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Abstract Chaotic attractors, chaotic saddles and peri-
odic orbits are examples of chain-recurrent sets. Using
arbitrary small controls, a trajectory starting from any
point in a chain-recurrent set can be steered to any other
in that set. The qualitative behavior of a dynamical sys-
tem can be encapsulated in a graph. Its nodes are chain-
recurrent sets. There is an edge from node A to node B
if, using arbitrary small controls, a trajectory starting
from any point of A can be steered to any point of B.
We discuss physical systems that have infinitely many
disjoint coexisting nodes. Such infinite collections can
occur for many carefully chosen parameter values. The
logistic map is such a system, as we show in a rig-
orous companion paper. To illustrate these very com-
mon phenomena, we compare the Lorenz system and
the logistic map and we show how extremely similar
their graph bifurcation diagrams are in some parame-
ter ranges. Typically, bifurcation diagrams show how

In memory of Gianluigi Zanetti (1959-2019).

R. De Leo (X))

Department of Mathematics, Howard University,
Washington, DC 20059, USA

e-mail: roberto.deleo @howard.edu

R. De Leo
Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari,
Cittadella Universitaria, 09042 Monserrato, Italy

J. A. Yorke

Departments of Mathematics and Physics, Institute for
Physical Science and Technology, University of Maryland,
College Park, MD 20742, USA

e-mail: yorke@umd.edu

attractors change as a parameter is varied. We call ours
“graph bifurcation diagrams” to reflect that not only
attractors but also unstable periodic orbits and chaotic
saddles can be shown. Only the most prominent ones
can be shown. We argue that, as a parameter is varied in
the Lorenz system, there are uncountably many param-
eter values for which there are infinitely many nodes,
and infinitely many of the nodes N1, N2, N3, ..., Noo
can be selected so that the graph has an edge from each
node to every node with a node with a higher number.
The final node N, is an attractor.

Keywords Logistic map - Lorenz system - Chain-
recurrent sets - Graph of a dynamical system -
Bifurcatiion diagram - Spectral theorem

1 Introduction and definitions

In 1970s, Charles Conley introduced the idea of
describing the qualitative behavior of a dynamical sys-
tem by the type of graph that we describe below. In [14],
we show that the graph of the logistic map px (1 —x) is
surprisingly complicated for certain values of w. Here,
we argue that the most complicated logistic map graphs
appear within the graphs of much more general and
complicated systems. To illustrate this fact, we com-
pare the logistic map with the Lorenz system using
non-rigorous numerical investigations.

We alert the reader that there is a similarity between
some of the pictures in this paper and in [14].
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It might seem to the reader that the Lorenz system
and the logistic map appear to be completely unrelated.
That is why we have selected the Lorenz system, when
we could have chosen any of a wide variety of physical
systems. On the other hand, we have chosen the logis-
tic map because of the rich rigorous literature that is
available on it.

Bifurcation diagrams for the logistic map typically

show how the attractor changes as a parameter changes.
In addition to an attractor, the logistic map has several
other disjoint invariant sets, and there are parameter
values for which there are infinitely many of them. The
invariant sets we speak of are “chain-recurrent,” as we
describe below.
An example of dynamical system with a simple
graph. Consider the map z — z> on the complex
plane, to which we add the point at oo. The plane plus
oo should be thought of as a topological sphere. For
many important cases, we can “compactify” a space by
adding a point at co and often, as for this map, co is a
fixed point and the map is still continuous.

We can use this map as an example of how to repre-
sent a dynamical system by a graph. This map has three
invariant sets that will be nodes of the graph. Both {0}
and {oo} are attractors and are nodes, and the third node
is the unit circle, arepelling chaotic invariant set. Notice
that not all invariant sets are nodes. Explaining what a
node is will take some care. Even for such a simple
map, the dynamics within a node can be quite compli-
cated. For instance, in the z2 example, the dynamics on
the unit circle z = ¢'?, ¢ € [0, 2], is given by the dou-

Ny

Fig. 1 Examples of chain recurrence. (Left) Example of nodes
in a continuous dynamical system. The set D is the disk bounded
by the outer periodic orbit. Three nodes are visible in the picture:
the outer periodic orbit N; (in blue), the inner periodic orbit N
(in cyan) and a fixed point N3 (in black). The edges of this graph
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bling map ¢ +— 2¢ (also known as shift or Bernoulli
map). This map is one of the best-known examples of a
chaotic map. Notice that there are infinitely many peri-
odic orbits on the unit circle but none of them is a node.
The set of nodes of a general dynamical systems can
be quite a bit more complicated than the set of three
nodes in this case.

This paper is about a type of control theory. For each
point p, it identifies the downstream point g such that
either the trajectory from p goes to ¢ or an arbitrarily
small amount of control can be added such that the
controlled trajectory goes from p to g. We now extend
the stream analogy. If p is downstream from ¢ and ¢
is downstream from p, then we say p and g are in the
same pond. A node is a pond. In other words, anode N
is the set of points so that if p isin N, then g isin N if
and only if p and g are in the same pond. A trajectory
starting from any point in the node can be forced to stay
in the node by using arbitrarily small perturbations that
we call controls. We make this precise as follows.
Chainrecurrence. By adynamical system @, we mean
a 1-parameter family of continuous maps @’ from a
space X into itself. Write dist(x, y) for the distance
between x and y. The time parameter ¢ can be either
continuous or discrete. Given two points p, g, with p #
g, in X and ¢ > 0, we say that there is a e-chain
from p to g (see Fig. 1) if there is a finite sequence
of points p = xg, X1, ...,X; = q on X such that, for
i=0,....,n—1,

dist(®' (x;), xii) < . (1)

go from the repellors N3 and N to the attractor N». (Right) An
example of an e-chain from xp and back to itself. The dashed
circles represent circles of radius ¢. The four points of the chain
are painted in black
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Infinite towers in the graph

To our knowledge, e-chains were introduced in the lit-
erature by R. Bowen in 1975 [8].

We say that ¢ is downstream from p if, for every
& > 0, there is a ¢—chain from p to g; equivalently,
we say that p is upstream from ¢g. We write p ~
q if p is upstream and downstream from ¢, and we
say that p is chain recurrent if p ~ p. We let R¢
denote the chain-recurrent set, i.e., the set of all chain-
recurrent points of @. Chain recurrence was introduced
by C. Conley in his celebrated monograph in 1978 [13],
and it is a central concept for this article.

Examples of chain-recurrent points. Points on a peri-
odic orbit are chain recurrent, and if p and ¢ are on the
same periodic orbit, then p ~ ¢.

Chaotic sets are defined in various ways but a usual
requirement is that there is a trajectory that comes arbi-
trarily close to every point infinitely often. So, if p and
g are in a chaotic set, a tiny perturbation of p will land
on the dense trajectory, and when it comes sufficiently
close to g, a second tiny perturbation will push it onto
q. Hence, p ~ gq.

Consider now a dynamical system on a vector space

and suppose that all trajectories converge to 0 as time
goes to infinity. Then, O is the only chain-recurrent
point.
Subtle control of dynamical systems. The idea of
e&—chains in (1) can be rephrased as the following ques-
tion in control theory. Assume X is in a linear space.
Given two points p, g, p # ¢q, in X, does there exist
foreach ¢ > 0 afinite sequence of u; such that |u;| < ¢
for a sequence of i’s and a controlled trajectory

Xiyi = @' (x;) + u; where P =Xx0,X, =¢q. 2)

If p ~ g, then there are such controls and it is possible
to create control u; that allow us to steer a trajectory
from p to g and back to p. Furthermore, max |u; | can
be made as small as desired, i.e., less than any specified
positive number.

A trajectory of a dynamical system. Here, we restrict
attention to discrete time dynamical systems. For a map
@, we will say that the sequence p, is a trajectory if
pn 1s defined for all n € Z, where Z is the set of all
integers, n = 0, =1, £2, ..., and p,+1 = @ (p,) for
alln € Z.

For some maps, the inverse is not unique. For
the map z +— z2, each point other than 0 has two
inverses. Hence, there will be infinitely many trajecto-
ries through a given pg # 0. Two different trajectories

through po will have the same forward limit set but
might have different backward limit sets.
Assumptions on the phase space. In this paper, aside
from our infinite-dimensional examples, we examine
continuous dynamical systems on a compact set X. In
the above example, we have added a point at infinity to
make the set compact. In this paper, we use the follow-
ing definition. A set X is compact if for each sequence
of points x,(n = 1,2, ..., 00), there is a subsequence
Xn; (j = 1,2,...,00) that converges to some point
p. Considering all convergent subsequences, the set of
limit points p is the limit set of x,,.

Where are the limit sets. For any point x, its for-
ward limit set w (x) is the set of its limit points, namely
those points that are the limit a subsequence of points
belonging to the forward orbit of x. Its trajectory might
diverge, i.e., its limit set is empty. Then, we can say it
converges to the node co. Otherwise, its limit set must
be a subset of a single node. For example, picture a
situation where a trajectory in the plane lies between
two invariant lines and it spirals outward toward those
lines. Then, the node includes all the points on those
two lines. If that node £2 is a compact set, then the
distance of @ (x) from §2 goes to 0 as r — oo.
Attractors. We call anode N an attractor, also some-
times called a Milnor attractor, if its basin of attrac-
tion, i.e., the set of points x such that @ (x) is contained
in N, has positive measure [53]. A non-trivial example
of a Milnor attractor occurs at the Feigenbaum param-
eter value.

The graph of a dynamical system and Lyapunov
functions. Conley realized that chain recurrence could
be used to define a graph of adynamical system [12,13].
His investigations concerned dynamical systems that
come from ordinary differential equations on compact
spaces. Over the years, his results have been extended
to several other settings, in particular: continuous
maps [59], semiflows [30,61,65], non-compact [33,61]
and even infinite-dimensional spaces [11,28,47,65].
(Here and throughout this article, we sort multiple cita-
tions in the order of their year of publication.)

The main contribution of Conley is the discov-
ery that the dynamics outside of the nodes is always
gradient-like; namely, there is a continuous function
L : X — R such that:

1. L is constant on each node;
2. L assumes different values on different nodes;
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3. L(®'x) < L(x) for all + > 0 and when x not in a
node [54].

In particular, nodes are equilibria for L. Note also that
properties 1, 2 and 3 make L a Lyapunov function
(e.g., see [59,85]).

The graph of a dynamical system consists of nodes
and edges between the nodes. The forward and back-
ward limit sets of a trajectory are each contained inside
a single node. That limit set can also be the entire
node. There is an edge from node N; to node N, if
and only if there is a trajectory whose backward limit
set is in Ny and its forward limit set is in N> (e.g., see
Fig. 2 (right) and Fig. 3). That edge can be denoted by
N1 — N3, which reads that N is above N5. In partic-
ular, Ny — N; implies that L(N1) > L(N>), so that it
is impossible that also N — Nj.

Each node N has a closest point to the critical point
c = 1/2. Let p(N) denote the distance between ¢ and
that closest point. We show in [14] that Ny — Nj is
equivalent to saying p(N1) > p(Na2).

Any edge in a graph can be thought of as a set of
points. The unstable set of anode N is the set of points
X such that for each € > 0, there is an ¢-chain from a
pointin N to X. The stable set of a node N is the set of
points X such that for each ¢ > 0, there is an ¢-chain
from X to a point in N. The edge from node N; to
node N> can be identified with the points X that are on
both the unstable set of N and the stable set of N;. If

Fig. 2 An example of graph. (Left) Dynamics induced on the
2-torus by the gradient vector field of the height function. In
this case, the Lyapunov function is the height function itself,
some level set of which is shaded in white. In blue are shown
the heteroclinic trajectories joining the critical point (which are
exactly the invariant sets of this dynamical system). (Right) The
graph of the dynamical system on the left. In this case, it is a
4-levels tower

@ Springer

QN:
Q-

N Q QN

Fig. 3 Examples of graphs. (Left) An infinite tower graph.
(Right) The graph of the semiflow of the Chafee—Infante PDE
(see Sect. 5)

we have 3 nodes Ny — Ny — N3, the set N| — N3
includes N1 — N, and N, — N3 and possibly other
points.

An alternative way to define a graph. In this paper, we
follow Conley’s definition of a graph, where nodes are
defined in terms of e-chains, while edges are defined in
terms of stable and unstable sets. Any interested reader
could choose instead to define edges in terms of &-
chains, and that might make proofs easier. If one defines
edges in terms of e-chains, our results stated here still
hold because what was an edge is still and edge, though
additional edges can be created in other systems. Then,
if Nt — N, and N, — N3, with the chain-recurrent
definition, one automatically has N — N3.

Graphs in 1-D. The classification of more complex
nodes was an important milestone even in the setting
of one-dimensional dynamics. (A list of specific refer-
ences is given in Sect. 3.) In this last case, though,
it seems that the dynamical system community put
the emphasis in the classification of the nodes and
somehow overlooked the description of the rest of the
dynamics, that is, which pairs of nodes N, Ny have an
edge N1 — N».

Towers. We call a tower a finite or infinite sequence
of nodes N; such that:

—_

there is a first node, denoted by Np;

2. there is a final node, which is the unique attractor;
all other nodes are unstable;

3. for any two nodes N; and N, with j > i, we have

that N; > N je
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0.471 period6 | period5  period-3
57408 37448

0 — | 1l L1 Y
2.9 Hw oo 4

Fig.4 The bifurcation diagram of the logistic map. To the left of
the Feigenbaum—Myrberg parameter value wrp > 3.56994567,
we see the well-known period-doubling cascade. To its right, we
see lots of chaos but also many windows, i.e., intervals in param-
eter space that begin with a periodic attractor which evolves
through period doubling into small intervals of chaos. This pic-
ture is created by plotting trajectories. More frequently visited
regions are darker. Points on attracting periodic orbits of period
less than 26 are indicated by black dots. Notice, in particular,
that many of these points are near where x = 0.5. In colors
are highlighted, besides iy, the largest period-6 window, the
intersection parameter value p = 1.5[1 + (19 — 3333+
(19 + 34/33)1/3] ~ 3.67857, the largest period-5 window and
the largest period-3 window. Notice that many high-density lines
intersect at ((1n¢, X1nt) . Each of the high-density lines is the image
of thex = 0.5 line under £J, for some n. In the bottom right box, it
is shown a detail of the cascade about x = 0.5 inside the period-5
window

In particular, for each node N;, where i > 0, there are
a previous node N;_1 and, unless N; is the attractor, a
next node N;1.

Our main result in [14] is the following:

Logistic Tower Theorem. For each parameter value
u € (1, 4], the graph of the logistic map is a tower.

For specific parameters, the logistic map has infinitely
many nodes. In this case, we refer to the tower as an
infinite tower. We believe infinite towers are common
in higher-dimensional systems, but we would expect
that the infinite towers are subsets of more complex
graphs.

We will call a parameter value g a cascade value if
there is an infinite cascade of period-doubling limiting
1o Figure 4 shows a bifurcation diagram where win-
dows are scattered throughout the chaotic region. The
figure shows period-3, period-5 and period-6 windows.
There is also a blow-up of part of the period-3 window,
in which one sees windows within the period-3 window.
Each of the windows within windows would, with fur-

ther zooming, reveal a further level of windows within
windows within windows, and the process continues ad
infinitum. There is an uncountable set of parameters,
each of which is the limit of an infinite-nested sequence
of windows within windows. We call such a parameter
value an infinite-nested value.

Figure 5 shows a graph bifurcation diagram, the
same bifurcation diagram with the addition of green
points and red points. The green points are repelling
periodic orbits. The red points are in repelling chaotic
sets.

Figures 7 (Logistic map) and 8 (Lorenz return map)
are almost identical, except for a reverse in the direction
of the parameter. Each shows not only the red chaotic
repellors but also a window within a window with blue
points that are on a node of an additional chaotic repel-
lor. For each window within a window, we expect to
see a third chaotic repellor.

We will argue that, for each cascade value and each
infinite nesting value, the graph contains an infinite
tower. The infinite collection of nodes for such val-
ues may be expected to be a combination of nodes that
are chaotic repellors or repelling periodic orbits. We
summarize these ideas as a conjecture.

Tower conjecture.

1. Infinite towers occur within the graphs of chaotic
dynamical systems in any dimension that depend
generically on some parameter.

2. More specifically, for generic chaotic dynamical
systems depending on a parameter, there would
be a countable number of cascade values and an
uncountable number of infinite-nested values, each
of which has an infinite tower. Furthermore, there
is a stable node that is neither periodic nor chaotic
and can be referred to as “almost-periodic.” Such a
node can be said to be at the bottom of the infinite
tower.

In other words, many chaotic processes have a much
more complicated structure than theoreticians previ-
ously expected.

The towers described above are not whole story.
Sheldon Newhouse proved that chaotic systems can
have infinitely many attractors [58,63]. Of course, each
attractor would be a node and there would be no edges
between these attractor nodes. He showed that, for two-
dimensional maps depending on a parameter, if there is
a homoclinic tangency for some parameter value, then
there would be uncountably many parameters nearby

@ Springer
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such that, for each of these, there are infinitely many
coexisting attractors. These attractors can be very dif-
ficult to find numerically. Even one-dimensional maps
can have multiple attractors, see Fig. 6.

We present numerical arguments in support of our
conjecture.

The article is structured as follows.

In Sect. 2, we discuss our numerical results on the
bifurcation diagrams of the Lorenz map, including the

0 -« .

2.9 ’\‘ /
:

T1 T2 T3

Fig. 5 Bifurcation diagram and sample graphs of the logistic
map. This picture shows the bifurcation diagram of the logistic
map in the range of parameter values [2.9, 4]. For each value of
1, the attracting set is painted in shades of gray, depending on
the density of the attractor, repelling periodic orbits in green and
repelling Cantor sets in red. Below the v axis we show seven
samples of the graphs illustrating some of the possible variabil-

@ Springer

T4

ity. In these graphs, each colored disk is a node. Each black disk
represents an attractor, each green disk represents a repelling
periodic orbit, and red represents a chaotic Cantor set repellor.
For simplicity, we always omit the top node, which is the point
0. Graph T4 represents the infinite tower at the first Feigenbaum
point. It has infinitely many unstable periodic orbit nodes
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1

i
i
1
i

L B S A ST .\ IR SRR, |

-1
3

Fig. 6 Graph bifurcation diagram of a one-dimensional map
with two critical points. This figure is the graph bifurcation dia-
gram of the function b, (x) = x — ux(1 — x2) that maps the
interval [—1, 1] into itself for every 0 < u < 4. For each value
of i, by, has three fixed points, namely x = 0, &1, and either one
or two attractors. When there are two attractors, we paint one in

graph bifurcation diagram (Fig. 8). In particular, we
plot the attractor together with some of the repelling
chain-recurrent sets and argue that there are parame-
ter ranges where the diagram looks exactly as the one
of the logistic maps. Our tower conjecture is a direct
consequence of these observations.

Motivated by these results, in Sect. 3 we review some
fundamental results on the logistic map and describe
the most important features of its graph bifurcation dia-
gram.

In Sect. 4, we briefly describe the main numerical
algorithms we used to produce the pictures of this arti-
cle.

Finally, in Sect. 5 we describe the graphs of some
partial differential equations and differential delay
equations. All the published results we know describe

M 4

blue and one in red. When there is a single attractor, we paint
it in purple. The light green points belong to unstable periodic
orbits, and the dark green ones to chaotic unstable Cantor sets.
Lighter purple implies higher trajectory density than darker pur-
ple. The light purple lines correspond to infinite density. (Color
figure online)

the graphs of these systems as being finite and hence
simpler than the most complicated cases of the logistic
map.

2 The Lorenz system has windows within windows
ad infinitum and infinite towers

In the 1960s, Edward Lorenz introduced and inves-
tigated the ODE system

/

=

=—0ox+oy
/

=—xz+rx—y (3

<

7 = xy — bz,

@ Springer

a Journal: 11071 MS: 6561 [_|TYPESET [_IDISK [_|LE [_|CP Disp.:2021/6/15 Pages: 23 Layout: Medium

352

353

354

355

356

357

358

359



R. De Leo, J. A. Yorke

T1 T2 T3 T4

Fig.7 Towers of nodes shown below the period-3 window of the
logistic map graph bifurcation diagram. This figure is a blow-up
from Fig. 5 and uses the color coding from that figure. Graph
T8 has two levels of nodes that are Cantor sets repellors and the

@ Springer

\ 3.268

TS T6 T7 T8 T9

second is painted in blue. In the bifurcation diagram, the chain-
recurrent sets have the same coloring as their nodes. Graph T5
represents the infinite tower at the first Feigenbaum point of the
main cascade of the period-3 window. (Color figure online)
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-35 ,
Yy

-68
208.2

Fig. 8 A periodic window in the graph bifurcation diagram of
the Poincaré map of the Lorenz system. This figure is placed
here for comparison with the very similar Fig. 7 for the logistic
map. More information about the Lorenz system and its Poincaré
map is given in the text. This window runs from r 2~ 208.520 to
r 2 209.453. There is a rectangle in the right side of Fig. 13(top)

that is now named after him [43], for a specific set of
parameters: 0 = 10, r = 28 and b = 8/3.

It was in the attempt to understand the dynamics
behind the Lorenz map that Li and Yorke showed
that “period-3 implies chaos” [42]. Later in the same
decade, Yorke and Kaplan [38] showed the presence
of chaos, in form of a strange repellor, in the Lorenz
system already at r between 13.9 and 24.06, but this
chaotic behavior happens only for a measure-zero set
of points. Atr =~ 24.06, the repellor becomes an attrac-
tor and so the chaotic set has a basin. Shilnikov and
collaborators [1] had closely related results two years
earlier.

In another work, Ellen Yorke and James Yorke [86]
investigated the transition to chaotic dynamics at r ~
24.06.

P 209.9

that represents the area shown here. In that figure, one can see
that the red Cantor set and the attractor have components for y
outside of the range shown here and that there is another attrac-
tor. Several nodes that are unstable Cantor sets are shown in red
and blue. (Color figure online)

Based on these works, Sparrow investigated numeri-
cally the Lorenz system [75] for a wider range of values
of r. His figure 5.12 on p. 99 shows intervals of r values
(i.e., windows) where the chaotic attractor is replaced
by periodic attractors. He reports that below r = 30.1,
there are no windows in the bifurcation diagram.

In 2002, W. Tucker [77] proved rigorously the exis-
tence of a strange attractor in the Lorenz system at
r = 28 (see [20] for a review of the analytical study
of the Lorenz system and its crucial role in the devel-
opment of chaos theory). This is the 14th of the list
of “mathematical problems for the next millennium”
made by Smale in 1998 [72]. It is noteworthy to men-
tion that the proof of Tucker is computer assisted
(see [76,82] for interesting reviews of Tucker’s result).
See also rigorous results related to the Lorenz attrac-
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Fig.9 The Lorenz
Butterfly. This picture
shows the attractor of the
Lorenz system for r = 28.
The color of the trajectory
being plotted slowly varies
to help visualize the flow. If
z is thought of as the
vertical coordinate, then the
left picture is viewed from
above and the right one
from the side. In the left,
blue represents the

z =r — 1 = 27 horizontal
plane; the attractor appears
dark blue for points with

z < r — 1. On the right, the
attractor is colored with a
blue tint when z > r — 1.
The Poincaré map produces
points where the colored
attractor meets the blue
plane. The arrows indicate
the direction of flow

A view from above.

tor [25,62,64,84]. Figure 9 shows two views of the
attractor for r = 28.

More recently, Kobayashi and Saiki [39,40] inves-
tigated how periodic windows arise as the parameter r
increases from the Lorenz value and argue that the first
windows of the bifurcation diagram are contained in
the interval 30 < r < 32.

The numerical explorations that we present in this
article aim at providing numerical evidence that the
structure of the graph bifurcation diagram of the Lorenz
system is qualitatively similar to the logistic maps. In
particular, the logistic map has parameter values, each
of which has infinitely many disjoint unstable invari-
ant sets that are chain-recurrent and form a tower (see
Sect. 3).

The bifurcation diagram of the Lorenz system is
obtained as follows. For every r > 1, the Lorenz sys-
tem has three fixed points: the origin and the twin points

@ Springer

A view from below.

Cy= (:l:\/b(r 0, Vb — ), — 1) . (4)

The origin is a saddle, while C+ have a pair of com-
plex eigenvalues. On the plane 7, defined by z = r —1,
integral trajectories passing through points p close to
C4 will return and cut again the same plane in some
other point g and so on. As long as the trajectory passes
through 7., it will cut the plane one time directed
upwards and the next time directed downwards.

Poincaré return maps. Poincaré discussed trajecto-
ries that crossed some special plane or line. When he
investigated the planar restricted three-body problem,
he found it useful to record only half the crossings,
those for which a particular coordinate was increasing.
He encountered no tangencies to the line. We usually
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Fig. 10 Attractors of the
Lorenz system. This picture
shows the attractors of the
Lorenz system for r = 208
(left) and r = 209.2 (right)
together with the rectangle
—-20 < x <20,

—100 < y < 100 in the
planez =r — 1. If z is
thought of as the vertical
coordinate, both pictures are
viewed from below. The
Poincaré map for the Lorenz
system is built out of the
intersections of the Lorenz
orbits crossing this
rectangle downwards. The
yellow rectangle shown for
r = 209.2 is the one shown
(not in scale) in Fig. 11, and
the three intersections of the
blue orbit are at the center
of the three little circles
shown in that picture

take Poincaré’s approach, but, in Fig. 12, we record
both crossings in two colors, as was done in [66].

We define the Poincaré map P, at a point p to be the
point ¢ at which the trajectory starting from p cuts the
plane 7, with z decreasing. In Fig. 10, we show two
examples of attractors for the Lorenz system, a chaotic
one (left) and a periodic one (right). The pictures also
show, in gray, the rectangle —20 < x < 20, —100 <
y < 100 in the corresponding planes 7,. By bifurcation
diagram of the Lorenz system, we mean the bifurcation
diagram of the family of maps P;.

In Fig. 13, we show a few projections of the bifur-
cation diagram: on the (y, r) plane (top), on the (x, r)
plane (middle) and on some intermediate plane (bot-
tom). In particular, the bottom picture suggests that the
bifurcation diagram is the union of two disjoint compo-
nents, one the image of the other. This fact is also sug-
gested by the (x, y) sections of the diagram for several
values of r shown in Fig. 12.

100

| =
—20 x 20 00

r = 209.2

The bifurcations pattern of the Lorenz system
evolves backwards with respect to the one of the logistic
map. Atr = 235.0, the attractors are a pair of period-2
orbits (shown in red and blue), each of which under-
goes, as r decreases, a bifurcation cascade completely
analogous to the one of the logistic map. The largest
window of the diagram (see Figs. 13 and 14), centered
at about r = 150.0, starts (from the right) with a single
period-4 orbit and again contains bifurcation diagrams
quite analogous to those of the logistic map. Many other
windows of smaller different sizes are clearly visible
in all three projections.

By zooming on the cascades, the diagram looks more
and more like the one of the logistic map. For instance,
in Fig. 14, we show a full picture of the period-4 win-
dow (top), a detail of its upper bifurcation diagram
(middle) and a detail of the middle cascade of the
period-3 window within it (bottom). Both the red cas-
cade and its sub-cascade look almost identical to the
logistic map bifurcation diagram (see Fig. 4).
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-50

-60

-68
12 13

Fig. 11 A small region from the Lorenz system Poincaré return
map P, for r = 209.2. The region shown corresponds to the
small yellow region on the right-hand side of Fig. 10. In that
figure, a periodic orbit is shown piercing the yellow rectangle in
three points. Those points are shown here as the centers of three
circles. Almost all points in the colored region are in the basin
of attraction of the periodic orbit. Yellow indicates rapid conver-

We also investigate the structure of the chain-
recurrent set of the diagram. We focus on its largest
period-3 window, that is the one contained inside its
very first cascade from the right. The range of this win-
dow is from about 208.52 to 209.453. In Fig. 13, it is
visible as the largest window within the red and blue
cascades at the top and bottom of the diagram.

In Fig. 8, we show a full size picture of the Lorenz
period-3 window. The attractor is shown in black/gray,
while the invariant Cantor sets are shown in red and
blue. Figure 7 shows the analogous picture for the logis-
tic map. The structures in the two maps look almost
identical.

@ Springer

14 L

15

gence to the periodic orbit. Red indicates slow convergence. Red
points are close to points that are attracted to the Cantor set on
the blue line. The blue curve is the unstable manifold of a Cantor
set that lies within it. Points in the white region are attracted to
the other off-screen attractor. The blue curve includes a chain-
recurrent Cantor set of saddle points and the unstable manifolds
of all of the periodic orbits in the Cantor set

3 Infinite towers in the logistic map

The logistic map

£,(x) = pux(1 — x) (5)

is among the simplest continuous maps giving rise to a
(highly) non-trivial dynamics. In this article, we focus
exclusively on the parameter interval . € (1, 4). For
these values, £, maps [0, 1] into itself, 0 is a repelling
fixed point, and there is exactly an attractor in (0, 1).

To simplify the logistic story, our graphs only
include nodes in (0, 1). In particular, our graphs omit
the fixed point at x = 0, which is always the top-most
node, and we ignore points outside of [0, 1]. Their tra-
jectories diverge to —oo.
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Fig. 12 Attractors of the
Poincaré Map of the Lorenz
system. The pictures above
show the attractor of the
Poincaré map of the Lorenz
system in the (x, y) plane
for five different values of r.
Whenever the trajectory hits
the z = r — 1 plane, a point
is plotted, in blue if z is
decreasing and otherwise in

red. There are places where /
the color switches from blue l
to red, due to the vector

field being tangent to the /
plane. In all pictures, x by
ranges from —40 to 40 and
y ranges from —100 to 100.
Each panel is the plot of a
single trajectory; hence,
low-density regions of the
attractor may not be
represented, or it may only — . u
be represented by a few
isolated points. There are
two steady states on this
plane (Eq. 4). They are
indicated with black dots |

Some history. In a series of celebrated works start-
ing in 1918, Julia and Fatou gave birth to the study
of the dynamics of the quadratic map in the complex
plane. Surprisingly, the study of the quadratic map in
the real line began later. The first example we know is
by Chaundy and Phillips [10] in 1936, inspired by early
Mathematical Biology works such as [3].

The study of iterations of real quadratic maps reap-
peared in a few clever abstract articles (“abstract” in
that no applications were mentioned) around 1960 by
P.J. Myrberg [55-57]. Myrberg discovered the infinite
number of period-doubling bifurcations in the logis-
tic map. In the same years, fundamental properties on
the existence of cycles for general continuous maps
of the real line into itself were discovered by A.N.
Sharkovskii [68] (in Russian, see English translation
in [69]).

Possibly the first time that £, was called the “logistic
map” was in 1968 in J. Maynard Smith’s book “Math-
ematical ideas in Biology” [74]. Smith used it as a
toy model for population dynamics, analogous to the
one-century old logistic ordinary differential equation
model of Verhulst [81,83].

In the 1970s, many more works on the logistic
map appeared in the literature, some purely theoret-

ical (e.g., Metropolis, Stein and Stein [52], Li and
Yorke [42], Hoppensteadt and Hyman [32]) and some
applied (e.g., May [48], Smale and Williams [73],
May and Oster [50], Guckenheimer, Oster and Ipak-
tchi [24], Feigenbaum [17]). The celebrated article
by R. May [49] brought the importance of one-
dimensional dynamics to a broad scientific audience.

The theoretical study of the logistic map evolved in

1980s in the study of families of more general one-
dimensional real maps such as, in order of generality,
S-unimodal, unimodal and multimodal (e.g., see [16,
46,79]).
The bifurcation diagram. The logistic map has
exactly one attractor for each parameter value (e.g.,
see [16], Thm. 4.1, or [46]). Bifurcation plots for
to the left of the so-called Myrberg-Feigenbaum or
Feigenbaum parameter value p©p ~ 3.5699 [17]
appeared in several publications in the 1970s, but, to
the best of our knowledge, the first picture of the full
bifurcation diagram (Fig. 4) appeared first in an article
by Grebogi, Ott and Yorke in 1982 [22].

Usually, bifurcation diagrams show how the attrac-
tors change with the parameter, just as in Fig. 4. In this
article, however, we also include some graph bifurca-
tion diagram (Figs. 5, 6, 7, 8).
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Fig.13 Bifurcation Diagram. These are the projections onto the
(r, y) plane (top panel), (r, x) plane (Middle panel) and (y —x, r)
plane (bottom panel) of the bifurcation diagram for the Poincaré
return map of the Lorenz equations (3) using the plane 77, defined
by z = r — 1. A dot is plotted in the (r, y) (resp. (r, x)) plane
when a trajectory crosses downward past 7z, through the point
(x,y,r — 1). The regions where there is speckled white and
magenta dots is where the attractor is low density. The Lorenz
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attractor typically has great variations in density, so extremely
long trajectories would be needed to reveal such parts of the
attractor. In Fig. 14, we show details of the period-4 window
that is centered around » = 150. The period-3 window shown in
Fig. 8 is an enlargement of the black rectangle shown in the top
projection. For some parameter values, there are two attractors.
They are shown in red and blue. When there is a single attractor,
it is shown in magenta
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Infinite towers in the graph

100
Y

50

-50

«—— Period-4 Window

-100

140 150

160 170

37.6

37.1 §
36.6 [

36.1 | ikl

35.6
145.877 145.906

Fig. 14 Bifurcation diagram. These (r, y) projections are
enlargements of the main period-4 window of the Lorenz system
bifurcation diagram. Top: We show a zoom of the full window.
Middle: We show the content of the region enclosed in the black

145.934 r 145.961

rectangle in the top picture, namely the upper cascade. Bottom:
We show the middle cascade of the period-3 window of the cas-
cade above, enclosed in a black rectangle in the middle picture
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The bifurcation diagram starts with an infinite cas-
cade of period doublings at the values o = 1, u1 = 3,
uy =1+ J6 ~ 3.4495, ..., whose speed increases
exponentially until the Myrberg—Feigenbaum parame-
ter value wp >~ 3.5699. This is the border after which
there is chaos. There are “period-doubling” parameter
values w, such that for u,, < u < un+1, the attractor
is a periodic cycle of 2" distinct points. Feigenbaum’s
fundamental discovery was that the speed of the bifur-
cation cascade

. Mn — Hn—1
lim ——
=0 Up+1 — MUn

~ 4.6692 6)

is universal, only in the sense that the same limit
is obtained for a large class of systems that have
a period-doubling cascade. It is found not only in
one-dimensional but also in higher-dimensional non-
Hamiltonian maps. (Hamiltonian processes, however,
yield different numbers.) Sanders and Yorke [67]
proved that cascades of period doublings are quite ubig-
uitous in low-dimensional dissipative systems.

3.1 The three kinds of attractors for the logistic map

In [23], Guckenheimer proved that, for every value of
w in [0, 4], the logistic map £, (or, to be precise, any
S-unimodal map) has exactly one attractor and that this
attractor must be precisely of the following three kinds.
First kind: a periodic orbit.

Second kind: a finite union of intervals. In this case,
the attractor is a collection of intervals Ji, ..., J, such
that £, (J;) = J;41 except that £,,(J,) = Ji. Further-
more, the map is chaotic. Most often, there is a single
interval J; and £,(J;) = Ji. In particular, for most
1 between pine and 4 (see Fig. 4 for i), the attrac-
tor is an interval and the dynamics on it is chaotic.
However, there are windows, i.e., intervals in parame-
ter space, where the attractor is not an interval. Now,
also in Fig. 4, each window has a bifurcation diagram
that is tiny but extremely similar to the entire diagram
(see Sect. 3.2). Such windows occur not only after i
but more generally after wr ;.

Third kind: a Cantor set attractor. We call this
attractor almost periodic [53], also sometimes called
“odometer.” This kind of attractor is a Cantor set, and
it is not chaotic. It occurs precisely when the graph has
infinitely many nodes. Each node, other than the attrac-
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Fig. 15 Example of Cantor set. First steps in the construction
of the standard Cantor subset of [0, 1], obtained by eliminating
recursively the central third part of all segments. The invariant
Cantor sets of the logistic map are much less regular than the
example shown here

tor, is either an unstable periodic orbit or a repelling
chaotic Cantor set.

For each point x¢ in the attracting Cantor set and
each ¢ > 0, there is a periodic point x, such that the
n'™ iterate of the map on xg and the n'" iterate of the
map on x, stay within ¢ of each other for all time. At
WF M, every period orbit has period 2" for some n and
none of them belongs to the Cantor set. They converge
to the Cantor set as n — 00.

Recall that any Cantor subset C in an interval / is an
uncountable set that contains no intervals. Also, it has
no isolated points in the sense that each point in the set
is a limit of other points in the set.

In all three cases, “almost every” x € (0, 1) belongs
to the basin of attraction. By almost every, we mean
that the points that are not attracted can be covered by
a finite or countably infinite collection of intervals with
arbitrarily small total length.

Notice that, in case of an attracting Cantor set, the
basin has empty interior. Each open neighborhood of
such an attractor contains infinitely many nodes of the
graph.

We can write the parameter space as (1,4] = Ap U
Achaos UA4 p, where the union is disjoint, A p is the set
of parameters for which the attractor is a periodic orbit,
Achaos 18 the set of parameters for which the attractor
is chaotic, and A4 p is the set of those for which it is a
Cantor set (see [35]).

The set .Ap is open, which simply follows from the
stability of attracting cycles under small perturbations,
and dense, which instead requires heavy machinery and
was proved rigorously only in 1997, independently by
Lyubich [44] and Graczyk and Swiatek [21]. Heuristi-
cally, the density of this set follows from the fact that
it is to be expected that, for almost all chaotic parame-
ters, the orbit of the critical point ¢ will be dense in the
attractor and so, in particular, its orbit will get arbitrar-
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Infinite towers in the graph

ily close to itself. This way, arbitrary small changes in
w should be able to make the orbit of ¢ become peri-
odic [60], and a periodic orbit containing the critical
point is always super-attracting and lies within a regu-
lar window.

Since Ap is dense and it contains (1, @ gpr), its com-
plement Achaos U A4 p is a Cantor subset of [ s, 4].
Jakobson [34] proved in 1981 that Achaos has positive
measure, while it was proved only in 2002 by Lyu-
bich [45] that A4 p has measure zero.

Notice that all results above hold not just for the
logistic map but also for every non-trivial real analyti-
cal family and any generic smooth family of unimodal
maps [15,71]. However, it is known that there are non-
generic smooth families showing “robust chaos” [2,4,
80], namely without windows.

The edges of the graph. Our approach to the logistic
map aims at finding the nodes, the chain-recurrent sets
and the edges of the graph.

Most of the traditional literature on logistic maps
look at the non-wandering sets. One non-wandering
set can contain many nodes. Most of the ideas are sim-
ilar but one must be careful. The non-wandering set of
unimodal maps was first described by Jonker and Rand
in 1980 [35] (see also [6,7,16,31,70,78]).

Furthermore, no one seems to have examined the
edges of the graph; therefore, we do in [14] where, as
mentioned above, we prove the following.

For every p € (1, 4], the graph is a tower. In partic-
ular, there is an edge between every pair of nodes.

To illustrate this idea, we now argue that the top node
always consists of the point 0, except for © = 4. For
any point xg > 0 close enough to 0, there is a backward
trajectory x, with n < 0 that converges to 0 as n —
—o0. For v € (1, 3], there is a unique attractor, which
is the nonzero fixed point p of £,, and the trajectory
X, converges to p as n — +o00. That means there is an
edge from 0, which is a node, to the attractor node. Of
course, for ;© = 1, the attractor is 0.

For i € [3, 4], choose any x¢g > 0 near 0. Write
J for the interval [0, xo]. When we apply the map £,
to J, we obtain a longer interval, and as we repeatedly
apply the map, we eventually obtain an interval that
includes [0, %]. Notice that % is critical point of the
logistic map. Hence, with one more iterate, the image
interval is [0, Eﬂ(%)]. For any point p in any node,
there is a point Xy near 0 such that there is a N for
which Eﬁ’ (X0) = p. Since each node is an invariant set,
the forward limit set of Xg is in the node. As discussed

above, there is a backward trajectory from xg that limits
on 0 as n — —oo. Hence, the graph has an edge going
from O to the node containing p. That is true for every
p in every node. Hence, for each node other than 0,
there is an edge from O to that node. For . = 4, there
is a single node, that is the whole interval [0, 1].

Because of this fact, to simplify the pictures of
graphs, in Figs. 5,7 we do not include the “zero node,”
the node that consists of 0, which is always on top of
each tower.

3.2 Windows in the bifurcation diagram

A period-k window (of parameter values). Figure 7
shows a “period-3 window,” an interval of parameters
in which there are three intervals J;, i = 1,2,3, in x
space which are permuted by the map. Each of the inter-
vals J; changes continuously, starting at the parameter
value u = 1+ \/§ =~ 3.8284, where the period-3 orbit
appears in a saddle-node bifurcation. The window ends
at the parameter p at which the attractor fills the inter-
val, namely p >~ 3.8568.

Each saddle-node bifurcation of a period—k orbit
begins an analogous window or period —k window
with a final u at which the attractor fills the intervals
Ji.

Between the first Feigenbaum parameter value and
= 4, there are infinitely many windows and every u
in that range is either in a window or arbitrarily close
to one. In Fig. 5, several are visible. The biggest is the
period-3 window, which is also shown in Fig. 7.

For each parameter value inside a period-k window,

there are k intervals J; mentioned above and there is a
chain-recurrent set C of points whose forward trajec-
tories do not fall into any of the the J;. These sets are
shown in red for the larger windows in Fig. 5. The set
C is always a Cantor set.
Windows within windows within windows. In Fig. 7,
we see the period-3 window. The bifurcation diagram
of the attractor is plotted in black and gray. It consists
of three pieces that each look like the entire bifurcation
diagram. Each piece lies within one of the J; for each
1. As such, there are windows within this bifurcation
diagram, infinitely many windows within the primary
window. Each window has secondary windows within
it.

For p that has a period—k; window, there are k|
intervals inside which the attractor lies. We denote them
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by Ji, ..., Jk,. Thereis a chain-recurrent Cantor set C 1
of points that do not fall into them. If « has a period—k»
window within the window, then k; divides k, and there
are ky intervals Jj, ..., J,éz that are a small-scale ver-
sion of the J; above.

The Cantor set C? for this window lies outside the
union UJJ’. but inside the union UJ;, see Fig. 7. Such

a C? Cantor set is shown in blue where the primary
window has k; = 3 and the secondary window has
]Q =3x3=09.

The graph has a node 0 on top of C' on top of C?
followed by possible more Cantor set from further win-
dows within windows and finally some attractor at the
bottom.

For each parameter that has windows within win-
dows ad infinitum, the graph is an infinite tower.
Building blocks of towers. If 1 does not belong to any
window, then the only chain-recurrent sets are the left
endpoint 0 and the attractor.

Just after the start of a window, the attractor is a peri-
odic orbit with some period k (e.g., see T2 in Fig. 5). As
W increases, the periodic orbit goes through a bifurca-
tion process identical to the one at the left of iy (e.g.,
see T3—-T4 in Fig. 5 and T2-T5 in Fig. 7). This reflects
in the graph in the following way. Each subwindow
corresponds, in the graph, to a Cantor set node. Each
Cantor node may be immediately followed by s nodes
that are unstable periodic orbits. The periods of these
orbits are, in the following order, &, 2k, 22k, upto2°~ k.
After those nodes, there will be either the attractor or
another repelling Cantor set node.

Figures 5 and 7 show examples of towers. In sum-
mary, a graph can contain any number of Cantor set
nodes, including none and infinitely many. Between
two consecutive Cantor set nodes, there can be any
finite number of repelling periodic orbit nodes, includ-
ing no such orbits. In particular, there can be infinitely
many nodes and any combination of Cantor sets and
repelling periodic orbits is possible. All possible finite
or infinite patterns (including patterns with only saddles
and patterns with only Cantor sets) occur for appropri-
ately chosen parameter values. In addition, (1) there is
an attractor, the bottom-most node; (2) for the logistic,
the top node is the repelling fixed point O for all © < 4.

@ Springer

4 Numerical algorithms

We describe here briefly the algorithms we use to gen-
erate the pictures of the graph bifurcation diagrams. In
all figures, we discretize the space coordinate and the
parameter coordinate. We call an elementary cell of this
discretization a pixel. When we say we are plotting a
Cantor set, the goal is to plot a pixel if that pixel con-
tains a point of the Cantor set. Such statements apply
to everything plotted.

Shading pixels for attractors. For the pictures of the
attractors, in gray in Figs. 4, 5, 6, 7, 8 and in colors in
Figs. 13, 14, for each discretized parameter value (u in
case of the logistic map, » in the Lorenz case) we iterate
the map for a generic initial point and count the num-
ber of times the trajectory enters each pixel and then a
grayscale is chosen for each pixel in proportion to the
pixel’s count. We mention this because it has been the
common practice in journal figures to color each pixel
black if the count is positive and white otherwise. The
grayscale of the picture shows a glimpse of the rela-
tive invariant density: The darker the dots, the longer a
generic point spends time nearby that pixel.
Repelling Cantor set for the Logistic map. First, the
attractor pixels are identified for each parameter value
to be plotted. The pictures of the Cantor set repellors (in
red or blue in Figs. 5, 6, 7, 8) are obtained as follows.
For each pixel not belonging to an attractor, write the x
coordinates of the pixel as J = [x,, x*]. We examine
the interval J, that runs from f”(x,) to f"(x™) and
plot the pixel if J,, intersects J for some n > 0.
Repelling Cantor set for the Lorenz return map.
The Lorenz case (Fig. 8) needs some more explanation
because the return map has a two-dimensional phase
space. Figure 10 shows a region of the phase space of
the Lorenz return map. For a given value of the param-
eter r = 209.2, the picture shows a region in the (x, y)
plane containing the three points of the period-3 orbit
associated with that period-3 window. The trajectory
of some of these points leaves the region and does not
return. Such points are white.

The picture has a relative global attractor to which all
points tend if they remain in the region. We discretize
the region with a grid 3000 wide by 2000 high. We
apply 20 iterates of the return map to each of these
grid points, and the result is the thin arc plotted in
blue. Notice the three circles represent three points of
a period 6 orbit, where the other three points are out-
side the plotted region. If we think of this blue curve
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Infinite towers in the graph

as exactly an arc, each point on the arc has a unique
y value. The blue arc contains the 3 attracting points
and a repelling Cantor set. Hence, we can apply our
methods from the Logistic map to identify points on
the Cantor set (to the precision of the grid).

5 Dynamical systems with infinite-dimensional
phase space can have graphs simpler than the
logistics

Here, we report on examples of graphs that have been
determined for differential delay equations and partial
differential equations. These examples do not exhibit
chaos in the regimes where the graphs have been deter-
mined, but the reader should expect great complexity
in other examples that have chaos.

Example 1: Delay-Differential Equations. In 1986, J.
Mallet-Paret [47] (see also [27,28,36,37,51]) showed
that the graph approach can be applied also to the
infinite-dimensional dynamical system associated with
first-order scalar delay-differential equations of the
form

X(t) = fx(@), x(r — 1)), (7

with the initial condition x(#) = ¢(¢) on [—1, 0] for
some continuous function ¢. For instance, the cele-
brated Wright’s equation

x(t) = —ax@ — 1D —x(1), a >0,

modeling population dynamics, is of this form, as well
as equations of the form x(t) = —ax(¢) — g(x(t — 1))
that arise in various applications in biology, physiology
and optics [47].

The graphs for this type of systems are towers with
an arbitrary finite number of levels. From the point
of view of the dynamics outside of the nodes, there-
fore, these systems are simpler than some logistic map.
Below we describe in some detail the nodes of these
graphs.

Denote by x,(¢) the solution, defined up to some
T > 0, of (7). This defines a dynamical system
@', for t > 0, on the space of continuous functions
CO(—1,01), via

(2'¢) (t) = xp(t + 1), —1 < T <0.

We assume the following properties, satisfied in many
applications:

f is smooth;

y f(x,y) >0forall y #0;

/x(0,0) > 03

/x(0,0) + £,(0,0) > 0;

the image under @' of any bounded ball is
bounded;

6. Sup(peco([_lyo])!teR ”@t(p” < OQ.

A

Under these conditions, the solutions of Eq. (7)
oscillate about zero, the map @' is compact and dis-
sipative [26] and the flow has a maximal compact
attractor S [5] equal to the set of all initial conditions
peC 0([—1, 01) such that x,, is global and bounded.

The decomposition found by Mallet-Paret is relative

to the dynamics of the restriction of @ to S. The unsta-
ble nodes of @ in S are rapidly oscillating unstable
periodic orbits. The more rapidly oscillating nodes are
above the more slowly oscillating nodes. Mallet-Paret
has a precise definition of rapidly oscillating, based on
the number of zeros the trajectory has on every interval
[t,t + 1]. He was able to prove that there are orbits
joining every node with all nodes that are oscillating
more slowly.
Example 2: Parabolic partial differential equa-
tions (PDEs). The setting of nonlinear parabolic PDEs
proved to be an unexpectedly rich source of dynamical
system graphs [28,41].

Let X be a closed segment and denote by H'(X)
the Sobolev space of square-summable functions on X
with a weak derivative and whose first weak derivative
is also square-summable. The set HO1 (X) c H'(X) is
closure, in H! (X), of the set of smooth functions that
are zero in some neighborhood of the endpoints of X.

We begin with the Chafee—Infante PDE on X =
[0, 7], namely

Uy = Uyy +A(1 — uz)u,
u(t,0) =u(t,7) =0forall r >0, (8)
u(0, x) = uo(x) € Hy (X),

with » > 0. We denote by @} : H}(X) — H}(X) the
semiflow of the Chafee—Infante PDE. Then, the map
(Di is a C? (infinite-dimensional) Morse—Smale map
for every A which is not the square of an integer [9,28].
In particular, each node of its graph is a fixed point, and
the dynamics elsewhere is gradient-like. One of the key
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observations, by Henry [29], leading to the construction
of a Lyapunov function for the system, is that the num-
ber of components of the set {x € X : u(t, x) # 0} is
a monotonously decreasing function of time.

The structure of the graph in this case is more inter-
esting and shows (see Fig. 3 (right)) the following
bistable behavior: For (n — 1) < A < n?, @! has
2n — 3 repelling fixed points Ny, Nji, 2<j<n-1
and two attracting ones N,jt. The node N; has edges
to Nzi. All Nf, J < n, have edges toward both Nﬁl,
as shown in the figure. Note that, in this case, no other
edges arise due to a blocking connections principle that
holds for these systems (see [18] for a thorough discus-
sion and examples). In particular, in this case the graph
is not a tower.

These results do not depend strictly on the ana-
lytical form of (1 — u?)u but rather hold for all C2
functions f(u) with a similar shape (see [9,28,41])
and hold for several other important PDEs such as
FitzHugh—-Nagumo equation and the Cahn—Hilliard
equation (see [41]). They were also further generalized
by Chen and Polacik [11] to the time-periodic non-
autonomous version of the Chafee—Infante equation.

Fiedler and Rocha [18], finally, further generalized
the PDEs above to the autonomous semilinear variation

uy =a(uxx + f(x,u,uy)

with Neumann boundary conditions uy (¢, 0) = u, (¢, 1)
= 0. Denote by H2([0, 1]) the Sobolev space of all
functions that are square-summable together with their
first and second derivatives. This PDE form arises in
many applications such as population dynamics, astro-
physics and material sciences (see [19] for references).

Acknowledgements This material is based upon work par-
tially supported by the National Science Foundation under Grant
No. DMS-1832126. The authors are grateful to Todd Drumm
and Michael Jakobson for helpful conversations on the paper’s
topic. All computations were performed on the HPCC of the Col-
lege of Arts and Sciences at Howard University with algorithms
designed and implemented in Python and C++ by the authors.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

@ Springer

An appendix on Gianluigi Zanetti, by R. De Leo

Although we had in common a passion for scien-
tific numerical explorations, I happened to meet Gian-
luigi Zanetti through a completely unrelated chan-
nel. For a while, before finding a tenured academic
position, I taught Mathematics and Physics at Liceo
Scientifico “Leon Battista Alberti”, a high-school in
Cagliari (Italy). One day of Spring, in mid-Nineties, [
had enough free time to go and check the PCs in our
lab and found out that they were quite outdated — they
still had 5% inches floppy disk drives! In the conver-
sation that followed with my (enlightened) Principal
Ugo Galassi, he mentioned to me, on the side, that some
young researcher from CRS4, the Center for Advanced
Studies, Research and Development in Sardinia, was
looking for a teacher for an interesting project: training
a group of outstanding high-school students to create
the first school website in Italy.

His idea (quite unusual in those times) was to let
the students themselves build and maintain the web-
site, since it was they who would benefit the most from
learning such skills (especially in mid-Nineties!) and,
at the same time, their young minds would in general
absorb much more quickly this (at that time) brand new
technology than the teachers themselves. Little did I
know, when I told my Principal that I liked the idea and
that I'd contact Dr. Zanetti, that he would have such a
powerful influence on my scientific life.

First of all, he was right. The group of outstanding
students we directed got so involved in the project that
they kept working on it hard throughout the whole sum-
mer — something unheard of in those times — and we
ended up building not only the first Italian school web-
site but also the first school webserver, a Linux machine
installed and maintained by myself and the students and
located in the school’s Lab, connected to the Internet
through a dedicated line supported directly by the Ital-
ian’s Ministry of Education. Recall that, in those times,
connecting to the Internet involved slow modems. Our
school, on the contrary, thanks to the success of this
project was connected 24/7 with a fast connection. It
is hard to overemphasize the impact that this project
had on the life of those students, many of whom found
soon jobs in IT-related positions worldwide — this alone
would be an interesting story to be told.

The impact was strong on me as well. Gianuigi (or
Zag, as he liked to be called from his login name), was
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a person of many talents and deep skills and I absorbed
from him several important ones.

One was Linux OS maintaining. While this might
seem unrelated to science, it is actually the opposite:
Linux is the best OS for numerical computing (cur-
rently, 99% of the 500 most powerful supercomputers
use Linux or Linux-based OSs). Hence, even in mid-
Ninenties I was able to easily run efficient scientific
programs directly on my home PC. This became criti-
cally important already when I worked for my, mostly
numerical, PhD thesis at University of Maryland, where
I graduated in 2000 under S.P. Novikov. And is even
more critical now that I maintain the small High Power
Computational Cluster of the College of Arts & Sci-
ences at Howard University. Another one was coding.
Zag was an impressive coder of both interpreted (bash,
perl) and compiled (c, c++) languages and working
under his direction led me to become accustomed too to
all these powerful tools. Since numerical explorations
amount to about 50% of my scientific activity, I clearly
owe him a lot.

Perhaps the most critical help from Zag came, again,
just by chance. I must have mentioned to him my desire
to get a PhD in Mathematics in the USA. Since I had
gotten “full gpa” Laurea degrees in both Physics and
Mathematics from University of Cagliari, I was hoping
to get through local faculty some contacts to US univer-
sities. Somehow this just did not happen and it is not
trivial getting a fully funded PhD student position at
a good US university coming from abroad, especially
from a peripheral location. It was Zag that suggested
me to apply at University of Maryland — I would not
have otherwise — and, unknown to me, wrote a strong
support letter to his friend Alessandra lozzi, at that time
an Assistant Professor at UMD. I say it must have been
strong because, a posteriori, I learned that she fought
hard to get me a fully-supported position —in fact, out of
the six campuses I applied to, that was the only one that
offered me full TA-ship with tuition remission, without
which I just could not have come to the US to complete
my studies.

Ultimately, those few months of work under Gian-
luigi’s direction completely changed the course of my
scientific (and private) life. After getting my faculty
position at Howard University we did not meet much,
but I would look for him whenever I'd be back in Sar-
dinia and we’d meet briefly to have a walk and chat
about the past and the future. He had always some-
thing new to teach me and his enthusiasm in talking

about his activities or in making suggestions on how to
improve mine was always the same: just the one of a
kid in a candy shop. He passed away in a tragic acci-
dent in September 2019. This was an unfillable loss not
only for his family but also for CRS4, for Sardinia and
for anyone that had the luck and pleasure to interact
with him. His passion and enthusiasm, though, always
resonate in all of us.
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