
A Statistical Perspective on Discovering Functional
Dependencies in Noisy Data

Yunjia Zhang
yunjia@cs.wisc.edu

UW-Madison

Zhihan Guo
zhihan@cs.wisc.edu

UW-Madison

Theodoros Rekatsinas
thodrek@cs.wisc.edu

UW-Madison
ABSTRACT
We study the problem of discovering functional dependencies
(FD) from a noisy data set. We adopt a statistical perspective
and draw connections between FD discovery and structure
learning in probabilistic graphical models. We show that
discovering FDs from a noisy data set is equivalent to learn-
ing the structure of a model over binary random variables,
where each random variable corresponds to a functional of
the data set attributes. We build upon this observation to
introduce FDX a conceptually simple framework in which
learning functional dependencies corresponds to solving a
sparse regression problem. We show that FDX can recover
true functional dependencies across a diverse array of real-
world and synthetic data sets, even in the presence of noisy
or missing data. We find that FDX scales to large data in-
stances with millions of tuples and hundreds of attributes
while it yields an average F1 improvement of 2× against
state-of-the-art FD discovery methods.

KEYWORDS
Functional Dependencies; Structure Learning
ACM Reference Format:
Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A
Statistical Perspective on Discovering Functional Dependencies in
Noisy Data. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20), June 14–19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3318464.3389749

1 INTRODUCTION
Functional dependencies (FDs) are an integral part of data
management. They are used in database normalization to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389749

reduce data redundancy and improve data integrity [15], and
are critical for query optimization [20, 26, 28]. FDs are also
helpful in data preparation tasks, such as data profiling and
data cleaning [9, 40], and can also help guide feature engi-
neering in machine learning pipelines [16]. Unfortunately,
FDs are typically unknown and significant effort and domain
expertise are required to identify them.
Many works have focused on automating FD discovery.

Given a data instance, works from the database commu-
nity [19, 25, 33] aim to enumerate all constraints that syn-
tactically correspond to FDs and are not violated in the
input data set (or are violated with some tolerance to ac-
commodate for noisy data). On the other hand, data mining
works [30, 31, 39] propose using information theoretic mea-
sures to identify FDs. Unfortunately, both approaches are
limited either because they discover spurious constraints or
because they do not scale to data sets with many attributes
(see Section 5). The reason is that existing methods are by
design prone to discover complex constraints, a behavior
that can be formally explained if one views FD discovery
via an information theoretic lens (see Section 2). The main
problem is that existing solutions are not designed to discover a
parsimonious collection of FDs which is interpretable and can
be readily used in downstream applications. To address this
problem, we adopt a statistical perspective of FD discovery
and propose an FD discovery solution that is scalable and its
output is interpretable without any tedious fine tuning.

Challenges. Inferring FDs from data observations poses
many challenges. First, we need to identify an appropriate
attribute order that captures the directionality of FDs in the
data. This leads to a computational complexity that is expo-
nential in the number of attributes in a data set. To address
the exponential cost, existing methods rely on pruning to
search over the lattice of attribute combinations. Pruning
can either impose constraints on the number of attributes
that participate in a constraint or can leverage information
theoretic measures to filter constraints [25, 30]. Despite the
use of pruning many existing methods are shown to exhibit
poor scalability as the number of columns increases [25, 30].
Second, FDs capture deterministic relations between at-

tributes. However, in real-world data sets missing or erro-
neous values introduce uncertainty to these relations. Noise

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

861

https://doi.org/10.1145/3318464.3389749
https://doi.org/10.1145/3318464.3389749
https://doi.org/10.1145/3318464.3389749

poses a challenge as it can lead to the discovery of spurious
FDs or to low recall with respect to the true FDs in a data
set. To deal with missing values and erroneous data, exist-
ing FD discovery methods focus on identifying approximate
FDs, i.e., dependencies that hold for a portion a given data
set. To identify approximate FDs, existing methods either
limit their search over clean subsets of the data [34], which
requires solving the expensive problem of error detection, or
employ a combination of sampling methods assuming error
models with strong biases such as random noise [25, 35].
These methods can be robust to noisy data. However, their
performance, in terms of runtime and accuracy, is sensitive
to factors such as sample sizes, prior assumptions on error
rates, and the amount of records available in the input data
set. This makes these methods hard to tune for data sets with
varying number of attributes, records, and errors.

Finally, most dependency measures used in FD discov-
ery, such as co-occurrence counts [25] or criteria based on
mutual information [5] promote complex dependency struc-
tures [30]. The use of such measures leads to the discovery of
spurious FDs in which the determinant set contains a large
number of attributes. As we discuss later in our paper, this
overfitting behavior stems directly by the use of measures
such as entropy to measure dependencies across columns.
Discovering large sets of FDs makes it hard for humans
to interpret and validate the correctness of the discovered
constraints. To avoid overfitting to spurious FDs existing
methods rely on post-processing procedures to simplify the
structure of discovered FDs or ranking based solutions. The
most common approach is to identify minimal FDs [34]. An
FD X → Y is said to be minimal if no subset of X determines
Y . In many cases, this criterion is also integrated with search
over the set of possible FDs for efficient pruning of the search
space [25, 35]. Minimality can be effective, however, it does
not guarantee that the set of discovered FDs will be parsimo-
nious. As reported by Kruse et al., [25], hundreds of FDs for
data sets with only tens of attributes.

Our Contributions. We propose FDX, a framework that
relies on structure learning [24] to solve FD discovery. FDX
leverages the strong dependencies that FDs introduce among
attributes. We introduce a structured probabilistic model to
capture these dependencies, and show that discovering FDs
is equivalent to learning the structure of this model. A key
contribution in our work is to model the distribution that FDs
impose over pairs of records instead of the joint distribution
over the attribute-values of the input data set. This approach
is related to recent results on robust covariance estimation
in the presence of corrupted data [6]. In summary, we are
the first to use structure learning for principled, robust, easy-
to-operationalize, and state-of-the-art FD-discovery, and our

key technical contribution is to take the difference between
tuple pairs for more robust and accurate structure learning.
FDX’s model has one binary random variable for each

attribute in the input data set and expresses correlations
amongst random variables via a graph that relates random
variables in a linear way. This linear model is inspired by
standard results in the probabilistic modeling literature (see
Section 4). We leverage linear dependencies to recover the
FDs present in a data set. Given a noisy data set, FDX pro-
ceeds in two steps: First, it estimates the undirected form of
the graph that corresponds to the FD model of the input data
set. This is done by estimating the inverse covariance matrix
of the joint distribution of the random variables that corre-
spond to our FD model. Second, our FD discovery method
finds a factorization of the inverse covariance matrix that
imposes a sparse linear structure on the FD model, and thus,
allows us to obtain parsimonious FDs.

We present an extensive experimental evaluation of FDX.
First, we compare our method against state-of-the-art meth-
ods from both the database and data mining literature over
a diverse array of real-world and synthetic data sets with
varying number of attributes, domain sizes, records, and
amount of errors. We find that FDX scales to large data in-
stances with hundreds of attributes and yields an average
F1 improvement in discovering true FDs of more than 2×
compared to competing methods.

We also examine the effectiveness of FDX on downstream
data preparation tasks. Specifically, we use FDX to profile
real-world data sets and demonstrate how the dependencies
that FDX discovers can (1) provide users with insights on the
performance of automated data cleaning tools on the input
data, and (2) can help users identify important features for
predictive tasks associated with the input data. FDX is al-
ready deployed in several industrial use cases related to data
profiling, including use cases in a major insurance company.

Outline. In Section 2, we discuss necessary background.
In Section 3, we formalize the problem of FD discovery and
provide an overview of FDX. In Section 4, we introduce the
probabilistic model at the core of FDX and the structure
learning method we use to infer its structure. In Section 5,
we present the experimental evaluation of FDX. Finally, in
Section 6 we discuss related work and conclude in Section 7.

2 BACKGROUND AND PRELIMINARIES
We review background material and introduce notation rel-
evant to the problem we study in this paper. The topics
discussed in this section aim to help the reader understand
fundamental limitations of prior FD discovery works and
basic concepts relevant to our proposed solution.

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

862

2.1 Functional Dependencies
We review the concept of FDs and related probabilistic inter-
pretations adopted by prior works. We consider a data set D
with a relational schema R. An FDX→ Y is a statement over
the set of attributes X ⊆ R and an attribute Y ∈ R denoting
that an assignment to X uniquely determines the value of
Y [15]. We consider ti [Y] to be the value of tuple ti ∈ D for
attribute Y ; following a constraint-based interpretation, the
FD X → Y holds iff for all pairs of tuples ti , tj ∈ D we have
that if

∧
A∈X ti [A] = tj [A] then ti [Y] = tj [Y]. A functional

dependency X→ Y is minimal if no subset of X determines
Y in a given data set, and it is non-trivial if Y < X.

Under the above constraint-based interpretation, to dis-
cover all FDs in a data set, it suffices to discover all minimal,
non-trivial FDs. This interpretation assumes a closed-world
and aims to find all syntactically valid FDs that hold in D.
This constraint-based interpretation is adopted by several
prior works [34], and as we discussed in Section 1 leads to
the discovery of large numbers of FDs, i.e., overfitting. In ad-
dition, the interpretation of FDs as hard constraints leads to
FD discovery solutions that are not robust to noisy data [25].

To address these limitations, a probabilistic interpretation
of FDs can be adopted. Let each attribute A ∈ R have a
domain V (A) and V (X) be the domain of a set of attributes
X = {A1,A2, . . . ,Ak } ⊆ R defined asV (X) = V (A1)×V (A2)×
· · · ×V (Ak). Also, assume that every instance D of R is as-
sociated with a probability density fR (D) such that these
densities form a valid probability distribution PR . Given the
distribution PR , we say that an FD X→ Y , with X ⊆ R and
Y ∈ R, holds if there is a function ϕ : V (X) → V (Y) with:

∀x ∈ V (X) : PR (Y = y |X = x) =

{
1 − ϵ, when y = ϕ(x)
ϵ, otherwise

(1)

with ϵ being a small constant.
The above condition allows an FD to hold for most tuples

allowing some violations. This equation captures the essence
of approximate FDs used in multiple works [3, 19, 20, 25, 30].
Two core approaches are adopted in these works to discover
approximate dependencies that satisfy:
(1) Use likelihood-based measures to find groups of attributes
that satisfy Equation 1 [3, 19, 20, 25]. Typically these methods
compute the approximate distribution (and likelihood) by
considering co-occurrence counts between values of (X,Y)
and normalizing those by counts of values of X [3, 20, 25].
For example, the likelihood of Equation 1 being satisfied can
be estimated by aggregating the ratiosCount(x ,y)/Count(x)
for all values x in a finite instance (sample) D of R [3]. A
likelihood of 1.0 means that the Equation 1 is satisfied.
(2) Rely on information theoretic measures [30] by consid-
ering the ratio F (X,Y) = H (Y)−H (Y |X)

H (Y) of the mutual infor-
mation H (Y) − H (Y |X) between Y and X (where H (Y |X) =

∑
(x,y) P(X,Y) log P(Y |X) is the conditional entropy ofY given

X) and the entropy H (Y) of Y . FDs satisfy that the ratio
F (X,Y) is close to 1.0. Similar to the aforementioned ap-
proaches, these approaches require estimating the entropy
H (Y) and conditional entropy H (Y |X) from a finite instance
(sample) D of R by computing empirical co-occurrences
across assignments of X and Y .
Both above approaches have a fundamental flaw: given

a finite sample of tuples, as the number of attributes in X
increases, it more likely that the empirical ratio P̂R (x|y) =
|(x,y)|/|x| is 1.0, leading both aforementioned approaches to
determine that Equation 1 is satisfied 1. This behavior leads
to overfitting to spurious dependencies and the discovery
of complex (dense) structures across attributes. Intuitively,
methods that rely on co-occurrence statistics or entropy-
based measures capture marginal dependencies across at-
tributes and not true conditional independencies as those
implied by Equation 1 [24]. For the above reason, depen-
dency discovery works that rely on the above techniques
either employ filtering-based heuristics [3, 20, 25] or propose
complex estimators [21, 30] to counteract overfitting.

2.2 Learning Parsimonious Structures
We also adopt a probabilistic interpretation of FDs but build
upon structure learning methods in probabilistic graphical
models [24] that directly discover conditional independen-
cies to alleviate the overfitting problem. Graphical models
are represented by a graphG where the nodes correspond to
random variables and the absence of edges between nodes
represent conditional independencies of variables. For exam-
ple, a collection of independent variables corresponds to a
collection of disconnected nodes, while a group of dependent
variables may correspond to a clique [24].

To avoid overfitting, we need to learn graph structures
that encode simple or low-dimensional distributions, i.e., the
graph representing conditional independencies is sparse [14].
In fact, it was recently shown that one can provably recover
the true dependency structure governing a data set by learn-
ing the sparsest possible conditional independencies that
explain the data [38]. This property motivates our objective
in this work of learning parsimonious models.
It is a standard result in statistical learning that one can

learn the conditional independencies of a structured distri-
bution by identifying the non-zero entries in the inverse
inverse covariance matrix (a.k.a. precision matrix) Θ = Σ−1

of the data. The conditional dependencies amongst random
variables are captured by the non-zero off-diagonal entries
of Θ [24], and hence, zero off-diagonal entries in Θ represent
conditional independencies amongst random variables.

1For information theoretic approaches, as P (X |Y) goes to 1.0, the condition
entropy H (Y |X) will be zero and F (X, Y) will be one.

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

863

One can learn the true conditional dependencies for a
distribution by obtaining a sparse estimate of the inverse
covariance matrix Θ from the observed data sample [47].
Many techniques have been proposed to obtain a sparse
estimate for Θ [36] ranging from optimization methods [32]
to efficient regression methods [14]. We are the first to show
how these methods can be used to learn FDs. In addition, we
propose an extension of these methods to enable robust FD
discovery even in the presence of noisy data.

3 THE FDX FRAMEWORK
We formalize the problem of functional dependency discov-
ery and provide an overview of FDX.

3.1 Problem Statement
We consider a relational schema R associated with a proba-
bility distribution PR . We assume access to a noisy data set
D ′ that follows schema R and is generated by the following
process: first a clean data set D is sampled from PR and a
noisy channel model introduces noise in D to generate D ′.
We assume that D and D ′ have the same cells but cells in D ′

may have missing values or different values than their clean
counterparts. We consider an error in D ′ to correspond to
a cell c for which D ′(c) , D(c). We consider both incorrect
and missing values. We assume that in expectation across
all cells of the observed samples, a small fraction of cells in
the data set, less than half, are corrupted. This assumption
is necessary to recover the underlying structure of a distri-
bution in the presence of corruptions [12]. This generative
process is also considered in the database literature to model
the creation of noisy data sets [42].

Given a noisy data instance D ′, our goal is to identify the
functional dependencies that characterize the distribution PR
that from which the clean data set D was generated. Instead
of modeling the structure of distribution PR directly, we
consider a different distribution with equivalent structure
with respect to the FDs present in PR : For any pair of tuples
ti and tj sampled from PR , we consider the random variable
Ii j [Y] = 1(ti [Y] = tj [Y])where 1(·) is the indicator function,
and denote ti [X] the value assignment for attributes X in
tuple ti . We say that ti [X] = tj [X] iff

∧
A∈X ti [A] = tj [A] =

True. It is easy to see that an FD X → Y , with X ⊆ R and
Y ∈ R, holds for PR if for all pairs of tuples ti , tj in R we have
the following condition for the distribution over random
variables Ii j [Y] = 1(ti [Y] = tj [Y]):

Pr(Ii j [Y] = 1|ti [X] = tj [X]) = 1 − ϵ (2)
where ϵ is a small constant to ensure robustness against noise.
This condition states that the random events

∧
A∈X(ti [A] =

tj [A]) and 1(ti [Y] = tj [Y]) are deterministically correlated,
which is equivalent to the FD X→ Y . Under this interpreta-
tion, the problem of FD discovery corresponds to learning

the structured dependencies amongst attributes of R that
satisfy the above condition.
The reason we use this model is because estimating the

inverse covariance (i.e., the dependencies) of the above distri-
bution over the tuple differences and not the structure of PR
directly, yields FD discovery methods that are less sensitive
to errors in the raw data (see Section 4.3). Beyond robustness
to noise, this approach also enables us to identify dependen-
cies over mixed distributions that may include categorical,
numerical, or even textual data. The reason is that consider-
ing equality (or approximate equality) over attribute values
enables us to represent any input as a binary data set with
equivalent dependencies.

3.2 Solution Overview
An overview of our framework is shown in Figure 1. The
input to our framework is a noisy data set and the output of
our framework is a set of discovered FDs. The workflow of
our framework follows three steps:

Data Set Transformation. First, we use the input data
setD ′ and generate a collection of samples that correspond to
outcomes of the random events

∧
A∈X(ti [A] = tj [A]) = True

and ti [Y] = tj [Y]. The output of this process is a new data
set Dt that has one attribute for each attribute in D ′ but in
contrast to D ′ it only contains binary values. We describe
this step in Section 4.1.

Structure Learning. The transformed data output by the
previous step corresponds to samples obtained by the model
tuple pair-based modelM described in Section 3.1. That is,
data set Dt contains samples from the distribution of events∧

A∈X(ti [A] = tj [A]) = True and ti [Y] = tj [Y]. We learn the
structure ofM by obtaining a sparse estimate of its inverse
covariance matrix from the samples in Dt . We describe our
structure learning method in Section 4.2.

FD generation. Finally, we use a factorization of the esti-
mated inverse covariance matrix to generate a collection of
FDs. We describe this factorization in Section 4.2. The final
output of our model is a collection of discovered FDs of the
form X→ Y where X ⊆ R and Y ∈ R.

4 FD DISCOVERY IN FDX
We first introduce the probabilistic model that FDX uses to
represent FDs and then describe our approach for learning
its structure. Finally, we discuss how our approach compares
to a naive application of structure learning to FD discovery.

4.1 The FDX Model
FDX’s probabilistic model considers the FD interpretation de-
scribed in Equation 2 and aims to capture the distribution of
the random events

∧
A∈X(ti [A] = tj [A]) and 1(ti [Y] = tj [Y]).

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

864

Discovered FDs

Zip Code ! City

Zip Code ! State

DBAName ! Address

Chicago3494 W
Washington Pierrot IL 60612

Graft

DBAName

Harry
Caray’s

Pierrot

3435 W
Washington

Chicago IL835 N
Michigan Av

60608

60611

835 N
Michigan Av

Mity Nice
Bar

State

60612

Chicago

Address

60611

Chicago

Foodlife IL

60612

835 N
Michigan Av

City

IL

Zip
Code

IL3493
Washington

IL

Chicago

Cicago

Noisy Dataset Instance

Input FDX: Structure Learning for FDs

Output
1. Dataset Transformation Module
 - Transform the input dataset to a collection
 of observations that correspond to the
 binary random variables of our FD model 0

1

0

0

0

1 1

Address

1

State

01

0

1
0

0

Zip
Code

0
0

DBAName

1

0

1
0

City

2. Structure Learning Module
 - Estimate the inverse covariance matrix
 of our FD model using the output of
 module one.
 - Fit a linear model by decomposing the
 estimated inverse covariance
3. FD generation
 - Use the output of the decomposition
 from module to generate a collection
 of FDs that hold in the initial dataset

Figure 1: An overview of our structure learning framework for FD discovery

FDX’s model consists of random variables that model these
two random events. The edges in the model represent statis-
tical dependencies that capture the relation in Equation 2.

We have one random variable per attribute in R. For each
attribute A ∈ R, we denote ZA ∈ {0, 1} the random variable
that captures the distribution that any two random tuples
sampled from distribution PR will have the same value for
attributeA. In other words, to construct a sample for variable
ZA we first sample two random tuples (ti , tj) from PR and
then have thatZA = 1 iff ti [A] = tj [A]. We also define Z to be
the random vector containing variables ZA for all attributes
in R. An instance ofZ corresponds to a binary vector captur-
ing the equality across attribute values between two random
tuples sampled from PR . We now turn our attention to the
dependencies over the binary random variables in Z. For a
set of attributes X let Z[X] denote the corresponding values
in vector Z. Consider an FD X → Y . From Equation 2, we
have that Pr(Z[Y] = 1|Z[X] = 1) = 1 − ϵ .
Our goal is to learn the structure of the model described

above from samples corresponding to Z. However, the depen-
dencies across attributes inZ are V-structured (many-to-one),
which makes structure learning an NP-hard problem [7]. We
introduce two modeling assumptions to address this lim-
itation and enable using structure learning methods with
rigorous guarantees on correctness.

First, recent theoretical results in the statistical learning lit-
erature show that for linear graphical models, i.e., models that
introduce linear dependencies between random variables,
one can provably recover the correct structure from sample,
even in the presence of corrupted samples [27]. In light of
these results, we use a linear structural equation model to
approximate the dependencies across attributes of the ran-
dom vector Z. We next describe the linear model we use and
provide intuition why this approximation is reasonable.
To approximate the deterministic constraints introduced

by FDs, we build upon techniques from soft-logic [2]. Soft
logic allows continuous truth values in [0, 1] instead of dis-
crete truth values 0, 1. Also, the Boolean logic operators
are reformulated as: A ∧ B = max{A + B − 1, 0}, A ∨ B =
min{A+ B, 1}, A1 ∧A2 ∧ . . .Ak =

1
k
∑

i Ai , and ¬A = 1 −A.

Given the above, we denote Ẑ the [0, 1]-relaxed version of
random vector Z. We also consider that an FD X→ Y intro-
duces the following linear dependency:

Ẑ[Y] =
1
|X|

∑
Xi ∈X

Ẑ[Xi] (3)

across coordinates of Ẑ. This linear dependency approxi-
mates the condition in Equation 2 using soft-logic.
Second, to obtain a parsimonious model, we consider a

global order of the random variables corresponding to the at-
tributes in Ẑ and assume acyclic dependencies, i.e., our model
assumes a global ordering over the schema attributes and
only allows that for the relaxed condition in Equation 3 all at-
tributes in X pre-ceed attribute Y in that ordering. This mod-
eling choice is common when modeling dependencies over
structured data [38, 45, 49]. Moreover, in our experimental
evaluation in Section 5, we demonstrate that this assumption
does not limit the effectiveness of FDX at discovering correct
dependencies for real-world data (see Section 5.6.2).
Based on the aforementioned relaxed model, FDs force

the relaxed random vector Ẑ to follow a linear structured
equation model. It is easy to see that we can use a linear
system of equations to express all linear dependencies of the
form in Equation 3 that the attributes in Ẑ follow. We have:

Ẑ = BT Ẑ + ϵ, (4)

where we assume that B is the autoregression matrix that cap-
tures the linear dependencies across attributes [27], E[ϵ] = 0
and ϵj ⊥⊥ (ẐA1 , . . . , ẐAj−1) for all j, where ⊥⊥ denotes condi-
tional independence. Since we assume that the coordinates
in Ẑ follow a global order, matrix B is a strictly upper trian-
gular matrix. This matrix is unknown and our goal is to infer
its non-zero entries (i.e., structure) in order to recover the
dependencies that are present in the input data set.

4.2 Structure Learning in FDX
Our structure learning algorithm follows from results in
statistical learning theory. We build upon the recent results
of Loh and Buehlmann [27] and Raskutti and Uhler [38]
on learning the structure of linear structural models via

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

865

Algorithm 1: FD discovery with FDX
Input: A noisy relational dataset D ′ following schema R.
Output: A set of FDs of the form X→ Y on R.
Set Dt ← Transform(D ′) (See Alg. 2);
Obtain an estimate Θ̂ of the inverse covariance matrix (e.g.,
using Graphical Lasso) where Θ̂ = UDUT withU being
upper triangular;

Set B̂ = I −U ;
Set Discovered FDs← GenerateFDs(B) (See Alg. 3);
return Discovered FDs

inverse covariance estimation. Given a linear model as the
one in Equation 4, it can be shown that the inverse covariance
matrix Θ = Σ−1 of the model can be written as:

Θ = Σ−1 = (I − B)Ω−1(I − B)T (5)

where I is the identity matrix, B is the autoregression matrix
of the model, and Ω = cov[ϵ] with cov[·] denoting the co-
variance matrix. This decomposition of Θ is commonly used
in learning the structure of linear models [36, 38].

FD discovery in FDX proceeds as follows: First, we trans-
form the sample data records in the input dataset D ′ to sam-
ples {Zi }Ni=1 for the linear model in Equation 4 (see Algo-
rithm 2); Second, we obtain an estimate Θ̂ of the inverse
covariance matrix and factorize the estimate Θ̂ to obtain an
estimate of the autoregression matrix B̂ [38]; Third, we use
the estimated matrix B̂ to generate FDs (see Algorithm 3).

To find the structured dependencies we need to estimateΘ.
We use the following approach: Suppose we have N observa-
tions and let S be the empirical covariance matrix of these ob-
servations. It is a standard result [32] that the sparse inverse
covariance θ corresponds to a solution to the following opti-
mization problem: minΘ≻0 f (Θ) := − log det(Θ) + tr (SΘ) +
λ ∥Θ∥1 where we replaceΘwith its factorizationΘ = UDUT

with U being upper triangular. To find the solution of this
problem for our setting, we use graphical lasso [14], as it is
known to scale favorably to instances with a large number
of variables, and hence, is appropriate for supporting data
sets with a large number of attributes. Given the estimated
inverse covariance matrix Θ̂ and its factorization we use the
autoregression matrix B̂ to generate FDs (see Algorithm 3).

We now turn our attention to how we transform the input
dataset D ′ into a collection Dt of observations for the linear
model of FDX (see Algorithm 2). We use the differences of
pairs of tuples in dataset D ′ to generate Dt .
To construct the tuple pair samples in Dt , we use the

following sampling procedure instead of drawing pairs of
tuples uniformly at random: we iterate over all attributes
in the dataset order the dataset with respect to the running
attribute and perform a circular shift to construct pairs of
tuples. We take the union of all tuple pairs constructed in

Algorithm 2: Data Transformation
Input: A dataset D with n rows and k columns
Output: A dataset Dt with n · k rows and k columns
A← columns [A1, ...,Ak];
D ← shuffle rows of D;
Dt ← ∅;
for i = 1 : k do

Di ← sort D by attribute Ai ;
Di_shif t ← circular shift of rows in Di by 1;
for j = 1 : n do

for l = 1 :k do
Dt [(i −1) ·n+ j, l] ← 1

(
Di [j, l] = Di_shif t [j, l]

)
;

end
end

end
return Dt

Algorithm 3: FD generation
Input: An autoregression matrix B of dimensions n ×m, A

schema R
Output: A collection of FDs
FDs← ∅;
for j = 1 : m do

Set the column vector bj ← (B1, j ,B2, j , . . . ,Bj−1, j) ;
X← Take the attributes in R that corresponds to non-zero
entries in bj ;

Let Aj be the attribute in R with coordinate j ;
if X , ∅ then

FDs← FDs ∪ {X→ Aj };
end

end
return FDs

this fashion. This heuristic allows us to increase obtain tuple
pair samples that cover a wider range of attribute values, and
hence, obtain a more representative sampleDt . The complex-
ity of Algorithm 2 is quadratic in the number of attributes.
Our method supports diverse data types (e.g., categorical
data, real-values, text, binary data) as we can use different
difference operations for each of these types.
The above structure learning procedure is guaranteed to

recover the correct structure (i.e., identify correctly the non-
zero entries) of matrix B̂ with high probability as the number
of samples in Dt goes to infinity and the number of errors
in D is limited. These guarantees follow from [32] and [38].

4.3 Discussion
Recall that FDX performs structure learning over a sample
constructed by taking the value differences over sampled

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

866

pairs of tuples from the raw data. There are two main impor-
tant benefits that this approach offers in contrast to applying
structure learning directly on the input data.
First, a standard maximum likelihood estimate of the co-

variance is very sensitive to the presence of outliers in the
data set. The reason is that sample mean is used to estimate
the covariance. However, the estimated mean can be biased
due to errors in the data set. By sampling tuple differences,
we effectively estimate the covariance of a transformed zero-
mean distribution whose covariance has the same structure
as the original distribution. By fixing the mean to zero, covari-
ance estimation is less sensitive to errors in the raw data. This
approach is rooted in robust statistics [6, 12]. We validate
this experimentally in Section 5 where we show that FDX is
more robust than standard Graphical Lasso.
Second, structure learning for FDX’s model enjoys bet-

ter sample complexity than structure learning on the raw
data set. We focus on the case of discrete random variables
to explain this argument. Let k be the size of the domain
of the variables. The sample complexity of state-of-the-art
structure learning algorithms is proportional to k4 [47]. Our
model restricts the domain of the random variables to be
k = 2. At the same time, our transformation allows access to
an increased amount of training data. Hence, our approach
performs better than naive structure learning or other FD
discovery methods when the sample size is small. We demon-
strate this experimentally in Section 5.

5 EXPERIMENTS
We compare our approach against several FD discoverymeth-
ods on different data sets. We seek to validate: (1) if structure
learning enables accurate FD discovery (i.e,. high-prevision
and high-recall), (2) what is the impact of different data char-
acteristics on different FD discovery methods, (3) how robust
FDX is to different tunable parameter settings, and (4) can we
use the output of FDX to optimize downstream data prepara-
tion and data analytics pipelines. We also present synthetic
micro-benchmarks to evaluate the robustness of FDX.

5.1 Experimental Setup
Methods. We consider four methods: (1) PYRO [25], a

state-of-the-art FD discovery method in the database com-
munity that seeks to find all syntactically valid FDs in a data
set. The code is released by the authors 2. The scalability of
the algorithm is controlled via an error rate hyper-parameter.
(2) Reliable Fraction of Information (RFI) [30], the state-of-
the-art FD discovery approach in Data Mining. RFI relies
on an information theoretic score to find FDs and uses an
approximation scheme to optimize performance. The ap-
proximation ratio is controlled by a hyper-parameter α . We
2https://github.com/HPI-Information-Systems/pyro/releases

Table 1: A summary of the benchmark data sets with
known dependencies we use in our experiments.

Data set Attributes # FDs # Edges in FDs

Alarm 37 24 45
Asia 8 6 8

Cancer 5 3 4
Child 20 15 20

Earthquake 5 3 8

evaluate RFI for α ∈ {0.3, 0.5, 1} where 1.0 corresponds to
no approximation. The code is also released by the authors 3.
RFI discovers FDs for one attribute at a time and return a list
of FDs in descending order with respect to RFI’s score. For
RFI, we keep the top-1 FD per attribute to obtain a parsimo-
nious model and optimize its accuracy. To discover all FDs
in a data set, we run the provided method once per attribute.
(3) Graphical Lasso (GL), a structure learning algorithm for
finding undirected structured dependences [47]. To find FDs,
we perform a local graph search to find high-scored—we use
the same score as RFI—directed structures. (4) TANE [19], an-
other FD discovery algorithm that supports approximate FDs.
The code is released by the authors 4. To get approximate
FDs on a noisy dataset, TANE uses a hyper-parameter that
captures how much noise is expected; this parameter is left
to its default setting if not specified in our experiments. (5)
CORDS [20], a method to discover soft FDs and correlations.
CORDS is using correlation-related statistics to identify FD
dependencies between each pair of attributes. This baseline
is a best-effort implementation of CORDS since the code is
not available. All hyper-parameters are set according to [20].

Metrics. To account for partial discovery of FDs , we use
Precision (P) defined as the fraction of correctly discovered
edges that participate in true FDs by the total number of
edges in discovered FDs; Recall (R) defined as the fraction of
correctly discovered edges that participate in true FDs by the
total number of true edges in the FDs of a data set; and F1 is
defined as 2PR/(P + R). For the synthetic data we consider
five instances per setting. To ensure that we maintain the
coupling amongst Precision, Recall, and F1, we report the
median performance. For all methods, we fine-tuned their
hyper-parameters to optimize performance. In the case of
PYRO we consulted the authors for this process. We also
measure the end-to-end runtime for each method.

EvaluationGoals andData Sets. First, we examine how
accurately the different methods identify true functional de-
pendencies in a data set. We consider functional dependen-
cies that exist in the generating distribution of a data set
3http://eda.mmci.uni-saarland.de/prj/dora/
4 https://www.cs.helsinki.fi/research/fdk/datamining/tane/

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

867

Table 2: The different settings we consider for syn-
thetic data sets. We use the description in parenthesis
to denote each of these settings in our experiments.

Property Settings

Noise Rate (n) 1% (Low), 30% (High)
Tuples (t) 1,000 (Small), 100,000 (Large)
Attributes (r) 8-16 (Small), 40-80 (Large)
Domain Cardinality (d) 64-216 (Small), 1,000-1,728 (Large)

and use data sets with known functional dependencies. We
use benchmark data generation programs that correspond to
structured probabilistic models with functional dependen-
cies (i.e., networks that exhibit deterministic dependencies).
All data generators are obtained from a standard R package
for Bayesian Networks5 and are evaluated with their default
settings. A summary of these data sets is shown in Table 1.
Second, we evaluate the above methods as we vary four

key factors in the data: (1) Noise Rate (denoted by n). It
stresses the robustness of FD discovery methods; (2) Number
of Tuples (denoted by t). It affects the sample size available to
the FD discovery methods; (3) Number of Attributes (denoted
by r); It stresses the scalability of FD discovery methods; (4)
Domain Cardinality (denoted by d) of the left-hand side X
for an FD; It evaluates the sample complexity of FD methods.
We consider 24 different setting combinations for these four
dimensions (summarized in Table 2). For each setting we
use a mixture of FDs X→ Y for which the cardinality of X
ranges from one to three. We provide details on the synthetic
data generation at the end of this section.
Finally, we evaluate the FD discovery methods on real-

world data with naturally occurring errors that correspond
to missing entries. For these data sets, we do not have access
to the true FDs. We present a qualitative analysis of the
discovered FDs as well as measurements on the runtime and
the number of constraints discovered by each method. The
data sets we use are benchmark data sets used to evaluate
data cleaning and predictive analytics solutions6. Given this
type of usage, we use these data sets to evaluate if FDX can
help provide insights can (1) provide users with insights
on the performance of automated data cleaning tools on
the input data, and (2) can help users identify important
features for predictive tasks associated with the input data.
A summary of these data sets is provided in Table 3.

Synthetic Data Generation. We discuss our synthetic
data generation process for completeness. The reader may
safely continue with the next section. We follow the next

5http://www.bnlearn.com/bnrepository/
6Many of the data sets are from the UCI repository; Hospital is from [40]
and NYPD is the crime data set from the data portal of the city of New York.

Table 3: Real-world data sets for our experiments.

Data set Tuples Attributes

Australian 690 15
Hospital 1,000 17

Mammographic 830 6
NYPD 34,382 17
Thoraric 470 17

Tic-Tac-Toe 958 10

process: Given a schema with r attributes our generator
first assigns a global order to these attributes and splits the
ordered attributes in consecutive attribute sets, whose size
is between two and four (so that we obey the cardinality of
the FD as we discussed above). Let (X,Y) be the attributes
in such a split. Our generator samples a value v from the
range associated with the setting for Domain Cardinality
and assigns a domain to each attribute in X such that the
cartesian product of the attribute values corresponds to that
value. It also assigns the domain size of Y to be v .

We introduce FD dependencies as well as correlations in
the splits obtained by the above process. For half of the (X,
Y) groups generated via the above process, we introduce FD-
based dependencies that satisfy the property in Equation 1.
We do so by assigning each value l ∈ dom(X) to a value
r0 ∈ dom(Y) uniformly at random and generating t samples,
where t is the value for the Tuples parameter. For the re-
mainder of those groups we force the following conditional
probability distribution: We assign each value l ∈ dom(X)
to a value r0 ∈ dom(Y). Then we generate t samples with
P(Y = r0 | X = l) = ρ and P(Y , r0 | X = l) =

1−ρ
|dom(Y)−1 | .

Here, ρ is a hyper-parameter that is sampled uniformly at
random from [0, 0.85]. This process allows us to mix FDs
with other correlations, and hence, evaluate the ability of FD
discovery mechanisms to differentiate between true FDs and
strong correlations. Finally, to test how robust FD discovery
algorithms are to noise, we randomly flip cells that corre-
spond to attributes that participate in true FDs to a different
value from their domain. The percentage of flipped cells is
controlled by the Noise Rate setting.

5.2 Experiments on Known-Structure Data
We evaluate the performance of our approach and competing
approaches on identifying FDs errors in all data sets with
known structure. Table 4 summarizes the precision, recall,
and F1-score obtained by different methods, and Table 5
summarizes their runtimes. For these data sets, we do not
introduce noise given the inherent randomness of the data
generation process.

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

868

http://www.bnlearn.com/bnrepository/

Table 4: Evaluation on benchmark data sets with
known functional dependencies.

Data set FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1.0)

Alarm
P 0.839 0.123 - - 0.236 - - -
R 0.578 0.867 - - 0.778 - - -
F1 0.684 0.215 - - 0.363 - - -

Asia P 1.000 0.316 0.235 1.000 0.429 0.500 0.462 0.462
R 0.500 0.750 0.500 0.125 0.750 0.750 0.750 0.750
F1 0.667 0.444 0.320 0.222 0.545 0.600 0.571 0.571

Cancer P 1.000 0.375 1.000 0.000 0.000 0.571 0.571 0.571
R 0.750 0.750 0.750 0.000 0.000 1.000 1.000 1.000
F1 0.857 0.500 0.857 0.000 0.000 0.727 0.727 0.727

Child P 1.000 0.359 0.105 0.167 0.202 - - -
R 0.450 0.700 1.000 0.400 0.900 - - -
F1 0.667 0.475 0.190 0.235 0.330 - - -

Earthquake P 1.000 0.800 0.600 0.000 0.500 0.571 0.571 0.571
R 1.000 1.000 0.750 0.000 0.750 1.000 1.000 1.000
F1 1.000 0.889 0.667 0.000 0.600 0.727 0.727 0.727

’-’ method exceeds runtime limit (8 hours).

Table 5: Runtime (in seconds) of FDmethods on bench-
mark data sets with known functional dependencies.

Data set FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1.0)
Alarm 2.468 2.827 - - 0.330 - - -
Asia 0.388 0.213 1.598 0.090 0.056 13.009 15.231 15.336

Cancer 0.301 0.256 1.913 0.063 0.047 8.105 7.762 7.762
Child 1.128 0.468 217.748 0.160 0.169 - - -

Earthquake 0.366 0.181 3.337 0.051 0.065 7.038 7.767 6.601
’-’ method exceeds runtime limit (8 hours).

As Table 4 shows, FDX consistently outperforms all other
methods. In many cases, like Alarm, Asia, Child and Earth-
quake, we see improvements of 11 to 47 F1 points. We see
that for data sets with few attributes and a small number of
FDs (i.e., Asia, Cancer, and Earthquake) FDX achieves both
high recall and high precision in all data sets despite the
different distributional properties of each data set. For larger
data sets (i.e., Alarm and Child), we see that FDX maintains
its high precision but its recall drops. Nonetheless, FDX has
a 47 points higher F1-score than competing methods on the
largest data set Alarm and is tied for the first place with
PYRO on the second largest data set Cancer. In fact, TANE
and RFI seem to be unable to obtain meaningful results for
these cases. This performance is explained by the fact that
FDX can be conservative in discovering FDs as it aims to
learn a parsimonious dependency model. At the same time,
Table 5 shows that FDX requires only a couple of seconds
for the largest data set while it achieves relatively low run
time for smaller data sets. The above results validate that
FDX can identify true FDs effectively and efficiently.

We discuss the performance of individual competing meth-
ods. We start with PYRO. Recall that this method, finds all
syntactically valid FDs in a data sample. Due to its design, we
expect the recall of PYRO to be high but its precision limited.
We see this behavior in the results shown in Table 4. We see
that PYRO’s recall is consistently higher than its precision,

but in many cases the recall is not perfect. This is because
PYRO is not as robust as other methods to noisy data.
We then focus on TANE. For most data sets, F1-scores of

TANE are consistently low in both recall and precision. We
can see that for Cancer and Earthquake, no FDs are discov-
ered by TANE. This is because TANE is finding equivalent
row partitions which makes TANE not robust to noise. For
CORDS, although run time is consistently low, we observe
that it has unstable precision, recall and F1-score. That is
because CORDS only measures marginal dependencies and
not conditional independence dependencies.

We turn our attention to RFI. RFI optimizes an information
theoretic score to identify FDs. First, we find that RFI is
significantly slower than all other methods (see Table 5) and
it cannot terminate for data sets with many attributes. This
performance is far from practical. For the data sets that it
terminates we see that its F1-score is better than PYRO but 10
to 28 points lower than FDX, with the precision of RFI being
low. We attribute this performance to the RFI’s score that
tend to overfit the input sample and is not robust to noisy
data. Finally, we do not observe quality differences as we
vary the number of the approximation parameter. We also
see that RFI is slower than FDX and its runtime increases
dramatically for data sets with many attributes (to the extent
that for Alarm it cannot terminate within eight hours).

Finally as for graphical lasso (GL), we see that it performs
reasonably well in all data sets both with respect to F1-score
and runtime. However, we see that its precision is worse than
FDX. This performance gap is due to the fact that unlike FDX,
GL uses a non-robust covariance estimate.
Takeaway: The combination of structure learning methods
with robust statistics is key to discovering true FDs in an
effective and efficient manner.

5.3 Experiments with Synthetic Data
We perform a detailed evaluation of all FD discoverymethods
as we vary different key factors of the input data. To this end,
we use the synthetic data described in Section 5.1. These data
sets have varying characteristics summarized in Table 2.

Figure 2 shows the F1-score on four pairs of the synthetic
data sets that we generate. Figure 2a, 2c, 2e and 2g show the
results on high noise rate data sets, while Figure 2b, 2d, 2f
and 2h show the results on low noise rate ones. We change
the number of attributes r , number of tuples t and domain
size d from large to small respectively. As shown, our FDX
consistently outperforms all other baseline methods in terms
of F1-score in all settings. More importantly, we find out
that our FDX is less affected by number of attributes and
number of tuples compared with other baseline FD discovery
methods. In detail, we find that FDX maintains good F1-
score for data sets with low amount of noises (≤ 1%) with an

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

869

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.336

0.207

0.022 -

0.148

- - -

t=large r=large d=large n=high

(a)

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.939

0.514

0.021 -

0.276

- - -

t=large r=large d=large n=low

(b)

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.4

0.32

0.163 0.163

0.4

- - -

t=large r=small d=large n=high

(c)

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.889

0.25

0.163 0.163

0.4

- - -

t=large r=small d=large n=low

(d)

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.667

0.091 0.114 0.114

0.0

0.667 0.667 0.667

t=small r=small d=large n=high

(e)

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.667

0.32

0.114 0.114

0.2

0.667 0.667

0.571

t=small r=small d=large n=low

(f)

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.8

0.174

0.07 0.07

0.5 0.5

0.364
0.308

t=small r=small d=small n=high

(g)

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)
0.0

0.2

0.4

0.6

0.8

1.0

F
1-

sc
or

e

0.8

0.16

0.07 0.07

0.5 0.5

0.364
0.308

t=small r=small d=small n=low

(h)

Figure 2: F1-score of different methods on different
synthetic settings

average of F1-score of 0.823. For data sets with high noise
rate, FDX still yields better results than competing methods.

To optimize performance of PYRO and TANE, we set their
error rate hyper-parameter to the noise level for each data
set. For the data set with large number of attributes r , TANE
does not terminate. We observe that PYRO and TANE tend to
generate near-complete FD graphs rather than sparse ones
on synthetic data sets, which makes both PYRO and TANE
have high recall, low precision, and low F1-score. This be-
havior is compatible with their performance in our previous
experiments with benchmark data.

As before we find that RFI exhibits poor scalability and in
many cases it fails to terminate within 8 hours. When RFI
terminates (shown in Figure 2e, 2f, 2g and 2h), we find that
it exhibits good F1-scores but still lower compared to FDX.
We further investigated the performance of RFI for partial
executions. Recall that due to the implementation of RFI, we
have to run it for each attribute separately. We evaluated
RFI’s accuracy for each of the attributes processed within

the 8-hour time window. Our findings are consistent with
the aforementioned observation. The precision of RFI is high
but its recall is lower than FDX.
Turning our attention to CORDS, we see again that its

performance can vary significantly. For small instances, such
as the instances in Figures 2 (g) and (h), we see that CORDS
recovers the same dependencies as RFI (the entropy-based
method) but for large instances, such as in Figures 2 (e) and
(f), using the correlations to find FDs leads to overfitting
and poor performance. This is because a small number of
coordinates naturally limits the effect of overfitting to com-
plex dependencies. This is why we see RFI’s bias correcting
estimator obtaining higher F1-scores.
Finally, we see that the high sample complexity of struc-

ture learning on the raw input (see Section 4.3) leads to GL
exhibiting low accuracy. This becomes more clear, if we com-
pare the performance of GL with a large number of tuples to
that with a small number of tuples while keeping other vari-
ables constant. We can see a consistent drop of performance
when the data sample becomes limited.
Takeaway: Our evaluation on synthetic data verifies that
the data transformation introduced in Section 4.1 enables
FDX to be more robust to noisy data and allows for lower
sample complexity. As a result, FDX can discovery FDs more
accurately in the presence of noisy data. Furthermore, we
find information theoretic measures exhibit higher sample
complexity that pure statistical measures. This phenomenon
is evident from the performance of RFI.

5.4 Experiments on Real-World Data
We evaluate different FD discovery methods against real-
world data sets with naturally occurring errors that corre-
spond to missing values.For our analysis, we use the data
sets summarized in Table 3. As we discussed in Section 5.1,
the true FDs are unknown for these data sets, and thus, we
measure the runtime as well as the number of constraints
discovered by each of the methods. Moreover, we manually
inspect the constraints discovered by different methods and
present a qualitative analysis.

Table 6 shows the runtime (in seconds) and the number of
FDs discovered by each method. We first focus on runtime.
As shown FDX, PYRO and TANE can scale to real-world
noisy data instances with many attributes (e.g., NYPD). We
see that for most data sets FDX terminates within a couple
of seconds. The only exception is NYPD where FDX requires
∼ 400 seconds to terminate. This runtime is due to the data
transformation introduced by Algorithm 2 that requires per-
forming a self-join. Sampling methods can be used to further
speed up this computation. We see that PYRO and TANE
are also very efficient with most runtimes being below ten
seconds. On the other hand, RFI has significant scalability

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

870

Table 6: Runtime (in seconds) and number of discov-
ered FDs over real-world data sets with naturally oc-
curring missing values.

Data set FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1.0)

Australian time (sec) 0.38 0.46 10.44 0.12 0.07 621.59 985.93 2581.45
of FDs 4 14 1711 224 26 15 15 15

Hospital time (sec) 1.75 0.59 2.65 0.16 0.13 6456.60 6603.16 6479.34
of FDs 10 16 434 655 39 16 16 16

Mammographic time (sec) 0.24 0.18 1.47 0.07 0.04 4.73 5.52 5.02
of FDs 3 5 9 8 6 6 6 6

NYPD time (sec) 447.48 1.43 5.49 3.96 0.84 - - -
of FDs 16 18 226 183 7 - - -

Thoracic time (sec) 0.61 0.40 7.97 0.130 0.11 1938.56 3767.17 5528.76
of FDs 10 15 1066 53 13 17 17 17

Tic-Tac-Toe time (sec) 1.02 0.28 9.04 0.10 0.09 39.99 59.57 70.48
of FDs 9 9 1168 98 18 10 10 10

’-’ method exceeds runtime limit (8 hours).

ProviderNumber -> ZipCode

ProviderNumber -> HospitalName

ProviderNumber,HospitalName -> Address1

ProviderNumber,HospitalName,Address1 -> City

City -> CountyName

ProviderNumber,HospitalName,Address1 -> PhoneNumber

PhoneNumber -> HospitalOwner

MeasureCode -> MeasureName

MeasureCode,MeasureName -> Stateavg

MeasureCode,MeasureName,Stateavg -> Condition

Figure 3: The autoregressionmatrix estimated by FDX
for Hospital data set and the corresponding FDs.

issues when a data set has a large number of attributes. This
performance makes RFI rather impractical for deployment
in data pipelines.

We focus on the FDs discovered by the different methods.
We see that FDX, GL, RFI, and CORDS always find a number
of FDs that is at most equal to the number of attributes in
the input data set. This behavior is expected as all these
models are tailored towards finding a parsimonious set of
FDs and for each attribute consider at most one FD that has
this attribute as the determined attribute (i.e., on the right
side). On the other hand, PYRO and TANE find hundreds of
FDs for most data sets, as they find all syntactic FDs that hold
in a given instance. Finally, we see that GL finds a similar
number of constraints with FDX but there are cases where
it discovers more constraints. This result is consistent with
the behavior we observed in our previous experiments, i.e.,
that FDX is more conservative at reporting constraints. This
behavior is desired in cases where a limited number of false
positives is required. All these results are consistent with
the FD interpretation adopted by each system. Based on
these results, we argue that PYRO, TANE and RFI can be
impractical in many cases.

HospitalName -> ZipCode (0.6884822119510943)
HospitalName -> HospitalOwner (0.7905101603249726)

HospitalName -> Address1 (0.6841490007985284)
PhoneNumber -> State (0.33850259042851694)

MeasureCode -> Stateavg (0.7599899758330434)
HospitalName -> PhoneNumber (0.68061335585621)

Condition, MeasureName -> HospitalType (0.09808823042059128)
City -> CountyName (0.7179703815912811)

MeasureName -> MeasureCode (0.7884481625257015)
Sample -> Score (0.2005127949958685)

MeasureCode -> Condition (0.7896626996070244)
HospitalName -> ProviderNumber (0.6864891049294678)
ProviderNumber -> HospitalName (0.6896265931948304)

MeasureCode -> MeasureName (0.7811219784869881)
HospitalName -> City (0.6928075192148113)

ZipCode -> EmergencyService (0.661887418552853)

Figure 4: The FDs discovered by RFI for Hospital.

We turn our attention to the quality of the FDs discov-
ered by the competing approaches. We focus on the Hos-
pital data set as it is easy to detect FDs via manual inspec-
tion. We consider the FDs discovered by FDX. A heatmap
of the autoregression matrix of FDX’s model and the cor-
responding FDs are shown in Figure 3. We find that the
discovered FDs are meaningful. For example, we see that
attributes ‘Provider Number’ and ‘Hospital Name’ determine
most other attributes. We also see that ‘Address’ determines
location-related attributes such as ‘City’. We also find that at-
tribute ‘Measure Code’ determines ‘Measure Name’ and that
they both determine ‘StateAvg’. In fact, there is an one-to-
one mapping between ‘MeasureCode’ and ‘MeasureName’
while ‘StateAvg’ corresponds to the concatenation of the
‘State’ and ‘Measure Code’ attributes. The reader may won-
der why the ‘State’ attribute is found to be independent of
every other attribute. The reason is that hospital data set
only contains two states with one appearing nearly 89% of
time. Enforcing a sparse structure, FDX weakens the role
of ‘State’ in deterministic relations. These results show that
FDX can identify meaningful FDs in real-world data sets. We
provide additional evidence in Section 5.5.
We now consider the constraints discovered by RFI. The

results are consistent across all three alphas, so we pick
the one with highest alpha (lower approximate rate). RFI
outputs 16 FDs that are shown in Figure 4. The value in the
parenthesis is the reliable fraction of information, the score
proposed by RFI to select approximate FDs. After eliminating
FDs with low score, we find that most of FDs discovered by
RFI are also meaningful. However, it has the problem of
overfitting to the data set. Specifically, for the FD ‘ZipCode’
→ ‘EmergencyService’, this relation holds for the given data
set instance, but does not convey any real-world meaning.
We attribute this behavior to the fact that the domain of
‘ZipCode’ is really large while ‘Emergency Service’ only has
a binary domain. This makes it more likely to observe a

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

871

Table 7: The F1 score of AimNet and XGBoost for
missing data imputation with random and systematic
noise. We report the median accuracy for attributes
that FDX identifies that participate in an FD (denoted
by w) and attributes for which FDX identifies that do
not participate in any FD (denoted by w/o).

Data set

Random
Noise

Systematic
Noise

AimNet XGBoost AimNet XGBoost
w/o w w/o w w/o w w/o w

Australian 0.41 0.86 0.34 0.86 0.42 0.96 0.34 0.96
Hospital 0.58 1.0 0.57 0.97 0.38 1.0 0.53 0.99
Mammogr. 0.63 0.84 0.54 0.73 0.44 0.73 0.42 0.68
NYPD 0.89 0.93 0.92 0.94 0.75 0.76 0.86 0.90
Thoracic 0.77 0.82 0.76 0.83 0.74 0.91 0.61 0.91
Tic-Tac-Toe 0.6 0.56 0.52 0.55 0.48 0.47 0.57 0.50

spurious FD when the number of data samples is limited.
This finding matches RFI’s performance for the synthetic
data sets. For PYRO and TANE, we find that they discover
hundreds of FDs, and hence, it is hard for a human to analyze.
For instance, PYRO finds 24 FDs that determine ‘Address1’.
Takeaway: We find that FDX can help users identify mean-
ingful dependencies in real-world data with naturally oc-
curring errors that correspond to missing values. Alterna-
tive approaches either do not scale to data sets with a large
number of attributes or output an overwhelming number of
constraints. The latter requires tedious inspection and fine-
tuning by users to be valuable for downstream applications.
In contrast to all prior approaches, structure learning offers a
viable and practical solution to the problem of FD discovery.

5.5 Using FDX in Data Preparation
Summary. We examine if FDX’s output can be useful for

data profiling in data preparation pipelines. We consider two
data preparation tasks: (1) automated data cleaning, and (2)
feature engineering. For data cleaning, we demonstrate that
FDX can help predict if automated data cleaning will be effec-
tive, and for feature engineering we demonstrate that FDX
can help identify important features for downstream predictive
tasks without training any machine learning models.

Results. We consider the data sets summarized in Table 3
and present the experiments we conduct for each of the
aforementioned data preparation tasks as well as our find-
ings. We consider the task of missing data imputation and
two ML-based solutions to it: (1) AimNet, a new imputation
method that relies on neural attention models to capture
dependencies over the attributes of a data set [46], and (2)
XGBoost (a method to shown to be very effective in [46]).

We build upon recent works that observe that in the pres-
ence of strong structured dependencies automated data clean-
ing can be effective [17, 40] and perform the following exper-
iment: For each data set in Table 3, we separate its attributes
into two groups (1) attributes that participate in an FD based
on FDX’s output, and (2) attributes that are independent
according to FDX. We measure the median imputation accu-
racy for each group for AimNet and XGBoost and examine
if the constraints discovered by FDX can be used as a proxy to
identify if automated cleaning will be accurate.
The results are summarized in Table 7. We see that in

most cases, the accuracy of data imputation is higher when
the target attribute participates in a dependency identified
by FDX. This pattern holds for both AimNet and XGBoost,
which provides evidence that FDX can be used as an effective
data profiling mechanism regardless of the model used for
data cleaning. In fact, FDX is already being used in industrial
use cases as a profiling tool in data preparation pipelines.

For feature engineering, we focus on the Australian Credit
Approval and the Mammography data sets. For Australian,
the attributes are anonymized and the target attribute isA15.
For Mammography, the target attribute is ‘severity’. Figure 5
shows the autoregressive matrices recovered by FDX. As de-
picted, for Australian FDX finds that attributeA8 determines
the target attribute A15. After investigating the literature
we find reports [37] which state that indeed A8 is the most
informative feature for the corresponding prediction task. In
fact, this report evaluates several feature-ranking methods
that all rank A8 as the most important feature for this task.
For Mammography, FDX finds that the mass ‘margin’ and
‘shape’ determine the ‘severity’ of a mass (i.e., the target
attribute) and that ‘severity’ determines the BI-RADS assess-
ment (attribute ‘rads’). We find publications in the medical
domain [48] as well as a textbook in cancer medicine [18]
which state that “the most significant features that indicate
whether a mass is benign or malignant are its shape and mar-
gins”, a fact that is indeed recovered by FDX. Moreover, the
publication associated with this data set [29] explains that
the BI-RADS assessment records the assessment of medical
doctors and is predictive of malignancy. Notice that FDX
finds the correct directionality between the severity of a
mass and the BI-RADS assessment.

5.6 Hyper-parameter Analysis
We examine FDX’s robustness against different hyperpa-
rameter settings. We report results for: (1) different sparsity
settings, and (2) different column ordering methods.

5.6.1 Sparsity Setting. We present the results of FDX on
known-structure benchmark data set with different sparsity
settings. As we see in Table 8, there is a constant drop on

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

872

(A) Australian Credit Approval;
A15 is the goal attribute

(B) Mammography;
Severity is the goal attribute

Figure 5: The autoregressionmatrix estimated by FDX
for Australian Credit Approval and Mammography.

Table 8: Evaluation on benchmark data sets with dif-
ferent sparsity setting for FDX.

Data set 0 .002 .004 .006 .008 .010

Alarm
Precision 0.839 0.723 0.694 0.640 0.627 0.632
Recall 0.578 0.756 0.755 0.711 0.711 0.689
F1-score 0.684 0.739 0.723 0.673 0.667 0.659
of FDs 31 30 30 30 30 28

Asia Precision 1.000 0.714 0.667 0.667 0.667 0.800
Recall 0.500 0.625 0.500 0.500 0.500 0.500
F1-score 0.667 0.444 0.571 0.571 0.571 0.615
of FDs 7 6 5 5 5 4

Cancer Precision 1.000 1.000 0.000 0.000 0.000 0.000
Recall 0.750 0.250 0.000 0.000 0.000 0.000
F1-score 0.857 0.400 0.000 0.000 0.000 0.000
of FDs 3 1 0 0 0 0

Child Precision 1.000 0.778 0.696 0.727 0.696 0.714
Recall 0.450 0.700 0.800 0.800 0.800 0.75
F1-score 0.667 0.737 0.744 0.762 0.744 0.732
of FDs 14 18 17 17 17 15

Earthquake Precision 1.000 1.000 1.000 1.000 1.000 1.000
Recall 1.000 0.750 0.750 0.750 0.750 0.750
F1-score 1.000 0.857 0.857 0.857 0.857 0.857
of FDs 4 3 3 3 3 3

’-’ method exceeds runtime limit (8 hours).

Table 9: Evaluation on FDX using known-structure
data sets with different column ordering methods

Data set heuristic natural amd colamd metis nesdis

Alarm
P 0.839 0.839 0.839 0.839 0.867 0.839
R 0.578 0.578 0.578 0.578 0.578 0.578
F1 0.684 0.684 0.684 0.684 0.693 0.684

Asia P 1.000 1.000 0.800 0.800 0.800 0.800
R 0.500 0.500 0.500 0.500 0.500 0.500
F1 0.667 0.667 0.615 0.615 0.615 0.615

Cancer P 1.000 1.000 0.500 1.000 1.000 1.000
R 0.750 0.750 1.000 0.750 0.750 0.750
F1 0.857 0.857 0.667 0.857 0.857 0.857

Child P 1.000 1.000 1.000 1.000 1.000 1.000
R 0.450 0.450 0.450 0.450 0.450 0.450
F1 0.667 0.667 0.667 0.667 0.667 0.667

Earthquake P 1.000 1.000 0.800 0.444 0.800 0.800
R 1.000 1.000 1.000 1.000 1.000 1.000
F1 1.000 1.000 0.889 0.615 0.889 0.889

number of FDs along as we increase sparsity. For large data
sets (i.e. Child and Alarm), as we increase the sparsity, we

mean of total runtime
mean of model runtime

ru
nt

im
e

(s
ec

)

0

100

200

300

400

columns
20 40 60 80 100 120 140 160 180

Figure 6: Columns-wise scalability of FDX.

observe an increasing trend in F1-score followed by a de-
creasing trend. This finding is in line with our claim that for
a large data set with many attributes, we should apply some
sparsity to achieve the parsimonious graph structure.

5.6.2 ColumnOrdering. We report results of FDX on known-
structure data sets under different column ordering methods
in Table 9. The decomposition we consider corresponds to
a version of the Cholesky decomposition. There are many
common heuristics to determine variable orderings for that
decomposition, and hence, different variable ordering for the
linear structural model we consider. In all previous experi-
ments we use the use the minimum-degree ordering heuris-
tic [11] to obtain a sparsity-inducing decomposition. To eval-
uate performance of FDX on different ordering, we consider
different ordering heuristics used in standard Cholesky de-
composition packages [11]. As we can see in Table 9, FDX
is not sensitive to ordering method: FDX with heuristic and
natural ordering (i.e., using the default ordering of the data
set) generates the best results for most data sets.

5.7 Micro-benchmark Results
We report micro-benchmarking results: (1) we evaluate the
scalability of FDX and demonstrate its quadratic computa-
tional complexity with respect to number of attributes; (2)
evaluate the effect of increasing noise rates on the perfor-
mance of FDX.

5.7.1 Column-wise Scalability. Based on our discussion in
Section 4, FDX exhibits quadratic complexity instead of expo-
nential complexity with respect to the number of columns in
a data set. We experimentally demonstrate FDX’s scalability.
We generate a collection of synthetic data sets where we
keep all settings fixed except for the number of attributes,
which we range from 4 to 190 with a increase step of two.
For each number of columns, we generate five data sets and
calculate the average runtime for each columns size. In addi-
tion, we log both the total runtime (including data loading
and data transformation) and the structure learning runtime.
The results are shown in Figure 6 and validate the quadratic
scalability of FDX as the number of attributes increase.

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

873

tlarge_rlarge_dlarge
tlarge_rlarge_dsmall
tlarge_rsmall_dlarge

tlarge_rsmall_dsmall
tsmall_rlarge_dlarge
tsmall_rlarge_dsmall

tsmall_rsmall_dlarge
tsmall_rsmall_dsmall

Synthetic Settings

F 1
 S

co
re

0

0.2

0.4

0.6

0.8

1.0

Noise Rate
0.01 0.05 0.1 0.3 0.5

Figure 7: Effect of noise on FDX’s performance. The
data set names indicate the setting used (see Table 2).

5.7.2 Effect of Increasing Noise Rates. We evaluate how FDX
performs as the noise rate increases. For this experiment we
generate a new set of synthetic data sets and measure the
performance of FDX for noise rates in {0.01, 0.1, 0.3, 0.5}.
We report the median F1 score in Figure 7. As expected,
the performance of FDX deteriorates as the noise increases,
however, FDX is shown to be robust to high error rates.

6 RELATEDWORK
FD discovery is a critical problem in many data manage-
ment applications. These applications include data clean-
ing [4, 9, 10, 40, 41, 44], schema normalization [15], and
query optimization [20]. Numerous algorithms have been
proposed for discovering syntactically valid FDs in a data
set [1, 19, 25, 30, 34, 35]. We review the works related to ours:

Noisy FD Discovery. For noisy FD discovery, proposed
solutions aim to identify FDs that hold approximately [19,
25, 30]. The works of Kruse and Naumann [25] and the work
of Huhtala et al. [19] set the maximum rows that approxi-
mate FDs can violate. These works rely on co-occurrences
to identify FDs and are agnostic to the type of errors in the
data. Due to their design they require significant tuning that
can be counter intuitive to the user. The work of Mandros
et al. [30] is also agnostic to the types of errors in a data set
and relies on bounding an entropy-based score to obtain ap-
proximate solutions. Finally, CORDS consider correlations to
obtain soft FDs [20]. However, the co-occurrence measures
considered in CORDS discover marginal dependencies and
not conditional independencies that correspond to true FDs.
There are also works that focus explicitly on missing values.
Specifically, the work by Berti-Equille et al. [3] leverages
likelihood-based measures (computed by considering value
co-occurrences) to identify true FDs in the data.
All these methods that rely either on co-occurrences or

likelihood- or entropy-based methods can overfit to spuri-
ous, complex functional dependencies. To counteract this
flaw all aforementioned methods rely on complex filtering

or estimation procedures that can be hard for users to opti-
mize. On the other hand, the rigorous statistical grounding of
FDX provides a FD discovery solution that requires minimal
tuning as shown in Section 5.

Discovery of Other Constraints. There are also many
works that consider discovering other types of constraints
and are not limited to FDs alone [8, 13, 21–23].

For instance, there is work that considers discovering key
constraints under inconsistent data [22, 23]. These works rely
on axiom systems for constraints and propose algorithms to
discover approximate certain keys, i.e., keys with potentially
erroneous values that can identify tuples but may also have
violating values. Other works [8, 21] focus on more general
forms of constraints. Chu et al. [8] focus on the discovery of
denial constraints and present a predicate-based algorithm
that calculates evidence sets of constraint satisfaction over
the input data. More recently, Kenig et al. [21] focused on
the problem of discovering multi-valued dependencies over
noisy data. The methods in [21] rely on entropy-based mea-
sures to score candidate constraints and are related to heuris-
tic, search-based structure learning methods used in directed
graphical models [24]. Such entropy-based approaches to
structure learning exhibit an inherent tendency to overfit
spurious relationships (see Section 2). For this reason works
such as [43] rely on complex and expensive search proce-
dures to find valid constraints. Our work demonstrates that
structure learning methods based on the inverse covariance
are simpler and come with rigorous statistical guarantees.

7 CONCLUSIONS
We introduced FDX, a structure learning framework to solve
the problem of FD discovery in relational data. A key result
in our work is to model the distribution that FDs impose
over pairs of records instead of the joint distribution over
the attribute-values of the input dataset. Specifically, we
introduce a method that convert FD discovery to a structure
learning problem over a linear structured equation model.
We empirically show that FDX outperforms state-of-the-art
FD discovery methods and can produce meaningful FDs that
are useful for downstream data preparation tasks.

8 ACKNOWLEDGEMENTS
This work was supported by Amazon under an ARA Award,
by NSF under grant IIS-1755676, and by DARPA under grant
ASKE HR00111990013. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views, policies, or endorsements, ei-
ther expressed or implied, of DARPA or the U.S. Government.

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

874

REFERENCES
[1] Jalal Atoum, Dojanah Bader, and Arafat Awajan. 2008. Mining func-

tional dependency from relational databases using equivalent classes
and minimal cover. In Journal of Computer Science. Citeseer.

[2] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor.
2017. Hinge-loss Markov Random Fields and Probabilistic Soft Logic.
J. Mach. Learn. Res. 18, 1 (Jan. 2017), 3846–3912.

[3] Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noël Novelli,
and Saravanan Thirumuruganathan. 2018. Discovery of Genuine
Functional Dependencies from Relational Data with Missing Values.
Proc. VLDB Endow. 11, 8 (April 2018), 880–892. https://doi.org/10.14778/
3204028.3204032

[4] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios
Kementsietsidis. 2007. Conditional functional dependencies for data
cleaning. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on. IEEE, 746–755.

[5] Roger Cavallo and Michael Pittarelli. 1987. The Theory of Probabilistic
Databases. In Proceedings of the 13th International Conference on Very
Large Data Bases (VLDB ’87). 71–81.

[6] Yu Cheng, Ilias Diakonikolas, Rong Ge, and David P. Woodruff. 2019.
Faster Algorithms for High-Dimensional Robust Covariance Estima-
tion. In Proceedings of the Thirty-Second Conference on Learning Theory
(Proceedings of Machine Learning Research), Alina Beygelzimer and
Daniel Hsu (Eds.), Vol. 99. Phoenix, USA, 727–757.

[7] David Maxwell Chickering, David Heckerman, and Christopher Meek.
2004. Large-Sample Learning of Bayesian Networks is NP-Hard. J.
Mach. Learn. Res. 5 (Dec. 2004), 1287–1330.

[8] Xu Chu, Ihab F Ilyas, and Paolo Papotti. 2013. Discovering denial
constraints. Proceedings of the VLDB Endowment 6, 13 (2013), 1498–
1509.

[9] X. Chu, I. F. Ilyas, and P. Papotti. 2013. Holistic data cleaning: Putting
violations into context. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE). 458–469.

[10] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid,
Ihab F Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a com-
modity data cleaning system. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 541–552.

[11] Timothy A Davis. User Guide for CHOLMOD: a sparse Cholesky
factorization and modification package. (????).

[12] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur
Moitra, and Alistair Stewart. 2017. Being Robust (in High Dimensions)
Can Be Practical. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70 (ICML’17). JMLR.org, 999–1008. http:
//dl.acm.org/citation.cfm?id=3305381.3305485

[13] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2010. Dis-
covering conditional functional dependencies. IEEE Transactions on
Knowledge and Data Engineering 23, 5 (2010), 683–698.

[14] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2008. Sparse
inverse covariance estimation with the graphical lasso. Biostatistics 9,
3 (2008), 432–441.

[15] Hector Garcia-Molina, Jennifer Widom, and Jeffrey D. Ullman. 1999.
Database System Implementation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

[16] Luca M. Ghiringhelli, Jan Vybiral, Sergey V. Levchenko, Claudia Draxl,
and Matthias Scheffler. 2015. Big Data of Materials Science: Critical
Role of the Descriptor. Phys. Rev. Lett. 114 (2015), 105503. Issue 10.

[17] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsi-
nas. 2019. HoloDetect: Few-Shot Learning for Error Detection. In
Proceedings of the 2019 International Conference on Management of
Data (SIGMOD ’19). ACM, New York, NY, USA, 829–846. https:
//doi.org/10.1145/3299869.3319888

[18] Waun Ki Hong, William Hait, James F Holland, Donald W Kufe, and
Raphael E Pollock. 2010. Holland-Frei Cancer Medicine. PMPH-USA.

[19] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen.
1999. TANE: An Efficient Algorithm for Discovering Functional and
Approximate Dependencies. Comput. J. 42, 2 (1999), 100–111.

[20] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboul-
naga. 2004. CORDS: Automatic Discovery of Correlations and Soft
Functional Dependencies. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’04). ACM,
New York, NY, USA, 647–658. https://doi.org/10.1145/1007568.1007641

[21] Batya Kenig, Pranay Mundra, Guna Prasad, Babak Salimi, and Dan
Suciu. 2019. Mining Approximate Acyclic Schemes from Relations.
CoRR abs/1911.12933 (2019). arXiv:1911.12933 http://arxiv.org/abs/
1911.12933

[22] Henning Köhler, Sebastian Link, and Xiaofang Zhou. 2015. Possible and
Certain SQL Keys. Proc. VLDB Endow. 8, 11 (July 2015), 1118âĂŞ1129.

[23] Henning Kohler, Sebastian Link, and Xiaofang Zhou. 2016. Discovering
Meaningful Certain Keys from Incomplete and Inconsistent Relations.
(2016).

[24] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation and Machine
Learning. The MIT Press.

[25] Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of
approximate dependencies. Proceedings of the VLDB Endowment 11, 7
(2018), 759–772.

[26] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Al-
fons Kemper, and Thomas Neumann. 2015. How Good Are Query
Optimizers, Really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204–215.
https://doi.org/10.14778/2850583.2850594

[27] Po-Ling Loh and Peter Bühlmann. 2014. High-dimensional learning of
linear causal networks via inverse covariance estimation. The Journal
of Machine Learning Research 15, 1 (2014), 3065–3105.

[28] Guy Lohman. Is query optimization a âĂĲsolvedâĂİ problem.
[29] Simone A. Ludwig. 2010. Prediction of Breast Cancer Biopsy Outcomes

Using a Distributed Genetic Programming Approach. In Proceedings of
the 1st ACM International Health Informatics Symposium (IHI ’10). ACM,
New York, NY, USA, 694–699. https://doi.org/10.1145/1882992.1883099

[30] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. 2017. Discovering
reliable approximate functional dependencies. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM.

[31] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. 2018. Discovering
Reliable Dependencies from Data: Hardness and Improved Algorithms.
In ICDM. IEEE Computer Society, 317–326.

[32] Nicolai Meinshausen, Peter Bühlmann, et al. 2006. High-dimensional
graphs and variable selection with the lasso. The annals of statistics
34, 3 (2006), 1436–1462.

[33] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert,
Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Nau-
mann. 2015. Functional Dependency Discovery: An Experimental
Evaluation of Seven Algorithms. Proc. VLDB Endow. 8, 10 (June 2015),
1082–1093.

[34] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert,
Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Nau-
mann. 2015. Functional dependency discovery: An experimental eval-
uation of seven algorithms. Proceedings of the VLDB Endowment 8, 10
(2015), 1082–1093.

[35] Thorsten Papenbrock and Felix Naumann. 2016. A hybrid approach to
functional dependency discovery. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. ACM, 821–833.

[36] Mohsen Pourahmadi. 2011. Covariance Estimation: The GLM and
Regularization Perspectives. Statist. Sci. 26, 3 (08 2011), 369–387.

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

875

https://doi.org/10.14778/3204028.3204032
https://doi.org/10.14778/3204028.3204032
http://dl.acm.org/citation.cfm?id=3305381.3305485
http://dl.acm.org/citation.cfm?id=3305381.3305485
https://doi.org/10.1145/3299869.3319888
https://doi.org/10.1145/3299869.3319888
https://doi.org/10.1145/1007568.1007641
http://arxiv.org/abs/1911.12933
http://arxiv.org/abs/1911.12933
http://arxiv.org/abs/1911.12933
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/1882992.1883099

[37] Pannir Rajaleximi, Mohammed Ahmed, and Ahmed Alenezi. 2019.
Feature Selection using Optimized Multiple Rank Score Model for
Credit Scoring. International Journal of Intelligent Engineering and
Systems 12 (04 2019), 74–84.

[38] Garvesh Raskutti and Caroline Uhler. 2018. Learning directed acyclic
graph models based on sparsest permutations. Stat 7, 1 (2018), e183.

[39] Matthew Reimherr and Dan L. Nicolae. 2013. On Quantifying Depen-
dence: A Framework for Developing Interpretable Measures. Statist.
Sci. 28 (02 2013).

[40] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017.
HoloClean: Holistic Data Repairs with Probabilistic Inference. Proc.
VLDB Endow. 10, 11 (2017).

[41] El Kindi Rezig, Mourad Ouzzani, Ahmed K. Elmagarmid, Walid G.
Aref, and Michael Stonebraker. 2019. Towards an End-to-End Human-
Centric Data Cleaning Framework. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics (HILDA’19). ACM, New York, NY,
USA, Article 1, 7 pages. https://doi.org/10.1145/3328519.3329133

[42] Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and
Theodoros Rekatsinas. 2019. A Formal Framework for Probabilistic
Unclean Databases. In International Conference on Database Theory,
ICDT 2019.

[43] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Nau-
mann, Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube.
2019. DynFD: Functional Dependency Discovery in Dynamic Datasets.

In EDBT. OpenProceedings.org, 253–264.
[44] Saravanan Thirumuruganathan, Laure Berti-Equille, Mourad Ouzzani,

Jorge-Arnulfo Quiane-Ruiz, and Nan Tang. 2017. Uguide: User-guided
discovery of fd-detectable errors. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data. ACM, 1385–1397.

[45] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2011. Light-
weight Graphical Models for Selectivity Estimation Without Indepen-
dence Assumptions. PVLDB 4, 11 (2011), 852–863.

[46] RichardWu, Aoqian Zhang, Ihab Ilyas, and Theodoros Rekatsinas. 2020.
Attention-based Learning for Missing Data Imputation in HoloClean.
In Proceedings of Machine Learning and Systems 2020. 307–325.

[47] Shanshan Wu, Sujay Sanghavi, and Alexandros G Dimakis. 2018.
Sparse Logistic Regression Learns All Discrete Pairwise Graphical
Models. arXiv preprint arXiv:1810.11905 (2018).

[48] Yirong Wu, Oguzhan Alagoz, Mehmet U. S. Ayvaci, Alejandro
Munoz del Rio, David J. Vanness, Ryan Woods, and Elizabeth S. Burn-
side. 2013. A Comprehensive Methodology for Determining the Most
Informative Mammographic Features. Journal of Digital Imaging 26, 5
(01 Oct 2013), 941–947.

[49] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan
Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan,
and Ion Stoica. 2019. Selectivity Estimation with Deep Likelihood
Models. CoRR abs/1905.04278 (2019).

Research 9: Data Cleaning SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

876

https://doi.org/10.1145/3328519.3329133

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Functional Dependencies
	2.2 Learning Parsimonious Structures

	3 The FDX Framework
	3.1 Problem Statement
	3.2 Solution Overview

	4 FD Discovery in FDX
	4.1 The FDX Model
	4.2 Structure Learning in FDX
	4.3 Discussion

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiments on Known-Structure Data
	5.3 Experiments with Synthetic Data
	5.4 Experiments on Real-World Data
	5.5 Using FDX in Data Preparation
	5.6 Hyper-parameter Analysis
	5.7 Micro-benchmark Results

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References

