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Abstract Chaotic attractors, chaotic saddles and peri-1

odic orbits are examples of chain-recurrent sets. Using2

arbitrary small controls, a trajectory starting from any3

point in a chain-recurrent set can be steered to any other4

in that set. The qualitative behavior of a dynamical sys-5

tem can be encapsulated in a graph. Its nodes are chain-6

recurrent sets. There is an edge from node A to node B7

if, using arbitrary small controls, a trajectory starting8

from any point of A can be steered to any point of B.9

We discuss physical systems that have infinitely many10

disjoint coexisting nodes. Such infinite collections can11

occur for many carefully chosen parameter values. The12

logistic map is such a system, as we show in a rig-13

orous companion paper. To illustrate these very com-14

mon phenomena, we compare the Lorenz system and15

the logistic map and we show how extremely similar16

their graph bifurcation diagrams are in some parame-17

ter ranges. Typically, bifurcation diagrams show how18
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attractors change as a parameter is varied. We call ours 19

“graph bifurcation diagrams” to reflect that not only 20

attractors but also unstable periodic orbits and chaotic 21

saddles can be shown. Only the most prominent ones 22

can be shown. We argue that, as a parameter is varied in 23

the Lorenz system, there are uncountably many param- 24

eter values for which there are infinitely many nodes, 25

and infinitely many of the nodes N1, N2, N3, . . . , N∞ 26

can be selected so that the graph has an edge from each 27

node to every node with a node with a higher number. 28

The final node N∞ is an attractor. 29

Keywords Logistic map · Lorenz system · Chain- 30

recurrent sets · Graph of a dynamical system · 31

Bifurcatiion diagram · Spectral theorem 32

1 Introduction and definitions 33

In 1970s, Charles Conley introduced the idea of 34

describing the qualitative behavior of a dynamical sys- 35

tem by the type of graph that we describe below. In [14], 36

we show that the graph of the logistic map µx(1− x) is 37

surprisingly complicated for certain values of µ. Here, 38

we argue that the most complicated logistic map graphs 39

appear within the graphs of much more general and 40

complicated systems. To illustrate this fact, we com- 41

pare the logistic map with the Lorenz system using 42

non-rigorous numerical investigations. 43

We alert the reader that there is a similarity between 44

some of the pictures in this paper and in [14]. 45
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It might seem to the reader that the Lorenz system46

and the logistic map appear to be completely unrelated.47

That is why we have selected the Lorenz system, when48

we could have chosen any of a wide variety of physical49

systems. On the other hand, we have chosen the logis-50

tic map because of the rich rigorous literature that is51

available on it.52

Bifurcation diagrams for the logistic map typically53

show how the attractor changes as a parameter changes.54

In addition to an attractor, the logistic map has several55

other disjoint invariant sets, and there are parameter56

values for which there are infinitely many of them. The57

invariant sets we speak of are “chain-recurrent,” as we58

describe below.59

An example of dynamical system with a simple60

graph. Consider the map z �→ z2 on the complex61

plane, to which we add the point at ∞. The plane plus62

∞ should be thought of as a topological sphere. For63

many important cases, we can “compactify” a space by64

adding a point at ∞ and often, as for this map, ∞ is a65

fixed point and the map is still continuous.66

We can use this map as an example of how to repre-67

sent a dynamical system by a graph. This map has three68

invariant sets that will be nodes of the graph. Both {0}69

and {∞} are attractors and are nodes, and the third node70

is the unit circle, a repelling chaotic invariant set. Notice71

that not all invariant sets are nodes. Explaining what a72

node is will take some care. Even for such a simple73

map, the dynamics within a node can be quite compli-74

cated. For instance, in the z2 example, the dynamics on75

the unit circle z = eiϕ , ϕ ∈ [0, 2π ], is given by the dou-76

bling map ϕ �→ 2ϕ (also known as shift or Bernoulli 77

map). This map is one of the best-known examples of a 78

chaotic map. Notice that there are infinitely many peri- 79

odic orbits on the unit circle but none of them is a node. 80

The set of nodes of a general dynamical systems can 81

be quite a bit more complicated than the set of three 82

nodes in this case. 83

This paper is about a type of control theory. For each 84

point p, it identifies the downstream point q such that 85

either the trajectory from p goes to q or an arbitrarily 86

small amount of control can be added such that the 87

controlled trajectory goes from p to q. We now extend 88

the stream analogy. If p is downstream from q and q 89

is downstream from p, then we say p and q are in the 90

same pond. A node is a pond. In other words, a node N 91

is the set of points so that if p is in N , then q is in N if 92

and only if p and q are in the same pond. A trajectory 93

starting from any point in the node can be forced to stay 94

in the node by using arbitrarily small perturbations that 95

we call controls. We make this precise as follows. 96

Chain recurrence. By a dynamical systemΦ, we mean 97

a 1-parameter family of continuous maps Φ t from a 98

space X into itself. Write dist (x, y) for the distance 99

between x and y. The time parameter t can be either 100

continuous or discrete. Given two points p, q, with p �= 101

q, in X and ε > 0, we say that there is a ε-chain 102

from p to q (see Fig. 1) if there is a finite sequence 103

of points p = x0, x1, . . . , xn = q on X such that, for 104

i = 0, . . . , n − 1, 105

dist(Φ1(xi ), xi+i ) ≤ ε. (1) 106

Fig. 1 Examples of chain recurrence. (Left) Example of nodes
in a continuous dynamical system. The set D is the disk bounded
by the outer periodic orbit. Three nodes are visible in the picture:
the outer periodic orbit N1 (in blue), the inner periodic orbit N2
(in cyan) and a fixed point N3 (in black). The edges of this graph

go from the repellors N3 and N1 to the attractor N2. (Right) An
example of an ε-chain from x0 and back to itself. The dashed
circles represent circles of radius ε. The four points of the chain
are painted in black
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To our knowledge, ε-chains were introduced in the lit-107

erature by R. Bowen in 1975 [8].108

We say that q is downstream from p if, for every109

ε > 0, there is a ε−chain from p to q; equivalently,110

we say that p is upstream from q. We write p ∼111

q if p is upstream and downstream from q, and we112

say that p is chain recurrent if p ∼ p. We let RΦ113

denote the chain-recurrent set, i.e., the set of all chain-114

recurrent points of Φ. Chain recurrence was introduced115

by C. Conley in his celebrated monograph in 1978 [13],116

and it is a central concept for this article.117

Examples of chain-recurrent points. Points on a peri-118

odic orbit are chain recurrent, and if p and q are on the119

same periodic orbit, then p ∼ q.120

Chaotic sets are defined in various ways but a usual121

requirement is that there is a trajectory that comes arbi-122

trarily close to every point infinitely often. So, if p and123

q are in a chaotic set, a tiny perturbation of p will land124

on the dense trajectory, and when it comes sufficiently125

close to q, a second tiny perturbation will push it onto126

q. Hence, p ∼ q.127

Consider now a dynamical system on a vector space128

and suppose that all trajectories converge to 0 as time129

goes to infinity. Then, 0 is the only chain-recurrent130

point.131

Subtle control of dynamical systems. The idea of132

ε−chains in (1) can be rephrased as the following ques-133

tion in control theory. Assume X is in a linear space.134

Given two points p, q, p �= q, in X , does there exist135

for each ε > 0 a finite sequence of ui such that |ui | ≤ ε136

for a sequence of i’s and a controlled trajectory137

xi+i = Φ1(xi ) + ui where p = x0, xn = q. (2)138

If p ∼ q, then there are such controls and it is possible139

to create control ui that allow us to steer a trajectory140

from p to q and back to p. Furthermore, max |ui | can141

be made as small as desired, i.e., less than any specified142

positive number.143

A trajectory of a dynamical system. Here, we restrict144

attention to discrete time dynamical systems. For a map145

Φ, we will say that the sequence pn is a trajectory if146

pn is defined for all n ∈ Z, where Z is the set of all147

integers, n = 0,±1,±2, . . ., and pn+1 = Φ(pn) for148

all n ∈ Z.149

For some maps, the inverse is not unique. For150

the map z �→ z2, each point other than 0 has two151

inverses. Hence, there will be infinitely many trajecto-152

ries through a given p0 �= 0. Two different trajectories153

through p0 will have the same forward limit set but 154

might have different backward limit sets. 155

Assumptions on the phase space. In this paper, aside 156

from our infinite-dimensional examples, we examine 157

continuous dynamical systems on a compact set X . In 158

the above example, we have added a point at infinity to 159

make the set compact. In this paper, we use the follow- 160

ing definition. A set X is compact if for each sequence 161

of points xn(n = 1, 2, . . . ,∞), there is a subsequence 162

xn j
( j = 1, 2, . . . ,∞) that converges to some point 163

p. Considering all convergent subsequences, the set of 164

limit points p is the limit set of xn . 165

Where are the limit sets. For any point x , its for- 166

ward limit set ω(x) is the set of its limit points, namely 167

those points that are the limit a subsequence of points 168

belonging to the forward orbit of x . Its trajectory might 169

diverge, i.e., its limit set is empty. Then, we can say it 170

converges to the node ∞. Otherwise, its limit set must 171

be a subset of a single node. For example, picture a 172

situation where a trajectory in the plane lies between 173

two invariant lines and it spirals outward toward those 174

lines. Then, the node includes all the points on those 175

two lines. If that node Ω is a compact set, then the 176

distance of Φ t (x) from Ω goes to 0 as t → ∞. 177

Attractors. We call a node N an attractor, also some- 178

times called a Milnor attractor, if its basin of attrac- 179

tion, i.e., the set of points x such that ω(x) is contained 180

in N , has positive measure [53]. A non-trivial example 181

of a Milnor attractor occurs at the Feigenbaum param- 182

eter value. 183

The graph of a dynamical system and Lyapunov 184

functions. Conley realized that chain recurrence could 185

be used to define a graph of a dynamical system [12,13]. 186

His investigations concerned dynamical systems that 187

come from ordinary differential equations on compact 188

spaces. Over the years, his results have been extended 189

to several other settings, in particular: continuous 190

maps [59], semiflows [30,61,65], non-compact [33,61] 191

and even infinite-dimensional spaces [11,28,47,65]. 192

(Here and throughout this article, we sort multiple cita- 193

tions in the order of their year of publication.) 194

The main contribution of Conley is the discov- 195

ery that the dynamics outside of the nodes is always 196

gradient-like; namely, there is a continuous function 197

L : X → R such that: 198

1. L is constant on each node; 199

2. L assumes different values on different nodes; 200
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3. L(Φ t x) < L(x) for all t > 0 and when x not in a201

node [54].202

In particular, nodes are equilibria for L . Note also that203

properties 1, 2 and 3 make L a Lyapunov function204

(e.g., see [59,85]).205

The graph of a dynamical system consists of nodes206

and edges between the nodes. The forward and back-207

ward limit sets of a trajectory are each contained inside208

a single node. That limit set can also be the entire209

node. There is an edge from node N1 to node N2 if210

and only if there is a trajectory whose backward limit211

set is in N1 and its forward limit set is in N2 (e.g., see212

Fig. 2 (right) and Fig. 3). That edge can be denoted by213

N1 → N2, which reads that N1 is above N2. In partic-214

ular, N1 → N2 implies that L(N1) > L(N2), so that it215

is impossible that also N2 → N1.216

Each node N has a closest point to the critical point217

c = 1/2. Let ρ(N ) denote the distance between c and218

that closest point. We show in [14] that N1 → N2 is219

equivalent to saying ρ(N1) > ρ(N2).220

Any edge in a graph can be thought of as a set of221

points. The unstable set of a node N is the set of points222

X such that for each ε > 0, there is an ε-chain from a223

point in N to X . The stable set of a node N is the set of224

points X such that for each ε > 0, there is an ε-chain225

from X to a point in N . The edge from node N1 to226

node N2 can be identified with the points X that are on227

both the unstable set of N1 and the stable set of N2. If228

N1

N2

N3

N4

N1

N2

N3

N4

Fig. 2 An example of graph. (Left) Dynamics induced on the
2-torus by the gradient vector field of the height function. In
this case, the Lyapunov function is the height function itself,
some level set of which is shaded in white. In blue are shown
the heteroclinic trajectories joining the critical point (which are
exactly the invariant sets of this dynamical system). (Right) The
graph of the dynamical system on the left. In this case, it is a
4-levels tower

Fig. 3 Examples of graphs. (Left) An infinite tower graph.
(Right) The graph of the semiflow of the Chafee–Infante PDE
(see Sect. 5)

we have 3 nodes N1 → N2 → N3, the set N1 → N3 229

includes N1 → N2 and N2 → N3 and possibly other 230

points. 231

An alternative way to define a graph. In this paper, we 232

follow Conley’s definition of a graph, where nodes are 233

defined in terms of ε-chains, while edges are defined in 234

terms of stable and unstable sets. Any interested reader 235

could choose instead to define edges in terms of ε- 236

chains, and that might make proofs easier. If one defines 237

edges in terms of ε-chains, our results stated here still 238

hold because what was an edge is still and edge, though 239

additional edges can be created in other systems. Then, 240

if N1 → N2 and N2 → N3, with the chain-recurrent 241

definition, one automatically has N1 → N3. 242

Graphs in 1-D. The classification of more complex 243

nodes was an important milestone even in the setting 244

of one-dimensional dynamics. (A list of specific refer- 245

ences is given in Sect. 3.) In this last case, though, 246

it seems that the dynamical system community put 247

the emphasis in the classification of the nodes and 248

somehow overlooked the description of the rest of the 249

dynamics, that is, which pairs of nodes N1, N2 have an 250

edge N1 → N2. 251

Towers. We call a tower a finite or infinite sequence 252

of nodes Ni such that: 253

1. there is a first node, denoted by N0; 254

2. there is a final node, which is the unique attractor; 255

all other nodes are unstable; 256

3. for any two nodes Ni and N j , with j > i , we have 257

that Ni → N j . 258
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Fig. 4 The bifurcation diagram of the logistic map. To the left of
the Feigenbaum–Myrberg parameter value µF M ≃ 3.56994567,
we see the well-known period-doubling cascade. To its right, we
see lots of chaos but also many windows, i.e., intervals in param-
eter space that begin with a periodic attractor which evolves
through period doubling into small intervals of chaos. This pic-
ture is created by plotting trajectories. More frequently visited
regions are darker. Points on attracting periodic orbits of period
less than 26 are indicated by black dots. Notice, in particular,
that many of these points are near where x = 0.5. In colors
are highlighted, besides µF M , the largest period-6 window, the
intersection parameter value µInt = 1.5[1 + (19 − 3

√
33)1/3 +

(19 + 3
√

33)1/3] ≃ 3.67857, the largest period-5 window and
the largest period-3 window. Notice that many high-density lines
intersect at (µInt, xInt). Each of the high-density lines is the image
of the x = 0.5 line under ℓn

µ for some n. In the bottom right box, it
is shown a detail of the cascade about x = 0.5 inside the period-5
window

In particular, for each node Ni , where i > 0, there are259

a previous node Ni−1 and, unless Ni is the attractor, a260

next node Ni+1.261

Our main result in [14] is the following:262

Logistic Tower Theorem. For each parameter value263

µ ∈ (1, 4], the graph of the logistic map is a tower.264

For specific parameters, the logistic map has infinitely265

many nodes. In this case, we refer to the tower as an266

infinite tower. We believe infinite towers are common267

in higher-dimensional systems, but we would expect268

that the infinite towers are subsets of more complex269

graphs.270

We will call a parameter value µ0 a cascade value if271

there is an infinite cascade of period-doubling limiting272

µ0. Figure 4 shows a bifurcation diagram where win-273

dows are scattered throughout the chaotic region. The274

figure shows period-3, period-5 and period-6 windows.275

There is also a blow-up of part of the period-3 window,276

in which one sees windows within the period-3 window.277

Each of the windows within windows would, with fur-278

ther zooming, reveal a further level of windows within 279

windows within windows, and the process continues ad 280

infinitum. There is an uncountable set of parameters, 281

each of which is the limit of an infinite-nested sequence 282

of windows within windows. We call such a parameter 283

value an infinite-nested value. 284

Figure 5 shows a graph bifurcation diagram, the 285

same bifurcation diagram with the addition of green 286

points and red points. The green points are repelling 287

periodic orbits. The red points are in repelling chaotic 288

sets. 289

Figures 7 (Logistic map) and 8 (Lorenz return map) 290

are almost identical, except for a reverse in the direction 291

of the parameter. Each shows not only the red chaotic 292

repellors but also a window within a window with blue 293

points that are on a node of an additional chaotic repel- 294

lor. For each window within a window, we expect to 295

see a third chaotic repellor. 296

We will argue that, for each cascade value and each 297

infinite nesting value, the graph contains an infinite 298

tower. The infinite collection of nodes for such val- 299

ues may be expected to be a combination of nodes that 300

are chaotic repellors or repelling periodic orbits. We 301

summarize these ideas as a conjecture. 302

Tower conjecture. 303

1. Infinite towers occur within the graphs of chaotic 304

dynamical systems in any dimension that depend 305

generically on some parameter. 306

2. More specifically, for generic chaotic dynamical 307

systems depending on a parameter, there would 308

be a countable number of cascade values and an 309

uncountable number of infinite-nested values, each 310

of which has an infinite tower. Furthermore, there 311

is a stable node that is neither periodic nor chaotic 312

and can be referred to as “almost-periodic.” Such a 313

node can be said to be at the bottom of the infinite 314

tower. 315

In other words, many chaotic processes have a much 316

more complicated structure than theoreticians previ- 317

ously expected. 318

The towers described above are not whole story. 319

Sheldon Newhouse proved that chaotic systems can 320

have infinitely many attractors [58,63]. Of course, each 321

attractor would be a node and there would be no edges 322

between these attractor nodes. He showed that, for two- 323

dimensional maps depending on a parameter, if there is 324

a homoclinic tangency for some parameter value, then 325

there would be uncountably many parameters nearby 326
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such that, for each of these, there are infinitely many327

coexisting attractors. These attractors can be very dif-328

ficult to find numerically. Even one-dimensional maps329

can have multiple attractors, see Fig. 6.330

We present numerical arguments in support of our 331

conjecture. 332

The article is structured as follows. 333

In Sect. 2, we discuss our numerical results on the 334

bifurcation diagrams of the Lorenz map, including the 335

Fig. 5 Bifurcation diagram and sample graphs of the logistic
map. This picture shows the bifurcation diagram of the logistic
map in the range of parameter values [2.9, 4]. For each value of
µ, the attracting set is painted in shades of gray, depending on
the density of the attractor, repelling periodic orbits in green and
repelling Cantor sets in red. Below the µ axis we show seven
samples of the graphs illustrating some of the possible variabil-

ity. In these graphs, each colored disk is a node. Each black disk
represents an attractor, each green disk represents a repelling
periodic orbit, and red represents a chaotic Cantor set repellor.
For simplicity, we always omit the top node, which is the point
0. Graph T4 represents the infinite tower at the first Feigenbaum
point. It has infinitely many unstable periodic orbit nodes
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Fig. 6 Graph bifurcation diagram of a one-dimensional map
with two critical points. This figure is the graph bifurcation dia-
gram of the function bµ(x) = x − µx(1 − x2) that maps the
interval [−1, 1] into itself for every 0 ≤ µ ≤ 4. For each value
of µ, bµ has three fixed points, namely x = 0,±1, and either one
or two attractors. When there are two attractors, we paint one in

blue and one in red. When there is a single attractor, we paint
it in purple. The light green points belong to unstable periodic
orbits, and the dark green ones to chaotic unstable Cantor sets.
Lighter purple implies higher trajectory density than darker pur-
ple. The light purple lines correspond to infinite density. (Color
figure online)

graph bifurcation diagram (Fig. 8). In particular, we336

plot the attractor together with some of the repelling337

chain-recurrent sets and argue that there are parame-338

ter ranges where the diagram looks exactly as the one339

of the logistic maps. Our tower conjecture is a direct340

consequence of these observations.341

Motivated by these results, in Sect. 3 we review some342

fundamental results on the logistic map and describe343

the most important features of its graph bifurcation dia-344

gram.345

In Sect. 4, we briefly describe the main numerical346

algorithms we used to produce the pictures of this arti-347

cle.348

Finally, in Sect. 5 we describe the graphs of some349

partial differential equations and differential delay350

equations. All the published results we know describe351

the graphs of these systems as being finite and hence 352

simpler than the most complicated cases of the logistic 353

map. 354

2 The Lorenz system has windows within windows 355

ad infinitum and infinite towers 356

In the 1960s, Edward Lorenz introduced and inves- 357

tigated the ODE system 358

⎧

⎪

⎨

⎪

⎩

x ′ = −σ x + σ y

y′ = −xz + r x − y

z′ = xy − bz,

(3) 359
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Fig. 7 Towers of nodes shown below the period-3 window of the
logistic map graph bifurcation diagram. This figure is a blow-up
from Fig. 5 and uses the color coding from that figure. Graph
T8 has two levels of nodes that are Cantor sets repellors and the

second is painted in blue. In the bifurcation diagram, the chain-
recurrent sets have the same coloring as their nodes. Graph T5
represents the infinite tower at the first Feigenbaum point of the
main cascade of the period-3 window. (Color figure online)
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Fig. 8 A periodic window in the graph bifurcation diagram of
the Poincaré map of the Lorenz system. This figure is placed
here for comparison with the very similar Fig. 7 for the logistic
map. More information about the Lorenz system and its Poincaré
map is given in the text. This window runs from r ≃ 208.520 to
r ≃ 209.453. There is a rectangle in the right side of Fig. 13(top)

that represents the area shown here. In that figure, one can see
that the red Cantor set and the attractor have components for y

outside of the range shown here and that there is another attrac-
tor. Several nodes that are unstable Cantor sets are shown in red
and blue. (Color figure online)

that is now named after him [43], for a specific set of360

parameters: σ = 10, r = 28 and b = 8/3.361

It was in the attempt to understand the dynamics362

behind the Lorenz map that Li and Yorke showed363

that “period-3 implies chaos” [42]. Later in the same364

decade, Yorke and Kaplan [38] showed the presence365

of chaos, in form of a strange repellor, in the Lorenz366

system already at r between 13.9 and 24.06, but this367

chaotic behavior happens only for a measure-zero set368

of points. At r ≃ 24.06, the repellor becomes an attrac-369

tor and so the chaotic set has a basin. Shilnikov and370

collaborators [1] had closely related results two years371

earlier.372

In another work, Ellen Yorke and James Yorke [86]373

investigated the transition to chaotic dynamics at r ≃374

24.06.375

Based on these works, Sparrow investigated numeri- 376

cally the Lorenz system [75] for a wider range of values 377

of r . His figure 5.12 on p. 99 shows intervals of r values 378

(i.e., windows) where the chaotic attractor is replaced 379

by periodic attractors. He reports that below r = 30.1, 380

there are no windows in the bifurcation diagram. 381

In 2002, W. Tucker [77] proved rigorously the exis- 382

tence of a strange attractor in the Lorenz system at 383

r = 28 (see [20] for a review of the analytical study 384

of the Lorenz system and its crucial role in the devel- 385

opment of chaos theory). This is the 14th of the list 386

of “mathematical problems for the next millennium” 387

made by Smale in 1998 [72]. It is noteworthy to men- 388

tion that the proof of Tucker is computer assisted 389

(see [76,82] for interesting reviews of Tucker’s result). 390

See also rigorous results related to the Lorenz attrac- 391
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Fig. 9 The Lorenz
Butterfly. This picture
shows the attractor of the
Lorenz system for r = 28.
The color of the trajectory
being plotted slowly varies
to help visualize the flow. If
z is thought of as the
vertical coordinate, then the
left picture is viewed from
above and the right one
from the side. In the left,
blue represents the
z = r − 1 = 27 horizontal
plane; the attractor appears
dark blue for points with
z < r − 1. On the right, the
attractor is colored with a
blue tint when z > r − 1.
The Poincaré map produces
points where the colored
attractor meets the blue
plane. The arrows indicate
the direction of flow

tor [25,62,64,84]. Figure 9 shows two views of the392

attractor for r = 28.393

More recently, Kobayashi and Saiki [39,40] inves-394

tigated how periodic windows arise as the parameter r395

increases from the Lorenz value and argue that the first396

windows of the bifurcation diagram are contained in397

the interval 30 ≤ r ≤ 32.398

The numerical explorations that we present in this399

article aim at providing numerical evidence that the400

structure of the graph bifurcation diagram of the Lorenz401

system is qualitatively similar to the logistic maps. In402

particular, the logistic map has parameter values, each403

of which has infinitely many disjoint unstable invari-404

ant sets that are chain-recurrent and form a tower (see405

Sect. 3).406

The bifurcation diagram of the Lorenz system is407

obtained as follows. For every r > 1, the Lorenz sys-408

tem has three fixed points: the origin and the twin points409

410

C± =
(

±
√

b(r − 1),±
√

b(r − 1), r − 1
)

. (4) 411

The origin is a saddle, while C± have a pair of com- 412

plex eigenvalues. On the plane πr defined by z = r −1, 413

integral trajectories passing through points p close to 414

C± will return and cut again the same plane in some 415

other point q and so on. As long as the trajectory passes 416

through πr , it will cut the plane one time directed 417

upwards and the next time directed downwards. 418

Poincaré return maps. Poincaré discussed trajecto- 419

ries that crossed some special plane or line. When he 420

investigated the planar restricted three-body problem, 421

he found it useful to record only half the crossings, 422

those for which a particular coordinate was increasing. 423

He encountered no tangencies to the line. We usually 424
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Fig. 10 Attractors of the
Lorenz system. This picture
shows the attractors of the
Lorenz system for r = 208
(left) and r = 209.2 (right)
together with the rectangle
−20 ≤ x ≤ 20,
−100 ≤ y ≤ 100 in the
plane z = r − 1. If z is
thought of as the vertical
coordinate, both pictures are
viewed from below. The
Poincaré map for the Lorenz
system is built out of the
intersections of the Lorenz
orbits crossing this
rectangle downwards. The
yellow rectangle shown for
r = 209.2 is the one shown
(not in scale) in Fig. 11, and
the three intersections of the
blue orbit are at the center
of the three little circles
shown in that picture

take Poincaré’s approach, but, in Fig. 12, we record425

both crossings in two colors, as was done in [66].426

We define the Poincaré map Pr at a point p to be the427

point q at which the trajectory starting from p cuts the428

plane πr with z decreasing. In Fig. 10, we show two429

examples of attractors for the Lorenz system, a chaotic430

one (left) and a periodic one (right). The pictures also431

show, in gray, the rectangle −20 ≤ x ≤ 20, −100 ≤432

y ≤ 100 in the corresponding planes πr . By bifurcation433

diagram of the Lorenz system, we mean the bifurcation434

diagram of the family of maps Pr .435

In Fig. 13, we show a few projections of the bifur-436

cation diagram: on the (y, r) plane (top), on the (x, r)437

plane (middle) and on some intermediate plane (bot-438

tom). In particular, the bottom picture suggests that the439

bifurcation diagram is the union of two disjoint compo-440

nents, one the image of the other. This fact is also sug-441

gested by the (x, y) sections of the diagram for several442

values of r shown in Fig. 12.443

The bifurcations pattern of the Lorenz system 444

evolves backwards with respect to the one of the logistic 445

map. At r = 235.0, the attractors are a pair of period-2 446

orbits (shown in red and blue), each of which under- 447

goes, as r decreases, a bifurcation cascade completely 448

analogous to the one of the logistic map. The largest 449

window of the diagram (see Figs. 13 and 14), centered 450

at about r = 150.0, starts (from the right) with a single 451

period-4 orbit and again contains bifurcation diagrams 452

quite analogous to those of the logistic map. Many other 453

windows of smaller different sizes are clearly visible 454

in all three projections. 455

By zooming on the cascades, the diagram looks more 456

and more like the one of the logistic map. For instance, 457

in Fig. 14, we show a full picture of the period-4 win- 458

dow (top), a detail of its upper bifurcation diagram 459

(middle) and a detail of the middle cascade of the 460

period-3 window within it (bottom). Both the red cas- 461

cade and its sub-cascade look almost identical to the 462

logistic map bifurcation diagram (see Fig. 4). 463
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Fig. 11 A small region from the Lorenz system Poincaré return
map P r for r = 209.2. The region shown corresponds to the
small yellow region on the right-hand side of Fig. 10. In that
figure, a periodic orbit is shown piercing the yellow rectangle in
three points. Those points are shown here as the centers of three
circles. Almost all points in the colored region are in the basin
of attraction of the periodic orbit. Yellow indicates rapid conver-

gence to the periodic orbit. Red indicates slow convergence. Red
points are close to points that are attracted to the Cantor set on
the blue line. The blue curve is the unstable manifold of a Cantor
set that lies within it. Points in the white region are attracted to
the other off-screen attractor. The blue curve includes a chain-
recurrent Cantor set of saddle points and the unstable manifolds
of all of the periodic orbits in the Cantor set

We also investigate the structure of the chain-464

recurrent set of the diagram. We focus on its largest465

period-3 window, that is the one contained inside its466

very first cascade from the right. The range of this win-467

dow is from about 208.52 to 209.453. In Fig. 13, it is468

visible as the largest window within the red and blue469

cascades at the top and bottom of the diagram.470

In Fig. 8, we show a full size picture of the Lorenz471

period-3 window. The attractor is shown in black/gray,472

while the invariant Cantor sets are shown in red and473

blue. Figure 7 shows the analogous picture for the logis-474

tic map. The structures in the two maps look almost475

identical.476

3 Infinite towers in the logistic map 477

The logistic map 478

ℓµ(x) = µx(1 − x) (5) 479

is among the simplest continuous maps giving rise to a 480

(highly) non-trivial dynamics. In this article, we focus 481

exclusively on the parameter interval µ ∈ (1, 4). For 482

these values, ℓµ maps [0, 1] into itself, 0 is a repelling 483

fixed point, and there is exactly an attractor in (0, 1). 484

To simplify the logistic story, our graphs only 485

include nodes in (0, 1). In particular, our graphs omit 486

the fixed point at x = 0, which is always the top-most 487

node, and we ignore points outside of [0, 1]. Their tra- 488

jectories diverge to −∞. 489
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Fig. 12 Attractors of the
Poincaré Map of the Lorenz
system. The pictures above
show the attractor of the
Poincaré map of the Lorenz
system in the (x, y) plane
for five different values of r .
Whenever the trajectory hits
the z = r − 1 plane, a point
is plotted, in blue if z is
decreasing and otherwise in
red. There are places where
the color switches from blue
to red, due to the vector
field being tangent to the
plane. In all pictures, x

ranges from −40 to 40 and
y ranges from −100 to 100.
Each panel is the plot of a
single trajectory; hence,
low-density regions of the
attractor may not be
represented, or it may only
be represented by a few
isolated points. There are
two steady states on this
plane (Eq. 4). They are
indicated with black dots

Some history. In a series of celebrated works start-490

ing in 1918, Julia and Fatou gave birth to the study491

of the dynamics of the quadratic map in the complex492

plane. Surprisingly, the study of the quadratic map in493

the real line began later. The first example we know is494

by Chaundy and Phillips [10] in 1936, inspired by early495

Mathematical Biology works such as [3].496

The study of iterations of real quadratic maps reap-497

peared in a few clever abstract articles (“abstract” in498

that no applications were mentioned) around 1960 by499

P.J. Myrberg [55–57]. Myrberg discovered the infinite500

number of period-doubling bifurcations in the logis-501

tic map. In the same years, fundamental properties on502

the existence of cycles for general continuous maps503

of the real line into itself were discovered by A.N.504

Sharkovskiı̆ [68] (in Russian, see English translation505

in [69]).506

Possibly the first time that ℓµ was called the “logistic507

map” was in 1968 in J. Maynard Smith’s book “Math-508

ematical ideas in Biology” [74]. Smith used it as a509

toy model for population dynamics, analogous to the510

one-century old logistic ordinary differential equation511

model of Verhulst [81,83].512

In the 1970s, many more works on the logistic513

map appeared in the literature, some purely theoret-514

ical (e.g., Metropolis, Stein and Stein [52], Li and 515

Yorke [42], Hoppensteadt and Hyman [32]) and some 516

applied (e.g., May [48], Smale and Williams [73], 517

May and Oster [50], Guckenheimer, Oster and Ipak- 518

tchi [24], Feigenbaum [17]). The celebrated article 519

by R. May [49] brought the importance of one- 520

dimensional dynamics to a broad scientific audience. 521

The theoretical study of the logistic map evolved in 522

1980s in the study of families of more general one- 523

dimensional real maps such as, in order of generality, 524

S-unimodal, unimodal and multimodal (e.g., see [16, 525

46,79]). 526

The bifurcation diagram. The logistic map has 527

exactly one attractor for each parameter value (e.g., 528

see [16], Thm. 4.1, or [46]). Bifurcation plots for µ 529

to the left of the so-called Myrberg–Feigenbaum or 530

Feigenbaum parameter value µF ≃ 3.5699 [17] 531

appeared in several publications in the 1970s, but, to 532

the best of our knowledge, the first picture of the full 533

bifurcation diagram (Fig. 4) appeared first in an article 534

by Grebogi, Ott and Yorke in 1982 [22]. 535

Usually, bifurcation diagrams show how the attrac- 536

tors change with the parameter, just as in Fig. 4. In this 537

article, however, we also include some graph bifurca- 538

tion diagram (Figs. 5, 6, 7, 8). 539
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Fig. 13 Bifurcation Diagram. These are the projections onto the
(r, y) plane (top panel), (r, x) plane (Middle panel) and (y−x, r)

plane (bottom panel) of the bifurcation diagram for the Poincaré
return map of the Lorenz equations (3) using the plane πr defined
by z = r − 1. A dot is plotted in the (r, y) (resp. (r, x)) plane
when a trajectory crosses downward past πr through the point
(x, y, r − 1). The regions where there is speckled white and
magenta dots is where the attractor is low density. The Lorenz

attractor typically has great variations in density, so extremely
long trajectories would be needed to reveal such parts of the
attractor. In Fig. 14, we show details of the period-4 window
that is centered around r = 150. The period-3 window shown in
Fig. 8 is an enlargement of the black rectangle shown in the top
projection. For some parameter values, there are two attractors.
They are shown in red and blue. When there is a single attractor,
it is shown in magenta

123

Journal: 11071 MS: 6561 TYPESET DISK LE CP Disp.:2021/6/15 Pages: 23 Layout: Medium



R
ev

is
ed

Pr
oo

f

Infinite towers in the graph

Fig. 14 Bifurcation diagram. These (r, y) projections are
enlargements of the main period-4 window of the Lorenz system
bifurcation diagram. Top: We show a zoom of the full window.
Middle: We show the content of the region enclosed in the black

rectangle in the top picture, namely the upper cascade. Bottom:
We show the middle cascade of the period-3 window of the cas-
cade above, enclosed in a black rectangle in the middle picture
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The bifurcation diagram starts with an infinite cas-540

cade of period doublings at the values µ0 = 1, µ1 = 3,541

µ2 = 1 +
√

6 ≃ 3.4495, . . . , whose speed increases542

exponentially until the Myrberg–Feigenbaum parame-543

ter value µF ≃ 3.5699. This is the border after which544

there is chaos. There are “period-doubling” parameter545

values µn such that for µn < µ < µn+1, the attractor546

is a periodic cycle of 2n distinct points. Feigenbaum’s547

fundamental discovery was that the speed of the bifur-548

cation cascade549

lim
n→∞

µn − µn−1

µn+1 − µn

≃ 4.6692 (6)550

is universal, only in the sense that the same limit551

is obtained for a large class of systems that have552

a period-doubling cascade. It is found not only in553

one-dimensional but also in higher-dimensional non-554

Hamiltonian maps. (Hamiltonian processes, however,555

yield different numbers.) Sanders and Yorke [67]556

proved that cascades of period doublings are quite ubiq-557

uitous in low-dimensional dissipative systems.558

3.1 The three kinds of attractors for the logistic map559

In [23], Guckenheimer proved that, for every value of560

µ in [0, 4], the logistic map ℓµ (or, to be precise, any561

S-unimodal map) has exactly one attractor and that this562

attractor must be precisely of the following three kinds.563

First kind: a periodic orbit.564

Second kind: a finite union of intervals. In this case,565

the attractor is a collection of intervals J1, . . . , Jn such566

that ℓµ(Ji ) = Ji+1 except that ℓµ(Jn) = J1. Further-567

more, the map is chaotic. Most often, there is a single568

interval J1 and ℓµ(J1) = J1. In particular, for most569

µ between µInt and 4 (see Fig. 4 for µInt), the attrac-570

tor is an interval and the dynamics on it is chaotic.571

However, there are windows, i.e., intervals in parame-572

ter space, where the attractor is not an interval. Now,573

also in Fig. 4, each window has a bifurcation diagram574

that is tiny but extremely similar to the entire diagram575

(see Sect. 3.2). Such windows occur not only after µInt576

but more generally after µF M .577

Third kind: a Cantor set attractor. We call this578

attractor almost periodic [53], also sometimes called579

“odometer.” This kind of attractor is a Cantor set, and580

it is not chaotic. It occurs precisely when the graph has581

infinitely many nodes. Each node, other than the attrac-582

Fig. 15 Example of Cantor set. First steps in the construction
of the standard Cantor subset of [0, 1], obtained by eliminating
recursively the central third part of all segments. The invariant
Cantor sets of the logistic map are much less regular than the
example shown here

tor, is either an unstable periodic orbit or a repelling 583

chaotic Cantor set. 584

For each point x0 in the attracting Cantor set and 585

each ε > 0, there is a periodic point xε such that the 586

nth iterate of the map on x0 and the nth iterate of the 587

map on xε stay within ε of each other for all time. At 588

µF M , every period orbit has period 2n for some n and 589

none of them belongs to the Cantor set. They converge 590

to the Cantor set as n → ∞. 591

Recall that any Cantor subset C in an interval I is an 592

uncountable set that contains no intervals. Also, it has 593

no isolated points in the sense that each point in the set 594

is a limit of other points in the set. 595

In all three cases, “almost every” x ∈ (0, 1) belongs 596

to the basin of attraction. By almost every, we mean 597

that the points that are not attracted can be covered by 598

a finite or countably infinite collection of intervals with 599

arbitrarily small total length. 600

Notice that, in case of an attracting Cantor set, the 601

basin has empty interior. Each open neighborhood of 602

such an attractor contains infinitely many nodes of the 603

graph. 604

We can write the parameter space as (1, 4] = AP ∪ 605

AChaos∪AAP , where the union is disjoint, AP is the set 606

of parameters for which the attractor is a periodic orbit, 607

AChaos is the set of parameters for which the attractor 608

is chaotic, and AAP is the set of those for which it is a 609

Cantor set (see [35]). 610

The set AP is open, which simply follows from the 611

stability of attracting cycles under small perturbations, 612

and dense, which instead requires heavy machinery and 613

was proved rigorously only in 1997, independently by 614

Lyubich [44] and Graczyk and Swiatek [21]. Heuristi- 615

cally, the density of this set follows from the fact that 616

it is to be expected that, for almost all chaotic parame- 617

ters, the orbit of the critical point c will be dense in the 618

attractor and so, in particular, its orbit will get arbitrar- 619
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ily close to itself. This way, arbitrary small changes in620

µ should be able to make the orbit of c become peri-621

odic [60], and a periodic orbit containing the critical622

point is always super-attracting and lies within a regu-623

lar window.624

Since AP is dense and it contains (1, µF M ), its com-625

plement AChaos ∪AAP is a Cantor subset of [µF M , 4].626

Jakobson [34] proved in 1981 that AChaos has positive627

measure, while it was proved only in 2002 by Lyu-628

bich [45] that AAP has measure zero.629

Notice that all results above hold not just for the630

logistic map but also for every non-trivial real analyti-631

cal family and any generic smooth family of unimodal632

maps [15,71]. However, it is known that there are non-633

generic smooth families showing “robust chaos” [2,4,634

80], namely without windows.635

The edges of the graph. Our approach to the logistic636

map aims at finding the nodes, the chain-recurrent sets637

and the edges of the graph.638

Most of the traditional literature on logistic maps639

look at the non-wandering sets. One non-wandering640

set can contain many nodes. Most of the ideas are sim-641

ilar but one must be careful. The non-wandering set of642

unimodal maps was first described by Jonker and Rand643

in 1980 [35] (see also [6,7,16,31,70,78]).644

Furthermore, no one seems to have examined the645

edges of the graph; therefore, we do in [14] where, as646

mentioned above, we prove the following.647

For every µ ∈ (1, 4], the graph is a tower. In partic-648

ular, there is an edge between every pair of nodes.649

To illustrate this idea, we now argue that the top node650

always consists of the point 0, except for µ = 4. For651

any point x0 > 0 close enough to 0, there is a backward652

trajectory xn with n < 0 that converges to 0 as n →653

−∞. For µ ∈ (1, 3], there is a unique attractor, which654

is the nonzero fixed point p of ℓµ, and the trajectory655

xn converges to p as n → +∞. That means there is an656

edge from 0, which is a node, to the attractor node. Of657

course, for µ = 1, the attractor is 0.658

For µ ∈ [3, 4], choose any x0 > 0 near 0. Write659

J for the interval [0, x0]. When we apply the map ℓµ660

to J , we obtain a longer interval, and as we repeatedly661

apply the map, we eventually obtain an interval that662

includes [0, 1
2 ]. Notice that 1

2 is critical point of the663

logistic map. Hence, with one more iterate, the image664

interval is [0, ℓµ( 1
2 )]. For any point p in any node,665

there is a point x̂0 near 0 such that there is a N for666

which ℓN
µ (x̂0) = p. Since each node is an invariant set,667

the forward limit set of x̂0 is in the node. As discussed668

above, there is a backward trajectory from x̂0 that limits 669

on 0 as n → −∞. Hence, the graph has an edge going 670

from 0 to the node containing p. That is true for every 671

p in every node. Hence, for each node other than 0, 672

there is an edge from 0 to that node. For µ = 4, there 673

is a single node, that is the whole interval [0, 1]. 674

Because of this fact, to simplify the pictures of 675

graphs, in Figs. 5, 7 we do not include the “zero node,” 676

the node that consists of 0, which is always on top of 677

each tower. 678

3.2 Windows in the bifurcation diagram 679

A period-k window (of parameter values). Figure 7 680

shows a “period-3 window,” an interval of parameters 681

in which there are three intervals Ji , i = 1, 2, 3, in x 682

space which are permuted by the map. Each of the inter- 683

vals Ji changes continuously, starting at the parameter 684

value µ = 1 +
√

8 ≃ 3.8284, where the period-3 orbit 685

appears in a saddle-node bifurcation. The window ends 686

at the parameter µ at which the attractor fills the inter- 687

val, namely µ ≃ 3.8568. 688

Each saddle-node bifurcation of a period−k orbit 689

begins an analogous window or period −k window 690

with a final µ at which the attractor fills the intervals 691

Ji . 692

Between the first Feigenbaum parameter value and 693

µ = 4, there are infinitely many windows and every µ 694

in that range is either in a window or arbitrarily close 695

to one. In Fig. 5, several are visible. The biggest is the 696

period-3 window, which is also shown in Fig. 7. 697

For each parameter value inside a period-k window, 698

there are k intervals J j mentioned above and there is a 699

chain-recurrent set C of points whose forward trajec- 700

tories do not fall into any of the the J j . These sets are 701

shown in red for the larger windows in Fig. 5. The set 702

C is always a Cantor set. 703

Windows within windows within windows. In Fig. 7, 704

we see the period-3 window. The bifurcation diagram 705

of the attractor is plotted in black and gray. It consists 706

of three pieces that each look like the entire bifurcation 707

diagram. Each piece lies within one of the J j for each 708

µ. As such, there are windows within this bifurcation 709

diagram, infinitely many windows within the primary 710

window. Each window has secondary windows within 711

it. 712

For µ that has a period−k1 window, there are k1 713

intervals inside which the attractor lies. We denote them 714
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by J1, . . . , Jk1 . There is a chain-recurrent Cantor set C1
715

of points that do not fall into them. If µ has a period−k2716

window within the window, then k1 divides k2 and there717

are k2 intervals J ′
1, . . . , J ′

k2
that are a small-scale ver-718

sion of the J j above.719

The Cantor set C2 for this window lies outside the720

union ∪J ′
j but inside the union ∪J j , see Fig. 7. Such721

a C2 Cantor set is shown in blue where the primary722

window has k1 = 3 and the secondary window has723

k2 = 3 × 3 = 9.724

The graph has a node 0 on top of C1 on top of C2
725

followed by possible more Cantor set from further win-726

dows within windows and finally some attractor at the727

bottom.728

For each parameter that has windows within win-729

dows ad infinitum, the graph is an infinite tower.730

Building blocks of towers. If µ does not belong to any731

window, then the only chain-recurrent sets are the left732

endpoint 0 and the attractor.733

Just after the start of a window, the attractor is a peri-734

odic orbit with some period k (e.g., see T2 in Fig. 5). As735

µ increases, the periodic orbit goes through a bifurca-736

tion process identical to the one at the left of µF M (e.g.,737

see T3–T4 in Fig. 5 and T2–T5 in Fig. 7). This reflects738

in the graph in the following way. Each subwindow739

corresponds, in the graph, to a Cantor set node. Each740

Cantor node may be immediately followed by s nodes741

that are unstable periodic orbits. The periods of these742

orbits are, in the following order, k, 2k, 22k, up to 2s−1k.743

After those nodes, there will be either the attractor or744

another repelling Cantor set node.745

Figures 5 and 7 show examples of towers. In sum-746

mary, a graph can contain any number of Cantor set747

nodes, including none and infinitely many. Between748

two consecutive Cantor set nodes, there can be any749

finite number of repelling periodic orbit nodes, includ-750

ing no such orbits. In particular, there can be infinitely751

many nodes and any combination of Cantor sets and752

repelling periodic orbits is possible. All possible finite753

or infinite patterns (including patterns with only saddles754

and patterns with only Cantor sets) occur for appropri-755

ately chosen parameter values. In addition, (1) there is756

an attractor, the bottom-most node; (2) for the logistic,757

the top node is the repelling fixed point 0 for all µ < 4.758

4 Numerical algorithms 759

We describe here briefly the algorithms we use to gen- 760

erate the pictures of the graph bifurcation diagrams. In 761

all figures, we discretize the space coordinate and the 762

parameter coordinate. We call an elementary cell of this 763

discretization a pixel. When we say we are plotting a 764

Cantor set, the goal is to plot a pixel if that pixel con- 765

tains a point of the Cantor set. Such statements apply 766

to everything plotted. 767

Shading pixels for attractors. For the pictures of the 768

attractors, in gray in Figs. 4, 5, 6, 7, 8 and in colors in 769

Figs. 13, 14, for each discretized parameter value (µ in 770

case of the logistic map, r in the Lorenz case) we iterate 771

the map for a generic initial point and count the num- 772

ber of times the trajectory enters each pixel and then a 773

grayscale is chosen for each pixel in proportion to the 774

pixel’s count. We mention this because it has been the 775

common practice in journal figures to color each pixel 776

black if the count is positive and white otherwise. The 777

grayscale of the picture shows a glimpse of the rela- 778

tive invariant density: The darker the dots, the longer a 779

generic point spends time nearby that pixel. 780

Repelling Cantor set for the Logistic map. First, the 781

attractor pixels are identified for each parameter value 782

to be plotted. The pictures of the Cantor set repellors (in 783

red or blue in Figs. 5, 6, 7, 8) are obtained as follows. 784

For each pixel not belonging to an attractor, write the x 785

coordinates of the pixel as J = [x∗, x∗]. We examine 786

the interval Jn that runs from f n(x∗) to f n(x∗) and 787

plot the pixel if Jn intersects J for some n > 0. 788

Repelling Cantor set for the Lorenz return map. 789

The Lorenz case (Fig. 8) needs some more explanation 790

because the return map has a two-dimensional phase 791

space. Figure 10 shows a region of the phase space of 792

the Lorenz return map. For a given value of the param- 793

eter r = 209.2, the picture shows a region in the (x, y) 794

plane containing the three points of the period-3 orbit 795

associated with that period-3 window. The trajectory 796

of some of these points leaves the region and does not 797

return. Such points are white. 798

The picture has a relative global attractor to which all 799

points tend if they remain in the region. We discretize 800

the region with a grid 3000 wide by 2000 high. We 801

apply 20 iterates of the return map to each of these 802

grid points, and the result is the thin arc plotted in 803

blue. Notice the three circles represent three points of 804

a period 6 orbit, where the other three points are out- 805

side the plotted region. If we think of this blue curve 806

123

Journal: 11071 MS: 6561 TYPESET DISK LE CP Disp.:2021/6/15 Pages: 23 Layout: Medium



R
ev

is
ed

Pr
oo

f

Infinite towers in the graph

as exactly an arc, each point on the arc has a unique807

y value. The blue arc contains the 3 attracting points808

and a repelling Cantor set. Hence, we can apply our809

methods from the Logistic map to identify points on810

the Cantor set (to the precision of the grid).811

5 Dynamical systems with infinite-dimensional812

phase space can have graphs simpler than the813

logistics814

Here, we report on examples of graphs that have been815

determined for differential delay equations and partial816

differential equations. These examples do not exhibit817

chaos in the regimes where the graphs have been deter-818

mined, but the reader should expect great complexity819

in other examples that have chaos.820

Example 1: Delay-Differential Equations. In 1986, J.821

Mallet-Paret [47] (see also [27,28,36,37,51]) showed822

that the graph approach can be applied also to the823

infinite-dimensional dynamical system associated with824

first-order scalar delay-differential equations of the825

form826

ẋ(t) = f (x(t), x(t − 1)), (7)827

with the initial condition x(t) = ϕ(t) on [−1, 0] for828

some continuous function ϕ. For instance, the cele-829

brated Wright’s equation830

ẋ(t) = −α x(t − 1)(1 − x(t)), α > 0,831

modeling population dynamics, is of this form, as well832

as equations of the form ẋ(t) = −αx(t) − g(x(t − 1))833

that arise in various applications in biology, physiology834

and optics [47].835

The graphs for this type of systems are towers with836

an arbitrary finite number of levels. From the point837

of view of the dynamics outside of the nodes, there-838

fore, these systems are simpler than some logistic map.839

Below we describe in some detail the nodes of these840

graphs.841

Denote by xϕ(t) the solution, defined up to some842

T > 0, of (7). This defines a dynamical system843

Φ t , for t ≥ 0, on the space of continuous functions844

C0([−1, 0]), via845

(

Φ tϕ
)

(τ ) = xϕ(t + τ),−1 ≤ τ ≤ 0.846

We assume the following properties, satisfied in many 847

applications: 848

1. f is smooth; 849

2. y f (x, y) > 0 for all y �= 0; 850

3. fx (0, 0) > 0; 851

4. fx (0, 0) + fy(0, 0) > 0; 852

5. the image under Φ1 of any bounded ball is 853

bounded; 854

6. supϕ∈C0([−1,0]),t∈R ‖Φ tϕ‖ < ∞. 855

Under these conditions, the solutions of Eq. (7) 856

oscillate about zero, the map Φ1 is compact and dis- 857

sipative [26] and the flow has a maximal compact 858

attractor S [5] equal to the set of all initial conditions 859

ϕ ∈ C0([−1, 0]) such that xϕ is global and bounded. 860

The decomposition found by Mallet-Paret is relative 861

to the dynamics of the restriction of Φ to S. The unsta- 862

ble nodes of Φ in S are rapidly oscillating unstable 863

periodic orbits. The more rapidly oscillating nodes are 864

above the more slowly oscillating nodes. Mallet-Paret 865

has a precise definition of rapidly oscillating, based on 866

the number of zeros the trajectory has on every interval 867

[t, t + 1]. He was able to prove that there are orbits 868

joining every node with all nodes that are oscillating 869

more slowly. 870

Example 2: Parabolic partial differential equa- 871

tions (PDEs). The setting of nonlinear parabolic PDEs 872

proved to be an unexpectedly rich source of dynamical 873

system graphs [28,41]. 874

Let X be a closed segment and denote by H1(X) 875

the Sobolev space of square-summable functions on X 876

with a weak derivative and whose first weak derivative 877

is also square-summable. The set H1
0 (X) ⊂ H1(X) is 878

closure, in H1(X), of the set of smooth functions that 879

are zero in some neighborhood of the endpoints of X . 880

We begin with the Chafee–Infante PDE on X = 881

[0, π ], namely 882

⎧

⎪

⎨

⎪

⎩

ut = uxx + λ(1 − u2)u,

u(t, 0) = u(t, π) = 0 for all t ≥ 0,

u(0, x) = u0(x) ∈ H1
0 (X),

(8) 883

with λ ≥ 0. We denote by Φ t
λ : H1

0 (X) → H1
0 (X) the 884

semiflow of the Chafee–Infante PDE. Then, the map 885

Φ1
λ is a C2 (infinite-dimensional) Morse–Smale map 886

for every λ which is not the square of an integer [9,28]. 887

In particular, each node of its graph is a fixed point, and 888

the dynamics elsewhere is gradient-like. One of the key 889
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observations, by Henry [29], leading to the construction890

of a Lyapunov function for the system, is that the num-891

ber of components of the set {x ∈ X : u(t, x) �= 0} is892

a monotonously decreasing function of time.893

The structure of the graph in this case is more inter-894

esting and shows (see Fig. 3 (right)) the following895

bistable behavior: For (n − 1)2 < λ < n2, Φ t
λ has896

2n − 3 repelling fixed points N1, N±
j , 2 ≤ j ≤ n − 1897

and two attracting ones N±
n . The node N1 has edges898

to N±
2 . All N±

j , j < n, have edges toward both N±
j+1,899

as shown in the figure. Note that, in this case, no other900

edges arise due to a blocking connections principle that901

holds for these systems (see [18] for a thorough discus-902

sion and examples). In particular, in this case the graph903

is not a tower.904

These results do not depend strictly on the ana-905

lytical form of (1 − u2)u but rather hold for all C2
906

functions f (u) with a similar shape (see [9,28,41])907

and hold for several other important PDEs such as908

FitzHugh–Nagumo equation and the Cahn–Hilliard909

equation (see [41]). They were also further generalized910

by Chen and Polacik [11] to the time-periodic non-911

autonomous version of the Chafee–Infante equation.912

Fiedler and Rocha [18], finally, further generalized913

the PDEs above to the autonomous semilinear variation914

ut = a(x)uxx + f (x, u, ux )915

with Neumann boundary conditions ux (t, 0) = ux (t, 1)916

= 0. Denote by H2([0, 1]) the Sobolev space of all917

functions that are square-summable together with their918

first and second derivatives. This PDE form arises in919

many applications such as population dynamics, astro-920

physics and material sciences (see [19] for references).921
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An appendix on Gianluigi Zanetti, by R. De Leo 933

Although we had in common a passion for scien- 934

tific numerical explorations, I happened to meet Gian- 935

luigi Zanetti through a completely unrelated chan- 936

nel. For a while, before finding a tenured academic 937

position, I taught Mathematics and Physics at Liceo 938

Scientifico “Leon Battista Alberti”, a high-school in 939

Cagliari (Italy). One day of Spring, in mid-Nineties, I 940

had enough free time to go and check the PCs in our 941

lab and found out that they were quite outdated – they 942

still had 5 1
4 inches floppy disk drives! In the conver- 943

sation that followed with my (enlightened) Principal 944

Ugo Galassi, he mentioned to me, on the side, that some 945

young researcher from CRS4, the Center for Advanced 946

Studies, Research and Development in Sardinia, was 947

looking for a teacher for an interesting project: training 948

a group of outstanding high-school students to create 949

the first school website in Italy. 950

His idea (quite unusual in those times) was to let 951

the students themselves build and maintain the web- 952

site, since it was they who would benefit the most from 953

learning such skills (especially in mid-Nineties!) and, 954

at the same time, their young minds would in general 955

absorb much more quickly this (at that time) brand new 956

technology than the teachers themselves. Little did I 957

know, when I told my Principal that I liked the idea and 958

that I’d contact Dr. Zanetti, that he would have such a 959

powerful influence on my scientific life. 960

First of all, he was right. The group of outstanding 961

students we directed got so involved in the project that 962

they kept working on it hard throughout the whole sum- 963

mer – something unheard of in those times – and we 964

ended up building not only the first Italian school web- 965

site but also the first school webserver, a Linux machine 966

installed and maintained by myself and the students and 967

located in the school’s Lab, connected to the Internet 968

through a dedicated line supported directly by the Ital- 969

ian’s Ministry of Education. Recall that, in those times, 970

connecting to the Internet involved slow modems. Our 971

school, on the contrary, thanks to the success of this 972

project was connected 24/7 with a fast connection. It 973

is hard to overemphasize the impact that this project 974

had on the life of those students, many of whom found 975

soon jobs in IT-related positions worldwide – this alone 976

would be an interesting story to be told. 977

The impact was strong on me as well. Gianuigi (or 978

Zag, as he liked to be called from his login name), was 979
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a person of many talents and deep skills and I absorbed980

from him several important ones.981

One was Linux OS maintaining. While this might982

seem unrelated to science, it is actually the opposite:983

Linux is the best OS for numerical computing (cur-984

rently, 99% of the 500 most powerful supercomputers985

use Linux or Linux-based OSs). Hence, even in mid-986

Ninenties I was able to easily run efficient scientific987

programs directly on my home PC. This became criti-988

cally important already when I worked for my, mostly989

numerical, PhD thesis at University of Maryland, where990

I graduated in 2000 under S.P. Novikov. And is even991

more critical now that I maintain the small High Power992

Computational Cluster of the College of Arts & Sci-993

ences at Howard University. Another one was coding.994

Zag was an impressive coder of both interpreted (bash,995

perl) and compiled (c, c++) languages and working996

under his direction led me to become accustomed too to997

all these powerful tools. Since numerical explorations998

amount to about 50% of my scientific activity, I clearly999

owe him a lot.1000

Perhaps the most critical help from Zag came, again,1001

just by chance. I must have mentioned to him my desire1002

to get a PhD in Mathematics in the USA. Since I had1003

gotten “full gpa” Laurea degrees in both Physics and1004

Mathematics from University of Cagliari, I was hoping1005

to get through local faculty some contacts to US univer-1006

sities. Somehow this just did not happen and it is not1007

trivial getting a fully funded PhD student position at1008

a good US university coming from abroad, especially1009

from a peripheral location. It was Zag that suggested1010

me to apply at University of Maryland – I would not1011

have otherwise – and, unknown to me, wrote a strong1012

support letter to his friend Alessandra Iozzi, at that time1013

an Assistant Professor at UMD. I say it must have been1014

strong because, a posteriori, I learned that she fought1015

hard to get me a fully-supported position – in fact, out of1016

the six campuses I applied to, that was the only one that1017

offered me full TA-ship with tuition remission, without1018

which I just could not have come to the US to complete1019

my studies.1020

Ultimately, those few months of work under Gian-1021

luigi’s direction completely changed the course of my1022

scientific (and private) life. After getting my faculty1023

position at Howard University we did not meet much,1024

but I would look for him whenever I’d be back in Sar-1025

dinia and we’d meet briefly to have a walk and chat1026

about the past and the future. He had always some-1027

thing new to teach me and his enthusiasm in talking1028

about his activities or in making suggestions on how to 1029

improve mine was always the same: just the one of a 1030

kid in a candy shop. He passed away in a tragic acci- 1031

dent in September 2019. This was an unfillable loss not 1032

only for his family but also for CRS4, for Sardinia and 1033

for anyone that had the luck and pleasure to interact 1034

with him. His passion and enthusiasm, though, always 1035

resonate in all of us. 1036
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