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Abstract

The responses of ectothermic organisms to changes in temperature can be modified by acclimatization or adaptation to local
thermal conditions. Thus, the effect of global warming and the deleterious effects of extreme heating events (e.g., heatwaves)
on the metabolism and fitness of ectotherms can be population specific and reduced at warmer sites. We tested the hypothesis
that when environmental temperature is greater, grazer populations in the Galdpagos are less thermally sensitive (potentially
due to acclimatization or adaptation). We quantified the acute thermal sensitivity of four populations of the pencil sea urchin,
Eucidaris galapagensis, by measuring individual oxygen consumption across a range of temperatures. Thermal performance
curves were estimated for each population and compared to local thermal conditions 2 months prior to collection. Results
indicate that E. galapagensis populations were adapted and/or acclimatized to short-term local temperature as populations
at warmer sites had substantially higher thermal tolerances. The acute thermal optimum (7,,,,) for the warmest and coolest
site populations differed by 3 °C and the T,,, was positively correlated with maximum temperature recorded at each site.
Additionally, temperature-normalized respiration rate and activation energy (E) were negatively related to the maximum
temperature. Understanding the temperature-dependent performance of the pencil urchin (the most significant mesograzer in
this system), including its population specificity, provides insight into how herbivores and the functions they perform might

be affected by further ocean heating.

Introduction

Scaling between mass-normalized organismal metabolism
and temperature (Gillooly et al. 2001; Bruno et al. 2015) has
been documented across a wide range of taxa and habitats
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(Eppley 1972; Houde 1989; Huey and Kingsolver 1989;
Clarke and Johnston 1999; Lépez-Urrutia et al. 2000).
Through its control of metabolism, temperature indirectly
affects the vital rates of organisms and populations as well as
the structure of communities and functioning of ecosystems
(Sanford 1999, 2002). One temperature-dependent function
that underlies such cross-scale linkages is the strength of
species interactions, particularly prey consumption rates.
Numerous field and laboratory studies have demonstrated
the temperature-dependence of per capita predation on
invertebrate and algal prey (Stickle et al. 1985; Sanford
1999, 2002; O’Connor et al. 2009; Carr and Bruno 2013;
Carr et al. 2018). In cases where prey species are habitat
forming or are dominant community members, increased
predation with warming can lead to wide-ranging changes in
community state and functioning. However, adaptation and/
or acclimatization to local temperature regimes could decou-
ple temperature from ecological processes across thermal
gradients in the sense that phenotypic responses to tempera-
ture would be dependent on the local or recent thermal his-
tory. This potential for thermal acclimatization is precisely
why predictions based on metabolic theory need to be tested
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— although there is usually some effect of temperature on
ectotherm performance, the effective magnitude of thermal
response and its subsequent ecological relevance is often
context- and taxon- dependent (Huey and Kingsolver 1989).

Ectotherms have the ability to alter their thermal toler-
ance through physiological mechanisms, and in this way,
cope with the effects of temperature variation on their per-
formance and fitness (Seebacher et al. 2015; Kern et al.
2015). By different mechanisms, adaptive or non-adaptive,
populations can tolerate changes in their local environment:
first, by dispersing to a more favorable environment; sec-
ond, by genetically adapting to the local condition, and third,
through acclimatization or phenotypic plasticity (Chevin
et al. 2010; Hoffmann and Sgro 2011). These mechanisms
can reduce the extent to which heatwaves and other forms
of thermal stress negatively affect fitness, population growth
rates, and other aspects of organismal performance (Gunder-
son and Stillman 2015; Seebacher et al. 2015).

Mechanisms including physiological acclimatization,
genetic adaptation, and parental effects have been docu-
mented in a wide range of marine invertebrates and fishes
(Castillo and Helmuth 2005; Baker et al. 2008; Oliver and
Palumbi 2011; Barshis et al. 2013; Palumbi et al. 2014; Put-
nam and Gates 2015). For example, studies of intertidal por-
celain crabs from the genus Petrolisthes have shown a clear
adaptive variation. Among this group, tropical species pos-
sess uniformly higher thermal limits than temperate species
and high intertidal zone species present the highest acute
lethal temperatures (Stillman 2002). Similar patterns of
thermal tolerance are found in subtidal snails (genus Chlo-
rostoma) (Tomanek and Somero 1999) and limpets from the
genus Lottia (Dong and Somero 2009) and Acmaea (Wolcott
1973). Measurements of thermal tolerance can show adap-
tive differences, but only by raising animals through multi-
ple generations to test for a genetically based temperature-
adaptive difference among populations. Kuo and Sanford
(2009) found, after rearing two generations of the intertidal
channeled dogwhelk, Nucella canaliculata, that populations
that originated from warmer “hot spot” regions were more
heat tolerant than conspecifics from cooler sites, suggesting
that differences in thermal limits have a genetic basis.

The sensitivity of ectotherms to temperature can be char-
acterized as a Thermal Performance Curve (TPC) (Sinclair
et al. 2016). TPCs are quantified experimentally as the shape
of the relationship between vital rates such as respiration,
growth, or survival, and environmental temperature. TPCs
are typically unimodal (Fig. 1), and are characterized by
parameters such as the critical thermal minimum (CT,;,),
and maximum (CT,,,,), and by T, the optimum perfor-
mance temperature (Huey and Stevenson 1979; Angilletta Jr
and Angilletta 2009; Sinclair et al. 2016). A compensatory
response to warming would generally be represented as a
rightward shift in the TPC of an individual or population,
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Fig.1 A thermal performance curve (TPC) model with relevant ther-

mal sensitivity metrics. T, temperature optimum, E and Ejactivation

and deactivation rates of energy, respectively, b(T,)rate at a standard-
ized temperature, C7,,;, and CT,,, minimal and maximal critical tem-
peratures, respectively

which would change the CT,,;,, and CT,,,, values and should
reduce the differences between mean habitat temperature
and the 7. Plasticity or evolution can also cause changes
in TPC curves: the total area of the TPC curve can increase
or decrease leading to better or worse performance across
the same range of temperatures, or, the breadth of the curve
can also vary, illustrating thermally specialized individu-
als (Sinclair et al. 2012). Additionally, TPCs of the most
sensitive populations often exhibit steeper slopes pre and
post-T,,,, peak (i.e., high activation E or deactivation energy
Eh for enzyme activity) when small changes in temperature
around T, cause large changes in performance (Silbiger
et al. 2019).

The purpose of this study was to test the hypothesis that
the thermal sensitivity of ectotherms varies directionally
across a temperature gradient, such that populations from
warmer sites have higher thermal optima than cooler sites.
To do this we compared TPCs based on temperature-specific
individual respiration rates of the conspicuous pencil urchin
Eucidaris galapagensis at four sites ranging in thermal his-
tory in the Galapagos Archipelago.

Materials and methods
Environmental context and study sites

Oceanic conditions of the Galdpagos Archipelago are
highly variable across space and time due to a complex
ocean current regime and the El Nifio-Southern Oscilla-
tion cycle (ENSO) (Houvenaghel 1984; Ruttenberg 2001;
Wellington et al. 2001). The convergence of a number of
ocean currents (Panama current, Pert current and Cromwell
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or Equatorial Undercurrent) results in variation (14-29 °C)
of the sea surface temperature among islands and between
seasons (Wellington et al. 2001). Both temperature and
upwelling intensity vary across the archipelago: high-
upwelling and nutrient-rich zones are usually located in
the colder western section of the archipelago, and low-
upwelling zones in the warmer, northern sites. Because of
this environmental variance and oceanographic conditions,
the Galapagos is divided into five distinct bioregions, where
the assemblages of fish and macroinvertebrate species vary
(Harris 1969; Wellington 1984; Jennings et al. 1994; Edgar
et al. 2004). There is also a strong seasonality (resulting
from the migration of the Intertropical Convergence Zone
Houvenaghel 1978; Wellington et al. 2001)) with a warm
and rainy season from December to May and a cooler, dry
season from June to November. The maximum average sea
surface temperature typically occurs in February/March and
the minimum in September/October (Houvenaghel 1978;
Schaeffer et al. 2008).

We performed the urchin physiology experiments in
August 2018 at four different sites (Fig. 2a), accessed via
the RV Queen Mabel. We recorded the temperature at each
site by deploying one temperature logger (HOBO Water
Temperature Pro v2 Data Logger- U22 001, Onset corpo-
ration, USA) during a previous research cruise in March
2018. Temperature was recorded at each site every 30 min at
7-12 m depth from March to August 2018. Punta Espinosa,
located in the northeastern point of Fernandina Island in
the western bioregion of the archipelago, is within a major
upwelling zone (Houvenaghel 1978; Schaeffer et al. 2008).
La Botella and Punta Cormorant are located in the western
and central-northern sides of Floreana, respectively, a south-
ern island in the central-southeastern bioregion (Fig. 2a).
Bartolomé is located in the southeastern side of Santiago
Island, in the central bioregion (Edgar et al. 2004). Punta
Espinosa and La Botella are considered high-upwelling sites
(Houvenagel 1978; Witman et al. 2010); while Bartolomé
and Punta Cormorant are low-upwelling sites (Houvenagel
1978).

Study species

Sea urchins are important herbivores in many nearshore
benthic marine habitats, often limiting algal biomass and
thereby affecting community structure and function (Chap-
man and Johnson 1990; Andrew 1993; Steneck et al. 2002;
Siddon and Witman 2003; Graham 2004; Irving and Witman
2009; Somero 2010). The pencil sea urchin (E. galapagen-
sis) (Fig. 2b) is the most abundant echinoid species of the
shallow waters of the Galdpagos Archipelago (Lessios et al.
1999; Brandt and Guarderas 2002; Lawrence and Sonnen-
holzner 2004; Alvarado and Solis-Marin 2013). This species
is one of the most significant mesograzers and bioeroders
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Fig.2 a Map of the four study sites in the Galapagos Archipelago.
Punta Espinosa and La Botella represent colder sites with high
upwelling. Bartolomé and Punta Cormorant represent warmer sites
with low upwelling. b Pencil sea urchin (Eucidaris galapagensis)

in the system (Brandt and Guarderas 2002; Irving and Wit-
man 2009; Brandt et al. 2012; Feingold and Glynn 2014;
Manzello et al. 2014; Glynn et al. 2017). Its densities across
the Galapagos Archipelago average 3.2 ind m~2 (Brandt and
Guarderas 2002), however, some sites have densities up to
28 ind m™> (Lawrence and Sonnenholzner 2004; Alvarado
and Solis-Marin 2013). At these high densities, E. galapa-
gensis can convert macroalgal assemblages to urchin barrens
or pavements of encrusting coralline algae (Ruttenberg 2001;
Edgar et al. 2010) and reduce hermatypic coral cover (Glynn
1988). Notably, after the 1982—1983 El Nifio event that dev-
astated coral reefs around the Galdpagos Archipelago (Glynn
1984, 1990; Feingold and Glynn 2014; Glynn et al. 2017),
densities of E. galapagensis increased sixfold and led to
some of the highest reported bioerosion rates in the world
(Glynn 1988). Therefore, any changes in E. galapagensis
behavior, grazing rates, physiology or abundance could have
a significant impact on the ecosystem functioning of Gala-
pagos rocky and coral reefs (Steneck et al. 2002; Siddon and
Witman 2003; Graham 2004).
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Using SCUBA at rocky reefs of depths of 7-12 m,
eight individuals of E. galapagensis were hand-collected
from each of the four sites during the August 2018 cruise.
Selected sites displayed average urchin densities ranging
from 2.5 to 5.0 ind m~? (Brandt and Guarderas 2002). After
collections, urchins were allowed to stabilize in a bucket on
the ship with seawater and an aerator at ambient tempera-
ture for 30 min. Sea surface temperature was recorded for
each collection site using a calibrated digital thermometer
(Traceable High Accuracy +0.2 °C Digital Thermometer
S/N 170718701).

Thermal response measurements

The thermal sensitivity of each urchin (n==8 per site) was
measured in a closed system of ten 620-ml acrylic respira-
tion chambers with magnetic stir bars. In this respirometry
setup, there were eight replicate chambers that contained
sea urchins and two chambers with only seawater as con-
trols (Fig. S1). Oxygen consumption and temperature were
monitored in each individual chamber with a fiber-optic
oxygen probe (Presens dipping probes [DP-PSt7-10-L2.5-
ST10-YOP], Germany) and a temperature probe (Pt1000),
respectively. Measurements were taken using a Presens
Oxygen Meter System (OXY-10 SMA (G2) Regensburg,
Germany) with temperature correction made for each
probe independently. Oxygen concentration in the urchin
and control chambers was measured every 1 s during tri-
als, that lasted 6—10 min for a given temperature. Tempera-
ture was controlled [+ 0.2 °C] using a thermostat system
(Apex Aquacontroller, Neptune Systems), bucket heaters
(King Work Bucket Heater 05-742G 1000 W), and a chiller
(AquaEuroUSA Max Chill-1/13 HP). At each site, the initial
(and lowest) temperature was the local ambient. After each
trial, the temperature was increased by 1-3 °C, depending on
the temperature. We decreased the range between treatment
temperatures around the expected respiration peak (based
on pilot data) because increased resolution improves curve
fitting. We tested sequential temperatures to avoid artifacts
in respiration reading due to excessive stress imposed on the
organisms. We used the following temperatures (in °C) for
urchins tested from each of the four sites: La Botella (20, 23,
26, 28, 30, 31, 32, 33, 34, 36, 38, 42), Punta Espinosa (19,
23,26, 28, 30, 31, 32, 33, 34, 36, 38, 42), Punta Cormorant
(22, 26, 28, 30, 31, 32, 33, 34, 36, 38, 42) and Bartolomé
(23, 26, 28, 30, 31, 32, 33, 34, 36, 38, 41), with temperatures
truncated past mortality as needed. It took 10 to 20 min to
warm the water bath between treatment levels (temperature
ramping rates did not differ between sites). Once stabilized
at the new temperature treatment level, the water inside the
chambers was replaced with new seawater to ensure that
it matched the temperature of the water bath, and to reset
0O, and CO, levels. After all measurements had been made,
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urchins were frozen on the ship and brought to the Marine
Ecology Laboratory of the Galapagos Science Center (GSC)
on San Cristébal Island. Respiration rates were normalized
to urchin Ash-Free Dry Weight, which was determined by
first drying each sample in a drying oven for 24 h at 60 °C
and then burning it in a muffle furnace (Optic Ivymen Sys-
tem Laboratory Furnace 8.2/1100) for 4 h at 500 °C.

TPC characterization

TPCs were used to characterize the relationship between
urchin organic-biomass-normalized respiration rates and
temperature for every individual. A TPC approach is a
widely used model in climate change research to predict if
organisms will be able to cope with increasing environment
temperatures (Schulte et al. 2011; Vasseur et al. 2014) and
to compare performance metrics across organisms, popu-
lations, species, localities and time (Sinclair et al. 2016;
Silbiger et al. 2019). Acute TPCs were modelled with a
modified Sharpe—Schoolfield equation for high-temperature
inactivation (Schoolfield et al. 1981; Padfield et al. 2017),
using a non-linear least squares regression (Elzhov et al.
2013; Padfield et al. 2016) in the nis.multsart R package
(Padfield and Matheson 2018):

1 1

(557
_ 1 _ E
log (rate)—b(TC)+E<T‘ k><T1> log<1+e h ,

C

where b(T.) is the log rate at a constant temperature (for res-
piration pmol g~! h™!), E is the activation energy (electron
volts, eV) referring to enzyme activity, E, is the deactivation
energy (eV), T, is the reference temperature at which no
temperature inactivation is experienced (Kelvin, K; we used
299.15 K), k is Boltzmann constant (8.62x 10~ eV K™, T},
is the Temperature in Kelvin (K), where half the enzymes
are inactivated, or the temperature after the optimum, where
the rate is half of the maximal rate, and 7 is the Temperature
in K.

In addition, to calculate the acute thermal optimum (7,
of each urchin population, the following equation was used:

E,xT,

Eh+(k><Th><log(%—l)>

Topl =

Statistical analysis

We used simple linear models to compare the relationship
between thermal history and site-level means and variances
(n=4 sites) of three TPC metrics (Topes E. and b(T,)). We
compared five thermal history metrics from the two months
preceding collections using AICs (Akaike Information
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Criterion), including maximum, mean, minimum, range, and
upper 95th percentile temperature. The upper 95th percentile
temperature always had the lowest AIC scores and, thus, was
used as the independent variable in all models reported in
the results. Normality of residuals was visually inspected
using quantile—quantile plots. All data were analyzed using
R, and data and code are publicly available at https://githu
b.com/njsilbiger/GalapagosUrchins.

Results

Temperature regimes varied substantially among the four
sites during the two months prior to the experiment (Table 1,
Fig. 3). Specifically, the coolest site over the 2-month period,
La Botella, had a mean and upper 95th percentile tempera-
ture of 20.6 and 22.3 °C, respectively, while the warmest
site over the 2-month period, Bartolomé, had a mean and

95th percentile temperature of 22.4 and 24.0 °C. Measured
respiration rates for all individuals and populations dis-
played typical unimodal responses to temperature (Fig. 4).
The thermal performance curves varied substantially both
within (i.e., among-population replicates) and among sites
(Fig. 4). The mean acute thermal optimum (7,) ranged
from 30.3 °C at the site with the coolest 95th percentile
temperature (La Botella) to 33.3 °C at the site with the
warmest 95th percentile temperature (Bartolomé) during
the experimental period. For all populations there was a
strong positive linear relationship between upper 95th per-
centile temperature and mean population T, (P=0.016,
F(2,2)=62.1, R*=0.97, Fig. 5), where the TOpt increased by
1.6+0.2 °C for every degree increase in the 95th percentile
temperature. The mean population rate at a constant temper-
ature, b(T,), decreased by 0.2 +0.04 pmol g~ h™! for every
degree increase in the 95th percentile temperature (P =0.04,
F(2,2)=22.4,R*=0.92). Although F also decreased with the

Table 1 Thermal characteristics

. Site Lat, Long Mean Var Min Max 95th Max
of the four sites (°C) from
which urchin population TPCs La Botella 1.2914° S, 90.4965° W 20.6 2.1 16.1 227 223
were measured for the 2months oo ane 1.2206° S, 90.4226° W 21.8 1.6 162 23.9 23.4
preceding collections
Punta Espinosa 0.2703° S, 91.4358° W 20.6 3.4 15.9 24.9 235
Bartolomé 0.2797° S, 90.5448° W 224 1.0 18.1 24.9 24.0

95th Max = upper 95th percentile temperature (the metric used in the statistical analysis, testing for a cor-
relation between thermal history and the mean and variance for three TPC parameters in Fig. 5)
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Fig.3 In situ temperature at the collection sites for the two months
preceding the experiment. Subset a shows the raw temperature data.
Notice the rapid and extreme subtidal temperature fluctuations com-

monly observed in the Galapagos. Subset b are boxplots of the upper
95™ percentile temperature from each site
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Fig.4 Thermal performance
curves of log (x+ 1) respiration

La Botella

Punta Cormorant

rates (pmol O, g=> h™!) from
urchin populations at differ- 4.0 1 °
ent locations. Top panel shows rY
cooler sites and the bottom o
panel warmer sites (based on
the 95th percentile temperatures
measured at each site for two
months prior to the experiment).
Each dot represents a data

point and the lines represent

the estimated TPC for each
individual of E. galapagensis.
Each graph shows the changes
in the respiration rates at differ-

3.51 4

3.0

2.5

&'
?
\
i 0

~0
~8

A\
00 &
o @0 /0

o /% 0
ene

ent temperatures. Colored-line

regions indicate the temperature
range where respiration data

Punta Espinosa

Bartolomé

was collected. Peaks in the
graphs show the temperature at
which oxygen consumption was
the highest

4.0 1

3.5

Respiration Rates (Log umol O, g‘1 hr‘1)

3.01

2.51

20 25

95th percentile temperature, this effect was not statistically
significant (P =0.07, F(2,2)=13.0, R?= 0.80). Finally, for
all three parameters, variance was considerably greater at
the sites with cooler maximum temperatures and decreased
significantly with increased temperature (7,,: P=0.04,
F(2,2)=26.1, R*=0.93; b(T,): P=0.03, F(2,2)=234.6,
R*=0.95; E: P=0.02, F(2,2)=58.6, R>=0.97; Fig. 5).

Discussion

Our results indicate that local conditions could influence
the thermal sensitivity of pencil urchin populations in the
Galapagos Archipelago. Populations at warmer sites were
more tolerant of high temperatures than cooler site popula-
tions. The T, for the population was 3 °C greater at the
site with the highest short-term 95th percentile temperature
than for the site with the lowest 95th percentile temperature.
There were strong linear relationships between upper 95th
percentile temperature and two TPC parameters [T, and
b(T,), and a non-significant linear trend between tempera-
ture and E (Fig. 5)]. Moreover, the range of the observed
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T, values is similar to the range of upper 95th percentile
temperatures among sites (2.2 °C). The population mean of
temperature-normalized respiration and activation energy
were negatively related to upper 95th percentile temperature,
while the relationship with mean T, was positive. These
results indicate both a shift to the right and a change in the
shape of TPCs at warmer sites.

The urchins in our study were exposed to each tem-
perature treatment for approximately 10 min with only a
short time to acclimatize. Thus, we assessed physiological
responses to acute thermal stress (in the absence of adap-
tation or acclimatization). Individual and population-level
responses to longer term warming (including the sensitivity
rankings) could be very different. However, rapid tempera-
ture changes are common in the near-surface marine envi-
ronments of the Galapagos. Based on the widely perceived
thermal gradients of the region, we expected the thermal
ranking to be (from coolest to warmest): La Botella > Punta
Espinosa > Punta Cormorant > Bartolomé. However, our
2-month measurements suggested a slightly different rank-
ing than predicted: La Botella>Punta Cormorant > Punta
Espinosa> Bartolomé. This was unsurprising as temperature
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patterns in the archipelago are very dynamic and can greatly
change within short periods, even if a classification accord-
ing to the temperature gradients and seasonality of loca-
tions across the islands is generally known and established.
Localized upwelling, tidal bores, and local currents can
cause changes of several degrees Celsius in hours to days
(Fig. 3, Witman et al. 2010). Thus, populations in this envi-
ronment naturally experience harsh daily fluctuations in
water temperatures with little or no time to acclimatize. Our
AIC analysis indicated that the short-term thermal history
(the 95th percentile used for analysis is based on 2 months
prior to the experiment) was a better fit than the longer term
temperature ranking (based on mean temperature). The
results suggest that relatively short-term exposure to local
temperature extremes can influence the thermal sensitivity
of this species, even overriding adaptation to the longer term
conditions.

A better understanding of population responses to warm-
ing of the temperature-dependence of other vital rates (such
as reproduction, larvae mortality, dispersal and growth) is
needed; these other rates could be influenced differently
by temperature than respiration (Pinsky et al. 2019). For

95th Percentile Site Temperature (°C)

example, Sewell and Young (1999) found that thermal
optima for fertilization and early development of the tropi-
cal sea urchin species Echinometra lucunter can occur at
temperatures outside those seen in natural conditions in any
part of the geographical range of the species. This indicates
high thermal resilience of gametes and larvae in compari-
son with the thermal limits of adults. The distribution and
abundance of the pencil urchin E. galapagensis could also
be limited by thermal sensitivity of different rates, such as
growth, spawning, larval settlement, and juvenile survival.

Based on our study design, we were not able to assess
the relative contribution of genetic adaptation (via natural
selection), acclimatization, epigenetic or other mechanisms
in the observed among-population differences in thermal
sensitivity (yet note, this was not the purpose of the study).
We also cannot estimate how long it took for these pop-
ulation-specific traits to develop or how flexible they are.
E. galapagensis have planktonic larvae and the regional
occurrence (Lessios et al. 1999) of the species (including
Cocos Island, Clipperton Island, and all the islands in the
Galdpagos) suggests the potential for long-distance disper-
sal and thus, at least some connectivity among populations.
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Nothing is known about the population genetic structure of
the study species, such as how much genetic connectivity
there is among our study sites or at smaller or larger spatial
scales across the Galapagos Archipelago. Clearly, informa-
tion about these and other related attributes of this function-
ally important species would enable us to better predict its
near-future response to the warming of the region via anthro-
pogenic climate change. That said, the observed among-
population variation in thermal sensitivity (i.e., a range of
3 °C for T,,,) does suggest the urchins may be resistant to
higher temperatures, to a point. The ability to acclimatize to
localized, natural variability is believed to predict the resil-
ience of a species to anthropogenic heating (Somero 2010;
Gunderson and Stillman 2015). And yet, the reduction in
within-population variance for all three TPC characteristics
at the warmest site suggests a reduction in genetic variance
and adaptive potential. In fact, the observed rapid post-T,,,,
decline in performance (i.e., Bartolomé’s TPC graph in
Fig. 4) could mean that those populations are vulnerable to
temperatures above these values, and therefore more sensi-
tive to high temperatures post-T,, (i.e., in the absence of
further adaptation and/or acclimatization) (Schulte et al.
2011). Deutsch et al. (2008) emphasize that the expected
warming in the tropics will likely have the most detrimental
effects for the most warmth-adapted species living close to
their upper thermal limits. The fate of the most heat-tolerant
ectotherm species relies on the proximity of the acute lethal
temperature of their performance and their maximal habitat
temperature (Somero 2010).

Other indirect effects of heating could negatively affect
this functionally important species. For example, reductions
in its prey species (primarily Ulva spp.) due to warming,
reduced upwelling and nutrient flux, or other physico—chem-
ical changes. Echinoderm species are generally susceptible
to disease outbreaks, including warming-induced epizootics
(Staehli et al. 2009; Burge et al. 2014; Sweet et al. 2016;
Harvell et al. 2019). Finally, ocean heating could increase
pencil urchin metabolism (and metabolic demand) to the
point where its prey base becomes so depleted that urchin
populations become food limited and decline in density. Pen-
cil urchin populations and many other species in this com-
plex marine system are vulnerable to sea-level rise, shifts in
ENSO amplitude and frequency, changes in mass transport
of surface waters, acidification, and other aspects of climate
change affecting the archipelago (Banks et al. 2011). Esti-
mating TPCs for multiple species including representatives
from other functional groups would provide a more complete
assessment of the Galapagos marine ecosystem’s sensitivity
to anthropogenic heating.
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