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Place recognition is naturally informed by the mosaic of sensations we remember from

previously visiting a location and general knowledge of our location in the world. Neurons

in the mammalian brain (specifically in the hippocampus formation) named “place cells”

are thought to reflect this recognition of place and are involved in implementing a

spatial map that can be used for path planning and memory recall. In this research,

we use bat-inspired sonar to mimic how bats might sense objects in the environment

and recognize the views associated with different places. These “echo view cells” may

contribute (along with odometry) to the creation of place cell representations observed

in bats. Although detailed sensory template matching is straightforward, it is quite

unlikely that a flying animal or robot will return to the exact 3-D position and pose

where the original memory was captured. Instead, we strive to recognize views over

extended regions that are many body lengths in size, reducing the number of places to

be remembered for a map. We have successfully demonstrated some of this spatial

invariance by training feed-forward neural networks (traditional neural networks and

spiking neural networks) to recognize 66 distinct places in a laboratory environment

over a limited range of translations and rotations. We further show how the echo view

cells respond between known views and how their outputs can be combined over time

for continuity.
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INTRODUCTION

The hippocampal formation in the mammalian brain is well-known for its population of “place
cells,” a type of neuron that responds when an animal is in a particular place in its environment.
Studies in the rat suggest that these cells use internal odometry signals (allowing the system to
operate in darkness) as well as external sensory cues (allowing the system to recognize places
and correct the odometry system) (O’Keefe, 1976; Jung et al., 1994). In the flying, echolocating
bat, neurons with very similar properties have been found (Ulanovsky and Moss, 2007; Yartsev
et al., 2011; Yartsev and Ulanovsky, 2013; Geva-Sagiv et al., 2015). Unlike rats, bats have the
uncommon ability to perceive the three-dimensional locations of objects by actively emitting
sounds and localizing the reflections (Wohlgemuth et al., 2016), allowing the bat to navigate
where other sensory systems, such as vision, are ineffective. Although the signal processing and
neural mechanisms with which bats recognize places is still largely unknown, modeling this
capability with biologically-plausible sensors and robotics can give us insights into problems that
bats encounter and motivate future behavioral and neurophysiological experiments with bats.
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Although most robotic explorations into mapping and
navigation have focused on variants of the SLAM (simultaneous
localization and mapping) algorithm using light-based sensors
(e.g., computer vision or LIDAR) (Strösslin et al., 2005; Bachelder
andWaxman, 2011) for metrically-accurate maps, little work has
been done exploring how a bat might use sonar to accomplish
the same task. One good example is that of Steckel and Peremans
(2013) that used a biomimetic sonar device on a mobile,
ground robot to navigate and map different office and laboratory
environments, however, the SLAM algorithm used was notmeant
to be a model of a biological system. The work presented here
addresses the question whether place cells can be recognized
over an extended region using only a narrow-band (∼40 kHz)
sonar in a laboratory environment. Unlike the place cells that
signal when the animal is in a particular area (i.e., the “place
field”) based on a combination of odometry and sensory inputs,
we are constructing “echo view cells” that recognize previously
encountered views (i.e., an “echo fingerprint”) based solely on
sonar. Phenomenologically similar to primate “spatial view cells”
that are active when the animal is gazing at a particular set
of objects (over a limited field-of-view), these echo view cells
recognize previously memorized echo patterns. Unlike primate
spatial view cells, however, object range is included in the
pattern and thus the echo view cells fire over a small region of
the environment.

A neural network model was used to implement echo view
recognition that incorporates concepts from machine learning
related to pattern separation and classification. A key aspect of
this investigation is the attempt to bridge the gap from high-
dimensional, low-level, sensory inputs to the more symbolic,
discrete nature of place recognition that is critical to higher-level
cognitive models of path planning (Koul and Horiuchi, 2019). A
key goal is to ensure that the echo view cells respond over a wider
area and not just to a single coordinate in space. One limitation
of the work is that only limited information is available from
the narrowband sonar (typical objects are represented by only
a few echoes) and object recognition was difficult, preventing
a landmark-based approach, as is common for visual place
recognition algorithms. Instead, views were recognized based
solely on the spatiotemporal pattern of echoes allowing the
memorization of views in a variety of environments without prior
training of an object recognition layer. From view recognition,
direction-independent place recognition can be constructed in
convergence with odometric information. Such approaches to
place recognition with sonar have been used (Ollington and
Vamplew, 2004; Vanderelst et al., 2016). One challenge with
sonar is that small changes in the position and angle (particularly
in man-made environments) can produce large changes in the
resulting echo pattern. Multi-path reflections are also sensitive to
positioning. To explore this, data was taken with a large variety
of small changes to the positioning of the sonar.

This work explores two very different neural networks
that can achieve this: a single layer neural network operating
on a recorded echo pattern presented as an image, and a
biologically-realistic, spiking neural network (SNN) presented
with echoes in the time domain to simulate live sonar
signals. In addition to our motivations to ultimately model
and understand the biological implementation of sonar-guided

behavior (mentioned above), this work has applications for
mobile, autonomous robotics. There are many circumstances
when a drone may need to navigate in a dark building for stealth,
through a building filled with smoke, through a forest with dense
fog, or through tunnels filled with dust. Since standard cameras
and LIDAR do not work well in these environments, sonar is a
reasonable alternative or complementary sensor. Sonar has been
shown to be useful for obstacle avoidance (Eliakim et al., 2018).
Currently, the most common use of sonar systems is underwater.
Since the speed of sound is much faster underwater, the effective
range and efficiency of sonar is greatly increased underwater.
Current laser and radar systems consume much more energy
than a sonar system; this would reduce the robot’s field time and
potential range (Jiang et al., 2010). The weight and cost of radar
systems can also reduce their feasibility of use. One can imagine
a lightweight, flying drone that can quickly maneuver through a
dark house and provide a map based more on sensory features
and not metrical details, closer to the way humans communicate
with each other.

MATERIALS AND METHODS

Hardware
The sonar system used in the work presented here consists of
three custom-modified MaxBotix R© sonar transducers, similar
to the MaxBotix XL-MaxSonar R©-EZTM commercial series of
sonar range finders, a custom PIC R© 18F2620 microcontroller-
based sonar controller board, a Futaba S148 hobby servo,
and a computer interface to both record and display echo
signals and control the servo to orient the sonar (shown
in Figure 1). The transducers act as both a speaker and a
microphone. They resonate at 40 kHz and will only detect
signals near this frequency. The custom sonar boards report a
logarithmically-compressed envelope signal as an analog voltage.
This compression allows the output to report the very wide
dynamic range of amplitudes that occurs with sonar without
saturating. The maximum working range of this sonar is 7.65m.
These transducers were custom modified to provide more
control over the timing and duration of the outgoing pulse, a
louder outgoing pulse, and access to a log-compressed envelope
of the transducer response. All these functionalities are now
commercially available through MaxBotix. The transducers are
placed in a 3-D printed mount (shown in Figure 2) on the
servo motor. In this demonstration system, the transducers
transmit and receive over a cone of about +/– 30 degrees
(−6 dB beam width), so the transducers are held facing 30
degrees apart to ensure sufficient overlap and coverage of the
area in front of the transducers for binaural localization based
on interaural level differences. The ultrasonic pulse trigger-
timing and analog-to-digital (A/D) conversion is done by the
microcontroller. Themajority of the data processing is performed
on the microcontroller to ensure a quick response.

The sonar system executes four steps: pulsing, sampling,
processing, and communicating. A short duration pulse voltage
(∼0.25ms) is supplied to the transducer, however, due to the
resonant quality of the transducer, the emitted sound has a ring-
up and ring-down period, resulting in an extended pulse duration
of about 1ms. Following the pulse, the transmitting transducer

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2020 | Volume 14 | Article 567991

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 1 | The flow of signals through the hardware. The microcontroller sends pulse voltages to the transducers and reads the acoustic voltage off the transducers.

This data is sent to Python (van Rossum, 1995) on a PC, which also controls the servo motor.

continues to ring for several milliseconds. Echoes can be detected
during this ringing period once the amplitude has diminished
sufficiently, so a short two millisecond delay is incorporated
before sampling begins. The log-compressed envelope voltage
is sampled every 8th of a millisecond, a sampling frequency of
8 kHz. An object is detected when the temporal derivative of the
envelope switches from positive to negative, denoting a peak.
The range is determined by finding the time when the envelope
reaches its peak value. Envelope voltages on all transducers are
recorded at the time of the peak. Our sampling time of an 8th of
a millisecond gives us a range resolution of 2.14 cm or 0.84 in.
We sample for 255 time bins, giving us a range of 5.5m or 18 ft.
Following the sampling period, echo data is transferred via serial
interface to a PC and all further processing on the information
is performed on the PC. An example of this data is shown in
Figure 3.

The code used on our microcontroller is available at https://
github.com/jacob-isbell/sonarPIC/blob/master/PICcode.asm.

Dataset Description
Data was recorded in our laboratory and the adjoining hallway.
66 different recording locations were spread throughout this
environment. Locations were spaced 2 feet apart where possible,
forming a grid-like placement (Figure 4A). No attempt wasmade

to restructure the objects in the lab to accommodate the sensing;
things were left as they were. No objects were moved during the
recording at different locations.

To capture a broader view, a variety of data was collected at
different translations and rotations within each square at each
of the 66 locations. Across 1 square foot, data was recorded
at 25 different translations inside a 5 × 5 square grid with a
3 inch (7.6 cm) spacing. At each of these 25 points, data was
recorded at 11 different angles, ranging from −5 to +5 degrees
in 1 degree increments (Figures 4B,C). Ten samples were taken
at each angle. In total, each square location has: (25 translations)
× (11 angles) × (10 repetitions) = 2,750 sonar images per
location. With 66 locations, the full data set consists of 181,500
sonar images.

Echo Fingerprint Recognition
Two different neural network architectures were tested for their
ability to recognize which of the 66 locations a sonar pulse
came from. A conventional, single layer network was used and
a biologically-plausible, temporally-based architecture called the
Synaptic Kernel Inverse Method (SKIM) (Tapson et al., 2013)
was used. The inputs and outputs of both networks were similar.
The inputs consisted of one sonar image. 255 range bins were
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FIGURE 2 | The schematic used for the 3-D printing of the sonar transducer

holder. The sonar system consists of three sonar transducers oriented with 30

degree angular separation mounted on a rotating servo motor (not shown).

used with data from the 3 transducers, resulting in a 765-
dimensional input vector. The envelope amplitude data was
supplied to the network. If there was no echo in a time bin,
the value was kept as zero. The resolution of each range bin
was 2.14 cm or 0.84 in. Each sonar image was L2 normalized
before being fed to the network. While normalizing means the
network doesn’t have direct access to the echo magnitudes,
the relative magnitude between echoes contains more reliable
and reproducible information, such as the magnitude difference
between transducers which relates to echo direction. Each output
corresponds to a different location, so with 66 locations there are
66 outputs. In both networks, a form of supervised learning was
used to train the network.

Although the angle of an arriving echo could be calculated
using the magnitude difference between the transducers (e.g.,
using interaural level differences) to reduce the dimensionality,

FIGURE 3 | A comparison of the raw transducer data and the processing

done on the microcontroller. In the top graph (A), the transducer voltage is

shown as it produces the outgoing pulse and receives the echoes. Only peak

magnitude and time of echo peak are processed and recorded, shown in the

bottom graph (B).

we chose to retain the raw values and let the network learning
rules determine how this information would be used.

Single Layer Feedforward Network
In this experiment, a very simple neural network was used
to process the data. The network consisted of the input layer
fully connected by weights to the output layer (Figure 5). The
non-linear logistic function was applied to the summation of
weighted inputs to provide the output. Learning was performed
by a modified version of gradient descent that uses an adaptive
momentum term to speed learning, called the AdamOptimizer
algorithm (Kingma and Ba, 2014). This was implemented in
the machine-learning software package, TensorFlow (Abadi
et al., 2015) on Google’s Colaboratory cloud computing platform
(Bisong, 2019), allowing us to speed up the training with free use
of their GPUs.

In this task, the single layer network performed as effectively
as multiple-layer networks and its simplicity led to an easier
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FIGURE 4 | The top image (A) shows a map of places data was recorded. Every dot is a recorded place. Locations and objects are approximately to scale. Bottom

left (B) shows how a variety of data was recorded at different translations and rotations at each point in the lab. Eleven angles were recorded along five rows and five

columns giving 275 recordings at each place. Bottom right (C) shows explicitly how data was recorded at each place, capturing a large variety of data throughout the

lab.
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FIGURE 5 | The network architecture for the single layer network. There is one layer of fully connected weights from the inputs to the outputs. Each output has a

logistic non-linearity applied to it to maintain outputs between 0 and 1.

observation and analysis of how the network was solving
this problem.

Synaptic Kernel Inverse Method (SKIM)
SKIM is a multi-layer network architecture that combines the
benefits of Extreme Learning Machines (ELM) but with spiking
neuron (temporal) representations. Sonar lends itself to being
represented in the spiking domain because echoes themselves
are inherently time-based signals and typically pulsatile in
nature. The temporal nature of this network suggests a real-time
implementation using spiking neuromorphic hardware (Moradi
et al., 2017). Figure 6 illustrates the SKIM network architecture
(Tapson et al., 2013).

The first layer of weights in the SKIM network consists of
fixed, random weights connecting the inputs to the hidden layer.
These weights can be positive or negative. The fanout here is

usually 10–20 (or a hidden layer that has 10–20 times more
neurons than the input layer), resulting in a very large hidden
layer. This is typical of an ELM approach, which aims to expand
the dimensionality of the input data to make pattern separation
easier (Huang et al., 2011). There is also a non-linearity applied
at each hidden unit. Every hidden unit has a randomly selected
temporal synaptic kernel associated with it that consists of a time
delayed alpha function. If A is the activation of the unit, t is the
time, 1T is the delay, and τ the width of the alpha function, the
equation is:

f(t) = tanh(A
t− 1T

τ
e−

t−1T
τ )

where different hidden units have different delays (1T) and
widths of the alpha function (τ ) (Figure 7). The time delay
is essential to recognizing patterns that occur over time,
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FIGURE 6 | Adapted from Tapson et al. (2013). The architecture for the SKIM neural network. The top of the figure shows what a corresponding biological system

would look like, while the bottom shows this network from a computational perspective. Inputs from the presynaptic neurons are summed onto the dendrites of the

postsynaptic neurons. Each dendrite has an associated non-linear, synaptic kernel [F(g,t)] with a time constant (τ ), and dendritic delay (1T). The dendritic activity is

summed onto the soma and creates a spiking output when above a threshold. The weights from the input layer to the hidden layer are static (wxy); the linear

connection from the hidden layer to the output has weights that are trained (w
(2)
yz ).

and gives the network a form of memory, a way to be
influenced by data in the past. A compressive non-linearity
(the hyperbolic tangent, tanh) is applied as well. These hidden
units create a high-dimensional, non-linear transformation of
the input data that has occurred recently in time. This allows
for complex, temporal patterns to be more easily recognized
and separated.

The next layer of this network is linear. There are a set
of fully-connected weights from the hidden layer units to
the output. These are the weights that are modified during
learning. Since this is the only dynamic part of the network, the
learning is simplified. As this is a linear transformation with a
known hidden-unit activation and a known output (since we
are performing supervised learning), the weights can be solved
for analytically.

IfM is the number of hidden units and k is the number of time
steps in our dataset, we obtain amatrix describing the hidden unit
activation over time, H ε R Mxk. If N is the number of outputs,
we have the output activation matrix, Y ε R Nxk. The weights
connecting the two layers will be W ε R NxM, such that WA =

Y. To find the weights we simply have to solve for W, giving W
= YA+, where A+ can be found by taking the Moore-Penrose
pseudoinverse of A.

To solve this analytically, we use the Online PseudoInverse
Update Method (OPIUM) (Tapson and van Schaik,
2013). This is an application of Greville’s method,
which shows an incremental solution to finding the
pseudoinverse, but is adapted and simplified for this
specific problem to reduce the needed computation without
losing accuracy.
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FIGURE 7 | Some example synaptic kernels. Two parameters are changed, the delay for the onset of the function (1T), and the width of the alpha function (τ ). The

x-axis corresponds to the variable t of this function.

FIGURE 8 | Network accuracy as training progresses. Each algorithm iteration takes ∼0.5 s, and the network takes about 1 h to train.

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2020 | Volume 14 | Article 567991

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 9 | Perceptive fields of the output neurons in the single layer network (A,B). It’s clear that in some spots these perceptive fields split the left and right signals.

This gives the network the ability to discriminate direction.

RESULTS

Single Layer Network
This network was trained to predict which of the 66 locations a
sonar pattern came from. The recorded sonar dataset was split
into three parts, 80% training data, 10% testing data, and 10%
validation data. The data was randomly shuffled across locations
and positions within locations before being split into these three
groups. Our accuracy of identifying the location of a particular
pattern from the validation data set reached 97.5%. A graph of
the accuracy across the training regimen is shown in Figure 8.

Since this network is very simple, it is easy to understand

how the weights can be interpreted. Each output neuron has

a weight corresponding to every input. These can be thought

of as the perceptive field of this output neuron. By looking at

which inputs cause the output to activate, we can get an idea

of the sonar image preferred by each output neuron. Figure 9

shows some example weights from the network. One noticeable

pattern in these weights is the splitting that occurs between the

right and left transducers; there are clear ranges where one will
be positive and the other will be negative. Functionally, this is

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2020 | Volume 14 | Article 567991

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Isbell and Horiuchi Echo View Cells From Sonar

FIGURE 10 | Perceptive fields of the output neurons in the single layer network. These (A,B) are from the hallway data. These weights were of lower amplitude, and all

transducers were correlated with one another.

the network learning to look for objects at a certain angular
orientation. Another clear pattern that arose in the network
weights; the weights from the hallway seemed to be synchronized
across transducers (Figure 10). These weights were also lower in
amplitude than those from inside the lab.

Figures 11A–D shows how the different view cells responded
across the whole map. It is clear that the network learned
very rigid boundaries where it was trained to do so. Although
this demonstrates a successfully trained network, the sharp
distinctions between neighboring locations is not what is seen in
mammalian place cells.

SKIM
In the SKIM network trained with OPIUM, we achieved up to
93.5% accuracy on our dataset. The choice of time constants
(τ , the alpha function widths) and delays (1T) for the synaptic
kernels was very important. The time constants determine the
temporal precision the network can observe; large time constants
lead to less temporal precision. Long time constants provide
tolerance to temporal jitter between patterns but result in a loss
of temporal discrimination when needed. The time constants
used for this network covered one to five time bins, with τ ′s
randomly chosen between 0.5 and 1.5, keeping a relatively narrow
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FIGURE 11 | An overhead view of the different echo view fields created by the two networks. This map is the same as shown in the top of Figure 4. Each plot

represents a different echo view cell’s activation across the entire map. The top plots (A–D) show the original network for four different views, and the plots (E–H)

shows the single layer network with widened labels, resulting in neighboring views being activated. Plots (I–P) show the view activations for the SKIM network and the

widened SKIM network. It is important to note that only areas in the training dataset are displayed. The 1 foot squares in between each of the locations have been

omitted (shown explicitly in Figure 4C).

and precise response. The choice of delays determined which
temporal part of the data is relevant (i.e., beginning, middle,
end of the pulse). The delays were distributed randomly over
the length of the sonar pulse to ensure that all the echoes

had an equal probability of activating the network, with 1T
′
s

randomly chosen between 0 and 255. The network was trained
to deliver an output at the end of a sonar image (t = 255).
Accuracy was determined by taking the output neuron with the
highest activation at t= 255. Figures 11I–L shows how the SKIM
view cells responded across the whole map. The response is
very similar to the single layer network with rigid boundaries
between views.

Recognition Outside of Training Data
Outside of the locations (squares) where data was collected, both
networks does not predictably recognize that it is near a known
location. The accuracy was high when in an area it was trained on,
but recognition drops quickly even inches away. Figures 12A–C
shows this for the single layer network; Figures 12G–I shows this
for the SKIM network. To spread the activation of the network
to neighboring areas outside the training area, network training
was changed. Instead of an output neuron being trained to 1.0
in its corresponding location and all other neurons trained to
0.0, neighboring neurons were trained to respond to neighboring
views. A Gaussian function was used, giving adjacent views
an activation of 0.5 and diagonal views and activation of 0.38.

After this round of training the accuracy of the single layer
network dropped to 92.3%, while the accuracy of the SKIM
network remained stable at 93.4%. Figures 12D–F,J–L show the
results of this new training for the single layer network and
SKIM network, respectively. The new activation pattern of the
network is now spread through areas that were not explicitly
trained on, and qualitatively looked more like biological place
fields. Figures 11E–H,M–P also shows how these new view cells
respond across the whole map. There is now more noticeable
activation in areas that were not trained on. The cells have
become much more broadly tuned. We call this new network
the “widened” network, in contrast to the “original” network.
The single layer network and the SKIM network responded very
similarly in all the cases presented.

DISCUSSION

Functionality Test Along a Path
To demonstrate how this system might be used in practice,
sonar data was recorded along a path consisting of points both
inside and outside of the training data. The single layer network’s
response to this data shows how views can be recognized along
the entirety of this path (Figure 13).

The widened network, which allows multiple view neurons to
be active at once, creates a broader, more spatially-continuous
response when compared with the original network. Less reliance
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FIGURE 12 | Each graph presents an overhead view of a location. Inside the white square is where training data was recorded; outside the white square is an adjacent

area that was not used for the training of the networks. Along the x axis, eleven adjacent pixels show the eleven angles for each of the 25 (5 × 5) spatial positions

inside the white box. Pixels along the y axis are spaced evenly. These view neuron activation patterns are generated by the corresponding output neuron from the

neural network. The top plots (A–C) show how the single layer network responds around these locations, showing sparse activation outside the trained square and

very high activation inside the square. Plots (D–F) show the single layer network trained to respond to neighboring views. Plots (G–L) show the same information, but

for the SKIM network and the widened SKIM network. The widened networks show a much more spread out activation in the non-trained area outside the square.

on a single view neuron activating provides a more stable
and nuanced interpretation of location. In situations where the
original network fails to activate the correct view neuron, the
widened network is more likely to alleviate the situation by
activation of other nearby view neurons.

Leaky integration was also used to help smooth out the
network response over time; each activation is given an
exponentially decreasing tail over time. With At as the activation

for a position at time t, and Lt as the activation for a
position after leaky integration is applied, the equation used
is Lt=αAt+ (1− α) Lt−1. In this example, one view is about
10 movements wide. Using a leaky integration constant (α)
of 5/9 allows for activation to be maintained at %10 of its
original value 10 time steps in the future, allowing persistent
activation while moving across a position at the cost of a slight
lag. An equivalent way to calculate this would be to have each
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FIGURE 13 | Panel (A) shows the path the sonar system moves through, in red. There are 39 positions total along this path, each position 3 inches from the last. The

portion of the path within the yellow squares is contained in the training set for the networks (5 of the path positions). The rest of the path was not used for the training

of the networks. Panels (B–D) show echo view field responses on the path. The red dot represents the position of the sonar. The activations of the echo view cells are

shown in their corresponding location, seen as colored squares on the plots. The single layer network was trained to have only one view cell active at a time. The

widened network allows for more cells to be active at once, improving accuracy in between trained views. The leaky integration maintains a more stable activation due

to its use of the past activations in the path.

activation exponentially decaying over time; the corresponding
time constant would be 4.5. In some locations on the path,
the sonar is not able to correctly recognize the view. For this
example, integration over time gives the network more stability
and accuracy. Supplementary videos show the activations of the
original network, the widened network, and the leaky integration
applied to the widened network similar to Figure 13, but over the
entire path.

The widened network with leaky integration gives consistently
accurate results over the whole path. The echo view fields
activated are generally smooth over space and decaying activation
can be seen multiple locations away. To evaluate the effectiveness
of these echo view fields, we calculated the activity-weighted
centroid at each point on the path, giving us an average point
of each field to compare with the actual position of the sonar.
The distance between the activity-weighted centroid and the
actual position was used to calculate a mean error. Across 117
steps along three different paths, the original network’s average
error was 28.6 inches (72.6 cm), the widened network’s average
error was 18.6 inches (47.2 cm), and the widened network with
leaky integration’s average error was 16.3 inches (41.4 cm). This
system successfully recognized locations that are not contained

in the training set; the network can generalize and recognize
many nearby views. When this fails, leaky integration allows past
information to maintain a stable sense of place for the system.

Context/Previous Studies
These results complement previous studies that have used sonar
to aid in place recognition. A large inspiration for our project
was BatSLAM (Steckel and Peremans, 2013), a biomimetic sonar
system that used odometry and sonar to map an area of their
laboratory. Because odometry is quite inaccurate due to wheel
slippage and other errors, such as compounding inaccuracies
in estimating direction and position, sonar was used to provide
error correction. Their system first drew paths of motion based
solely on odometry. When the sonar-based recognition system
recognized the current location from a prior visit, it updated
the odometry system to match its memory and propagated the
correction to earlier time steps for consistency. This was sufficient
to correctly create a map of the area with little error. While this
approach showed that sonar was able to aid place recognition,
it did not do so in a biologically-plausible manner. Over the
robot’s path, 6,000 sonar measurements were taken, and 3,300
different places were established. While this system provides a
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method to maintain an estimate of the robot’s position, it does
not seem to reflect what little is known about how biological
memories of the environment. Memorizing 3,300 different places
all within one environment is computationally and memory-
intensive; it is not a biologically-plausible algorithm. While our
study attempted to show that odometry is not needed for view
recognition, incorporating odometric information can provide a
strong framework for unsupervisedmapping. For example, a new
“place” can be created when a system, using odometry, estimates
it is a certain distance from any other “place.”

Another recent paper explored the idea of recognizing place
with sonar in three different locations (Vanderelst et al., 2016).
Using a very precise sonar sensor they measured the echo
response at positions over a wide range of angles and along a
linear, 10m long path. They collected an enormous amount of
data (over 20,000 echo traces) and evaluated whether the echoes
varied smoothly over angle and distance as well as whether
unique locations could be classified. Most of the data came
from angular variation; large translational steps contrast the high
angular resolution. They also found places that were difficult to
distinguish between, mainly in open areas with few objects to
sense, but concluded that sonar is enough to recognize most
locations. When they were comparing different positions along
a linear path, they compared the same precise angle (0.1 degree
error) from the different positions. This is much more precise
than an animal can hope to achieve, in reality both angle and
position will be changing at the same time. We have shown in
this study how sensitive an echo signature can be to changes in
angle; we expect place recognition to be tolerant to moderate
changes in the sensing direction. Our study can complement this
one by providing a wider, two-dimensional range of positions
for comparison as well as removing the need for very precise
angular measurements.

In our study, all views were looking in the same direction. A
network that could respond to views in different directions but
at the same general location would be a step toward modeling
a more general place cell. This could be modeled using an
additional layer of a neural network. We have shown that
different views can be separately recognized in a single layer
network, another layer would be able to select which views
correspond to the same place. This could be as simple as an “or”
function that allows a view from any direction to activate the
place cell.

Single Frequency vs. Broadband
One important aspect of the sonar currently used in our system
that is not biologically-realistic is the use of a single frequency
(40 kHz). Bats use a broadband sonar pulse that provides
much richer echo signatures with spectral content that likely
contributes to object characterization that is not possible with our
sonar (Mogdans and Schnitzler, 1990). Even with this limitation,
this study shows that place field generation is still possible
knowing only object range (inferred by the peak sound pressure
on the three transducer channels) and echo magnitude. Different
objects with multiple close surfaces can also produce echoes with
different durations. With a broadband sonar sensor, it may be
possible to significantly improve the size and reliability of the
place fields.

CONCLUSION

We have presented a robotic sonar system that uses ultrasonic
transducers to mimic bat echolocation and have demonstrated
two different networks that can recognize sonar views over a
range of angles and offsets (“echo view fields”), with one network
showing that this can be done in a biologically plausible manner.
This view-based approach that does not require the identification
of specific objects or explicit use of landmarks. The echo view
cells produce “reasonable” responses outside of places where
training data was collected and has the potential to be integrated
into a larger system to model bat hippocampal place cells and
spatial mapping.
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the widened network, which maintains a more stable activation due to its use of

the past activations in the path.
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