience Replay 

(ACER) [18], [29]. BFA is a widely-adopted non-RL method 

that appends parts of benign files to the end of malware 

executables to generate evasive malware variants. BFA is a 

black-box attack method and has access to the confidence 

score of the malware detector. Therefore, BFA benefits from 

more insider information than binary black-box benchmark 

methods (i.e., DDQN, ACER, and AMG-VAC). Double Deep 

Q-Network (DDQN) is a well-established RL-based binary 

black-box method that leverages two neural networks for 

better estimation of the action-value function. Actor-Critic 

with Experience Replay (ACER) is an effective RL-based 

binary black-box method that yields the malware variant by 

applying variance reduction techniques to reduce the instability 

of learned policies in the baseline AC model [29]. Consistent 

with [18] and [19], all experiments were implemented using 

a modified version of the openAI Gym environment with the 

same parameter settings and neural network sizes.

1) Functionality Preservation: The functionality of all gen-

erated adversarial malware variants were checked using the 

academic license of VirusTotal API. The API provides a 

malware behavior report, including static and dynamic analysis 

of the malware file. The report reflects the network behavior 

of the malware file, file access patterns, etc. We compared the 

behavior reports of the modified malware variants with the 

unmodified malware files to ensure that the behavior stays the 

same after modification. With this process, we assured that the 

modified malware files can be executed on Windows operating 

system while maintaining their malicious behavior.

C. Results
Table III summarizes the benchmark evaluation results, 

comparing AMG-VAC’s performance against two renowned 

ML- and DL-based malware detectors (EMBER and MalConv) 

across five malware types. We identified two major findings 

from these results. First, while RL-based AMG methods 

(DDQN and ACER) did not use the confidence score from the 

malware detector for generating malware variants, the malware 

variants generated by these methods were more effective (e.g., 

average of 28.44% and 37.18% for EMBER) than those 

generated by the confidence score-based BFA (e.g., average 

of 3.90% for EMBER). This finding highlights the general 

effectiveness of RL in AMG. Second, and more importantly, 

AMG-VAC outperformed the state-of-the-art baseline methods 

across all malware types and on both malware detectors with 

statistically significant margins as measured by paired t-test.

Overall, while BFA had the lowest evasion rate across all 

malware categories, RL-based AMG methods had significantly 

higher evasion rates for all malware types. on  average, AMG-
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t a b l e  III
Co mpa r in g  AMG-VAC’s per f o r ma n c e (Eva sio n  Ra t e) a g a in s t  t wo  r en o wn ed  ma l wa r e d et ec t o r s  a c r o ss f ive ma l wa r e t y pes

Malware
Detector

Method Botnet Ransomware Rootkit Spyware Virus Average

EMBER
BFA 3.02% 4.44% 4.73% 5.34% 6.16% 3.90%

DDQN 23.00% 44.33% 39.12% 19.80% 27.77% 28.44%
ACER 30.99% 60.11% 27.51% 26.87% 62.82% 37.18%

AMG-VAC
(Ours)

48.29%* 65.22%* 61.15%* 29.53%* 82.40%* 51.67%*

MalConv
BFA 3.90% 4.42% 2.96% 3.28% 5.56% 3.76%

DDQN 6.08% 11.89% 16.83% 27.50% 30.50% 16.63%
ACER 37.07% 25.33% 29.41% 56.09% 44.76% 35.04%

AMG-VAC
(Ours)

44.68%* 26.89%* 50.48%* 65.31%* 48.41%* 44.01%*

Best performances are highlighted in boldface fonts. Asterisks denote that P-values evaluated by paired t-test are significant at 0.05.

TABLE IV
Mo st  Ev a siv e Ac t io n  Seq u en c es Pr o d u c ed  by AMG-VAC f o r  Gen er a t in g  Ad v er sa r ia l  Ma l wa r e At t a cks

Malware
Detector

Most Evasive Action Sequences

Append Import ^  Break Checksum ^  Section Rename ^  Section Rename
EMBER Change Timestamp ^  Add Import ^  Change Timestamp ^  Compression

Remove Signature ^  Overlay Append ^  Compression ^  Section Rename
Compression ^  Remove Debug ^  Overlay Append ^  Overlay Append ^Section Rename

MalConv Add Import ^  Overlay Append ^  Change Timestamp
Remove Debug ^  Remove Signature ^  Add Import ^  Compression

VAC’s evasion rate across all five malware types and against 

both malware detectors was considerably higher than all 

baseline methods with 51.67% for EMBER, and 44.01% for 

MalConv. Specifically, AMG-VAC outperformed the second 

best-performing method (ACER) by 14% (51.67% vs. 37.18%) 

for EMBER and by 9% (44.01% vs. 35.04%) for MalConv on 

average. These results indicate that enhancing VAC to operate 

on discrete action spaces via our proposed AMG-VAC yielded 

considerably stronger adversarial malware variants that are 

capable of evading malware detectors.

D. Discussion
To gain further insight into the vulnerabilities of malware 

detectors, we qualitatively analyzed AMG-VAC’s output by 

examining its action sequences that led to evasive malware 

variants. To this end, we obtained the most frequent actions 

leading to the creation of evasive malware variants against the 

EMBER and MalConv malware detectors. Table IV shows the 

top three most frequent action sequences for each malware 

detector.

For EMBER, two editing actions (i.e., Compression and 

Section Rename; boldfaced in Table IV) were the most fre-

quent actions. Compression and Section Rename appeared 

in 16% and 14% of the evasive sequences, respectively. For 

MalConv, while Compression was also the most frequent 

action in evasive attacks with 39% occurrence, Import Append 

(boldfaced in Table IV) was the second most frequent additive 

action with 12% occurrence. In sum, the sequences generated 

by AMG-VAC provided three useful observations about the 

examined malware detectors. First, the Compression action

affected both ML- and DL-based malware detectors as the 

most effective action in generating malware variants. Second, 

EMBER was more vulnerable to editing actions (e.g., Section 

Rename). This is expected since EMBER’s decisions are 

mainly based on the features extracted from the executable’s 

metadata, which is not modified by additive actions (e.g., Add 

Import). Third, unlike EMBER, MalConv was more vulnerable 

to additive actions as MalConv is based on automated repre-

sentation learning from the whole malware executable. Such 

observations from examining AMG-VAC’s sequences can lead 

to better adversarial attack mitigation for static deep learning- 

based malware detectors.

V. Co n c l u s i o n

It is vital to defend malware detectors against evolving 

adversaries who can generate adversarial attacks at scale. This 

calls for automated adversarial malware generation (AMG) at 

the defender side. To emulate adversarial malware attacks, we 

propose AMG-VAC, a novel RL method designed specifically 

to support discrete modifications of malware executables in 

AMG tasks. Through rigorous evaluation, we show that AMG- 

VAC outperforms extant RL-based and non-RL-based AMG 

methods. AMG-VAC contributes to deep learning research 

community by offering a novel approach to extending the 

state-of-the-art RL framework to AMG. Furthermore, AMG- 

VAC is an effective and explainable AMG technique that 

contributes to the malware analysis research community. A 

promising future direction could be a rigorous procedure for 

using the adversarial malware variants generated by AMG-

90

Authorized licensed use limited to: The University of Arizona. Downloaded on August 16,2021 at 23:27:44 UTC from IEEE Xplore.  Restrictions apply. 



VAC to enhance the robustness of DL-based malware detectors 

against adversarial attacks.
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