
1 

 

Computational Discovery of Transition-Metal 

Complexes: From High-throughput Screening to 

Machine Learning 

Aditya Nandy1,2,#, Chenru Duan1,2,#, Michael G. Taylor1, Fang Liu1, Adam H. Steeves1, and 

Heather J. Kulik1,*  
1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 

02139 
2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 

*email: hjkulik@mit.edu phone: 617-253-4584 

#These authors contributed equally. 

ABSTRACT: Transition-metal complexes are attractive targets for the design of catalysts 
and functional materials. The behavior of the metal–organic bond, while very tunable for 
achieving target properties, is challenging to predict and necessitates searching a wide, and 
complex space to identify needles in haystacks for target applications. This review will focus 
on the techniques that make high-throughput search of transition-metal chemical space 
feasible for the discovery of complexes with desirable properties. The review will cover the 
development, promise, and limitations of “traditional” computational chemistry (i.e., force 
field, semi-empirical, and density functional theory methods) as it pertains to data generation 
for inorganic molecular discovery. The review will also discuss the opportunities and 
limitations in leveraging experimental data sources. We will focus on how advances in 
statistical modeling, artificial intelligence, multi-objective optimization, and automation 
accelerate discovery of lead compounds and design rules. The overall objective of this review 
is to showcase how bringing together advances from diverse areas of computational 
chemistry and computer science have enabled the rapid uncovering of structure–property 
relationships in transition-metal chemistry. We aim to highlight how unique considerations in 
motifs of metal–organic bonding (e.g., variable spin and oxidation state, and bonding 
strength/nature) set them and their discovery apart from more commonly considered organic 
molecules. We will also highlight how uncertainty and relative data scarcity in transition-
metal chemistry motivate specific developments in machine learning representations, model 
training, and in computational chemistry. Finally, we will conclude with an outlook of areas 
of opportunity for the accelerated discovery of transition-metal complexes.  
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1. Introduction. 

 Transition-metal complexes have properties that can be carefully tuned through ligand 

design and metal selection for the control of spin/oxidation state and electronic or optical 

properties. As a result, tailoring the properties of transition-metal complexes has led to 

significant advances in catalysis and in the design of functional (e.g., magnetic) materials. 

Computational chemistry and, in particular, quantum chemical modeling have long played 

essential roles in explaining structure–property relationships and in designing this class of 

inorganic molecules. More recently, the accelerated discovery and design of transition-metal 

complexes has greatly benefitted from developments in accelerated computer hardware, larger 

data sets from theory and experiment, and machine learning models. Advances in artificial 

intelligence are changing all areas of chemistry at an increasingly rapid pace, and the 

combinatorial challenges that metal–organic bonding at open-shell transition-metal centers make 

this materials space particularly ripe for data-driven, accelerated methods.  

1.1. Scope of the Review. 

 This review focuses on cases where computational chemistry and machine learning play a 

leading role in accelerated inorganic complex discovery. To understand this role, we address the 

intersection of developments in electronic structure theory, molecular modeling, 

cheminformatics, and machine learning. To describe progress in large-scale, automation of 

transition-metal chemical space exploration, we consider efforts in both experimental and 

computational high-throughput screening. We also address specific challenges for open-shell, 

first-row (i.e., 3d) transition-metal chemistry in terms of data availability and reliability, both 
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from conventional computational modeling and from experiment. We touch briefly upon heavier 

elements (i.e., with open 4d, 5d, or lanthanide 4f shells), but the discussion is more limited in 

scope, in part due to the smaller amount of available experimental data.  

 This review highlights recent developments over the past few years in machine learning 

models capable of reproducing electronic structure property predictions at low cost in high-

throughput screening and accelerated discovery in transition-metal chemistry. It discusses 

closely related efforts in data mining, semi-empirical modeling, and molecular mechanics over 

the past fifty years. This discussion is necessary to provide context on where machine learning 

models can supersede or, alternatively, learn from these methods. Other topics in the scope of 

this review include data-driven efforts in extracting quantities from experimental literature or in 

developing linear quantitative structure–property and scaling relationships from experimental 

and literature data.  

 The central focus of this review is on methods and software for property prediction and 

accelerated chemical discovery in metal–organic complexes and closely related materials (e.g., 

porous metal–organic frameworks), at the interface with more traditional domains of electronic 

structure theory. Other inorganic materials, such as most solid-state materials or biological 

systems (e.g., metalloenzymes) are not discussed. This review also largely excludes the special 

considerations associated with neural network potentials and representations for carrying out 

molecular dynamics. Where we cover catalytic applications, our emphasis is on the design of 

catalysts rather than on the discovery of reaction mechanisms.  

1.2. Previous Reviews. 

 Several previous reviews have been written that are of broad use to the reader and 

provide complementary discussions of topics not extensively covered in this review. Li and 
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Merz1 have written a comprehensive review of molecular modeling for metal ion bonding. Pidko 

and coworkers2 have extensively discussed the combined computational and experimental 

considerations for transition-metal catalysis. Fey and coworkers3 have examined the relationship 

between chemical properties and relevant descriptors from cheminformatics for interpreting the 

properties of transition-metal complexes. Jensen and coworkers recently discussed some of the 

challenges for in silico catalyst design4. A number of reviews have addressed specific challenges 

of density functional theory in its application to transition-metal chemistry5-7 as well as 

opportunities for going beyond DFT in catalysis8. Additional reviews are mentioned in the 

context of specific topics, as noted in relevant sections throughout this review.  

1.3. Note on Machine Learning Nomenclature.  

 This review is written primarily from the perspective of computational and theoretical 

chemistry with some reference to concepts from chemical bonding and transition-metal 

chemistry as well as related experimental data. Applications of machine learning will be 

introduced with some needed background, but concepts behind the terminology may be less 

familiar to a reader without prior exposure to machine learning. To understand machine 

learning’s relevance to transition-metal complex discovery, we will primarily discuss key aspects 

of statistical machine learning. We will discuss descriptors or features, which are the inputs to 

machine learning models. We will address supervised learning, where the model learns the 

mapping between inputs and outputs (here, property prediction). This review will also introduce 

applications of unsupervised or semi-supervised learning, where the model chooses the structure 

of data without being provided any (or most) property output labels. The review will cover 

models of varying complexity or interpretability and what role model choice plays in discovery. 

This review will discuss how researchers determine when machine learning models are 
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confident, in an area of statistical learning known as uncertainty quantification. This aids in the 

identification of model domain of applicability, which refers to where a machine learning model 

should be applied. The model can either be exploited by being used only in its domain of 

applicability, or we can engage in model exploration, preferentially acquiring promising data in 

regions of high uncertainty. Finally, we will address some efforts focused on addressing scarce 

or biased data, including through so-called active learning approaches that iteratively seek out 

new information for machine learning models. For additional background on the fundamental 

statistical learning concepts beyond the scope of this review, we suggest consulting reference 

texts, such as The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman9 or the 

recent primer developed by Janet and Kulik for applications of machine learning in chemistry.10 

2. Molecular Modeling for Transition-Metal Chemistry. 

 There has long been significant interest in developing tractable, low-cost computational 

models of transition-metal complexes. The special challenges arising from the diverse range of 

bonding, spin, and oxidation states in open-shell transition-metal complexes have limited the 

development of general, accurate models. Nevertheless, semi-empirical11-14 and classical 

molecular mechanics15-20 models have been developed for understanding the properties of 

transition-metal complexes, particularly prior to the advent of practical density functional theory 

(DFT) functionals and wide applicability of DFT through increases in computational power in 

the 1990s. The earliest extended Huckel21 and other semi-empirical Hamiltonian11-14 calculations 

on transition-metal complexes were carried out over sixty years ago. This section describes 

developments in both force field (Sec. 2.1) and semi-empirical (Sec. 2.2) methods along with 

advancements and obstacles in the theory and practice of DFT (Sec. 2.3). Challenges for 

correlated wavefunction theory (WFT) methods specific to transition-metal chemistry (Sec 2.4) 
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are also briefly reviewed. This section concludes with a brief description of how statistical 

learning methods and molecular modeling methods have been simultaneously leveraged and 

where opportunities remain.  

2.1. Force Fields. 

 Despite the somewhat decreased focus on such methods in recent years, affordable but 

reasonably accurate tools for structure generation and property prediction are often needed for 

efficient computational workflows. While many force fields and semi-empirical theories were 

primarily developed for main group chemistry, a number of semi-empirical methods22-25 or force 

fields16-17, 26-28 were developed with transition-metal chemistry in mind. The best performance is 

typically obtained by focusing on a subset of properties (e.g., structure25 or spectra22) or 

materials29-30. Here, we briefly review some of the key historical advances in force field 

development with a focus on open-shell transition-metal chemistry.  

2.1.1. General-Purpose Force Field Modeling. 

 Force fields capable of predicting properties across the periodic table have been 

devised26, 31-33. The most widely used and well known of these that is suitable for transition-metal 

chemistry is the universal force field (UFF)26. In UFF, a heuristic set of rules based on mixing of 

elements and on Badger’s rules for relating bond length and strength enables the generation of 

parameters for a large number of elements. For transition-metal complexes, the ability of UFF to 

predict experimental metal–ligand bond lengths varies from good (0.02 Å) to fair (ca 0.08 Å) or 

poor, with average errors around 0.05 Å20 to 0.10 Å34. For open-shell transition-metal chemistry 

in particular, it is problematic that a single oxidation and spin state is used in parameter 

generation for each metal26, and the force field may not be accurate for alternative oxidation or 

spin states (Figure 1).34-35 The appropriate bond order for metal–ligand interactions must also be 
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manually adjusted for ligands that involve backbonding (e.g., carbonyl or phosphine) to avoid 

over- or underestimating bond lengths.20  

 
Figure 1. Comparison of relationships between bond length and chemical composition in 
organic molecules (top) and inorganic chemistry (bottom) obtained from UFF (circles) to those 
from DFT (vertical lines). For organic chemistry, the lengths of C–C bonds in acetylene, 
ethylene, benzene, and ethane are compared. For inorganic chemistry, the Fe–C bond in four spin 
and oxidation states of the homoleptic Fe(CO)6 complex are compared. The relative bond lengths 
obtained from first-principles calculation are shown to scale across the two data sets: the organic 
molecules span a 0.34 Å range from acetylene (1.20 Å) to ethane (1.54 Å), and the inorganic 
complex bond lengths span a 0.37 Å range from singlet Fe(II) (1.94 Å) to quintet Fe(II) (2.31 Å). 
Reprinted with permission from ref. 35. Copyright 2020 John Wiley and Sons. 
 

 To overcome some limitations, these general force fields have been specifically tailored 

for common materials targets in inorganic chemistry, such as porous metal–organic framework 

(MOF) materials (i.e., with UFF4MOF29). The MM336 force field of Allinger and coworkers is 

another widely used general-purpose force field. It incorporates Morse potentials for bond 

stretching to better describe distorted structures. In a similar spirit to the tailoring of UFF, a 

number of groups have manually adjusted the MM3 parameters for a narrow range of transition-

metal complexes15 or materials (e.g., for MOFs with MOF-FF30). To make this approach 

straightforward, a number of groups have employed genetic algorithms19, 30, 37 to optimize metal-
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specific force field parameters.  

 It is challenging for any of these general force fields to describe the relative stability of 

isomers, e.g., tetrahedral versus square planar complexes. To address this limitation, Landis and 

coworkers developed a Fourier series approach to handling angular potentials in the SHAPES38 

and VALBOND27, 39-40 force fields. These force fields address the fact that there are multiple 

minima in the L–M–L angular potential (e.g., 90 and 180° for an octahedral complex), and 

achieve bond length errors ca. 0.01–0.03 Å on training complexes or up to 0.1 Å for some 

higher-error points. Recent extensions by Meuwly28 were added to predict other electronically 

driven features (i.e., trans influence, see Sec. 2.1.2). Other efforts to tailor force fields to describe 

aspects of metal–ligand bonding include adaptations for the Jahn–Teller effect18, 41 and the trans 

effect42. A more thorough discussion of some of these considerations, especially for bioinorganic 

systems is carried out in Refs. 1, 19.  

 A critical outstanding area is in the generation of conformers, where even for organic 

molecules a force field conformer ranking often differs from that of more accurate methods.43 In 

catalysis, this can be critical, as choosing a different conformer for a reaction can change the 

predicted activation energies44-45. For transition-metal chemistry, the question of how to address 

the metal–ligand bond (i.e., with fixed bond order or non-bonded, electrostatic terms)46 adds 

additional challenges to assessing and improving force field accuracy as well. 

For conformer searching and other tasks where standard force fields fail but higher-level 

methods remain cost-prohibitive, a divide-and-conquer approach may be useful. Errors from 

general molecular mechanics force fields are dramatically smaller on organic components of 

transition-metal complexes than on the metal–organic bond (Figure 2).34 Thus, in one strategy, 

the metal and its coordinating atoms are described with QM, whereas the organic components 



10 

 

are treated with a force field and allowed to move during the conformer search.47 Another family 

of approaches called hierarchically improved methods, in which the structure is pre-optimized 

with a force field or semi-empirical method (see Sec. 2.2) and then refined with DFT (see Sec. 

2.3), has frequently been pursued in transition-metal chemistry (Figure 3).48-49 More recent 

developments include systematic construction, e.g., from CSD fragments50-51 (see Sec. 5) or 

databases of DFT data52-53. In combination with machine learning model predictions54-55, these 

approaches have emerged as preferable alternatives (see Sec. 4).  

 

 
Figure 2. Comparison of average organic (bottom) and metal–ligand (M–L) bond (middle) 
errors (in Å) for 66 M(II/III) homoleptic octahedral complexes with M = Cr, Mn, Fe, or Co. The 
top pane shows the performance of an ANN trained in ref. 54. Representative compounds with 
median errors for M–L prediction are shown in inset: 0.01 Å abs. error for the ANN example of 
quintet Fe(II)(pyr)6 and 0.10 Å abs. error for UFF example of singlet Fe(II)(misc)6. Reprinted 
with permission from ref. 34. Copyright 2019 American Chemical Society. 
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Figure 3. Modified de novo design pyramid suggested by Cundari and coworkers, and by 
Gillespie et al. wherein many MM calculations are refined with semi-empirical quantum 
mechanics (SQM, or SEQM in figure) followed by DFT. Further refinement with additional MM 
and DFT-based conformer searching has also been proposed to ensure exhaustive searches are 
completed. Reprinted with permission from ref. 48. Copyright 2002 American Chemical Society. 
 
2.1.2. Ligand Field Effects and Molecular Mechanics Models. 

 The ligand field molecular mechanics (LFMM) approach first introduced in the 1990s16 

incorporates a distance-dependent ligand field stabilization energy (LFSE) into the force field 

that attempts to model the crystal field splitting. Each individual metal–ligand interaction is 

parameterized using standard terms (e.g., stretch, bend, torsion, vdW) along with a ligand field 

stabilization interaction.17 Notably, LFMM derives its terms from the widely employed empirical 

Hamiltonian approach known as the angular overlap model (AOM) that was first introduced in 

the 1960s56. In the AOM approach, sparse matrix elements describing the ligand field are 

parameterized based on experimental structural and spectroscopic data. These methods then aid 

the interpretation of spectroscopic observations. Accurate structures are important inputs into the 

AOM model for prediction of spectroscopic properties.57 Comba and coworkers developed the 

multi-level MM-AOM57 approach for cases where an accurate experimental structure is 

unknown for input into the AOM model. In MM-AOM, a molecular mechanics force field 

parameterized58-59 to reproduce structures of relevant compounds (e.g., Co(III) ammines) is 

applied to the molecules being studied. One key feature of the AOM model and the related 
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LFMM approach is the assumption of additivity of ligand field effects60. By comparing the 

ability of AOM models to predict experimental spectra, the qualitative assumption of ligand field 

additivity was confirmed60, although minor exceptions can be noted. 

 In recent years, LFMM has become the most widely used implementation of AOM within 

MM-based modeling. The LFMM field-splitting parameters for s and p bonding17 are tuned to 

reproduce a combination of experimental structural data from the CSD and DFT-calculated 

distances61, typically for a narrow range of spin and oxidation states (e.g., Ni(II) or Cu(II)16 and 

Fe(II)61). As a result of inclusion of the LFSE term, LFMM can be parameterized to predict spin 

state energies61-62, the preferred coordination geometry of a given spin or oxidation state63, ligand 

exchange or dissociation energies64, and the presence of Jahn–Teller distortions16, 41. Training 

errors on structural properties are typically small in these models for a single set of force field 

terms (around 0.01–0.02 Å), but application to diverse test molecules61 can yield larger errors of 

ca. 0.06–0.10 Å. LFMM-like terms have also been added to polarizable force fields (i.e., in 

SIBFA-LF) to enable modeling of Jahn–Teller distortions.65 

 The LFMM parameters must be determined for each metal, oxidation, spin state, and 

ligand field strength, but the developed parameters can be used in a way that exploits ligand 

additivity. For example, LFMM parameters derived from homoleptic complexes can reproduce 

general trends of some heteroleptic compounds62, as exemplified by tests on the spin-splitting 

energies of Co(III)Fn(CN-)6-n complexes (Figure 4). The mixed LFMM parameters overestimate 

the effect of each ligand addition on the spin splitting with respect to DFT, but they are able to 

capture subtle differences in cis versus trans or fac versus mer isomers (Figure 4). 
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Figure 4. Comparison of LFMM-predicted spin state energetics for isomers of [CoFn(CN)6-n]3- 
with BP86 DFT calculations, both in kcal/mol. The LFMM parameters were derived from DFT 
on the homoleptic complexes. Reprinted with permission from ref. 62. Copyright 2003 Royal 
Society of Chemistry. 
 

 While implemented in a number of codes (e.g., Tinker and DommiMOE)63, 66, 

widespread adoption of the LFMM approach has predominantly been limited by the lack of 

demonstrated general performance of the parameter set. Nevertheless, promising directions of 

the LFMM approach include recent improvements in automated optimization of parameters. 

Using multi-objective optimization with a genetic algorithm, Deeth and coworkers 

simultaneously minimized standard LFMM parameter spin-splitting energy errors (ca. 1–7 

kcal/mol) and metal–ligand bond length errors (ca. 0.02–0.03 Å) with respect to DFT (i.e., with 

the OPBE functional) results for Fe(II) complexes including spin-crossover (SCO) complexes.61 

These continued methodological developments of LFMM have led to applications that include 

modeling host–guest interactions of water in SCO Fe(II) MOFs67. Using LFMM, Paesani and 

coworkers67 performed molecular dynamics and Monte Carlo simulations to observe changes in 

the spin-crossover transition of a Fe(II) SCO MOF in the presence of additional water molecules 

in the unit cell that alter the ligand field environment around the Fe(II) metal (Figure 5). Other 

recent extensions of LFMM have been developed for metalloenzyme modeling68. 
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Figure 5. Distribution of bond lengths between Fe(II) and N atoms of pyrazine linkers in a spin-
crossover MOF evaluated from Monte Carlo/molecular dynamics with the LFMM force field for 
the cases of a) below the transition temperature, T1/2, b) close to the transition temperature, and c) 
above the transition temperature. Each curve corresponds to the number of water molecules, NW, 
adsorbed per unit cell. Reprinted with permission from ref. 67. Copyright 2016 American 
Chemical Society. 
 

2.1.3. Alternative Tailored Force Fields for Transition States. 

 Thus far, we have described a number of cases where specific force field parameters are 

developed for a narrow range of metals and materials in their equilibrium structures. Transition 

states play a critical role in transition-metal catalyst design, motivating a special example of 

force fields tailored to optimize and characterize saddle points. The transition state force field 

(TSFF) approach was pioneered by Houk and coworkers69 and popularized by Norrby, Wiest, 

and coworkers70-71 through combination with systematic parameterization. For the TSFF family 

of approaches, a force field is generally fit to the quantum mechanical (i.e., DFT) Hessian of a 

known transition state that is the target for ligand design.72 The negative eigenvalue of this 

Hessian is shifted to become positive such that a minimization algorithm normally used for 

geometry optimization locates the transition state.  

 While parameterized on the transition state for a single ligand, this approach can then be 

used to screen a large number of ligands or carry out conformational searches in the TS 

geometry. Chief limitations here are the difficulty of accurately parameterizing the force field 
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and the prediction of changes in steric contributions along the reaction coordinate.70 Norrby and 

coworkers have focused on identifying optimal parameterization objectives and weightings as 

well as systematic, automated optimization of this objective from quantum data in the Q2MM 

approach.73 Despite potential limitations in the TSFF formalism including sensitivity to 

parameterization, these methods have been shown to successfully discern vanishingly small 

energetic differences between ligands that are needed to predict enantiomeric excess.71 The 

predictive capabilities of Q2MM/TSFF on experimental enantioselectivities also suggests they 

may be able to identify errors in reported experimental values.74 Alternative methods to the 

TSFF for characterizing transition states at low cost are summarized in Ref. 72. 

2.2. Semi-Empirical Methods. 

 Over the past fifty to sixty years, semi-empirical quantum mechanical (SQM) methods 

have been developed and applied to the study of transition-metal complexes.11-14, 21 As in organic 

chemistry where these methods are most well developed75-77, early developments included 

parameterization with the complete neglect of differential overlap (CNDO)78-79, followed by 

improvements through less severe approximations in the intermediate neglect of differential 

overlap (INDO)23, 80-84, and neglect of differential diatomic overlap (NDDO)76, 85 flavors of semi-

empirical theory. Semi-empirical methods were most widely used following their development in 

the 1970s–1980s prior to the advent of predictive DFT methodology. Nevertheless, the need for 

rapid structural pre-optimization prior to DFT calculations, especially in data-driven workflows, 

as well as possible improvements arising from larger available data sets and more sophisticated 

parameterizations have motivated their continued development.  

2.2.1. Early SQM Methods. 

 While SQM methods have long been demonstrated for main group chemistry, special 
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considerations are needed for handling d electrons. INDO, which includes one-center exchange 

integrals neglected in CNDO, can be expected to be the minimum level of theory capable of 

capturing essential aspects of transition-metal chemistry, such as d–d orbital ordering and 

transition characteristics.82 The most successful demonstration of these early methods were 

Zerner’s INDO23 and INDO/S22, 86 techniques for predicting ground state and spectral properties 

(e.g., vertical spin transition energies87 of [Fe(H2O)6]3+). These methods were applied on static 

structures of open-shell transition-metal complexes, typically obtained from experiment. Highly 

successful semi-empirical methods developed for organic molecules (e.g., the PM6 and PM7 

methods88-89 or AM190) have modifications (e.g., AM1/d or PM3(tm))91-92 to enable treatment of 

d electrons. Nevertheless, benchmarking of these methods on first-row transition-metal 

complexes has been limited and not very promising.76, 93-94 The most glaring limitations of semi-

empirical methods are the inability to predict the existence of stable structures93-94 and the 

prediction of the incorrect ordering preference of conformers with respect to DFT benchmarks 

(Figure 6).  

 
Figure 6. The Pearson correlation coefficient, ρ, between single-point energies from DFT with 
PBE0-D3/def2-TZVP (TZ) and PBE-D3/def2-SVP (DZ) as well as semi-empirical (PM6, PM6-
D3, PM6-DH+, PM6-DH2, PM6-DH2X, PM6-D3H4, PM6-D3H4X, and PM7) methods in 
comparison to a M06/def2-TZVP reference for transition-metal complexes studied in ref. 93. The 
solid blue bars correspond to average values over 27 transition-metal complexes with 3d, 4d, and 
5d metals studied in ref. 93. The black bars correspond to the lowest and highest values, with 
negative values corresponding to an anticorrelation between the method and the reference, which 
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is observed for at least some compounds for all semi-empirical methods. Reprinted with 
permission from ref. 93. Copyright 2018 American Chemical Society. 
 

 Other observed errors for SQM methods include incorrect metal–ligand bond lengths (by 

ca. 0.1 Å94), incorrect ground state spin prediction95, and both over- and underestimation of 

ligand dissociation energies76. When tested on MOF crystal lattice optimizations, PM6 and PM7 

generally underestimate lattice parameters by around 0.5–1.0 Å (ca. 3%) even for relatively 

simple (e.g., Mg-MOF-74) materials.96 In comparison to 3d metals and main group elements, 

few parameter sets have been developed for 4d or 5d transition metals.83, 97-98 Poor performance 

for metal–ligand bond lengths (ca. 0.1 Å on 48 training compounds) for an INDO-based model 

was attributed to the inflexibility of parameters derived to reproduce atomic ionization 

energies.83  

 Unlike in organic chemistry, errors for semi-empirical methods in transition-metal 

chemistry are overall unsuitably large.76, 93 Parameterizations of these methods typically involve 

fitting to experimental atomic data as well as to metal–ligand bond distances from experimental 

structures of mononuclear complexes.99 However, the lack of explicit encoding of the effect of 

ligand properties (i.e., field strength or contributions beyond the direct coordinating atoms) has 

limited the predictive capabilities of these methods. The application and performance of semi-

empirical theory to polynuclear transition-metal complex properties (e.g., exchange coupling) 

has been even less extensively explored.100 For example, Reiher and coworkers76 showed that 

PM688 or PM789 ligand dissociation energies not only over- or underestimate the dissociation 

energies from local coupled cluster theory references by as much as 150 kJ/mol (40 kcal/mol) 

but also that modest changes from PM6 to PM7 parameterization significantly increase the errors 

(ca. 10 kcal/mol or more) for some compounds (Figure 7). The current parameter sets are 
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unlikely to be sufficiently flexible to eliminate these errors. Detailed, critical reviews of 

developments and remaining limitations for semi-empirical theory are provided in Refs. 76-77, 

99. 

 

 
Figure 7. Deviation of electronic ligand dissociation energies ΔE in kJ/mol between either PM6 
or PM7 and DLPNO‐CCSD(T) for the 10 reactions in the WCCR10 set. Reaction 4 is not shown 
for PM6 due to the error being high. Reprinted with permission from ref. 76. Copyright 2018 
John Wiley and Sons. 
 

 The best performance has been obtained when the semi-empirical parameters for the 

metal center were optimized systematically (i.e., with a genetic algorithm) on experimental (i.e., 

CSD structure) data for a specific metal (e.g., Tc101) and/or application (e.g., Ru dyes102) to 

achieve errors on the order of 0.02–0.04 Å in metal–ligand bond lengths. For example, by both 

focusing on a narrow range of materials and re-optimizing the Ru parameters in PM6, metal–

ligand bond length errors were reduced from 0.04 Å to less than 0.02 Å on molecules both in and 

held back from the training set102.  

2.2.2. Recent Developments in Semi-Empirical Theory. 

 Hierarchical strategies proposed by Cundari, Gillespie and coworkers48-49 that were 

critical in the early 1990s, due to the demanding nature of DFT at the time, remain relevant for 

modern uses of semi-empirical methods for geometry per-optimization in high-throughput 

workflows. These authors proposed the de novo structure prediction approach of MM-then-

SQM-then-DFT, occasionally requiring some retracing of steps in the hierarchy to ensure all 
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minima were located in conformational searches (Figure 3). However, the large geometric errors 

typically observed with early semi-empirical methods present a barrier to their use in modern 

workflows. Improvements in the treatment of non-covalent interactions and thermochemistry, 

e.g., with the orthogonalization-corrected OMx methods of Thiel and coworkers103, have not 

been extended to transition-metal chemistry. Readily available semi-empirical methods (e.g., 

PM688 or PM789) sometimes optimize structures to the incorrect coordination environment 

favored by a metal, but constraining the local coordination environment does not generally 

improve prediction accuracy.93  

 These challenges have motivated the development by Grimme and coworkers of the 

GFN-xTB series of semi-empirical methods better suited to the prediction of structures25, 104 of 

large transition-metal complexes. The GFN-xTB family generally outperforms PM6 and PM7 

variants (Figure 8). However, these newer SQM methods have some limitations, in that they 

cannot predict spin state energetics75, and they generally perform poorly for predicting properties 

of open-shell transition-metal complexes such as pKas105 or redox potentials106. For use in 

characterizing transition states, the GFN-xTB methods slightly outperform PM6 or PM7 on 

prediction of barrier heights and structures with respect to DFT reference values on the 

MOBH35 set107 (Figure 9). Nevertheless, GFN-xTB cannot locate some transition states and 

others have significantly different geometries (ca. 0.5–1 Å RMSD) or energies (ca. 10–30 

kcal/mol) in comparison to DFT reference values (Figure 9).107  
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Figure 8. Performance of semi-empirical methods (i.e., GFN1-xTB, GFN2-xTB, PM6-D3, PM6-
D3H4, and PM7) in terms of bond lengths and angles on a benchmark set of closed-shell singlet 
mononuclear transition-metal complexes (i.e., TMG145) optimized with TPSSh-D3(BJ)/def2-
TZVPP. Bond lengths in pm (a)–(c) and angles in ° (d)–(f). Parts (b) and (e) show the results 
obtained upon exclusion of structurally incorrectly optimized structures (i.e., labeled “SC failures 
excluded”). Reprinted with permission from ref. 104. Copyright 2019 John Wiley and Sons. 
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Figure 9. Deviations of semi-empirical methods GFN1-xTB, GFN2-xTB, PM6-D3H4, and PM7 
from a DFT reference (TPSS-D3(BJ)/def2-SVP) for the MOBH35 transition-metal complex 
reaction set a) barrier heights in kcal/mol and b) structural RMSDs in Å for transition states. 
Reprinted with permission from ref. 107. Copyright 2020 American Chemical Society. 
 

 The self-consistent charge (SCC) density functional tight binding (DFTB) method 

represents a distinct family of semi-empirical techniques based on reproducing results from DFT 

in the context of a minimal basis.24, 108-109 Because the method is largely parameterized to 

reproduce results from semi-local DFT, it can suffer from the same challenges as DFT in 

describing transition-metal complexes (see Sec. 2.3). Nevertheless, parameters have been 

developed for some transition metals with DFTB (e.g., Ni110, Cu111, and earlier 3d transition 

metals112). Reasonably promising results have been obtained especially for structural properties 

of transition-metal complexes (ca. 0.06–0.10 Å errors), but energetic errors are still significant 
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(ca. 10–20 kcal/mol or higher) especially for charged ligands.110, 112 More parameters, including 

those that can account for multiple spin and oxidation states in a balanced fashion are needed to 

make DFTB a generally useful tool.  

2.3. Density Functional Theory Modeling. 

 While the theoretical groundwork for density functional theory (DFT) was first 

developed over 50 years ago, development of accurate functionals and increases in computing 

power in the 1990s led to its rapid adoption for application to transition-metal chemistry. Much 

like for the MM and SQM theories that preceded it, special considerations must be made in the 

application of DFT to transition metals. In this section, we briefly review the most relevant 

theoretical challenges (Sec. 2.3.1) and practical performance (Sec 2.3.2) of conventional DFT 

functionals in this domain. We also describe the most widely employed semi-empirical 

corrections that have been developed specifically for transition-metal chemistry (Sec. 2.3.3).  

2.3.1. Theoretical Challenges for Conventional DFT Functionals 

 Although DFT is widely employed for its balance of cost and accuracy in main group 

chemistry, most exchange-correlation (xc) approximations in DFT suffer from one- and many-

electron self-interaction errors.113-117 The self-interaction error has been associated with a number 

of missing constraints in DFT, including the lack of piecewise linearity or derivative 

discontinuity with respect to electron removal, which leads to underestimations of fundamental 

gaps and incorrect hybridization.118-120 As reviewed elsewhere (e.g., in Refs. 6, 121-122), a 

popular approach to improving DFT accuracy in main group methods is to systematically 

incorporate higher-order terms in an expansion of the density, which have been described as 

rungs on a Jacob’s ladder to chemical accuracy heaven, while satisfying constraints on model 

systems or against experimental data. This paradigm is challenged in open-shell transition-metal 
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chemistry. The partially filled d shell is strongly sensitive to both absolute self-interaction error, 

also referred to as delocalization error113, 123, as well as imbalances in delocalization across a 

reaction coordinate.  

 Exchange-correlation functionals that reduce delocalization error tend to increase the 

static correlation error124-126 (i.e., poor treatment of multi-determinantal solutions), important for 

transition-metal chemistry, with few exceptions126-130. Recommendations of best-in-class 

functionals for transition-metal chemistry differ from the main group: pure semi-local 

generalized gradient approximations (GGAs) tend to be favored131 in transition-metal chemistry 

when static correlation error is manifest, whereas hybrid GGAs and “higher rung” functionals are 

typically believed to improve over GGAs for organic molecules. Similarly, DFT errors are often 

significantly larger in transition-metal chemistry, and practical correction schemes tend to differ 

from those used in main group chemistry.  

2.3.2. Practical Performance on Structures and Energetic Properties. 

 Some properties are disproportionately sensitive to self-interaction errors in DFT 

functionals. For example, adiabatic spin state splitting132-139, barrier heights140-141, frontier orbital 

energies and absorption spectra142-144 are all very sensitive to functional choice. For complexes 

that are known to exhibit near-degenerate spin states (i.e., spin-crossover complexes or SCOs), 

incorporating a significant amount of HF exchange usually biases functionals toward 

overpredicting high-spin ground states, whereas semi-local functionals predict too many 

complexes to have low-spin ground states.132-139 Isomerization or conformer energies145-146 as 

well as ligand dissociation energies147 represent an intermediate case for sensitivity to self-

interaction error, generally increasing when there is an imbalance in the degree of delocalization 

between intermediates.148 Most observations have been made on 3d complexes, and 
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comparatively less is known about the relative accuracy of electronic structure methods for 4d 

complexes149-151. However, a combination of the strong low-spin shift of 4d metals with respect 

to their 3d counterparts and the more diffuse nature of orbitals suggests that some properties that 

are normally quite sensitive to functional choice (i.e., spin-splitting energies) in 3d metals are 

considerably less sensitive with 4d metals.152 

 Experimental gas-phase ligand dissociation energies from primarily closed-shell, late 

transition-metal (Cu, Pd, Ru, Pt, and Ag) complexes were collected by Reiher and coworkers in 

the WCCR10 dataset147. The WCCR10 set was designed to isolate potential effects of a 

condensed-phase environment on ligand dissociation energies. The errors obtained with DFT 

functionals on this set are moderate (ca. 20–40 kJ/mol or 5–10 kcal/mol) 147, outside the reported 

error margin of the experiments. Reiher and coworkers153 also evaluated these ligand 

dissociation energies with more accurate DLPNO-CCSD(T)154 reference energies and used 

diagnostics of multi-reference character (MR) to estimate when the DLPNO-CCSD(T) results 

should be most trustworthy. They found that discrepancies between DLPNO-CCSD(T) and 

experiment persisted in these cases, suggesting some uncertainty in the experimental 

interpretation.153 In choosing a DFT functional that reproduced DLPNO-CCSD(T), PBE0 with a 

D3 dispersion correction was the best performer153, albeit not agreeing particularly well with all 

experimental results147. Recent tests on 151 transition-metal complex and small-molecule 

reaction energies known as TMC151155, which is a superset of previously proposed test sets156-

158, have also favored dispersion-corrected functionals but in combination with range-separated 

hybrids.  

 Structures obtained from geometry optimizations (i.e., local minima) are generally less 

sensitive to DFT functional than many other properties. Exceptions to this tend to occur only for 
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isomers with small energetic differences that are sensitive to delocalization imbalances and can 

lead to method disagreement145, 159. A representative example of where delocalization errors from 

DFT can influence structure is in the inserted dioxide structure of transition metal dioxides, 

which progresses from bent to linear experimentally across the first-row transition metals. Semi-

local GGAs predict all structures to be bent146, 159 in contrast with CCSD(T) or experiment, 

whereas delocalization corrections (i.e., DFT+U159 or hybrids146) tend to improve structures 

(Figure 10).  

 
Figure 10. (Left) Comparison of favored angles (in °) for the inserted dioxide MO2 (M = Cr, 
Mn, Fe, Co, or Ni) molecules from experiment (black squares), CCSD(T) (blue circles), and PBE 
(red circles). (Right) Overlay of the potential energy curves (in eV) from CCSD(T) for a bent X 
3B1 CrO2 (gray circles) and linear X 1Σg+ NiO2 (green circles). Reprinted with permission from 
ref. 146. Copyright 2020 American Chemical Society. 
 

 The most abundant source of geometric data is structures obtained from X-ray diffraction 

of molecular complexes in the crystal field of surrounding ions and complexes (e.g., that are 

deposited in the CSD160). The condensed-phase, crystalline environment could be expected to be 

distinct from the in vacuo calculations used to benchmark DFT. Thus, the effect of an implicit 

solvent on DFT structures has been directly probed161 and found to be influential particularly for 

complexes with a mixture of ionic ligands. As an alternative, Bühl and coworkers131, 150, 162 

collected structures from gas-phase neutron diffraction for which more direct comparisons could 
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be made. The data sets for these 3d162, 4d150, and 5d131 transition-metal complexes were 

comparatively modest in size (ca. 20–30 complexes). Across all transition-metal complexes, 

most functionals overestimated bond lengths, but errors were modest for all cases, and several 

pure GGA functionals (e.g., PBE or BP86) performed well.131 This divergence suggests that DFT 

should provide suitable structures even when energetics cannot be predicted, whereas force fields 

or semi-empirical methods93 may not be sufficient for structural predictions. 

2.3.3. Semi-Empirical Corrections to DFT 

 A number of semi-empirical, albeit physically motivated, corrections have been 

developed and applied as additive corrections for deficiencies in DFT functionals in a manner 

that is not dissimilar from semi-empirical wavefunction theories. While several, such as 

empirical dispersion corrections, are widely used across the periodic table, we focus here on 

those that have been developed especially for open-shell transition metals. Corrections are often 

motivated here by the need to address self-interaction errors to which open-shell (e.g., 3d) 

electrons tend to be disproportionately sensitive. The so-called LDA+U or DFT+U approach163-

165, which is reviewed in Refs. 6, 166, is one such method. While introduced for the solid state163-

165, DFT+U was later demonstrated for open-shell transition-metal molecules6, 142, 167. DFT+U 

incorporates a Hubbard U correction term to localized (e.g., 3d) states. This correction can be 

calculated from the electronic structure167-170 but is more frequently tuned171-173 to reproduce 

target properties. Due to this association, we classify DFT+U as a semi-empirical correction, 

despite having desirable fundamental origins in the Hubbard model and demonstrating the ability 

to recover169 exact conditions (e.g., the derivative discontinuity118, Figure 11). The limits of 

DFT+U in practice are that while it can improve some properties (e.g., band gaps or spin state 

ordering), it may do so at the cost of worsening others (e.g., geometries) due to the limited 
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flexibility of a single parameter applied to the 3d states. 

 
Figure 11. a) Comparison of explicit (circle symbols) and interpolated (dashed lines) deviation 
from linearity (Edev) for low-spin [Fe(CO)6](3-q)+ for q = 0 to 1. b) Highest occupied eigenvalue 
(eHO) with charge centered around Fe(CO)63+. The lines for both graphs are colored by the value 
of U applied following the color bar shown in inset (i.e., red is a pure GGA result and blue is a U 
= 6 eV result). Reprinted with permission from ref. 169. Copyright 2016 American Institute of 
Physics. 
 

 A promising, holistic empirical approach is Friesner and coworkers’ DBLOC method174-

176. Force-field-like energy corrections, which depend on the metal and electron configuration 

(i.e., spin and oxidation state) as well as the ligand field strength, are added to DFT (typically 

B3LYP) energetics. The DBLOC method has been demonstrated to correct hybrid B3LYP DFT 

spin-splitting177 or redox properties178 (Figure 12). The approach’s empiricism comes in part 

from the least-squares minimization of errors to obtain parameters177 that increase 

correspondence between hybrid DFT properties and curated experimental training data (e.g., 57 

spin-splitting energies177 or 95 redox potentials178). The total parameter set (ca. 5–12 per 
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metal/ligand combination177-178) can approach the size of the available training set. Given the 

limited training data, bondwise corrections due to ligand field strength are thus assumed to be 

additive60 and also classified only in terms of a weak, intermediate, or strong ligand field.176-177  

 
Figure 12. Experimental redox potentials (in V) versus calculated redox potentials for B3LYP 
(blue triangles) and after DBLOC correction (black circles) for 95 redox couples. Reprinted with 
permission from ref. 178. Copyright 2012 American Chemical Society. 
 

 The DBLOC approach reduces absolute errors on both training and test177 molecules as 

well as the standard deviation of errors with respect to curated experimental data sets, for 

example, reducing B3LYP MAEs on redox potentials from 0.4 V to 0.12 V178 (Figure 12). In 

addition to spin splitting or redox, the method has also been demonstrated on ligand dissociation 

energies179, overall typically reducing errors from moderate values (ca. 4179 to 9178 kcal/mol) to 

near-chemical accuracy (ca. 1–3 kcal/mol). It has been noted that DBLOC can more 

systematically reduce errors for few-parameter functionals in comparison to more complex DFT 

functionals.180 Nevertheless, the method has not reached widespread use due in part to the 

difficulty with obtaining parameters or training data176.  

 A common systematic, albeit empirical approach, is to optimize DFT functional 

parameters for specific DFT properties, such as redox potential181 or spin-splitting energy182. In 

these approaches, the optimal exchange fraction is typically sought by minimizing error with 
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respect to experiment, leading to distinct values (e.g., 12% in B4XLYP181 or 15% in B3LYP*182) 

from the parent functional and decreasing errors (e.g., ca. 0.05–0.06 V in redox potential 181) on 

test molecules. While tailoring the HF exchange fraction181-182 has been demonstrated to work 

well when optimizing for a single class of materials and properties, e.g., spin-splitting energies of 

Fe(II)/N spin-crossover complexes182, this approach can fail across broader ranges of 

materials133, 177. The optimal exchange fraction in a hybrid GGA or meta-GGA is strongly metal- 

or ligand-dependent in spin state ordering (Figure 13).135-136, 138-139, 182-186 Differences in 

exchange sensitivity for ligand dissociation energies or steps in a catalytic cycle create additional 

complications for typically studied properties of transition-metal complexes.148, 187 One type of 

physically motivated tuning (i.e., like DFT+U) is the use of optimally tuned range-separated 

hybrids188-190, wherein the range-separation parameter for incorporating HF exchange is used to 

eliminate deviations from piecewise linearity for each specific molecule with some improvement 

noted for transition-metal complex properties.125, 191-193  
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Figure 13. Spin-splitting energies (in kcal/mol) as a function of % HF exchange (%HF, x-axis) 
and % meta-GGA exchange (%mGGA, y-axis) in a PBE/TPSS (meta)-GGA with hybrid HF 
exchange for Fe(II)(CO)6 (top) and Fe(II)(NH3)6 (bottom). The meta-GGA exchange from TPSS 
has the opposite effect on the hexa-carbonyl complex to that of the weaker-field hexa-ammine 
complex. The CASPT2 value is indicated with a green solid line along with a ±3 kcal/mol 
confidence interval (green dotted lines) in both cases. The plane is colored according to the 
colorbar shown in inset, and dashed or solid lines correspond to increments of 10 kcal/mol. 
Reprinted with permission from ref. 139. Copyright 2017 American Chemical Society. 
 

 An alternative approach is to leverage error cancellation by quantifying relative or 

referenced194-195 energetics. Batista and coworkers194 demonstrated reduction of redox potential 

errors to within the margin of error on experimental redox potential values (ca. 64 mV) by 

calculating redox potentials relative to the value of a couple in the same row of the periodic table 

and under the same solvent conditions (Figure 14). These results provided a slight improvement 

over earlier suggestions of using the well-characterized one-electron Fc/Fc+ couple195. 

Interestingly, it was more straightforward to reduce errors from modest basis sets (i.e., 6-311G*) 

than larger ones195. Similar observations have been made in referenced (i.e., isodesmic) pKa 
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predictions involving transition-metal complexes196 and in heterogeneous catalysis where 

modified reference adsorbate energies (e.g., O atom from H2O - H2) have been suggested to be 

less sensitive to the computational method197. 

 
Figure 14. Correlation between measured Eexp0 and calculated ELn0 redox potentials in V vs RC, 
where RC = [FeCp2]0/+, [Ru(bpy)3]2+/3+, and [Ir(acac)3]0/+ for first-, second-, and third-row 
transition-metal complexes, respectively, using n = 1 (i.e., L1 = B3LYP/6-31G), n = 3 (i.e., L3 = 
B3LYP/6-311G*), and n = 5 (i.e., L5 = B3LYP/cc-PVTZ) levels of theory. Reprinted with 
permission from ref. 194. Copyright 2012 American Chemical Society. 
 

2.4. Moving Beyond DFT in Transition-Metal Chemistry. 

 As computing power increases and reduced-scaling algorithms have been developed154, 

198-202, correlated wavefunction theory (WFT) methods have become increasingly tractable. In 

return for the high formal scaling (i.e., > O(N5)), single-reference (SR) WFT methods such as 
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coupled cluster theory are widely regarded as being able to achieve chemical accuracy (i.e., 

predictions to within 1 kcal/mol of experiment) in the realm of organic chemistry. However, the 

challenges for DFT posed by transition-metal chemistry are not easily overcome by carrying out 

SR WFT. Both the larger size of transition-metal complexes (100s–1000s of electrons and 10s–

100s of atoms) and the nature of electron correlation in open d and f shells play a role in this 

distinction. The SR methods that work well for organic chemistry are less predictive in open-

shell transition-metal chemistry.203 This has been attributed to the greater contribution of static 

correlation in open-shell transition-metal complexes as well as a greater sensitivity to the degree 

of recovery of dynamic correlation.204-205 When two spin states or a reactant and intermediate are 

compared, even a slight difference in the ability of a method to recover the dynamic correlation 

from a single Slater determinant can lead to an outsized effect on relative energetics.  

 Among the outstanding challenges for WFT in transition-metal chemistry are that the 

local approximations154, 202 to single-reference CCSD(T) that make it tractable on larger 

transition-metal complexes have a strong influence on spin state predictions205 as does the choice 

of orbitals or determinants.206 These observations have led some to question203 or alternatively 

defend207 the proposition that coupled cluster methods can outperform DFT functionals for 

transition-metal chemistry in terms of agreement with experiment. These comparisons are 

complicated by the potentially greater uncertainty associated with experimental reference data 

for transition-metal chemistry. 

 While multireference (MR) WFT methods appear to be promising, most such methods 

remain intractable for high-throughput screening due to cost and typical requirements of manual 

tuning of parameters and active spaces. Alternatives to overcome limitations imposed by manual 

active space selection include rule-based208, automated209-210, and machine learning (ML) model-
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based211 approaches. Automated active space selection in transition-metal chemistry, e.g., with 

measures of orbital entanglement212-214 often reveals a large number of participating orbitals for 

systems with significant covalency (e.g., CrF6 in Figure 15).209 Lower-scaling, multireference 

perturbation theory (i.e., complete active space second-order perturbation theory or CASPT2) 

can be applied to moderately sized transition-metal complexes. CASPT2 spin state ordering is 

sensitive to both the zeroth-order Hamiltonian shift215 with predictions alternately biased186 

towards low-spin or high-spin states depending on the choice of shift and the treatment of semi-

core states216 (Figure 16). Recent work has motivated a composite CASPT2/CC217 approach for 

open-shell transition-metal chemistry.  

 
Figure 15. Entanglement analysis for active space selection for all 23 DMRG(N,23)[1000]-SCF 
valence orbitals of CrF63- (N = 39) and CrF6 (N = 36) (left and right, respectively). (top) Diagram 
of orbital-entropy-selected active spaces from DMRG calculations described in ref. 209. All 
orbitals are numbered and arranged on a circle. The area of the red circles assigned to each 
numbered orbital is proportional to the single-orbital entropy of the respective orbital. The line 
connecting two orbitals denotes their mutual information value. The lines in black indicate a 
value of at least 0.1 for the mutual information, whereas dashed gray and green lines represent 
mutual information values of at least 0.01 and 0.001, respectively. (bottom) Single-orbital 
entropy threshold diagrams for the determination of the number of orbitals to be included in the 
active space. Reprinted with permission from ref. 209. Copyright 2016 American Chemical 
Society. 
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Figure 16. CASPT2 spin-splitting energies, DE in kcal/mol, for HS-LS (circles) and HS-IS 
(triangles), as indicated in inset, of hexa-aqua (top) and hexa-ammine (bottom) transition-metal 
complexes. Results are shown for 3 IPEA shifts: 0.00 (blue symbols), 0.50 (dark gray symbols), 
and 1.50 (red symbols) a.u.. Both M(II) and M(III) complexes are shown arranged by the number 
of 3d electrons, from Ti2+ to Cu3+. Reprinted with permission from ref. 186. Copyright 2019 
Frontiers Media SA. 
 

 Overall, MR WFT remains challenging to apply in high-throughput screening or data 

generation for machine learning, with SR WFT and DFT being easier to automate. While this 

could change in the near future with improvements in methods and computing power, it will 

remain useful to know which compounds in a screening pool have the strongest MR character. 

Numerous diagnostics with heuristic cutoffs have been proposed.218-229 These diagnostics can be 

classified by whether they probe the propensity of frontier orbitals to become partially 

occupied224-225, 227-231 or whether they indicate a strong sensitivity of a property (e.g., the 

atomization energy) to the method employed as well as whether they are derived from a SR WFT 

or DFT calculation versus directly from an MR WFT (e.g., CASSCF leading weights218-221) 

calculation. Many of the most predictive diagnostics require carrying out computationally 

demanding correlated WFT calculations (e.g., with CCSD for the T1 diagnostic218) that would be 

too costly for high-throughput screening. DFT-based diagnostics224, 226-230 that are more tractable 
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have been proposed, including those based on the atomization energy224, 226 as well as measures 

of fractional occupation227-230 in a finite-temperature DFT calculation. Appropriate diagnostic 

cutoffs for identifying when MR character is large enough to erode SR WFT predictions differ 

by material, typically with larger values motivated for transition-metal chemistry in comparison 

to those for organic molecules.232-233 Diagnostics often disagree, leading to reliance on intuition 

or a subset of the proposed cutoffs. The ability of machine learning tools to overcome some of 

these limitations is described in Sec. 5.3.  

2.5. Bringing Statistical Learning to Molecular Modeling. 

The molecular mechanics, semi-empirical, and quantum mechanical methods described 

in Secs. 2.1–2.4 provide essential training data for machine learning model development, as 

described in detail in the next sections. Here, we briefly touch upon some key efforts that have 

been taken to systematically improve transition-metal chemical modeling techniques with 

statistical learning.  

 MM force fields for transition-metal chemistry are traditionally parameterized by hand 

against a small number of experimental crystal structures. Although more systematic 

parameterization, e.g., with GAs37, 61 or Newton–Raphson15 has been demonstrated, the small 

sizes of the data sets limit testing or validation of the force fields. Still, opportunities for 

incorporating machine learning into this approach were recognized early on.19 In 2002, ANNs 

were applied to transition-metal chemistry force field development by Marques and 

Cukrowski234, who used the ANN to interpolate estimated errors for the bond distance and force 

constant of Co(II) porphyrins, reducing the time required to test individual force field parameters 

(Figure 17). A single trained ANN was selected for this interpolation, and further improvements 

could be achieved by training on multiple subsets of the data in an approach known as cross-
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validation. In cross-validation, the subset of data not used in the training of each model is in the 

validation set, and the lowest average error over the validation set is used to select parameters to 

avoid overfitting to noisy data.  

 
Figure 17. Error response surface generated by an ANN with a single hidden layer with 10 
neurons trained on 574 pairs of bond length, l0, and the Co–N bond stretch constant, ks, for the 
modeling of four-coordinate Co(II) porphyrins. The error (vertical axis) is the mean absolute 
difference between the crystallographically observed and molecular-mechanics-calculated Co–N 
bond lengths with the respective force constants. The global minimum is indicated by a filled 
circle. Reprinted with permission from ref. 234. Copyright 2002 Royal Society of Chemistry. 
 

 In organic chemistry, SQM modeling and machine learning models have been combined 

with some success. Integration of the DFTB Hamiltonian into deep learning models as an 

additional layer has been shown to impart greater physics to the ML model and improve model 

performance on small organic molecules.235 Because correlations between SQM and DFT 

structures or properties are poor93, the transfer learning approaches that have been successful in 

organic chemistry236-237 may fail in transition-metal chemistry. 

 The use of machine learning to accelerate DFT-level property prediction for transition-

metal chemistry at low cost is discussed in Sec. 4. Here, we note some early efforts to 

systematically reduce errors in DFT functionals with statistical learning. The standard approach 

to exchange-correlation development typically involves small datasets of organic molecules or 

closed-shell atoms as well as constraints imposed by satisfying exact bounds of model 
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systems121-122. For transition-metal chemistry, common guidance on functional selection tends to 

fail, motivating correction schemes with a range of first-principles and empirical roots (Sec. 

2.3.3). The “Minnesota” functionals developed by Truhlar and coworkers (e.g., the pure M06-

L238 or hybrid M06239) are an exception to this and have gained wide popularity in modeling 

inorganic complexes.240 To develop these, a much larger training set that includes transition-

metal chemistry is used239. These functionals perform well when the chemistry being modeled is 

sufficiently similar to the training data, but researchers have encountered difficulty in 

systematically reducing their errors.180 This can be interpreted in the context of statistical 

learning, where a high number of parameters and paucity of training data lead to overfitting.241 

Although not targeted at open-shell transition-metal chemistry, researchers have addressed this in 

part by exploring ways to incorporate regularization and parameter selection242 into DFT 

functionals.  

 In complementary efforts, researchers have leveraged statistical tools, such as uncertainty 

quantification (UQ) and sensitivity analysis, to inform DFT property prediction. UQ refers to a 

Bayesian framework where an ensemble of functionals are employed to produce a credible 

interval on an average prediction.243-245 While UQ of DFT has primarily been employed in the 

solid state243-244, 246, Reiher and coworkers have demonstrated its value in identifying functional-

sensitive steps in a molecular reaction network.247 In closely related sensitivity analysis, 

derivatives of model predictions with respect to one or more functional parameters are 

employed.138, 148 For open-shell transition-metal chemistry, the single most relevant functional 

parameter is the fraction of exact exchange, which is often associated with key variations of the 

transition-metal complex (e.g., ligand field, see Sec. 2.3.3). Both linear138, 148 and non-linear ML 

models54 (e.g., artificial neural networks or ANNs) of the relationship between chemical 
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structure and exchange-correlation functional sensitivity have been developed. These models 

were used to identify how spin-crossover (SCO) complexes (i.e., with near-degenerate HS and 

LS states) changed in composition with varied HF exchange (Figure 18).  

 

 
Figure 18. (top) A t-SNE plot of 5,600 complexes colored by connecting atom ligand field from 
weak (white) to strong (black). Lead spin-crossover complexes (i.e., |DEH-L| < 5 kcal/mol) are 
shown as circle symbols at three HF exchange fractions: 5% (red circles), 15% (green circles), 
and 20% (blue circles). One-dimensional stacked histograms of lead compounds are shown for a 
projection of the two t-SNE dimensions with the same coloring by exchange fraction as the 
symbols and shown in inset legend. (bottom) Example Fe(II) complex leads at different 
percentages of HF exchange: a homoleptic 4-cyanopyridine complex at 5% (left), equatorial 
porphine with two axial water ligands at 15% (middle), and a heteroleptic complex with 
equatorial 4-cyanopyridine and axial t-butyl-isocyanide ligands at 20% (right). Reprinted with 
permission from ref. 34. Copyright 2019 American Chemical Society. 
 

 ML models that reduce the cost or complexity of recovering the correlation energy in 

wavefunction theory have yet to be demonstrated in transition-metal chemistry, but some have 

been developed to aid identification of when correlated WFT is needed (See Sec. 5.3.2). 
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Statistically informed (e.g., with mutual information between orbitals214) methods of active space 

selection204, 210, 214 have also demonstrated promise. ML models for active space selection211 have 

yet to be demonstrated on large transition-metal complexes but could be improved to enable 

rapid assessment of the effect the active space on property prediction. The ways in which data 

science is informing and enriching chemical discovery efforts by reducing barriers to the 

application of expert-level computational chemistry decisions is discussed in greater detail in 

Sec. 5.3.2. 

3. Physicochemical Properties of Transition-Metal Complexes. 

 The tunable nature of metal centers in open-shell transition-metal complexes gives rise to 

a range of applications. Transition-metal complexes are most well established in the field of 

homogeneous catalysis, including their use as precatalysts.248-249 Molecular transition-metal 

complexes have also long been studied for their potential as sensors250-251, machines252, 

molecular magnets253-254, redox couples for energy storage255-256, and dye sensitizers257-258. As a 

result of their nature and applications, the target properties for prediction by machine learning or 

traditional computational (e.g., quantum mechanical or molecular mechanical) techniques differ 

from those in other domains, such as heterogeneous catalysis, solid-state materials, or in 

discovery of organic molecules as therapeutic drugs. We thus briefly review these key focus 

areas for property evaluation with experiment and their relationships to computational 

predictions. Discussion of these properties provides useful background on the development of 

statistical and deep learning methods for their prediction (Sec. 4) and in materials discovery (Sec. 

5).  

3.1. Catalytic Properties. 

 The most widespread application of transition-metal catalyst design is likely in the 
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selective functionalization of fine chemicals (e.g., therapeutic drugs).259 While heterogeneous 

catalysts are favored in many large-scale operations259, molecular catalysts remain superior for 

select industrial applications such as hydroformylation (e.g., with Co or Rh)248, 260, olefin 

metathesis (e.g., with Ru)261, or selective C–H activation (e.g., with Pd)262. Transition-metal 

complexes also have been used widely in photocatalysis263 and in molecular electrocatalysis264 

(e.g., for water oxidation265). Identification of optimal catalyst ligand structures requires 

determination of the mechanism and turnover frequency (i.e., how quickly the catalytic cycle 

completes). Catalysts also must be optimized for their selectivity for the preferred reaction 

without generating undesired intermediates. For a designed catalyst to be useful in practice, the 

catalyst structure must also be determined to be stable (e.g., not prone to auto-oxidation, 

dimerization, or ligand dissociation) and not easily deactivated.266 Observations of catalyst 

activity will be sensitive to the reaction conditions, including temperature, solvent, and pH. 

Frequently, experimental efforts tune the Hammett parameters of ligands267 (i.e., through 

electron-donating and electron-withdrawing group addition) or otherwise vary ligand properties 

in order to deduce structure–property relationships. Such kinetic studies can reveal linear free 

energy relationships (LFERs) that identify limits of how reaction steps may be tuned.268-269  

 Challenges for interfacing data-driven or computational models with experiment occur 

when the key reactive catalyst structure is poorly characterized, e.g., if the added species is 

effectively a precatalyst270 that aggregates into catalytically active nanoparticles271. Furthermore, 

flexible ligand structure and noncovalent interactions have been increasingly adopted as useful 

tools in catalyst design272, but their contributions in operando can be challenging to determine. 

Experimentally, many characterization techniques can only be applied to the spent catalyst or 

reaction products, with short-lived intermediates sometimes trapped through freeze-quenching 
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X-ray absorption spectroscopy273, a technique more widely employed in enzymology274-275. 

Other useful spectroscopic techniques for catalyst characterization include ultrafast vibrational 

(e.g., infrared) spectroscopy276, electrochemical characterization with cyclic voltammetry277, 

isotopic labeling278, and mass spectrometry279-280. Reactions involving hydrogen (e.g., hydrogen 

atom transfer) can be sensitive to quantum mechanical tunneling effects. Experimentally, kinetic 

isotope effects can be used to probe the relevance of such contributions in catalysis.278, 281  

 Given the fleeting nature of intermediates, computational tools are an essential 

complement to experimental catalyst studies. Computationally, relative energetics of 

intermediates can be identified and activation energies used to obtain rate constants, with trends 

in rate constants being less sensitive to method errors (see Sec. 2). Combining rate constants with 

microkinetic282 modeling or the simplifying degree of rate control283 or energy span models284 

can help to refine the identification of rate-determining steps, rate laws, and to relate 

computational predictions to experimentally observable turnover frequencies and numbers 

(Figure 19).285 For many open-shell transition-metal complexes, the identity of the spin state is 

believed to be important, whether by confining the reaction to a single spin state or by multiple 

spin states being invoked to explain reactivity patterns.286-287 In these cases, calculation of 

minimum energy crossing points between spin surfaces as well as coupling between spin 

surfaces becomes important.288 All of these efforts are sensitive to errors (Sec. 2) in the 

electronic structure methods typically employed (i.e., DFT). The experimental resolution of spin-

state-dependent reactivity (i.e., with distinct kinetics for each spin state) is challenging but has 

been corroborated through spectroscopic and kinetic isotope effect data (e.g., for C–H 

activation).289-290  
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Figure 19. Depiction of the use of the energetic span model to obtain turnover frequency (TOF) 
and turnover number (TON) from (a) a simplified kinetic model in conjunction with (b) 
computational activation energies and reaction energies. Deactivation of a catalyst by a slow, 
irreversible step (red) will cause eventual deactivation. The turnover frequency on the target 
catalytic cycle (blue) is defined by the energetic span, dE. Reprinted with permission from ref. 
285. Copyright 2011 American Chemical Society. 
 

 Computational modeling of reaction mechanisms can aid these experimental studies. 

However, exhaustive search of intermediates and evaluation of transition states are time-

consuming. This motivates the reliance on the Brønsted–Evans–Polanyi principle to use reaction 

thermodynamics as a proxy for activation energies, a particularly widely exploited approach in 

computational heterogeneous catalysis.291 The benefit of such analysis has also been realized in 

experiments through the observation that simple-to-obtain properties can predict catalytic 

activity.292 The experimental characterization of some properties of the metal center (e.g., 

transition-metal hydricity293) has been used to predict the effect of solvent on the reactivity of 

transition-metal catalysts (e.g., for CO2 reduction294).  

 The direct or indirect roles of the solvent and counterions in homogeneous catalysis are 

increasingly areas of research focus.295-296 Computationally, the role of solvent, solubility, and 

entropic corrections (i.e., both harmonic and anharmonic contributions) are often neglected or 

treated only approximately (e.g., with implicit models)297 with studies that consider these effects 

in combination being rare exceptions.298 Correction schemes for computational electrochemistry 
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that may work well for redox potential refinement (Sec. 2) are expected to be challenged by 

significant rearrangement across an electrocatalytic cycle299-300.  

3.2. Redox Properties. 

 Redox activity and electron transfer processes are useful for catalysis and energy storage. 

Cyclic voltammetry is used to determine redox potentials, including for electrocatalyst and 

functional materials characterization.277 Well-established redox processes, e.g., the one-electron 

oxidation of ferrocene, can be useful as an internal reference both computationally194-195 and 

experimentally301-302, especially when varying the solvent in which the redox potential is 

measured. Nevertheless, only a few moderately sized (ca. 100+ points) data sets of experimental 

redox potentials for mononuclear transition-metal complexes178, 303 are available across a range 

of solvents.  

 Experimentally, challenges exist in identifying if the structure changes (e.g., by 

complexation of distinct solvent molecules or counterions304) when a material is oxidized or 

reduced. When multiple metal centers are present in close enough proximity to form metal–metal 

bonds, unexpected changes in the number of redox events and in redox potential values have 

been observed (Figure 20).305 Some of these changes can be traced to the degree of metal–metal 

bonding (i.e., distance estimated from the formal shortness ratio) and the resulting spin state 

(Figure 20).305 An added challenge for both computation and experiment is the difficulty in 

knowing a priori when ligand non-innocence will lead to ligand oxidation or reduction rather 

than the electron transfer event occurring at the metal.306-308 A well-established example of this 

effect is the valence tautomerism between catecholate and semiquinonate forms of chelating 

ligands, where a reversible equilibrium between the two ligand states can be observed at room 

temperature, depending on the metal ion identity, charge, and spin state.309  
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Figure 20. (Left) Depiction of qualitative d-orbital manifolds of select bimetallic complexes 
formed with double-decker ligands, with the first metal in the lower binding site. The coloring of 
the energy levels and electrons denotes whether they are delocalized (black) or localized (red and 
blue) to specific metal sites. The difference in electron configuration between the two metals is 
indicated as DN. (Right) Cyclic voltammograms of selected bimetallic complexes with the same 
ligands, some of which have up to 4 reversible one-electron transfers (e.g., CrNi or CrCo). 
Adapted with permission from ref. 305. Copyright 2015 American Chemical Society. 
 

 For redox couples, even simple cases with a single metal and no anticipated ligand non-

innocence, accurate calculation of a redox potential can be a challenge because errors can be 

sensitive to the relative accuracy of the evaluation of properties of the reduced and oxidized 

species. Computationally, referenced Born–Haber cycles have been proposed194-195 as a way to 

reduce errors (see Sec. 2 and Figure 14), but additional corrections are often necessary for highly 

charged transition-metal complexes.310-311 Explicit treatment of solvent, especially in aqueous 

solution, has been shown to be critical for reproducing experimental trends312-314, whereas 

implicit treatment of the solvation environment on redox processes is more computationally 

tractable for screening and for training data-driven models.  

3.3. Optical Properties. 

 Optical spectroscopic interrogation of transition-metal complexes is useful both for their 

characterization315-316 (e.g., electronic and oxidation state identification) and for understanding 

how their optical properties can be exploited for various applications. For example, harnessing 
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light to enable chemical transformations is widely exploited in photocatalysis.263 Transition-

metal complexes have long been used as dyes317, dye sensitizers in optoelectronic devices257, and 

have recently seen even broader application in molecular electronics318. The spectrochemical 

series of strong-field (e.g., CN- or CO) to weak-field (e.g., H2O or oxalate) ligands is named for 

the observed relationship between optical absorption of homoleptic octahedral complexes and 

the effect of the ligands on the metal d states.319 In some cases, tuning optical absorption by a 

complex across the visible range (i.e., as observed qualitatively or with UV/Vis absorption 

spectra) is also possible via solvent adjustment or by tuning the field strength of the axial ligands 

alone320 (e.g., tuning L in Rh2(OAc)4(L)2, Figure 21). Depending on the ligand, the absorption 

range of transition-metal complexes can be tuned (e.g., into the visible321 or into the near 

infrared317). While a key advantage of optical characterization is that the absorption spectrum 

often provides useful insight into the electronic structure and magnetic properties (e.g., spin 

state), the relationship between trends in these quantities is not always consistent322. 

 

 
Figure 21. (top) (Rh2(OAc)4(L)2 solutions (OAc = acetate or -O2CCH3) from left to right with: 
isonicotinate, triphenylphopshine (PPh3), p-toluenesulfonylmethyl isocyanide (TosMIC), 
benzaldehyde, ethanol (EtOH), and acetonitrile (MeCN). (bottom) Quantitative absorption 
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spectra of complexes shown at top, with the lowest-energy band observed to shift to higher 
energy (i.e., lower wavelength) for increasing field strength. Adapted with permission from ref. 
320. Copyright 2019 American Chemical Society. 
 

 In addition to the energy gaps between ground and excited states, other properties of 

excited states can be designed such as lifetimes, e.g., for applications in small-molecule 

sensing.321 The interplay of optical and redox or spin state properties gives rise to transition-

metal complexes with switchable absorption features323. Modulation of absorption in the near 

infrared (NIR) has been demonstrated with potential applications include in 

telecommunications.323 Transition-metal complexes frequently act as emissive compounds, most 

typically from triplet excited states324 (e.g., in Ru or Ir polypyridyl compounds). Recently, some 

of these complexes have been reported to have intense fluorescence with long lifetimes.324 When 

the intersystem crossing between excited states is faster in one direction than the other, the 

resulting phenomenon is called thermally activated delayed fluorescence (TADF), which has 

potential applications in lighting and molecular electronics318, 325-326. Because the metal center 

and ligand chemistry of the transition-metal complex can be tailored to adjust these excited state 

properties, they have significant potential for design. Luminescent properties of transition-metal 

complexes can be readily tuned by adjusting solvent327 or ligand chemistry. In the context of 

lighting applications, they can be tailored for emission ranges (e.g., blue) that are currently 

limited in commercial light-emitting diodes (LEDs), leading to advances beyond existing LED 

technologies.318  

 Broadly, numerous transition-metal complexes have been observed328 to have unique 

non-linear optical (NLO) properties329, making them amenable for switching in response to 

chemical, photochemical, or electrochemical stimuli. Different architectures have been 

developed, wherein metal centers act as donors, acceptors, or bridging moieties.329 This 
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tunability and modularity has led to a range of designs of NLO materials based on transition-

metal complexes.329-331  

3.4. Magnetism and Other Switchable Functional Materials Properties. 

 A change in electronic state of a transition-metal complex in response to stimuli that in 

turn changes its properties presents opportunities for materials design. As a paradigmatic 

example, open-shell metal centers (e.g., octahedral, N-coordinated Fe(II) complexes) frequently 

exhibit spin-crossover (SCO) behavior.251, 332-333 The transition between a low-spin (LS) singlet 

and high-spin (HS) quintet state is associated with changes in optical and structural properties 

that can then be leveraged, e.g., in host–guest334 sensing. This phenomenon also governs SCO 

behavior in MOFs334, including the material Co[Cr(CN)6]2/3.zH2O, which changes both size and 

color as it is reversibly dehydrated (Figure 22). The change in the spin state typically is 

associated with a change in the metal–ligand bond length and thus entropic contributions to 

stability.334 In these cases, the high-spin state is often higher in energy but becomes stabilized 

with increasing temperature332, in the presence of guest (e.g., solvent335) molecules336, change in 

solvent337 or lattice packing338, or can be trapped via light-induced excitation to the high-spin 

state (i.e., LIESST)339. This behavior has also been observed for other metals333 (e.g., Co(II)340) 

and in non-octahedral341-342 environments.  
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Figure 22. Depiction of color (top) and structural (bottom) changes when Co[Cr(CN)6]2/3.zH2O 
is reversibly dehydrated. The pink solid is a ferromagnet that reversibly transforms into a blue 
antiferromagnet on dehydration, due to the presence or absence of water molecules at Co(II) 
centers. Reprinted with permission from ref. 334. Copyright 2013 Royal Society of Chemistry. 
 

 SCO complexes can be characterized a number of ways. The magnetic susceptibility as a 

function of temperature typically reveals the nature of the crystalline or solution environment, 

either having a gradual or abrupt switch along with differing hysteresis widths. SCO is also 

typically associated with changes in the UV/Vis spectrum (see Sec. 3.1 and Figure 22). For iron-

containing complexes, Mössbauer spectroscopy provides key insight into electron density at the 

metal center, electron configuration, and magnetic state343. In fact, Mössbauer spectroscopy was 

developed in part through observations on SCO complexes.343 Numerous metals (e.g., Mn, Co) 

are also amenable to characterization with electron paramagnetic resonance (EPR) 

spectroscopy344.  

 The magnetic properties of transition-metal complexes have also been tailored for device 

miniaturization in data storage/memory and quantum computing. For quantum computing, 

molecular qubits345-347 containing a range of V and Cu centers have demonstrated promise and 

have been characterized with both magnetic susceptibility and EPR. For memory storage, single-

molecule magnets254, 348-350 containing either multiple Mn centers or mononuclear metal 
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centers253, often with heavier lanthanide elements, have also been designed and characterized for 

their magnetic susceptibility. From a machine learning or computational chemistry perspective, 

properties of SCOs, single-molecule magnets, and qubits are all influenced by spin state 

ordering, entropic contributions and spin–orbit coupling between states, with each having some 

challenges in its description with first-principles methods (see Sec. 2).  

4. Statistical Modeling for Transition-Metal Chemistry. 

 Statistical modeling techniques have long been applied in transition-metal chemistry. 

However, the availability and diversity of data in transition-metal chemistry imparts unique 

challenges and opportunities. We describe the available data sets and analysis derived from data 

mining of experimental and computational results in Sec. 4.1. Next, we briefly describe 

descriptor development and application in quantitative structure–property relationships (QSPRs) 

on both experimental and molecular modeling data in Sec 4.2. We conclude this section with 

early and more recent demonstrations using machine learning algorithms such as kernel ridge 

regression as well as deep learning (i.e., with artificial neural networks) in Sec. 4.3.  

4.1. Data Mining Structures for Chemical Trends. 

 Data sets of transition-metal complexes tend to be smaller, more varied, and more subject 

to uncertainty (i.e., noise) in both experimental (see Sec. 3) and computational (see Sec. 2) 

properties than organic molecule data sets. The largest repository of metal–organic complexes is 

the Cambridge Structural Database (CSD)160, which consists of approximately 140,000 unique 

mononuclear transition-metal complexes in a larger number of solved X-ray crystal structures. 

The value of mining geometric properties to understand trends and structure–property 

relationships was recognized decades ago, despite the fact that the set of structures in the CSD 

was considerably smaller at that time.351-352 User-friendly graphical tools353, improved annotation 
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of metal oxidation state and complex charge354, as well as a python API have made it 

increasingly straightforward to mine experimental structures. We briefly review opportunities for 

using CSD data in data-driven and machine learning models. Reviews by Fey3 and Orpen355 

provide greater detail of how CSD data mining has been used in transition-metal chemistry.  

 Subsets of the CSD have been mined to identify trends in transition-metal complex 

structures, including the propensity of a metal for specific coordination numbers.356 In the 1990s, 

Orpen and coworkers started curating subsets from the CSD to interpret “structural systematics” 

that related ligand structure and bonding, especially in phosphine ligands.357-361 Avnir, Alvarez, 

and coworkers analyzed large sets (i.e., over 23,000) of transition-metal complex structures from 

the CSD and used this data to develop continuous shape measures that describe the relationships 

between different idealized coordination symmetries and numbers.362-365 These symmetry 

measures have been employed to rationalize and interpret changes in SCO complex structure 

observed with ultrafast spectroscopy.366 Although developed for molecular crystals, similar local 

measures of topology based on Voronoi polyhedral volumes and deviations from idealized 

values have also recently shown promise, e.g., for porous MOFs.367 Analysis of metal–ligand 

bond lengths in the CSD has been used to estimate the effective size of atoms, including spin-

state-dependent covalent radii of transition metals368 and the degree of covalency in metal–ligand 

bonds369. The CSD has also been widely used to develop an understanding of structure–property 

relationships among known classes of materials (e.g., structural asymmetry in Dy-containing 

single molecule magnets370). 

 The CSD has been mined to uncover other structural trends. This has led to confirmation 

of expected relationships between bond length and strength (e.g., for late Cu, Zn compounds 

with common O/N-coordinating ligands)371, identification of metal coordination number 
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preference372, quantification of metal-dependent trans effects (see Sec. 2)373, and validation of 

the expectation of longer bond lengths for higher coordination numbers372. The large number of 

structural variations in synthesized ligands also motivated data mining to elucidate the 

relationship between metal–ligand bonding and steric effects358 or conformer preference in well-

studied macrocycles374.   

 Although catalytic intermediates are often fleeting and cannot be captured 

crystallographically, structure–reactivity relationships have been inferred from CSD data, e.g., 

by studying the relationship between complex structure and small-molecule binding.375 For 

example, a difference in preference of dinitrogen binding to mononuclear (i.e., end-on) versus 

binuclear transition-metal complexes (i.e., side-on) was observed375 as were shifts in the degree 

of metal-dependent (i.e., 3d vs 4d and early vs late) back-bonding in metal–carbonyl bonds376 

(Figure 23). Structures from the CSD have been shown to have good correspondence377 with 

typically challenging to crystallize/characterize metalloenzyme active sites.377 This data set has 

been leveraged in a number of other ways, including to curate fragments for improved structure 

generation of de novo complexes50-51 (see Sec. 5).  
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Figure 23. (top) Data of average C–O bond lengths vs periodic group for all transition-metal 
complexes with known CO bonds. The error bars shown represent 95% confidence intervals 
around the mean. (bottom) Schematic illustration of regimes of bonding for CO ligands in 
transition-metal complexes from data-mined CSD structures. Reprinted with permission from 
ref. 376. Copyright 2007 American Chemical Society. 
 

 Despite the value the CSD data set provides, limitations on the utility of the data are 

notable. Most structures are obtained from X-ray diffraction, which by definition includes the 

influence of the crystal field environment. Researchers have analyzed packing effects and found 

them to significantly influence structures of relatively flexible metal–organic complexes.361 In 

less pathological cases, these effects were observed to be small (ca. 0.01–0.02 Å).355, 361 In 2006, 

Fey, Orpen, and coworkers proposed semi-automated workflows to detect structural outliers and 

use DFT calculations to determine if the disagreement between DFT and the crystal structure 

was evidence of unusual chemistry versus a potentially erroneously solved crystal structure 

(Figure 24).378 Other complications include the fact that structures in the CSD may have 
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unknown or erroneous oxidation state assignment, which has led to recent development of 

efficient heuristic models that can automatically assign oxidation state with good (ca. 85%) 

accuracy.354  

 
Figure 24. Schematic of partially automatic identification and computational confirmation of 
outliers in the CSD based on DFT calculations of unexpected transition-metal complex 
structures. Reprinted with permission from ref. 378. Copyright 2006 American Chemical 
Society. 
 

 The intense experimental focus on metal–organic frameworks (MOFs) has been 

leveraged in the development of the computation-ready, experimental MOF (CoRE MOF)379-380 

database first introduced in 2014379. CoRE MOF consists of most 3D MOF structures deposited 

in the CSD. In 2019, the database was refined380 to expand the original set of 5,109 3D MOFs to 

a larger set of 14,142 MOFs along with an improved procedure for identifying and removing free 

solvent molecules, recovering disordered structures, and mapping between literature references 
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and CSD structural files. This type of database has been exploited to accelerate high-throughput 

screening of MOFs for C–H activation381 and to build machine learning models to predict 

properties related to gas separations and storage, such as surface area382 and adsorption 

isotherms383. These sets have also been instrumental in revealing mismatches between 

hypothetical and synthesized materials384. Given that the CoRE MOF resource provides a 

mapping between the structures and the literature associated with them, natural language 

processing (NLP) has begun to be exploited to map structure to properties in MOFs.385-386 NLP 

has been more widely demonstrated for other tasks, including understanding materials synthesis 

recipes385 (see also Sec. 5.3.4).  

New tools are also being developed as part of the CSD to allow for expansion and 

analysis of experimental structures.387 In a similar fashion to the MOF or solid-state datasets, 

closed-shell molecular transition-metal complexes have recently been the subject of high-

throughput computational screening with a combination of semi-empirical methods (see Sec. 2) 

and DFT.388 The generation of DFT properties on experimental structures is considerably better 

established for solid-state materials, where a number of repositories are available (e.g., 

AFLOWlib389, Materials genome project390, and Open Quantum Materials Database391) that 

share semi-local-DFT-computed properties for materials design. An outstanding limitation is that 

many of these sets of extracted structures are primarily used as a starting point for simulation, 

rather than mapping to experimental results (e.g., for extraction of spectroscopic or catalytic 

quantities), which may not be systematically reported. For example, to curate experimental data 

for their empirical DBLOC corrections (see Sec. 2), Friesner and coworkers manually analyzed 

graphs for key peak features.175  

CSD structural data has also been subject to multiple linear regression (see Sec. 4.2) and 
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supervised ML models (see Sec. 4.4) and analyzed with unsupervised machine learning (see Sec. 

4.3). In particular, Fey, Orpen, and coworkers have leveraged the CSD data to build “ligand 

knowledge base” (LKB)392-393 subsets and analyze them with PCA and MLR.  

4.2. Building Structure–Property Relationships: Quantitative and Mechanistic Inquiry. 

 Recent years have seen the development of machine learning models (Sec. 4.4) that 

encode structure–property relationships and enable large-scale chemical exploration (Sec. 5). We 

briefly summarize here complementary approaches that bear similarity to machine learning 

efforts but typically rely more on intuition and human intervention. First, we briefly review 

quantitative structure–property relationships (QSPRs) for transition-metal chemistry, including 

frequently invoked descriptors (Sec. 4.2.1) and examples of multiple linear regression QSPR 

models (Sec. 4.2.2). Throughout, we use the term QSPR to refer broadly to simple, multivariate 

or heuristic mapping of structure to either property or activity of molecules (i.e., both QSPR and 

QSAR). Finally, we discuss how these approaches can be used quantitatively or qualitatively to 

guide iterative and mechanistic inquiry (Sec. 4.2.3). Some of these approaches remain in 

widespread use in conjunction with machine learning models, as will be discussed in subsequent 

sections, and the performance of these transparent models can be used to determine when 

moving to more sophisticated machine learning models is beneficial.  

4.2.1. Common Descriptor Types for QSPRs. 

 Numerous descriptors have been developed as inputs to linear QSPR models or as guides 

for iterative design of catalysts. Recent reviews in Refs. 2-3, 394-396 provide more detail on the 

range of descriptors that have been used in the mechanistic study of transition-metal complexes. 

We briefly highlight here some representative QSPR descriptors to enable comparison to 

representations more typically applied in deep learning in Sec. 4.4. The descriptors typically used 
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in QSPR models are either derived from quantities that are easy to measure experimentally (e.g., 

from vibrational spectroscopy or UV/Vis) or to compute. To be predictive across modest (ca. 40–

50) transition-metal complex sets, the descriptors are chosen to represent key chemical variations 

that determine an activity or property.  

 For ligand design in homogeneous catalysis, where the approach of substrate to the 

catalyst is strongly directed by ligand shape, a focus has been placed on the sterics of either the 

individual ligands or of the complex. An early and prominent example of steric descriptors is the 

cone angle for phosphine ligands devised by Tolman397-398 (Figure 25). By approximating the 

steric bulk of the substituted phosphine ligands, the Tolman cone angle was shown to 

approximately quantify experimental measures of the ease of displacing ligands in catalytic Ni(0) 

complexes397-398 (Figure 26). For N-heterocyclic carbene (NHC) complexes, the fraction of 

volume of the first coordination sphere that is “buried” by overlap with atoms from the NHC 

ligand has been proposed as an alternative quantitative descriptor of steric bulk (Figure 25).396, 

399-400 Because this volume represents the space around the metal atom that must be shared by the 

different ligands upon coordination, it has been shown to be a good linear predictor of the 

experimentally measured relative cost to displace ligands from Cr-containing transition-metal 

complexes (Figure 27).399 These descriptors have been made accessible to users through the 

development of an easy-to-use web interface.400 First developed in the 1970s, sterimol 

parameters of ligand length and asymmetry have recently been demonstrated401 to be useful 

descriptors for QSPRs in the design of enantioselective catalysts396. Steric descriptors have also 

been obtained from the molecular mechanics ligand repulsion energy (i.e., van der Waals terms 

only) associated with the cost to displace a ligand from a metal center.402  
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Figure 25. Depictions of (a) Tolman cone angle, (b) buried volume steric descriptors, and (c) 
steric map of a (NCH)(Cl2)Ru═CH2 complex (right) oriented according to the structure shown 
on the left. Adapted with permission from ref. 400. Copyright 2016 American Chemical Society. 
 

 
Figure 26. Stability of Ni(0) tetrahedral complexes measured through semiquantitative ligand 
binding ability obtained from ligand competition experiments as a function of Tolman ligand 
cone angle. Reproduced with permission from ref. 397. Copyright 1970 American Chemical 
Society. 
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Figure 27. Relative experimental bond disruption enthalpy (BDE, kcal/mol) vs steric parameter 
(percent buried volume, %VBur) of N-heterocyclic carbene ligands, L, in the Cp*Ru(L)Cl system 
(slope: −1.01; R:  0.94). Reproduced with permission from ref. 399. Copyright 2003 American 
Chemical Society. 
 

 Geometric properties were widely used as descriptors in early QSAR/QSPR studies 

because they can be readily extracted from crystal structures403 (see Sec. 4.1) or reasonably 

estimated from moderately accurate molecular mechanics force fields404 (see Sec. 2). 

Experimental or calculated chelating atom distances were used to classify spin-crossover 

complexes.405 Similarly, molecular mechanics and DFT were both shown to be predictive of 

experimental bidentate bite angles that can inform reactivity, thus demonstrating how tuning 

ligand chemistry can be used to rationally design ligands.404, 406 Analysis of known Ziegler–Natta 

catalyst structures revealed the importance of metal–ligand dihedrals as descriptors.403 Other 

measures of the planarity of the ligand around the metal (e.g., twisting and puckering) have been 

proposed from semi-empirical or force field modeling to be useful in predicting 

enantioselectivity of catalysts (e.g., Jacobsen–Katsuki epoxidation catalysts).407-408  

In addition to numerical descriptors, 3D QSPR descriptors originally developed for 

organic chemistry were adapted to ligand design in transition-metal complexes. One of the most 
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widely used approaches in 3D QSPR is comparative molecular field analysis (CoMFA).409 In 

CoMFA, a molecular electrostatic potential or steric repulsion is evaluated using a probe 

molecule on a grid around the structure. Although initially designed with protein–ligand binding 

in mind, CoMFA descriptors found use in ligand design for transition-metal chemistry.410-413  

In close analogy to CoMFA, specialized projections of steric bulk and crowding proximal 

to the metal center in steric maps have been proposed to provide richer insight into potentially 

anisotropic contributions relevant for enantioselective catalysis (Figure 25).400 Lipkowitz and 

coworkers pioneered414-415 an approach tailored for enantioselective catalyst design that they 

referred to as stereocartography. In this approach, the probe is a transition state displaced along a 

grid to identify regions of maximum stereoinduction (Figure 28). Using this stereocartography 

technique in conjunction with semi-empirical energy evaluations, most (ca. 95% or 17 of 18) 

catalysts were found to conform to the hypothesis that enantioselectivity is made possible only 

when the point of greatest discrimination between enantiomers is close to the reacting center.414-

415  

 
Figure 28. Location of transition-state probe and region of maximum stereoinduction for a 
catalyst with a docked transition-state probe (left: front, middle: side, and right: top views). The 
heavy atoms of the catalyst are depicted as sticks, the transition-state probe atoms are shown in 
ball-and-stick, and hydrogen atoms are omitted for clarity. The bottom row shows the most 
enantiodiscriminating region within a sphere of 1 Å radius centered about the most 
enantiodiscriminating grid point. Reproduced with permission from ref. 414. Copyright 2002 
American Chemical Society. 
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 Through-bond electronic effects are also known to have a significant influence on the 

properties of transition-metal complexes and have therefore been invoked in QSPR models. For 

example, Hammett parameters have long been used to quantify and predict effects of tuning on 

catalysis.416-417 Both parameterized semi-empirical methods and DFT functionals became 

increasingly accessible over the past 20 years (see Sec. 2), leading to the increased use of QM-

computed electronic descriptors in QSPR/QSAR modeling.3, 394 Electronic parameters easily 

extracted from DFT were observed to correlate to experimentally measured structural 

determinants of reactivity that could only be obtained after a catalyst was crystallized and 

characterized.418 Widely employed descriptors include metal partial charges and quantities 

derived from frontier orbital energies.419 Reactivity descriptors such as estimates of 

electrophilicity419 or softness420 of the metal have been proposed. Similarly, explicitly computed 

ionization potentials, electron affinities, or the analogous orbital energies (e.g., HOMO or 

LUMO) have been widely used as descriptors owing to the expectation of their influence on 

reactivity.420-421 Other DFT-derived descriptors include simpler-to-compute quantities (e.g., 

LUMO, pKa) representative of the overall catalytic activity but obtained only on the organic 

ligands in the complex.422 The application of these descriptors in iterative catalyst design with 

linear models is discussed next in Sec. 4.2.2, and the relationship of these descriptors to those 

developed more recently for machine learning applications will be discussed in Sec. 4.4. 

4.2.2. Examples of QSPR Models for Transition-Metal Chemistry. 

 QSPR modeling in transition-metal chemistry has provided important insight into the 

design of transition-metal complexes. Here, we distinguish QSPRs from other supervised 

learning (Sec. 4.4) models by referring specifically to models developed on small data sets (ca. 

50–100) points that are typically used to predict an experimental measure of catalyst activity, 
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redox potential, or other property using (multiple) linear regression (MLR).3, 394, 410 While QSPR 

models are typically fit to all available data given the small data set sizes, there are exceptions 

where cross-validation error423 or other error estimations from bootstrapping were 

demonstrated.406  

 Prediction and tuning of redox potentials is an example application to which QSPR 

modeling has long been applied because the absolute experimental redox potential is challenging 

to predict even from accurate theoretical chemistry methods (see Sec. 2). At the same time, 

prediction of relative redox properties to identify opportunities for tuning is an easier task, and 

corrections to DFT can be easily fit with simple linear models194, 424. For example, the difference 

in strain energy between reduced and oxidized states of redox couples (e.g., Co(III/II)425-426) 

from a tailored (i.e., MM2 with tuned terms for the metal–ligand bond) force field has been 

demonstrated to estimate experimental redox potentials with reasonable fidelity (i.e., R2 = 0.78). 

This agreement is impressive considering the neglect of solvent, entropic, and other electronic 

effects not included in the methods. Descriptors from DFT, such as orbital energies of electrons 

involved in oxidation, have also been used to identify how to tune redox potentials (e.g., in W-

containing complexes427).  

 For predicting spin-state-dependent behavior, Phan et al. showed that the experimental 

nitrogen–nitrogen separation of a free ligand in 33 homoleptic Fe(II) diimmine complexes could 

be used to classify when a complex would exhibit spin-crossover behavior (Figure 29).405 

Geometric descriptors were also found to be important in iterative ligand design for spin state 

properties of Fe(II) polypyridines.428 Data mining and linear correlation analysis has also been 

carried out on substituted Mn cubanes to identify the most important structural properties that 

influence magnetic behavior.429 



62 

 

 
Figure 29. Comparison of N–N separations (in Å) for free ligands from 33 tris-diimine Fe(II) 
complexes with their known spin state preference. Reprinted with permission from ref. 405. 
Copyright 2017 American Chemical Society. 
 

 QSPRs have been most widely employed for experimental catalyst screening. Much of 

this work is outlined in recent reviews such as Refs. 394, 413, 430. Often, the target predicted 

quantity (i.e., experimental enantioselectivity) in these cases is sufficiently challenging to obtain 

from computation such that even relatively expensive descriptors derived from DFT calculations 

represent an efficiency improvement over direct screening. In nearly all such cases, a single 

metal and oxidation state is employed, meaning that organic-focused descriptors developed for 

organic chemistry QSPRs are often suitable. Sigman and coworkers have demonstrated both 

quantum mechanical and steric descriptors across data sets of numerous catalysts to predict 

experimental activity431-433, as reviewed in detail in Refs. 401, 430. In most cases, descriptors are 

evaluated on a single ligand or substrate conformer, but for highly flexible ligands and 

substrates, weighted evaluation of 3D descriptors has been demonstrated.434 In many of these 

examples, the QSPR models themselves serve to guide improvements to ligand chemistry. 

 At the same time, models capable of predicting DFT-derived catalytic properties have 

also been pursued in cases where experimental data was limited or as a means to understand 
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trends in DFT-derived reactivity. For example, Truhlar and coworkers investigated419 how linear 

models could predict selectivity of Ru catalysts with NHC ligands toward olefin metathesis over 

cyclopropanation. To simplify screening, they correlated DFT estimates of catalyst selectivity 

(i.e., relative reaction free energy barriers of the competing reactions) to electronic structure 

descriptors (Figure 30).419 They showed that both metal partial charge and electrophilicity could 

explain DFT selectivities, highlighting a useful trend for experimental ligand design.419 While 

correlations to experimental data may be preferred, identification of predictive quantities from 

the DFT calculation provides important insights into design principles where experimental data 

is limited or not robust due to contributions from competing processes, such as side reactions.  

 

 
Figure 30. (top) Electrophilicity index, ω, as a function of the CM5 partial atomic charge of the 
Fe ion in the metallocyclobutane complex, Q(Fe). (bottom) Free energy selectivity, δ, from the 
difference of free energies of activation of reactions 1 and 2 as a function of ω. Resulting linear 
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fits are shown inset. In both panels, each data point is for a different ligand environment. 
Reproduced with permission from ref. 419. Copyright 2018 American Chemical Society. 
 

 Parveen et al. investigated whether through-space geometric descriptors or through-bond 

electronic effects could better explain differences in 38 sandwich Zr complexes for 

polymerization.435 The developed MLR models were predictive of reactivity trends (R2 = 0.86) 

and performed nearly as well as more sophisticated (e.g., ANN) machine learning models.435 

Jensen and coworkers employed a combination of cheminformatics-derived topological (see Sec. 

4.4) and DFT-calculated descriptors to predict DFT-calculated estimates of activity for 82 

ligands in Grubbs Ru olefin metathesis catalysts, where the DFT-calculated activity was also 

known to correlate to relative experimental activity.436 The final MLR model consisted of 14 

features and had a modest cross-validation error after manual pruning of descriptors on a 

representative test set below 1 kcal/mol.436 Analysis of the most important features revealed the 

dominant role of geometric and electronic properties of the Ru=CH2 bond for iterative ligand 

design (see Sec. 4.2.3).436 

 Linear models have also been built on DFT data to identify substrate-dependent factors 

that favor different (e.g., homolytic vs heterolytic bond cleavage) catalytic mechanisms.437 

Nazemi and Cundari used this analysis to identify that substrate pKa could play a more 

significant role than homolytic bond dissociation free energies in C–H activation by metal-oxo 

catalysts.437 Correlations of ligand pKa have also been demonstrated across far-ranging 

applications from ligand precursors in quantum dot synthesis438 to CO2 conversion422 kinetics. 

Relationships between pKa and a target activity/property are closely related those observed by 

Hammett on organic compounds416-417 and the concepts of linear free energy relationships 

described in Sec. 4.2.3.  
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 Fey et al. used QSPR descriptors and MLR models as analysis tools for understanding 

ligand chemistry for design.406 They observed that stability of Cr complexes with chelating 

bidentate P,P or P,N ligands, as judged by DFT ligand removal energies, could be well predicted 

(R2 = 0.95 and mean squared error of 3.2 kcal/mol, Figure 31).406 This model used a combination 

of only five descriptors that included the proton affinity of the coordinating phosphorus in the 

ligand, two from the binding energy of the ligand to other metals (Zn or Pd), and two structural 

properties of the Zn complex analogue (i.e., the Zn–Cl bond in a Zn(L)Cl2 complex and the 

change in ligand angle upon complexation).406 Addition of other descriptors, including the 

HOMO energy or other geometric properties, did not substantially improve model performance. 

This analysis highlights strategies to tune ligand chemistry and the extent to which these design 

principles might be transferable across multiple metals. 

 
Figure 31. Prediction of the binding energy of a bidentate phosphine ligand, L, to Cr from DFT 
(BE(Cr), in kcal/mol) in a Cr(CO)4L complex. The model R2 is 0.95 and descriptors include the 
binding energy for ligands to Zn and Pd complexes computed with DFT as well as proton 
affinity of one side of the ligand and change in a ligand angle upon complexation. Adapted with 
permission from ref. 406. Copyright 2008 American Chemical Society. 
 

 As an alternative approach, Maseras and coworkers439 used singular value decomposition 

(SVD) to uncover the predominant descriptors to build QSPRs for ligand binding energy (Figure 

32). They determined that the number of “hidden” descriptors needed to predict DFT-level bond 

dissociation energies (BDEs) from transition-metal complexes was quite small, with a model that 
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used only six able to predict the DFT BDE to within 1.4 kcal/mol. While application of the 

model to new complexes requires additional calculations to generate the relevant matrix 

elements, model generalization error was low439 (Figure 32). They then identified the correlation 

between the six predominant descriptors obtained from the SVD to individual descriptors from a 

set of over 660 standard quantities (e.g., charges, volumes, ionization potential, etc.).439  

 
Figure 32. Schematic of singular value decomposition approach to analyzing hidden variables in 
DFT-computed bond dissociation energies between a matrix of metals and ligands in transition-
metal complexes. The reduced dimensionality enables generation of a simplified matrix product 
to obtain estimated BDEs. Reproduced with permission from ref. 439. Copyright 2018 American 
Chemical Society. 
 

4.2.3. Descriptors in Linear Models and Iterative Design.  

 Many transition-metal complex design studies leverage individual descriptors normally 

employed in combination in QSPRs to instead develop, test, and validate hypotheses. Such 

studies may evaluate effects one at a time or employ descriptors to guide the update of the set of 

compounds to evaluate with DFT or experiments. For example, orbital energies found to 

correlate to C–H activation were used to accelerate the screening of ligands for candidate 

methane-to-methanol catalysts with metals (i.e., Rh) that have been less frequently studied 

experimentally.440 Such relationships tend to hold well within a given spin state and metal, but 

catalysts with varied ligand chemistry (e.g., denticity) or spin states often require the 

development of multiple linear relationships when a single descriptor is used. As an example, 



67 

 

Sautet and coworkers showed multiple correlation lines were needed to explain the relationship 

between the LUMO s* orbital of open-shell Fe=O moieties and the C–H activation energy when 

comparing monodentate and multidentate catalysts (Figure 33).441 

 
Figure 33. Correlation between the DFT (i.e., OPBE) energy of the σ* orbital of the Fe–oxo 
complex in eV and the DFT barrier height of the C–H abstraction step in kJ/mol for model 
catalysts in the HS-σ path. Two subsets are distinguished: (1–12, monodentate model catalysts) 
in black and (13–38, macrocyclic, experimentally motivated catalysts) in blue. Crosses indicate 
complexes with a quintet ground state, while diamonds indicate those with a triplet ground state. 
For the Fe═O complexes with a triplet ground state, the activation energy for C–H abstraction 
along the LS-π path is also plotted as a function of the energy of the π* orbital shown as red 
diamonds without any correlation indicated. Reproduced with permission from ref. 441. 
Copyright 2015 American Chemical Society. 
 

Common phosphine ligand descriptors related to angle and bonding strength were used 

by Cooney et al. to computationally identify novel ligands that exhibited behavior distinct from 

those that had been previously synthesized (Figure 34).442 While less frequently applied, this 

descriptor-guided screening approach has been employed to identify ways to improve catalyst 

stability (i.e., by strengthening the bond with the weakest ligand) without affecting activity.443 

When sterics are believed to play an essential role, this screening and iterative design process has 

been accelerated by using molecular-mechanics-derived quantities such as the ligand repulsion 
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energy402 to predict relative stereoselectivity of substrate binding.444  

 
Figure 34. (top) Calculated stereoelectronic map for phosphines derived from semi-empirical 
(i.e., PM3(tm)) calculations on trans-Rh(PR3)2(CO)Cl with ligands from the CSD. (bottom) 
Proposed properties of novel phosphines that fill in the gap identified in the top graph. SEP 
corresponds to the stretching frequency of the bound CO and S4’ is a modified Tolman cone 
angle. Adapted with permission from ref. 442. Copyright 2003 American Chemical Society. 

 

Exploiting linear free energy relationships (LFERs) between activation energies and 

reaction energies or selectivities as well as relating energies to a specific descriptor is a special 

example of descriptor-based design. This approach has been most widely applied and 

popularized in heterogeneous catalysis, where it has been shown that bulk metal alloy reaction 

energetics are closely related to descriptors (e.g., the d-band center), enabling estimation of 

overall optimal activity (i.e., a maximum in a volcano plot) from a single descriptor.445 The 

natural bridges between heterogeneous and homogeneous catalysis have become more 

evident446, as LFERs have been widely demonstrated in single-site MOF catalysis381, 447-448 and 

single-atom catalysts (SACs)449-450, a family of materials with isolated metal sites coordinated by 
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N-doped graphene substrates that resemble and behave like macrocyclic catalysts (e.g., 

porphyrins)451.  

 Within homogeneous catalysis, the potential role of LFERs for catalyst design has thus 

been investigated with increasing interest in recent years.422, 441, 446, 452-458 Corminboeuf and 

coworkers452-455 have demonstrated how LFER-based volcano plot development can be used to 

accelerate homogeneous catalyst screening. They have demonstrated their approach to scaling 

relations for a range of reactions including cross-coupling454-455, hydroformylation453, and CO2 

hydrogenation452, among others. Recognizing the potential variability of mechanism and scaling 

relationship as ligand chemistry changes, they proposed453 developing and applying scaling 

relations within families of ligand types (e.g., phosphines) to then construct multiple volcano 

plots and identify the optimal ligand chemistry for a specific reaction (Figure 35).  

 
Figure 35. Summary of an approach to generate volcano plots from scaling relationships. a) The 
free energy profiles for several catalysts bearing the same ligand are computed. b) Linear scaling 
relationships between relative free energies of the transition states and the free energy of the 
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descriptor variable are established. c) Simulated volcano plots for each ligand type are derived 
from the linear scaling relationships. d) The peak positions are then related to a steric parameter, 
such as the cone angle, and equations are derived that relate the steric parameter to a new peak 
position. e) The peak positions of the hypothetical volcanoes for new catalysts are plotted. f) The 
final hypothetical volcanoes are created by using the volcano slopes from the computed data. 
Reproduced with permission from ref. 453. Copyright 2016 Royal Society of Chemistry. 
 

 In cases where a mechanism and scaling relationship is known, iterative experimental-

computational efforts have been carried out in which calculations are used to predict 

functionalizations of ligands that will lead to improved performance on established catalyst 

scaffolds.459-461 In another example, computed relative free energies were correlated to 

experimental selectivities (i.e., for 1-octene over 1-hexene formation) for ethylene 

oligomerization.462 This correlation was exploited to successfully computationally screen new 

ligand chemistry with the desired selectivity and validated experimentally (Figure 36).462 This 

type of relative free energy barrier screening has also been beneficial in identifying, for a fixed 

Ni phosphine catalyst chemistry, which leaving groups on substrates were compatible with the 

desired functionalization (Figure 37).463 Numerous researchers have exploited computed464-465 

transition-metal hydricities293-294 as a descriptor for activity in Fe(II) and Co(III) CO2 

hydrogenation catalyst screening, owing to the scaling relationships to other governing steps in 

the catalytic cycle, including CO binding. The energetic span model284 represents a 

generalization of this approach and has been fruitfully employed to iteratively vary pincer ligand 

design to maximize activity for carboxylation with CO2 by identifying ligand features that 

increase turnover frequency466 or to analyze the effects of functional groups on Rh sandwich 

catalysts467.  
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Figure 36. Predicted 1-hexene:1-octene weight % ratio for Cr-catalyzed ethylene 
oligomerization with phosphine monocyclic imine ligands from relative free energy barriers for 
the two reactions compared to the experimentally observed result. NA = catalyst not synthesized. 
The experimental weight % ratios are normalized for C6+C8 fractions and include all C6 or 
C8 components. Bottom right corner shows the X-ray structure of [Li(THF)2]+[(L2)CrIIICl4]−. 
Reproduced with permission from ref. 462. Copyright 2018 American Chemical Society. 
 

 
Figure 37. Computational prediction and validation of the leaving groups compatible with Ni-
catalyzed trifluoromethylthiolation by the catalyst depicted at top. Reproduced with permission 
from ref. 463. Copyright 2016 American Chemical Society. 
 
 

 Nevertheless, the LFER-based, iterative screening approach has been most successfully 

demonstrated in closed-shell complexes with late transition metals. Larger-scale exploration of 

multiple oxidation states and spin states typically reveals the limitations of LFERs in catalyst 

screening. For example, the HOMO level of the resting state of a catalyst has been invoked as a 

good descriptor for how favorably a high-valent metal-oxo species capable of C–H activation 
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will form448, but numerous screening efforts have revealed exceptions.152, 441, 456, 468 Gani et al. 

observed456 that geometric distortions about Fe(II) metal centers in minimal model catalysts 

broke the strong scaling between HAT and oxo formation central to the design of direct 

methane-to-methanol conversion catalysts (Figure 38). Tuning the ligand field, however, resulted 

in shifts along a standard scaling relationship, and analysis of experimentally characterized 

catalysts revealed that many macrocyclic catalysts indeed had the favored metal–ligand plane 

distortion. Distortion was also observed to be naturally occurring and beneficial in a class of 

Fe(II) single-molecule magnets due to Jahn–Teller distortions.469 Nandy et al. showed457 that 

over a set of nearly 1200 catalysts, scaling relationships between metal-oxo formation and HAT 

differed widely with metal, oxidation, and spin state (Figure 39). The observed scaling relations 

also differed from those that had been proposed in heterogeneous381, 447 (i.e., including MOFs381) 

catalysis. These wide variations indicated that use of a single scaling relationship across the 

entire data would fail to be predictive for catalyst screening, motivating more flexible machine 

learning models (see Sec. 4.4).  

 
Figure 38. Oxo formation energy (ΔE1, in kcal/mol) versus HAT energy (ΔE2, in kcal/mol) for 
minimal model Fe(II) complexes with square planar distorted geometries. The minimal models 
are grouped by metal–ligand plane dihedral angle: 10° (circles), 20° (triangles), and 30° 
(squares). Symbols are colored according to the corresponding CH3OH release energy (ΔE3, in 
kcal/mol), as indicated in the inset color bar. A single outlier is indicated by a red border. 
Reproduced with permission from ref. 456. Copyright 2018 American Chemical Society. 
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Figure 39. ΔE(oxo) vs ΔE(HAT) LFER slopes and standard errors obtained across catalysts in 
16 metal/oxidation/spin states (left) along with representative data sets used to determine LFER 
slopes (right). Data is colored by metal, with Cr in gray, Mn in green, Fe in red, and Co in blue, 
and shown opaque for M(II) and translucent for M(III) resting states. The range of heterogeneous 
catalysis (i.e., literature) slopes381, 447 is shown as a shaded light brown area, and the global 
LFER over all 16 metal/oxidation/spin states studied in the transition metal complex set is shown 
as a gray dotted line. The data is labeled A for LS singlet Fe(II) and B for HS quintet Fe(II), both 
left and right, with LFER lines shown at right as dashed and dotted lines, respectively. 
Reproduced with permission from ref. 457. Copyright 2020 American Chemical Society. 
 
 

 When the guiding descriptor for ligand design is unknown and the computational cost of 

determining reaction energetics is relatively high, a combination of descriptor-based screening 

and variation of ligand or metal chemistry in a small-scale screen is often beneficial. These 

screens are often used to determine the relative magnitude of effects, first by varying metal and 

then substrate or ligand chemistry. Pickup et al. built a computational database to observe what 

effects governed the experimental stability of 60 alkyne/vinylidene isomers bound to a transition-

metal complex (Figure 40).470 By comparing metals, substituents on the alkyne, and ligands in 

the rest of the complex, they determined470 that the metal played a far more limited role in 

comparison to the alkyne chemistry in favoring a vinylidene structure. Shiekh et al. studied 

biomimetic Mo/W CO2 hydrogenation catalysts to determine the relative magnitude of changing 

metal oxidation state, functional groups distant from the metal, and axial coordinating ligands 

(Figure 41).471 They observed a wide range of feasible H2 binding energies that could be used to 

tune the catalysts, with oxidation state playing a pivotal role in comparison to functional group 
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substitution.471 Similarly, factors governing ligand redox non-innocence are poorly understood, 

motivating a screen of how altering functional groups on o-benzoquinone ligands affects the 

behavior of Co(II) complexes.472 

 
Figure 40. Schematic illustrating the exploration of different variables in analyzing substituent 
effects on vinylidene/acetylene tautomer stability in transition-metal complexes from 
experimental data. The multivariate analysis involves analyzing multiple metals for different 
substituents on the binding ligands along with studying ligand effects on select substituents. 
Reproduced with permission from ref. 470. Copyright 2014 American Chemical Society. 
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Figure 41. Free energy tuning of H2 addition (green colored values) over the metal center in Mo-
based catalysts that act as formate dehydrogenase mimics along with their free energy of 
activation values (blue colored values) all in kcal/mol. The choice of ligands is indicated 
schematically in blue text and arrows highlight the effect of changing substituents versus 
changing the axial ligand. Reproduced with permission from ref. 471. Copyright 2019 Royal 
Society of Chemistry. 
 

 Such studies are also widely used in inferring and confirming metal- or spin-state-

dependent reactivity and mechanistic trends. Examples include comparisons of the role of metal 

identity, oxidation state, and row on the relative preference for proton-coupled electron transfer 

versus uncoupled reaction steps473 and examinations of the influences on reactive intermediate 

(e.g., metal-fluoro vs. metal-oxo) formation.474 These studies can also reveal when a descriptor 

that is pivotal in one class of reactions or catalysts bears less importance in others or when a 

single descriptor will prove insufficient. For water oxidation in bimetallic complexes, varying the 

metal identities revealed the numerous possible spin states and their cooperative effect on 
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relative reaction barriers or favored mechanisms, giving rise to complex patterns that could not 

be captured by a single chemical descriptor.475 Similarly, while bite angle is often invoked in 

complexes with bidentate phosphine ligands, for reductive elimination at Pd(II) catalysts, the 

effect of electron-withdrawing groups on the ligands was found to be more significant.476 

Iterative ligand design has also been demonstrated in cases where key aspects of an established 

catalyst are preserved, such as the presence of a multidentate ligand, while designing other less 

exhaustively explored ligands to propose improvements beyond known best-in-class catalysts.457, 

477 A key caveat in computational design is that ligand flexibility can alter reaction mechanism or 

influence predicted activation energies, often requiring a tight coupling between computation and 

experiment to realize such suggestions.478 

 While the design of transition-metal complexes for homogeneous catalysis has been the 

focus of much of the effort in computational chemistry, the rise of porous metal–organic 

frameworks or zeolites for gas separation has also spurred interest in mechanistic and iterative 

design with some parallels to catalyst design. Given the distinct scale and nature of MOF 

properties, the descriptors favored are often more focused on geometry or topology, as we will 

describe in more detail in Sec. 4.4. For MOFs, iterative design has been carried out by holding 

fixed metal secondary building units (SBUs) expected to be needed for stability and key features 

(e.g., open sites for gas binding) while replacing and varying linker molecules to adjust for other 

properties such as surface area for gas storage.479-480 Alternately, researchers can study the effect 

of substituting metal sites in well-established frameworks to reveal metal-dependent gas 

adsorption without confounding factors from varied pore geometry.481 Analysis of the 

relationship between the resulting topology of the material and properties for gas adsorption has 

been used to reveal design principles and notably to identify a hypothetical material that was 
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experimentally verified to have high gas uptake characteristics.480  

4.3. Unsupervised Learning. 

 The concept of distance in chemical space plays an essential role in the interpretation, 

visualization, and manipulation of data sets and machine learning models (Sec. 4.4). Principal 

component analysis (PCA) was among the first methods to leverage this concept and thus has 

been the most widely employed technique.3 PCA reduces a high-dimensional feature set to the 

set of normal vectors that encode as much of the variance in the data as possible. PCA has been 

widely applied to analyze trends in structural properties of common moieties (e.g., Mo=O) in the 

CSD with changing ligand chemistry.482 Orpen, Fey, and coworkers have developed the most 

extensive PCA-based analysis of CSD structures, including through the application of PCA to 

electronic descriptors from DFT on DFT-augmented “ligand knowledge bases” (LKB).3, 483 They 

have exploited PCA on these LKBs to analyze relationships among ligand classes from the CSD 

(e.g., monodentate359, 392, 484 and bidentate485 phosphine or carbene486 ligands). For these curated 

sets, Fey and coworkers computed a range of steric and DFT-derived descriptors, and they then 

simplified the visualization of the ligand space by PCA dimensionality reduction (Figure 42). 

The suitability of the PCA visualization was highlighted by i) good separation and clustering of 

families of ligand types, ii) the two components typically represented the majority (> 65%) of the 

data variance, and iii) the descriptors were used to build predictive multiple linear regression (see 

Sec. 4.2) models (Figure 42). Using PCA on other LKBs, they have also related PCs back to key 

ligand variations, such as functional groups470, and steric or electronic factors3, 406.  
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Figure 42. Principal component analysis of the LKB-P ligand set. The first two principal 
components from a 28-descriptor set are shown and capture 65% of the variance in the data. PC1 
is dominated by steric and s-bond electronic descriptors along with bonding terms, whereas PC2 
has a greater emphasis on steric effects. Reprinted with permission from ref. 484. Copyright 
2010 American Chemical Society. 
 

As another early demonstration in the 1990s, Beyreuther et al. demonstrated both 

structural-descriptor-based multiple linear regression and unsupervised learning approaches, 

including PCA and self-organizing maps, which are a type of ANN used for unsupervised 

dimensionality reduction (here, 10 neurons in a Kohonen map).487 Using such techniques, they 

were able to predict tripodal complex conformations based on local descriptors such as bite 

angles using 82 CSD complexes.487 Within heterogeneous catalysis, PCA has recently been 

applied to analyze which DFT binding energy descriptors explain experimental observations488 

or to guide search for new catalysts with improved properties489. Rothenberg and coworkers 

highlighted the importance of dimensionality reduction in interpreting the three high-dimensional 

spaces most relevant to catalyst optimization: continuous feature space, discrete ligand space, 

and the ultimate property space being optimized (Figure 43). 
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Figure 43. Depiction of how catalyst design involves three types of multidimensional space: 
discrete catalysts (space A), continuous descriptor values from representations (space B), and 
figures of merit (space C). Reproduced with permission from ref. 489. Copyright 2010 Royal of 
Chemistry. 

 

 While PCA is primarily carried out on feature spaces, dimensionality reduction of the 

space of molecular properties/activities for a set of compounds can also be useful. Such an 

approach has been used to identify activity cliffs (i.e., abrupt changes in properties with small 

changes in features) to reveal discontinuities in structure–activity relationships in therapeutic 

drugs.490 When points are distant in a feature space but similar in property, they also provide 

evidence that shallow, transparent models (e.g., MLR or KRR) would struggle to use these 

features to obtain a suitable prediction of properties. Thus, selection of optimal features by PCA 

has been carried out491 as a feature selection technique, including in an iterative fashion492,  for 

ML model training on data sets, as discussed further in Sec. 4.4. 

 PCA remains the most widely used approach and performs best when visualizing the first 

2–4 PCs that capture the most data variance (i.e., ideally the majority). Alternative 

dimensionality reduction techniques have recently been proposed, including t-distributed 

stochastic neighbor embedding (t-SNE)493 and uniform manifold approximation and projection 

(UMAP)494-495, and these techniques have seen increased use in materials and catalyst discovery. 

Both aim to generate the most informative dimensions for visualizing data differences. The t-

SNE algorithm approximately preserves pairwise distances between each data point in a set493, 

but it is stochastic in nature and thus cannot be used as a tool to visualize the effect of adding 
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new data. UMAP aims to preserve local structure in a manner similar to t-SNE with slightly 

relaxed requirements on the pairwise separation that nevertheless allows for data addition. Self-

organizing maps487 and other clustering algorithms have been used in chemical discovery, for 

example k-means clustering is often used in large chemical spaces to select diverse leads for 

property optimization (see Sec. 5.2). An additional use of dimensionality reduction techniques is 

in the visualization of the latent space of deep learning models or to identify when new data 

points (i.e., either in feature or property space) are distinct from prior training data (see Sec. 4.4).  

4.4. Deep Learning and Artificial Intelligence.   

 In recent years, more highly parameterized supervised and semi-supervised models have 

been employed in transition-metal chemistry property prediction and for molecular discovery. 

These include kernel methods (e.g., Gaussian processes and kernel ridge regression or KRR) as 

well as deep artificial neural networks (ANNs) with multiple hidden layers. In this section, we 

review some of the representations used for such models (Sec. 4.4.1) and discuss applications of 

supervised regression (Sec. 4.4.2) and classification (Sec. 4.4.3) models to transition-metal 

chemistry. In comparison to small-molecule organic chemistry, smaller data sets and more varied 

properties introduces distinct challenges for ML in transition-metal catalysis. 

4.4.1. Machine Learning Representations. 

 The representations introduced as QSPR descriptors in Sec. 4.2.3 (e.g., heuristic 

Hammett parameters of ligands) can also be used491, 496 in conjunction with deep learning 

models. Here, we briefly review additional recent representation developments that are more 

widely used in supervised deep learning models. For open-shell transition-metal chemistry, the 

limitations of force fields and semi-empirical theories were discussed in Sec. 2.2. As a result, 

force field or semi-empirical pre-optimization widely exploited in organic chemistry machine 



81 

 

learning to predict DFT-level energetics236 are typically avoided in transition-metal chemistry. 

As an example of geometry-free representations in transition metal chemistry, Janet et al. 

proposed54 an ad hoc set of 25 mixed continuous discrete metal-local (MCDL-25) descriptors for 

supervised learning (i.e., ANN) prediction of properties of octahedral complexes with mid-row 

transition metals. The MCDL-25 descriptors included one-hot encoded metal and coordinating 

atom identities, metal-local ligand atom electronegativity and bond order, all selected via 

LASSO feature selection on the data set. The most non-local measure included was the truncated 

Kier shape index497 that measured the rigidity and branching of the ligands via the number of 

two-bond paths formed by the atoms.  

 Graph-based representations such as Moreau-Broto autocorrelations498 were first 

introduced 40 years ago for use in organic chemistry cheminformatics. In the mid-2000s, Burello 

et al. proposed499 path-based descriptors tailored for bidentate phosphine ligands to be used in 

machine learning models (Figure 44). Examples of these tailored, ad hoc descriptors included the 

minimum path distance between phosphorus atoms, the number of rotatable bonds, and the mass 

of atoms within three bonds of the chelating phosphorus atoms (Figure 44). Systematic sets of 

graph-based descriptors were proposed by Janet et al.500 as extensions of Moreau-Broto 

autocorrelation (AC) functions52, 498, 500-501 to develop the revised autocorrelation (RAC) 

representation for transition-metal chemistry. Standard ACs have the form: 

   (1) 

where P is a heuristic, tabulated property and dij is the distance separating two atoms on the 

molecular graph. Five heuristic properties typically used in ACs are: i) nuclear charge, Z; ii) 

Pauling electronegativity, χ, motivated by its importance in MCDL-2554; iii) topology, T, which 

is the atom’s coordination number; iv) identity, I, that is 1 for any atom, as suggested in Ref. 501; 

		
Pd= Pi

j
∑ Pjδ dij ,d( )

i
∑
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and v) covalent atomic radius, S. Other heuristic properties that have been used include the 

atomic polarizability.384 These atomic properties can be correlated but recent analysis has 

indicated they can be useful to indicate distinct aspects of elements in the periodic table.502  

 
Figure 44. Representative topological descriptors computed on backbone and R groups of 
bidentate phosphorus ligands. (top) The red path indicates the minimum P1-P2 connectivity path, 
D1. The alternative longer P1-P2 path, D2, is shown in blue. (middle) The number of rotatable 
bonds is indicated in red. (bottom) The R group descriptor, SAMR<3, is shown in green and 
corresponds to the sum of mass of atoms that are within three bonds of the P atoms. Reproduced 
with permission from ref. 499. Copyright 2005 WILEY‐VCH Verlag GmbH & Co. 
 

 RACs are an extension of ACs to include both products and differences on the molecular 

graph. In order to capture the centrality of the metal and its coordination environment in 

determining properties of a transition-metal complex, the convention of RACs also introduced 

the selection of scope52, i.e., by choosing which atoms to sum over, such as equatorial versus 

axial ligands (Figure 45). RACs also include metal-centered (mc) or ligand-centered (lc) RACs 
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in which one of the atoms in the AC expression is always a metal center or ligand coordinating 

atom, respectively (Figure 45). Finally, a chief distinction of RACs is the inclusion of property 

differences rather than products, which are non-trivial only for a minimum d of 1 and apply only 

to lc or mc RACs: 

   (2) 

where scope is chosen to be all ligands or averaged (i.e., equatorial or axial). Extension of RACs 

to other materials has also motivated definition of new scopes, as described next. In total, there 

are six types of standard ACs and RACs (i.e., full averaged over all, axial, or equatorial; lc 

averaged over axial or equatorial; and mc averaged over all). For a given cutoff d and five 

heuristic properties, there are 42d+10 RACs. Observations on small organic molecule data sets 

(i.e., QM9503) has typically motivated500 the truncation of the expansion of standard ACs and 

RACs to a depth of three bond paths (i.e., d = 3, RACs). Unlike MCDL-25 or other metal-

nearsighted representations, information about the full molecule is still included in the 

expansions of ACs and RACs. However, specific properties of atoms more than three bonds 

apart are not included in most RAC descriptors. To this set of graph-based descriptors, a number 

of one-hot descriptors are added500, including ligand denticity and spin or oxidation state of the 

metal. Eliminating RACs that are invariant in the data set typically (e.g., for mononuclear 

octahedral transition metal complexes) produces a 155-dimensional feature set known as RAC-

155.500 

		
ax/eq/all

lc/mcP 'd =
i
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∑
j
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Figure 45. Schematic of RACs in the equatorial plane of an iron octahedral complex with two 
equatorial oxalate ligands shown in ball-and-stick representation. Regions of the molecule used 
to classify descriptors are designated as proximal (metal and first coordination shell, in red), 
middle (second coordination shell, in green) and distal (third shell and beyond, in blue). Light 
green circles and arrows depict terms in a 2-depth mc RAC, and the light blue circles and arrows 
depict terms in a 1-depth lc RAC. Reproduced with permission from ref. 500. Copyright 2017 
American Chemical Society. 
 

 A number of three-dimensional representations have been widely used in organic 

chemistry and occasionally applied to open-shell transition-metal chemistry, and we briefly 

review some of them here. One popular whole-molecule representation is the Coulomb Matrix 

(CM) 504. The off-diagonal elements of the CM are the products of the ith and jth atoms’ nuclear 

charges, Z, scaled by their separation (i.e., ZiZj/rij), and the diagonal terms are heuristically fit to 

0.5Zi2.4. The CM representation has strong size-dependence, requiring padding with zeros up to 

number of atoms in the largest molecule studied, which can challenge chemical discovery efforts 

where the system size is not known a priori. This size-dependence is particularly problematic for 

transition metal complex properties (e.g., spin, catalytic) that depend much more on the metal-

local environment and less on the size. The CM also depends on the order of atoms in the 

molecule. Alternative 3D descriptors have been proposed and used particularly in organic 
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chemistry. These include the Bag of Bonds (BoB) descriptor, which groups interactions by the 

pairwise atom-types and distances involved and computes CM-like interactions among them505. 

Other functions have explicit distance decay around local atomic environments, making them 

amenable to development of force fields not discussed in this review, and avoid the strong size-

dependence of the CM. These include the smooth overlap of atomic position (SOAP)506 

representation, the SLATM507 representation, and the many-body tensor representation 

(MBTR)508. Since all of these representations require geometries before their calculation, their 

utility in transition metal chemistry is limited to closed shell transition metal complexes where 

low-cost (e.g., semi-empirical) models provide an adequate initial geometry.  

 Distance-dependent modifications to RACs have also been proposed to partially account 

for structure dependence.509 The Coulomb-decay RAC (CD-RAC) representation was proposed 

for prediction of properties of both equilibrium and distorted molecular structures509 as follows: 

   (3) 

where the d = 0 term adopts the functional form of the CM diagonal, d > 0 terms incorporate 

explicit internuclear dependence, and both types of terms are normalized by the number of 

atoms, n, to limit size dependence. The heuristic properties encoded by CD-RACs can be the 

same as standard RACs, but modified heuristics have also been proposed509 to increase 

transferability, including the number of valence electrons (e.g., five for N and six for O) and the 

number of bonds the neutral element should form based on the octet rule (e.g., four for C and 

three for N).  

 Tailored representations have been developed for periodic MOFs. Geometric descriptors 
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of pore volume and surface area510-512 or energetic descriptors from evaluation with probe 

molecules513 have been employed in gas separation models. An extension to SMILES or InChI 

has been proposed514 to generalize these string expressions for more universal naming and 

categorization of MOFs (Figure 46). Both string types preserve the domains of SBU and linker 

that are normally used in describing MOF chemistry (Figure 46). Molecular graph-based 

RACs498, 500-501 have been generalized for periodic MOFs384 with an expanded heuristic set that 

included atomic polarizabilities. MOFs are divided into the metal node SBUs, linkers, and 

functional groups (FGs). Metal-centered RACs are computed on the SBUs, linker-only RACs are 

computed both over the full linker and centered on coordinating atoms, and FG (i.e., non-C or H-

atoms in the linker) RACs are computed centered on the FG heavy atoms.384  

 
Figure 46. Algorithms are developed to break MOFs down into chemical components and an 
underlying topological net. This is then used to generate text-based MOFid and MOFkey strings. 
An example of identifying the Cu-BTC MOF using the SMILES-derived MOFid format and 
InChI-based MOFkey format is shown. Reproduced with permission from ref. 514. Copyright 
2019 American Chemical Society. 
 

 Representations based on atom-counting, compositional515 features or one-hot encoding 

of bond/atom types516-517 and functional groups only510 have also been developed for MOFs. 

While 3D geometric representations have been less widely employed in the context of MOFs, 

atomic-property-weighted radial distribution functions (AP-RDFs)518 have been proposed: 
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   (4) 

where B is a smoothing parameter, rij is the minimum distance of atoms within a certain radius R 

inside the unit cell, and f is a normalization factor. These descriptors are evaluated over all pairs 

in the entire MOF unit cell, and the properties P evaluated typically include tabulated 

electronegativity, polarizability, and van der Waals volume.  

 A challenge in representations for inorganic bonding is the extent to which models should 

be transferable across electronic states, including molecular charge or metal oxidation and spin 

states, as well as across groups or rows of the periodic table. While this remains an outstanding 

challenge for machine learning representation development as a whole, it is particularly relevant 

for transition-metal chemistry. One approach that researchers have adopted to sidestep this 

challenge is to use electronic-structure-based descriptors as inputs to ML models, typically 

improving transferability but at the computational cost of an electronic structure calculation as 

part of ML model evaluation. Many such descriptors are similar to those described for QSPRs 

(see Sec. 4.2.1). In addition, tailored representations applied to machine learning in transition-

metal chemistry have included properties of the metal-centered gradient519 and metal charge519-

521, orbital coefficients and matrix elements from approximate electronic structure522-523, 

HOMO–LUMO gaps491, 521, vibrational frequencies521, or components from energy 

decomposition analysis524.  

4.4.2. Supervised Learning Regression Models. 

 Although supervised ML has been receiving increasing interest in recent years, the 

earliest ML regression models applied to transition-metal chemistry were developed nearly 20 

years ago.491, 520, 525 Burello and Rothenberg used QM descriptors (e.g., frontier orbital energies 

and structural descriptors) to train models to predict experimental catalytic activity of Pd-based 

RDFP(R)= f PiPje
−B(rij−R)2

i , j

all	atom	pairs

∑
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cross-coupling catalysts, including with awareness of solvent effects. Available training sets 

were around 500 experimental results (e.g., TOF and TON) and could be predicted well by the 

models (Figure 47).491, 525 They showed that while a range of models were suitable (e.g., decision 

trees, linear regression, ANNs), considerably smaller residuals were obtained with the non-linear 

ANN models (Figure 47).491 Once trained, the ANN models could then be used to screen a large 

space of candidate catalysts at the cost of only DFT-level evaluation491 (see Sec. 5).  
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Figure 47. Predicted vs observed (A) TON and (B) TOF values for Heck reactions obtained by 
ANN regression, and (C) TON by multiple linear regression. The inset shows the residuals for 
each model. Training data is shown as solid circles and test data is shown as open circles. 
Differences are observed in the scattered residuals for A and B in comparison to the more 
structured residuals for C, suggesting that linear regression fails to capture higher-order effects 
for some reactions. Reproduced with permission from ref. 491. Copyright 2004 WILEY‐VCH 
Verlag GmbH & Co. 
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 Janet et al. trained ANNs to predict the spin-splitting energies of mid-row transition-

metal complexes.54 They used an ad hoc, metal-local descriptor set (MCDL-25, see Sec. 4.4.1) to 

increase transferability of the models across a range of transition-metal complex sizes.54 The 

performance of the models was balanced across the Cr–Ni M(II)/M(III) complexes studied.54 

The ANN models accurately predict trends in spin-splitting with ligand field strength (e.g., as in 

the spectrochemical series) for the full range of M(II)/M(III) (M = Cr–Ni) metals studied (Figure 

48).54 The models were trained on DFT data (ca. 1000 complexes using common ligands from 

inorganic chemistry) from a range of Hartree–Fock exchange fractions to account for the 

sensitivity of spin-splitting predictions to DFT functional choice. Models were both trained to 

predict the exchange sensitivity and to enumerate different lead compounds with changed 

exchange fraction (see Figure 18).34, 54 ANN test set performance (MAE: 2.5 kcal/mol, RMSE: 

3.0 kcal/mol) was generally within 1 credible interval, which they estimated from Monte Carlo 

dropout526, of the DFT ground-truth result (Figure 48). The models also outperformed whole-

molecule descriptors (e.g., the Coulomb matrix) by at least an order of magnitude for the same 

data set size.54 Tests on out-of-distribution (i.e., larger complexes from the CSD) complexes 

however revealed an increase in errors due to differences from training data.54 Given the high 

degree of feature engineering in MCDL-25, Janet et al. showed feature-space distance could be 

used to distinguish when ANN performance would be poor on out-of-distribution points.54 

 
Figure 48. (Left) High-spin/low-spin splitting (ΔEH−L, in kcal/mol) for representative ligands 
from left to right by increasing spectrochemical series ligand field strength obtained from the 
MCDL-25/ANN with credible intervals and from DFT training data. (Middle and right) MAEs 
for ΔEH−L (in kcal/mol) and redox or adiabatic ionization potential (in eV) MAEs for both 
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MCDL-25/ANN and RAC KRR models (full RAC-155, feature-selected, FS RAC, on a single 
property, and URAC selected on multiple properties). Adapted with permission from ref. 34. 
Copyright 2019 American Chemical Society. 
 

 Janet et al. trained ANN527 and KRR500 models to predict spin-splitting energies with the 

graph-based, RAC representation (see Sec. 4.4.1). The RAC-155/ANN527 or RAC-155/KRR500 

models improved upon the performance of MCDL-25 (Figure 48).500 The best-performing RAC-

155 models500 achieved sub-kcal/mol test MAE on comparably sized data sets to the MCDL-

25/ANN model (Figure 48). Feature selection preserved the good performance of the RACs 

while reducing the number of descriptors to a size comparable to MCDL-25 (Figure 48).500 PCA 

of this feature-selected subset indicated that by eliminating non-local features from the full RAC 

set, complexes with distinct sizes due to distal variation but otherwise comparable spin splitting 

were more proximal in PC space of the reduced representation (Figure 49).500 In comparison, the 

full RAC-155 or a poor-performing whole-molecule representation placed the same points very 

far from each other, making it more challenging for ANNs to learn the structure–property 

mapping (Figure 49).500 An approach to predict dynamic correlation energies (e.g., MP2 

corrections to HF) from KRR models trained on orbital-based descriptors was also demonstrated 

on transition-metal complexes from this dataset.523 
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Figure 49. Projection of a spin-splitting data set onto the first two principal components 
(arbitrary units) for the Coulomb matrix eigenspectrum (CM-ES, left), full revised AC set (RAC-
155, center), and the LASSO-selected (i.e., on spin splitting) RAC subset (LASSO-28, right). 
The PCA plots are colored by DFT-calculated spin-splitting energy (top, scale bar in kcal/mol at 
right) and size (bottom, scale bar in number of atoms at right). Ball and stick structures of 
representative complexes are inset in the bottom left, and the associated data points are 
highlighted with a blue circle and square in each plot. Reproduced with permission from ref. 500. 
Copyright 2017 American Chemical Society. 
 

 Other applications focused on open-shell systems have additionally used geometry-

dependent descriptors. ML models (i.e., ridge regression) have been trained to interpolate the 

potential energy surface for mononuclear Fe single-molecule magnet (SMM) candidates.528 

These models reduced the computational cost to identify optimal structural properties in 

designing single-ion magnetic anisotropy.528 Using experimental data sets, LASSO models have 

also been developed to design SMMs with a large isothermal magnetic entropy change.529 Based 

on a set of 60 data-mined experimentally synthesized SMMs, heuristic descriptors, such as size, 

number and type of metal ions, were used as inputs to the LASSO model for both feature 

selection and model prediction.529 Gaussian processes have also been used to predict the 
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exchange–spin coupling between copper centers in a small set (ca. 250) of dicopper complexes, 

with good performance achieved on a range of distance-dependent descriptors from heuristics 

(e.g., Cu-distance) to more sophisticated ML descriptors (e.g., SOAP, see Sec. 4.4.1).530 

 As a demonstration of the benefit of avoiding structure-based descriptors, graph-based 

descriptors have been used34, 54, 499-500 to rapidly predict geometric properties relevant to 

transition-metal catalysis and to overcome limitations in the cost and accuracy of physics-based 

models (see Sec. 2.5). The bite angle or flexibility (i.e., range of low-energy bite angles) of 

bidentate phosphine ligands were predicted by ML models trained on a tailored set of topological 

descriptors.499 Given a small training set of 65 ligands from the CSD and limited number (ca. 19 

after PCA selection) of input features, these early ANN demonstrations consisted of a small 

number of nodes (ca. 4–7) and only one hidden layer.499 Despite the simplicity, these models 

exhibited good performance on validation data (R2=0.84–0.9).499  

 Janet et al. trained ANNs to predict DFT-derived equilibrium bond lengths of transition-

metal complexes in a spin- and oxidation-state-dependent manner.54, 500 The data set consisted of 

1,350 hybrid-DFT-geometry-optimized mononuclear octahedral transition-metal complexes with 

mid-row, 3d transition metals (Cr–Ni) and common ligands used in inorganic chemistry. Using 

the sparse, ad hoc MCDL-2554 descriptor set to train a fully connected ANN with two hidden 

layers, bond lengths were predicted to 0.02–0.03 Å MAE on set-aside test molecules for both 

low-spin and high-spin states. ANNs trained with 2–3 hidden layers on a 155-dimensional set of 

RACs plus denticity and oxidation/spin state information500 improved these test errors to sub-

0.01 Å on average (Figure 2).34 These models were implemented in the molSimplify53, 55 code’s 

structure generation module531 including in a web frontend532 to enable rapid structure prediction 

by force fields for organic components and the ANNs for the metal–organic bond length (Figure 
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2). KRR models trained on feature-selected subsets achieved comparable errors to the ANNs.54, 

500 Consistent with the symmetry of transition-metal complexes in the training data, the RAC-

155/ANN models predict both an averaged equatorial bond length and two independent axial 

bond lengths. As a result, these ML models encoded the metal and ligands where Jahn–Teller 

distortion will be present by accurately predicting asymmetry in these bond lengths.34 In a related 

approach, neural network potentials (NNPs) have been developed for some solid-state materials 

that can exhibit redox or spin state switching, in which case, changes in bond length for this 

single NNP model have been ascribed to changes in oxidation or spin state.533 

ML regression models (e.g., ANNs and Gaussian process regression or GPRs) have been 

trained on moderately sized (ca. 2000 points) data sets (e.g., the MNSol database534) for 

predicting solvation free energies535-536 (i.e., in numerous solvents) and redox potentials537 

predominantly for organic molecules. ANNs trained to predict DFT-derived transition-metal 

complex redox potentials have demonstrated good performance (ca. 0.2–0.3 eV) even on small 

(ca. 200–300 points) data sets (Figure 48).34, 500 Models trained on RACs or on MCDL-25 have 

been used to predict the adiabatic ionization potential as well as the solvent- and thermo-

corrected redox potential of mid-row transition-metal complexes (Figure 48). As in the case of 

spin splitting, the best performance has been obtained with feature-selected subsets of RACs500, 

and performance for predicting redox potential and ionization potential were comparable (Figure 

48).  

 Using a similar dataset, Nandy et al. developed both KRR and ANN models on RACs for 

predicting the HOMO, LUMO, and HOMO–LUMO gap of mid-row transition-metal 

complexes.55 They observed comparable (ca. 0.2–0.3 eV) model errors from a RAC-155/ANN 

and KRR models trained on feature-selected subsets.55 For the KRR models, they used random-
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forest-ranked recursive feature addition (RF-RFA) to a KRR model both to improve model 

performance and to analyze important features.55 Liu et al. built models across a larger set of 

4500 transition-metal complexes with a greater diversity in ligand chemistry and size, achieving 

comparable errors on HOMO level and HOMO–LUMO gap prediction.538 They generalized538 

this ML approach to fractional occupation number (FON) DFT properties to accurately predict 

the degree of MR character with a RAC-155/ANN (Figure 50). Enumeration of a large space of 

187k candidate transition-metal complexes was used to identify ligand and metals that 

corresponded to strong MR character (Figure 50).538  

 
Figure 50. Dimensionality reduction with t-distributed stochastic neighbor embedding (t-SNE) 
of ANN-predicted descriptions of MR character (rND, unitless) and HOMO–LUMO gap (right, 
DEg in eV) highlights differences in the two quantities over a theoretical space of 187k 
complexes. The 1D histograms of properties are shown at top with low MR character and small-
gap complexes shaded in green. A convex hull of a family of complexes with functionalized 
pyridinyl ligands that have low MR character but small HOMO–LUMO gap is shown inset. 
Reprinted with permission from ref. 538. Copyright 2020 American Chemical Society. 
 

 Redox potential and frontier orbital properties are also frequently used to rationalize and 

design catalysts. Nandy et al. trained ML models on RACs to predict open-shell transition-metal 

catalyst reaction energies (i.e., oxo formation) for methane-to-methanol conversion.468 The 
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models achieved good accuracy (ca. 4 kcal/mol) for predicting the reaction energetics, enabling 

both enumerative study of 37k catalysts as well as screening for design principles. This 

combined ML model prediction and feature analysis approach with RACs has also been 

demonstrated on iridium catalysts for H2 splitting (Figure 51).539 In this case, RAC-trained 

models performed well for predicting barrier heights, and feature analysis revealed opportunities 

for design of catalysts with lowered barriers (Figure 51).539 

 
Figure 51. Approach to catalyst screening that uses RACs500 to accelerate both prediction of 
DFT-calculated reaction energetics and extraction of design principles for accelerated catalyst 
discovery.500 Reproduced with permission from ref. 539. Copyright 2020 Royal Society of 
Chemistry. 
 

 The HOMO level is often suggested448 as a heuristic in methane-to-methanol catalyst 

screening, but ML models have revealed a poor correlation between these two quantities when 

the range of metals and ligands considered is large.468 Analysis of RF-RFA-selected features 

with KRR models for oxo formation energy and HOMO level prediction revealed differences in 

feature importance for these two properties (Figure 52).468 The HOMO level depended much 

more on metal-distant RACs, highlighting its expected size dependence, whereas the oxo 

formation energy was metal-local (Figure 52).468 The selected features for oxo formation energy 

shared more commonalities with those essential for predicting spin splitting, which was 
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consistent with observations of strong spin state dependence in catalyst reactivity (Figure 52 and 

see Sec. 4.2). Despite some limitations for large-scale screening, HOMO prediction models have 

been proposed for use in catalyst design involving a single metal and oxidation state. Chang et 

al.496 trained ML models to predict the HOMO level for tungsten benzylidyne photoredox 

catalysts since this quantity has been related to experimental redox potentials (Figure 53). After 

comparing several ML model types (e.g., LASSO, Gaussian processes, and ANNs) trained on 

Hammett parameter heuristics, ANNs were observed to perform best at predicting DFT-level 

HOMO energetics (Figure 53).496  

 
Figure 52. Pie charts of the spin-splitting-selected features (26, left) compared to features 
selected for oxo formation (22, middle), and the HOMO level (33, right). Features are grouped 
by the most distant atoms present: metal in blue, first coordination sphere in red, second 
coordination sphere in green, third coordination sphere in orange, or global features in gray. 
Within each distance category, the property (i.e., χ, S, T, Z, or I) is also indicated, and oxidation 
state (ox) and spin are assigned as metal-local properties. Oxo formation features are more 
similar to those for spin splitting than the HOMO level. Adapted with permission from ref. 468. 
Copyright 2019 American Chemical Society. 
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Figure 53. (left) Experimental potentials (V) of 32 W complexes plotted against their 
corresponding DFT (B3LYP) dxy frontier orbital energies (eV). The method was chosen to 
reproduce experimentally observed potentials from reversible (black circles) and quasi-reversible 
(blue squares) experimental potentials. (right) Artificial neural network prediction of DFT orbital 
energies. Reproduced with permission from ref. 496. Copyright 2019 Royal Society of Chemistry. 
 
 

 Using structure-dependent descriptors, Meyer et al.540 devised an ML-model-accelerated 

approach for volcano-based (see Sec. 4.2) screening of cross-coupling catalysts. First, they 

trained KRR models on a range of conventional organic chemistry descriptors to predict a 

representative free energy in the cross-coupling reactions (Figure 54). On these complexes with 

late transition metals (e.g., Pd, Cu, and Au), they used semi-empirically optimized geometries to 

evaluate the structure-dependent features. Consistent with observations from Janet et al. on spin-

splitting energies54, 500, they observed poor performance of the Coulomb matrix representation in 

learning curves up to around 7,000 catalysts (Figure 54). The bag of bonds (BoB, see Sec. 4.4.1) 

and similar fragment-oriented structural descriptors achieved the highest accuracies up to 2.5 

kcal/mol MAE, with some metal dependence likely attributable to poorer structure generation for 

earlier metals (e.g., Ni, Figure 54).540 This approach has also been used for screening other Ni 
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catalysts for reductive cleavage in aryl ether compounds.541  

 
Figure 54. Learning curves, i.e., test error of catalytic descriptor values as a function of training 
set size (N), for oxidative addition of vinyl bromide for the Coulomb matrix (blue line), bag of 
bonds (BoB, green line), and SLATM potential (black line). Error bars correspond to standard 
deviation in cross-validation. The inset shows the corresponding learning curves for individual 
metals for BoB. Reproduced with permission from ref. 540. Copyright 2018 Royal Society of 
Chemistry. 
 

 In recent years, ML regression models have also been extensively applied to 

experimental data sets as a generalization of QSPRs (Sec. 4.2) often using similar QM 

descriptors. In these cases, the DFT calculations and ML models tend to outperform standard 

physics-based modeling but require considerable calculation time in comparison to models 

trained on heuristic descriptors. Denmark and coworkers used descriptors of sterics and the 

electrostatic potential (i.e., similar to those proposed by Lipkowitz and coworkers414) to train 

supervised ML models (i.e., ANNs and SVMs) to predict enantioselective organocatalysts for 

chiral phosphoric acid-catalyzed thiol addition to N-acylimines.542-543 To avoid extrapolation, the 

training subset was selected to uniformly cover the space spanned by the input features. The 

model’s performance was sensitive to the data balance in the necessarily small training set 

accessible to a synthetic chemist.543 The predicted free energy changes from the best-performing 
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ANN models exceeded what could typically be obtained from DFT-based screening alone and 

enabled prediction of new catalysts with up to 99% enantioselectivity.542-543 Others have shown 

that graph-based descriptors (e.g., Kier shape index used in MCDL-25) that have been 

demonstrated for open-shell transition-metal complex ML are as important as steric- or charge-

based descriptors (e.g., in prediction of experimental ethylene polymerization catalysts).544 

 Doyle and coworkers predicted the yield of catalysts545-546 for cases (e.g., Pd C–N cross-

coupling on substrates containing five-membered rings) where traditional approaches to 

performance improvement had failed. Using high-throughput experimentation, they trained 

random forest models on DFT-derived descriptors to predict reaction yields.545 Feature selection 

in conjunction with non-linear models (i.e., the random forest model) outperformed linear 

models, but ANNs provided limited benefit on these small data sets.545 It has been debated the 

extent to which the descriptors used allowed the models to generalize to unseen chemical 

entities.547-548 LASSO models have also been trained on a similar series of QM descriptors (e.g., 

HOMO–LUMO gaps, charges, and frequencies) to predict the reaction yields of tungsten 

epoxidation catalysts to good accuracy.521 The benefit of QM charge descriptors to improve 

predictive capabilities on small data sets echo earlier observations made for ML models (e.g., 

decision trees and SVMs) trained on a series of ligand descriptors (e.g., partial charges and shape 

or connectivity) to predict the molecular weight of polymers generated by polymerization 

catalysts.520  

 Iterative approaches to catalyst design that merge experimental, DFT-based, and data-

driven models have been pursued. For example, Maley et al. trained549 random forest models 

with heuristic properties of transition state geometries to predict DFT barrier heights in Cr-

catalyzed olefin oligomerization. They interpreted the feature importance in these models to 
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identify key ligand factors correlated strongly to barrier height and exploited them to identify 

ligands that would enable selective formation of octene over hexene (Figure 55). Through this 

process, they improved the catalyst selectivity to high levels549 (Figure 55). Others have used 

interaction energies from energy decomposition analysis to accurately predict experimental 

activation energies with ML models and have observed these features to be as important as 

conventional (e.g., steric, frontier orbital energy, or charge) descriptors.524 

 

 
Figure 55. (top) Structures for previous (P,N) ligand generations and new proposed ligands 
(generation 3) based on DFT and machine-learning-identified features. The 1-hexene:1-octene 
selectivity (predicted) is given below each structure. (bottom) Plot of 1-octene selectivity for 
previous (P,N) ligand generations and proposed ligands in generation 3 obtained from a 
combination of DFT and machine learning. Reproduced with permission from ref. 549. Copyright 
2020 Royal Society of Chemistry. 
 

 Data-driven models have also been developed to predict a combination of experimental 
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catalytic quantities that would be challenging to obtain from DFT-based energetic analysis. 

Using kinetic characteristics of the catalysts as inputs to train a multi-task ANN, Rizkin et al.550 

built a model to predict the average molecular weights, polydispersity, and reactor temperature 

for zirconocene-catalyzed olefin polymerization. Siebert et al.551 built random forest models to 

identify optimal reaction temperature, time, catalyst loading, and concentrations for CO2 

reduction with ruthenium catalysts. 

Considerable effort has been made towards supervised learning of the properties of solid-

state, inorganic materials owing to the large datasets of DFT calculations available. For example, 

early efforts used these data sets and ad hoc descriptors to predict thermodynamic stability552 and 

electronic properties553. More recently, graph-convolutional neural networks and graph-based 

representations have been used to predict properties with improved accuracy.554-555  

We next focus on MOF ML model predictions given the close connections of MOFs to 

molecular transition-metal complexes. A number of ML regression models of MOF properties 

have been developed using tailored representations described in Sec. 4.4.1. A range of models 

(e.g., SVR, ridge regression, and random forest) were trained on one-hot compositional features 

for very small experimental data sets (ca. 100 points) of MOF CO2 and H2 adsorption curves, but 

small data set sizes have limited performance.517 Instead, most predictive MOF models have 

focused on predicting grand canonical Monte Carlo (GCMC)-simulated gas uptake 

characteristics on hypothetically enumerated MOFs from compositional and structural 

information in order to accelerate exhaustive screening efforts.  

 Support vector regression (SVR) models were trained on a subset of 120k hypothetical 

MOFs featurized with geometric descriptors (i.e., AP-RDFs) to predict uptake of CO2 and 

methane from GCMC.518 The SVRs outperformed standard MLR models. While whole-
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structure, geometric descriptors were sufficient to yield predictive models for methane, the AP-

RDFs that encode chemical composition were needed to yield improved (R2 = 0.75) models for 

predicting CO2 uptake. Work with training random forest and KRR models on graph-based 

descriptors across a range of hypothetical MOF data sets has reaffirmed the observation that 

chemical composition information is key to prediction of CO2 uptake at low pressure but less 

essential with high pressure or for predicting methane uptake.384, 516 Analysis of feature 

importance in these predictions in particular highlighted the importance of the metal SBU 

chemistry384, emphasizing limited transferability of MOF ML models to new SBUs not in the 

training set (Figure 56).518 Indeed, earlier feature importance analysis applied to the role of 

topology and functionalization in MOFs (e.g., electron-donating and withdrawing groups) in a 

carefully constructed data set that limited variation of the metal SBU had instead indicated that 

geometry played a dominant role in determining relative gas uptake of CO2, H2, and N2.510  

 
Figure 56. t-SNE on subsets of MOF RACs and geometric descriptors including: (top, left) pore 
geometry in purple, (top, right) metal chemistry RACs in red, (bottom, left) linker RACs in blue, 
and (bottom, right) functional group RACs. All hypothetical and experimentally characterized 
(i.e., CoRE-2019) datasets are shown in gray, whereas only hypothetical data is colored, 
highlighting the lack of diversity in metal chemistry in hypothetical sets. The radar charts show 
the three diversity metrics: variety (V), balance (B) and disparity (D), for the three 
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databases. Reproduced with permission from ref. 384. Copyright 2020 Springer Nature. 
 

 Despite the good performance of geometric descriptors on methane uptake, Pardakthi et 

al.515 showed that compositional information further improved predictions, with very good 

performance for methane uptake prediction (R2 = 0.97) on the HMOF data set556 by random 

forest models trained on both structural and chemical (i.e., elemental composition, bond types) 

information (Figure 57).515 Random forest models outperformed alternatives such as SVRs or a 

single binary decision tree (Figure 57).515  

 
Figure 57. Parity plots for predicted (ML) vs GCMC-simulated mass-based methane uptake 
(cm3/g) using structural and chemical variables applied on (a) single decision tree (DT), (b) 
Poisson, (c) support vector machine (SVM), and (d) random forests (RF) models for hypothetical 
MOFs (HMOFs). The parity line indicating perfect correspondence between ML predictions and 
GCMC simulation results is shown in red in each plot. The color scale indicates the data density 
in the plots (i.e., number of counts). Reproduced with permission from ref. 515. Copyright 2017 
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American Chemical Society. 
 

 While most described models for MOF property prediction have favored random forests 

or ANNs and use heuristic compositional and structural descriptors, alternatives have also been 

pursued. In a hybrid approach, Bucior et al.514 developed a descriptor-based screening with a 

probe H2 molecule, in close analogy to the steric map approaches used for transition-metal 

complex QSPR. These models involved evaluation of H2 adsorption energies on a grid in the 

MOF materials and used these energies as inputs to a LASSO regression model.514 The 

evaluation of interaction energies could be carried out on a coarse 1-Å grid but still required 

more time to compute than heuristic descriptors.  

 Models are typically judged based on prediction errors on a set-aside test set, and an 

outstanding challenge is in quantifying uncertainty of a model for generalization to new 

compounds in chemical discovery (see Sec. 5). For highly engineered feature sets, distances of 

new compounds to the training data in feature space has been used in ML property prediction.54, 

557 The popularity, flexibility, and performance of ANNs with numerous hidden layers that 

effectively carry out feature engineering motivate alternative approaches to uncertainty 

quantification (UQ). Ensembles of models trained on distinct partitions are sometimes used527, 

558-560, and the Monte Carlo dropout526 approach where uncertainty is estimated from different 

ANN architectures (i.e., with zeroed out nodes) has also been applied in transition-metal 

complex ML models.54  

 Janet et al. showed527 the distance in the latent space of an ANN to be a superior, low-

cost strategy to detecting high-error points, especially for discovery applications where standard 

methods (e.g., ensembles) would be overconfident. Calibration of this distance with maximum 

likelihood estimation enables conversion of the distance to a confidence interval on the property 
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prediction. Optimization of the properties of organic molecules in continuous (i.e., latent space) 

representations and inversion back to discrete candidates has also been demonstrated as useful 

tool for molecular discovery.561 More recently, the distance in latent space has been shown to be 

useful for experimental catalyst optimization562 and demonstrated for accelerated discovery with 

active learning563-564 (see Sec. 5.2).  

4.4.3. Classification and Semi-Supervised Learning Models. 

 Although the majority of machine learning efforts in transition-metal chemistry have 

been focused on regression for property prediction, there are a number of cases where alternative 

models have been developed for classification. We briefly summarize these approaches, 

including those focused on binary classification as well as emerging techniques in semi-

supervised learning for both regression and classification of materials in which only some of the 

data labels are known beforehand. Classifiers and semi-supervised learning models have been 

developed for artificial-intelligence-informed workflow decisions519, 565, as presented in more 

detail in Sec. 5.3.  

 In binary classification tasks, the model output is a score ranging from 0 (false) to 1 

(true). The models most widely employed are support vector machines (SVMs) and ANN 

classifiers. Typically, a threshold of 0.5 on the output score is used to assign each data point to a 

class. The overall performance of the model is captured by the receiver operating characteristic 

(ROC) curve that indicates the rate of false positives as the threshold is adjusted to increase the 

rate of true positives. When the area under the curve (AUC) of the ROC approaches 1, the model 

is robust in a manner that is less sensitive to the threshold chosen to assign the classes. In certain 

cases, classification model scores can be interpreted as probabilities and therefore can be used 

for uncertainty quantification. Duan et al. observed519 ANNs to generalize better than SVMs in 
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some classification tasks, but application of ANN classifiers to diverse molecules suggested raw 

probability scores were overconfident. This observation led them to introduce519 an alternative 

uncertainty quantification metric they termed the latent space entropy (LSE): 

   (5) 

where the LSE measures the proximity of the training data in each class, j, and ranges from 0 for 

perfect confidence to ln(2) = 0.693 for no confidence. The confidence is low when the point is 

close to the model’s decision boundary in latent space or when it is distant from all points even 

those within the same class.  

 An early example of classification in transition-metal chemistry is the development of 

models that could predict transition-metal binding sites in metalloenzymes from the protein’s 

structure without the metal present (i.e., the apoenzyme).566 This approach was motivated by the 

much higher availability of structures of a protein without the metal resolved in the apoenzyme 

in comparison to those with the metal bound. Decision trees and SVM classifiers were trained on 

a series of geometric and sequence-based descriptors for 125 protein chains with 367 known 

metal binding sites, and the models achieved a low rate of false positives (i.e., 95% 

selectivity).566  

 The phenomenon of spin-crossover poses a straightforward question for classification 

models, and SCO complexes in the CSD represent a rich source of data for ML models because 

crystal structures solved at multiple temperatures give access to strongly spin-state-dependent 

bond lengths.567 Comparison of approximate DFT bond lengths to experimental bond lengths 

usually yields good agreement131, 150, 162 (see Sec. 2). Taylor et al. leveraged ML-predicted DFT 

bond lengths to assess and classify experimental spin states in the CSD.568 This model improved 

upon purely energetic predictions of ground state spins from approximate DFT functionals and 

si =− !pi
( j )

j

J
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correctly classified (i.e., high-spin vs low-spin) 96% of experimental structures based on the 

similarity of the CSD metal–ligand bond length to the ML-predicted DFT value.568 Cundari et al. 

employed bond lengths from around 100 CSD complexes to build small neural network 

classifiers, but over the small data set size, classification models based on Bayesian inference 

performed better to determine relationships between M–N bond lengths and M–N–C angles in 

transition-metal imidos.569 

 Classifiers have also been developed to separate good and bad materials characteristics 

for CO2 uptake by MOFs.570 The classification task consisted of distinguishing MOFs capable of 

greater than 1 mmol/g CO2 uptake at low pressure (i.e., 0.15 bar CO2). The SVM models for this 

classification task were trained on 10% of 324,000 hypothetical MOFs generated for the study 

and featurized with AP-RDFs518. This approach could be used to accelerate pre-screening of 

MOFs for improved gas uptake characteristics in hypothetical databases (see Sec. 5).570 

 Semi-supervised learning techniques have yet to be widely employed in materials or 

transition-metal chemistry. The term “semi-supervised” refers broadly to methods where a 

mixture of initially labeled and unlabeled data is employed, and the remainder of labels get 

assigned during model training.571 In one example, researchers have combined clustering with 

supervised learning in a two-step semi-supervised approach to image classification for labeling 

X-ray diffraction images relevant to high-throughput experimentation in materials science572. In 

analysis of the materials literature with natural language processing, where explicit labeling of 

extracted results can be challenging, a two-step semi-supervised approach was also recently 

demonstrated for extraction of magnetic phase transition temperatures573 and for materials 

synthesis procedures (e.g., with a random forest classifier).574 Still more applications of semi-

supervised learning are anticipated as a way to overcome limitations in the availability high-
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quality, unambiguous data in transition-metal chemistry, some of which are discussed in detail in 

Sec. 5.3. 

 Within semi-supervised learning models, such as for training of ANN classifiers with 

partially labeled data565, a related concern is the effect of the amount of labeled data on model 

prediction. For chemical problems, models have been shown to be fairly insensitive to this 

labeling threshold565, and the high cost of data generation may guide more when lower 

thresholds are employed in labeling. For some supervised and semi-supervised learning models 

where the classification task is based on an arbitrary cutoff565, 570, the ROC may also not be the 

optimal method for assessing model performance. Instead, some have qualified how well the 

model separates the two classes565 using Bhattacharyya distance to measure the differences in the 

distributions of the two classes.  

5. Transition-Metal Chemical Space Exploration. 

 Thus far, we have described iterative, mechanistic search (Sec. 4.2) where a transition-

metal complex that addresses most design objectives may be known but requires some 

improvements. Conversely, when good design principles are not known, alternative approaches 

have been used to evaluate a larger space of feasible compounds as candidate materials or 

catalysts. If the scoring and evaluation of materials is efficient (e.g., with low-cost computation 

or surrogate models), expansive, combinatorial evaluation of all materials on a large scale (ca. 

1000s to millions of compounds) is often carried out (Sec. 5.1). When seeking to identify 

materials that satisfy design objectives without carrying out unproductive experiment or 

computation, single- and multi-objective optimization with evolutionary algorithms (Sec. 5.2) 

has been widely employed to guide experiment, computation, or ML-accelerated discovery.  

5.1. Combinatorial Enumeration. 
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 In contrast with the functionalization and small-scale ligand permutation studies 

discussed in Sec. 4.2, we refer here to combinatorial enumeration that generates a search space of 

at least several thousand transition-metal complexes or materials. The reticular nature of metal 

organic frameworks (MOFs) combined with the relatively low cost of evaluating their properties 

with classical force fields (i.e., for gas separations characteristics) has led to a large number of 

enumerative studies on MOFs over the past two decades510, 556, 575-581, as reviewed in detail in 

Ref. 578. When previously synthesized secondary building units (i.e., metal nodes) are combined 

with synthetically accessible linkers and then functionalized, they can easily yield large sets (ca. 

100k or more) of hypothetical MOF materials.556 Early efforts in this area were limited to 

straightforward-to-enumerate combinations that led to primitive cubic unit cells556, 575, whereas 

later studies expanded to generalize to non-cubic unit cells.577  

 Given the possible ways to combine linkers, functional groups, and metal SBUs, more 

focused approaches have also been used. Functional group variation has been used to create a 

combinatorially large (ca. 10k or more) space for screening materials with improved 

characteristics (e.g., for CO2 capture) even when the metal SBU is held fixed.580 For gas 

separation, it is also expected that the pore structure and overall topology should play key roles, 

motivating a focus on the underlying MOF connectivity577, 579, 581. Gómez-Gualdrón et al. 

focused on the relationship between MOF topology and gas adsorption characteristics, 

identifying overall structures most suited for hydrogen storage in the ToBACCo MOF data set579, 

582. Similar strategies were previously applied to generating hypothetical porous polymer 

network materials583 and, even earlier, zeolites584. By sampling distinct crystal structures and 

ring size distributions in porous zeolite materials584, Deem and coworkers built a database of 2.7 

million hypothetical zeolites, a dramatically larger number than have ever been successfully 
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synthesized.585  

 These enumerated sets (e.g., of MOFs) are often used for large-scale screening (i.e., with 

grand canonical Monte Carlo) of gas uptake properties. For example, Boyd et al.576 screened a 

space of 325k hypothetical MOFs for CO2 working capacity and selectivity of binding relative to 

water. They identified design characteristics of the top 8k materials, finally identifying the MOFs 

that looked synthetically accessible and were subsequently demonstrated to experimentally have 

the computationally-predicted performance.576 Given the large number of materials that can be 

generated in this way, it is possible to identify numerous design leads and use intuition to address 

questions regarding stability or synthetic accessibility. More recently, machine learning models 

have been increasingly applied to the development of interpretable design rules from these sets 

(see Sec. 5.2.3).  

 One concern for the use of enumerative sets is the extent to which design leads or design 

principles are sensitive to the data set employed for their extraction. Moosavi and coworkers 

observed384 that the CoRE-MOF database of experimentally synthesized materials exhibits key 

distinctions from most of these hypothetical MOF sets (Figure 56). Using t-SNE maps of MOF 

materials in graph-based representations (i.e., RACs) extended for metal-organic frameworks in 

combination with geometric descriptors, they analyzed the similarity of experimental and 

hypothetical MOFs over specific domains (i.e., the SBU vs linker or functional group). Some 

observed distinctions could be expected, such as that pores were larger in some hypothetical data 

sets (i.e., ToBaCCo582) that had emphasized distinct topologies not synthetically accessible. 

While greater diversity of hypothetical over synthesized materials was expected, the hypothetical 

MOFs also interestingly lacked some diversity observed in experimental MOFs (Figure 56). In 

particular, the SBUs sampled in hypothetical sets are often much narrower than those that have 
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been experimentally synthesized. While demonstrated on MOFs, these observations highlight the 

general challenges for combinatorial enumeration of inorganic materials in avoiding bias when 

proposing new materials while maintaining some realism.  

 In comparison to MOFs or small organic molecules, fewer efforts have been made to 

elucidate rules for enumeration of feasible transition-metal complexes. In organic chemistry, the 

generated database (GDB)586 series has enumerated molecules up to discrete numbers of heavy 

(i.e., non-H) atom sizes under the constraints of obeying the octet rule and being in closed-shell 

singlet states with no net charge. Subsets of the GDB with seven to nine heavy atoms have been 

widely employed to generate data sets503, 587 for ML of properties of organic molecules and for 

high-throughput screening. Enumerative strategies for transition-metal complexes are less well 

developed. In one example, a small-scale study of hypothetical modified cyclopentadienyl 

ligands (e.g., all-nitrogen or all-phosphorus rings) was used to understand the mechanism of 

mononuclear single-molecule magnet behavior.588 Because the smallest non-trivial octahedral 

complex has at least seven heavy atoms due to the ligands and has more electrons than a typical 

organic molecule due to the metal center, exhaustive generation of very small transition-metal 

complexes has motivated a distinct strategy.589  

 Gugler et al. constrained the search of individual ligands to a small number (ca. one or 

two) of heavy atoms per metal-coordinating site (e.g., four heavy atoms in a bidentate ligand) 

and relaxed typically applied constraints (e.g., for the GDB) in generating ligands with one to 

four heavy (i.e., C, N, O, P, or S) atoms.589 They assigned more favorable scores to neutral and 

octet-rule-obeying molecules but still allowed for exceptions, producing an octahedral 

homoleptic ligand database, OHLDB589, with DFT properties of 1250 complexes formed with 

mid-row transition metals (i.e., Cr–Co). The enumeration of lower-symmetry heteroleptic 
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complexes directly with these ligands or by exploiting ligand additivity60 leads to hundreds of 

thousands of complexes. These data sets have been used to improve ML model performance on 

larger complexes589. 

 Exhaustive enumeration of transition-metal complexes has also been carried out in a 

stepwise fashion for larger bidentate ligands. In 2006, Rothenberg and coworkers hypothesized 

that generating bidentate ligands from a series of rings, bridging, and functional groups could 

rapidly lead to vast (ca. 1.7 billion) transition-metal complex spaces infeasible for full-scale 

exploration (Figure 58).590 Instead, they focused on the properties of 600 representative 

complexes from this larger space for which they carried out force field optimization and 

ultimately further characterization of figures of merit (i.e., experimental turnover frequency, 

Figure 43). More recently, Janet et al.563 started from well-studied five- and six-membered ring 

motifs with common coordinating atoms (i.e., N or O), modified (i.e., with changes in 

conjugation or additional heteroatoms) the rings, and bridged them to generate nearly 800 unique 

core bidentate ligand types. Sequential functionalization and homoleptic complexation with mid-

row transition metals generated a space of 2.8 M candidate complexes for ML-accelerated multi-

objective optimization (see Sec. 5.2.3) validated with DFT calculations. 

 
Figure 58. Cartoon showing the construction of a bidentate ligand (top left) and an example 
resulting structure (top right) from building blocks comprised of ligating, backbone, and residue 
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groups shown at bottom. Reproduced with permission from ref. 590. Copyright 2006 WILEY‐
VCH Verlag GmbH & Co. 
 

5.2. Optimization Approaches. 

 When aiming to discover materials or catalysts with improved properties, exhaustive 

enumeration of large chemical spaces is impractical and unnecessary. If we have a single, well-

defined objective, evolutionary algorithms such as standard genetic algorithms (Sec. 5.2.1) can 

accelerate the identification of transition-metal complexes and materials that satisfy that 

objective. In practice, multiple objectives must typically be satisfied (Sec. 5.2.2). Machine 

learning models can accelerate single- or multi-objective optimization but introduce special 

challenges related to model uncertainty (Sec. 5.2.3). Here, we briefly highlight efforts in discrete 

optimization with evolutionary algorithms for transition-metal complex and materials design, 

especially with ML-accelerated discovery. Details beyond the scope of this review regarding 

design, including for efforts beyond transition-metal chemistry, are provided in Refs. 591-592. 

5.2.1. Genetic Algorithms. 

 Genetic algorithms (GAs) are widely employed in transition-metal complex and broader 

materials discovery efforts to accelerate identification of lead compounds that satisfy a design 

objective.591-592 GAs are applied to a pool of candidate materials (e.g., transition-metal 

complexes) with components that are represented by discrete genes. A fitness function that is a 

score approaching one when the material approaches the ideal property (e.g., catalyst activity) is 

used to determine which materials (i.e., combinations of genes) continue on to subsequent 

generations in a GA. Operations at each generation involve crossover of genes between parents 

and random mutations to avoid too rapid collapse to a local minimum. Although also used in 

other areas of molecular discovery, GAs are a natural fit for the modularity of transition-metal 
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complexes, in which the genes will often represent the metal, one or more ligand scaffolds, and 

functional groups attached to the ligand scaffold. This set of genes is evolved by scoring each 

complex with a fitness function and carrying out crossover and mutation on the top-scoring 

subset for a number of generations.  

 The value of GAs in accelerating screening of combinations of reaction conditions in 

experimental catalyst and materials screening as well as to explore large chemical spaces was 

recognized over 20 years ago.593-594 Within experimental homogeneous catalysis, advances in 

microfluidics and high-throughput screening (e.g., with a 96-well plate) has enabled rapid 

catalyst optimization. Early studies carried out sequential screens of catalysts (e.g., for 

copolymerization), with a fast primary stage followed by slower secondary and tertiary screens 

in a narrowed space of candidates.595 This high-throughput experimentation approach also 

enabled rapid GA evolution of catalyst chemistry and reaction conditions for methane oxidation 

(Figure 59).596 A GA was used to explore genes representing variations in the catalyst metal from 

8 choices, 11 co-catalyst types for oxygen activation, and 13 ligands.596 To accelerate scoring, 

colorimetric assays were developed, to avoid time-consuming but likely more conclusive 

methods (e.g., NMR) of characterization (Figure 59).596  

 

 
Figure 59. Schematic illustration of genetic algorithm implemented with microfluidics to search 
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for catalysts. Each vessel contained three genes to optimize the different parameters: catalyst 
(gene A), cocatalyst (gene B), and ligand (gene C). Each gene was composed of multiple 
chemical species, examples of which are shown in this schematic: BL stands for blank solution, 
PV for H5PMo10V2O40 POM-V2, Ln (n = 1, 2, 3, etc.) for one ligand type, and elemental 
symbols represent the metal present. After the first generation was produced, the catalytic 
activity of each individual was tested, and the results were analyzed to determine fitness and 
generate a new population of 48 catalysts/co-catalysts/ligands through a combination of 
crossover or mutation. The genetic algorithm optimization was repeated over eight generations. 
Reproduced with permission from ref. 596. Copyright 2010 American Chemical Society. 
 

 In molecular discovery, when the objective function is explicitly calculated from 

electronic structure methods, it is also necessary to avoid high computational cost in evaluating 

each generation. For instance, in heterogeneous catalysis, GAs have been applied to search for 

semiconductor alloys597 or core-shell nanoparticle catalysts598 with favorable band gaps or 

catalytic activity. Here, approximate (i.e., d-band theory) methods were used in scoring, rather 

than more computationally demanding approaches. Within transition-metal chemistry, Chu et al. 

built an objective function for Grubbs-type Ru metathesis catalysts based on semi-empirical PM6 

descriptors in conjunction with a QSPR model capable of making DFT-quality activity 

predictions.599 Although representing only a proof of principle due to the small scope of ligands 

considered (i.e., two types of functionalized phosphines or NHCs), they showed that crossover, 

mutation, and selection of fittest compounds led to the rapid selection of experimentally favored 

NHC ligands over alternatives, such as phosphines (Figure 60).  
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Figure 60. A genetic algorithm for optimization of ligand chemistry in metathesis. The objective 
function is obtained from partial least-squares regression of semi-empirical geometries and DFT 
molecular descriptors. Examples of how ligands are selected with the evolutionary (i.e., genetic) 
algorithm grouped by whether it selects: an imidazol-2-ylidene scaffold with two substitution 
points and two hydrogen atoms (termed I) or two chlorine atoms (I–Cl2), as well as a triphenyl 
phosphine skeleton with substitution points at the phenyl para positions (PAr3) and a trialkyl 
phosphine skeleton with three substitution points (P(CH2R)3). Substitution points are indicated 
by Rn (enumeration by n) and dashed lines. Reproduced with permission from ref. 599. Copyright 
2012 American Chemical Society. 
 

 Foscato et al. demonstrated a more general approach to de novo complex discovery by 

developing ring-closure operations embedded within a genetic algorithm for the design of spin-

crossover complexes.600 Starting from an initial population of 50 random complexes that were 

evolved for 100 generations, the fitness of candidate Fe(II)/N octahedral complexes was 

evaluated at each step with an objective function based on the adiabatic spin-splitting enthalpy 

(Figure 61).600 Both the use of an enthalpy and its evaluation with LFMM16-17 kept the 

computational cost of objective evaluation suitably low. Notably, because both graph-based and 

3D information was used to introduce operations that altered the denticity of the ligands, GA 

optimization identified the preference for tridentate ligands (e.g., terpy) over a starting 

population that consisted predominantly of combinations of tetradentate and bidentate ligands 

(Figure 61). The specific computational prediction of spin-crossover behavior for 

[Fe(II)(tame2)]2+ from this work was later experimentally verified, demonstrating the potential 

for computational design to reveal functional transition-metal complexes.601  
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Figure 61. (top) Library of 3D fragments (scaffolds) used to initiate the construction of Fe(II) 
complexes in experiments of types A and B. The addition of fragments can lead to further ring 
closures. A fitness function of spin-splitting energies is evaluated using the LFMM force field in 
experiments A (bottom, left) and B (bottom, right). The final surviving denticities of ligands are 
indicated in the legends at bottom. Adapted with permission from ref. 600. Copyright 2015 
American Chemical Society. 
 

 In a similar fashion, genetic algorithms have been used to accelerate exploration of 

candidate MOF materials (e.g., to maximize methane storage capacity).602 Bao et al. focused on 

using candidate linkers from commercially available molecules in combination with known 

SBUs and MOF topologies.602 They devised a series of operations to replace and mutate linker 

chemistry, filtered the candidates based on geometric observations from classical molecular 

dynamics, and then scored and retained structures with high methane storage capacity (Figure 

62).602 This procedure simultaneously increased the feasibility of the materials studied for 

simulation (i.e., by filtering) and reduced the total number of materials that needed to be 

screened by GCMC simulation.602 Similarly, Collins et al. used a GA to identify how functional 
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group variation could alter CO2 uptake characteristics, searching a space of nearly 96k viable 

structures and observing significant improvement in the best-performing materials after only a 

few generations of the GA.603 

 
Figure 62. Approach for discovering new MOF materials with high deliverable capacity. 
Illustration of an algorithm for initializing a population with add or multiple add operations from 
a precursor library. One randomly chosen linker from the population undergoes one of seven 
evolution operations. The produced linker is evaluated by two filters: the number of torsions is < 
8, and number of sites = 2. If the linker passes these filters, molecular dynamics is used on the 
linker to produce a set of conformations. These linker conformations are evaluated by the two 
additional filters of mean pairwise angle ≥ 155° and a standard deviation of pairwise distance < 
0.5 Å. If the linker passes all filters, it is used to build a MOF of the chosen network. Finally, if 
the constructed MOF has a greater deliverable capacity than the lowest one in the current 
population, the linker is inserted into the population in rank order. Reproduced with permission 
from ref. 602. Copyright 2015 American Chemical Society. 
 

 The large number of purely hypothetical MOFs that have been generated556 also creates a 

large combinatorial space to search for new materials and guide new simulations. A GA was 

used to accelerate discovery of hypothetical MOFs with high selectivity (i.e., over H2) for CO2 

uptake (Figure 63).604 Because some properties, such as surface area or working capacity were 
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known for all of the MOFs, the GA strategy could be validated based on its ability to find the 

best performers for those properties (Figure 63).604 Once validated, the GA was then used to 

reduce the computational effort required for the selectivity studies to only 1% of what a brute 

force effort would have required.604 Given their suitability for accelerating search of large 

combinatorial spaces, GAs have been used to optimize candidate arrays of MOFs as sensing 

materials by varying the individual MOF genes (i.e., from the CoRE-MOF database) and 

favoring MOF arrays that maximize the differences in gas uptake properties among the MOFs.605 

 
Figure 63. (A) An example set of genes and the corresponding hypothetical MOF (HMOF) 
structure. Colors illustrate the correspondence between the genes and the MOF structural 
features. (B) Workflow of GA. (C to E) Histograms for all HMOFs (gray) and for the initial 
population used in the GA runs (green). (C) Methane working capacity. (D) Gravimetric surface 
area. (E) Volumetric surface area. (F to H) Histograms collected from 100 GA runs show the 
fitness of the top-performing MOF at the end of each run: (F) Methane working capacity. (G) 
Gravimetric surface area. (H) Volumetric surface area. The vertical lines in (F) to (H) correspond 
to the fitness of the top performer from the initial population (black) and from the whole 
database (red). Reproduced with permission from ref. 604. Copyright 2016 AAAS. 
 

5.2.2. Multi-Objective Optimization. 

 Most design challenges in materials or catalysis discovery require satisfying multiple 
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objectives. For catalysis, these concerns could be activity (i.e., TOF) and stability, selectivity, 

solubility, or cost. As an example from heterogeneous catalysis, satisfying the objectives of cost 

and activity of methanation catalysts revealed an inherent trade-off in optimal properties (Figure 

64).606 The hypersurface known as the Pareto front, when assessed for a two-objective 

optimization, consists of the points that represent the best first property (e.g., activity) for a given 

second property (e.g., cost), and depending on the primary concern606, the most desirable 

materials may more strongly emphasize one of these two objectives. Experiment or computation 

should thus aim to enrich or move beyond known Pareto front compounds with multi-objective 

optimization.  

 

 
Figure 64. Pareto plot of methanation catalysts using the activity measure and the cost for 117 
elemental metals and bimetallic alloys of the form AxB1−x (x=0, 0.25, 0.50, 1). Each blue point 
corresponds to a particular alloy. The elemental metals are shown (black), and the Pareto optimal 
set is also indicated (red). The cost of the bimetallic alloys has been approximated by the 
commodity price of the constituent elemental metals. Reproduced with permission from ref. 606. 
Copyright 2006 Elsevier. 
 

 Although GAs with composite fitness functions (i.e., by multiplying the satisfaction of 

multiple individual objectives) have been successfully applied to transition-metal complex 
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discovery468, multi-objective optimization typically benefits from algorithms less prone to 

finding local minima due to the complexity of the structure–property landscape along a higher-

dimensional Pareto front. Multi-objective optimization has been carried out to obtain stable, low 

band gap oxide polymorphs of TiO2. An evolutionary algorithm (i.e., multi-objective differential 

evolution or MODE) was employed to rank each generation of points based on whether they sat 

on the current Pareto front of these two properties evaluated with DFT.607 Multi-objective 

optimization has also been applied608 to the simultaneous optimization of two types of surface 

area measures for gas uptake and identification of the relevant MOF topologies that maximize 

these two quantities.  

 Multi-objective optimization methods have also been used in conjunction with high-

throughput experimentation to simultaneously optimize conversion and selectivity of 

heterogeneous catalysts for propane dehydrogenation.609 Llamas-Galilea et al.609 employed a 

multi-objective algorithm (i.e., the strength Pareto evolutionary algorithm-2, SPEA-2) that 

assigns the highest fitness scores to points along the Pareto front and maximizes diversity in the 

Pareto set to evolve catalyst genes consisting of elements and promoters. They observed that in 

comparison to a single-objective optimization of yield (i.e., a composite of selectivity and 

conversion), the multi-objective approach did a better job of improving both variables along the 

Pareto front over six generations (Figure 65).609 Recently, Bayesian optimization algorithms 

have been pursued in chemical problems610 especially to account for multi-objective 

optimization when the evaluation of fitness is relatively costly.611  
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Figure 65. Visualization of the evolution of the populations of catalysts for selective 
dehydrogenation of propane in the objective space using a single-objective approach (left) and a 
multi-objective strength-Pareto evolutionary algorithm (SPEA-2, right). Reproduced with 
permission from ref. 609. Copyright 2009 American Chemical Society. 
 

5.2.3. ML-Accelerated Discovery.  

 Applying evolutionary algorithms to the optimization of properties in large materials 

spaces requires efficient evaluation of fitness. Beyond low-cost approximate computation or 

cheap proxies for experimental observables, a key way to achieve faster fitness evaluation is to 

employ a surrogate (i.e., machine learning regression) model. When employing an ML model, 

optimization algorithms should be adapted to address the approximate nature of the surrogate 

either by restricting its use to its domain of applicability or by identifying high uncertainty points 

with promise in active learning. Both approaches have advantages in accelerated transition-metal 

complex or materials discovery, as highlighted below. 

 Artificial neural networks (ANNs) were first used for bulk heterogeneous catalyst 

optimization nearly twenty years ago.612-617 These early efforts in heterogeneous catalysis were 

focused on encoding compositional descriptors, such as element identity and stoichiometric 

contributions as well as adjustable scalars such as synthesis temperature. Corma et al.613 trained 

an ANN to identify optimal reaction conditions at each generation in combination with high-

throughput experimentation to optimize Ti zeolite catalysts for olefin epoxidation (Figure 66). 
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The ANN predictions were used to guide GA fitness evaluation, and the optimal results predicted 

by the ANN-GA loop were then validated experimentally (Figure 66).613 The diversity in the 

initial and subsequent pools was used to aid iterative ANN retraining to predict the rank of the 

catalysts for epoxidation starting from a modest initial training set of 38 catalysts.613 GAs were 

frequently used in combination with ANNs because the ANN optimum is not invertible back to 

realistic catalyst conditions. Other applications in heterogeneous catalyst screening included the 

design of catalyst compositions with a multitask network that predicted both selectivity and 

conversion for methane coupling614 or propane dehydrogenation as well as catalyst composition 

and catalyst treatment temperature for methane oxidation616 or synthesis615.  

 
Figure 66. Scheme of a hybrid optimization algorithm comprising a genetic algorithm assisted 
by an artificial neural network for optimization of olefin epoxidation catalysts. High-throughput 
characterization and synthesis is used to optimize pH, surfactant content, and Ti content in Ti 
silicate materials. Reproduced with permission from ref. 613. Copyright 2005 Elsevier. 
 

 ML-accelerated discovery has similarly been applied in multi-objective optimization of 
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materials and catalysts. In an early example, Scott et al.618 used the multi-objective NSGA-II619 

algorithm in conjunction with an ANN that predicted materials properties based on a binary 

compositional elemental representation. They used the multi-objective optimization approach to 

simultaneously optimize candidate quaternary electroceramic materials for i) their permittivity, 

ii) whether the selected materials composition had a neutral, balanced charge, and iii) the 

distance to training data of the ANN.618 Experimentally, NSGA-II was used in combination with 

a trained ANN that detected relationships between SCO colors as inputs and the temperature to 

identify the minimal SCO array for sensing applications.620 

In comparison to efforts in heterogeneous catalysis, computational or experimental 

screening of molecular transition-metal complexes for homogeneous catalysis and materials 

discovery with deeper ML (i.e., beyond MLR QSPRs) has been a more recent development. 

Janet et al.557 employed ANNs trained on the sparse MCDL-25 ad hoc feature set54 to predict 

adiabatic DFT-quality spin-splitting energies in conjunction with a GA to explore a space of 

around 5k feasible spin-crossover complexes, only about 2% of which had been seen during 

ANN model training.54 To ensure that the ANN prediction errors did not rise rapidly on new 

compounds, they introduced557 a composite fitness function into the single objective GA that 

penalized compounds distant in feature space from training data (Figure 67). Most (ca. 2/3) 

ANN-selected leads were validated with DFT evaluation, with a modest increase in error (ca. 2x) 

over test set errors.557 In comparison, using DFT as the objective function in the GA would have 

taken weeks instead of minutes the ANN required.557 This approach has also been demonstrated 

for exploring 10–40k transition-metal complex spaces, including through the targeted design of 

HOMO–LUMO gaps55 and discovery of C–H activation catalysts468 with stable metal-oxo 

moieties.  
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Figure 67. (a) t-SNE plot of 5600 SCO candidates colored by MCDL-25/ANN-predicted DEH-L 
(in kcal/mol as indicated in inset color bar) with increasingly high distance-to-train regions 
indicated in darker shades of gray. The convex hulls of two families of ligands are indicated by 
orange and bright green triangles, respectively, with inset zooms showing the discrete hits as 
filled green circles. (b) 1D histograms of the MCDL-25/ANN-predicted DEH-L (top) and distance 
to training data (bottom) using distance and diversity control in a GA with a stacked bar graph 
consisting of all sampled points (blue), non-sampled, non-hits (gray), and non-sampled hits (red). 
Reproduced with permission from ref. 557. Copyright 2018 American Chemical Society. 

 

 In addition to model exploitation, where a trained surrogate is used to accelerate solving 

an optimization problem, ML-accelerated discovery of new materials and transition-metal 

complexes motivates active learning algorithms that focus on promising compounds where ML 

models are uncertain, also known as model exploration. For example, Jennings et al. used both a 

semi-empirical approximation to DFT (i.e., effective medium theory) and an ML-accelerated GA 

to optimize nanoparticle alloy shape prediction and reduce the full electronic structure 

evaluations by around 50-fold with active learning.621 This active learning approach is 

particularly useful in multi-objective optimization of materials where prior training data may be 

limited and search spaces are large, leading to a number of recent applications in chemical and 
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materials discovery563, 622-628. Several of these efforts563, 623 have used the expected 

improvement629-630 criterion in efficient global optimization (EGO), wherein the likelihood of a 

new point residing beyond the Pareto front is balanced by the uncertainty of the model 

prediction. Because Gaussian processes (GPs) inherently provide a measure of uncertainty, they 

have been most widely employed in such active learning studies621, 623-624, 627 including recently 

in experimental catalyst design631 or in the selection of conditions (e.g., solvents)632 for catalysis. 

 Given the high cost of generating data within an active learning framework, many studies 

have only been applied to evaluating algorithms in toy problems with data sets where the 

ground-truth best material was already known. Such strategies have enabled comparison of how 

leveraging surrogate models compares against heuristics in active learning or other autonomous 

discovery strategies.633 As an exception in which high-cost DFT data was acquired at each 

generation, Janet et al.563 applied the 2D expected improvement criterion in EGO for the 

simultaneous optimization of multiple properties of redox couples in redox flow batteries. 

Starting from a space of 2.8 M bulky (ca. 100–200-atom) transition-metal complexes, they 

simultaneously optimized the DFT-evaluated solubility in polar, non-aqueous electrolytes (i.e., 

with implicit-solvent calculated logP) and the solvent-corrected adiabatic redox potential.563 

Rather than using a GP, they noted that a multi-task ANN exhibited better lookahead errors, i.e., 

the model’s performance on future generations of molecules it has not yet seen in training.563 

This suggested the ANN would generalize better in active learning.563 By using a calibrated 

uncertainty metric based on distance to training data in the model’s latent space527, they 

employed the 2D-EI to select promising and uncertain points likely to expand the Pareto front 

(Figure 68).563 In five generations, the Pareto front was expanded dramatically, with each 

generation of 2D-EI requiring nearly a week of parallelized DFT computation to obtain 20–50 
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new transition-metal complex property results (Figure 68). In comparison to random search, the 

algorithm accelerated discovery of new leads by 500-fold, which corresponded to obtaining the 

same result in weeks that would have taken fifty years by brute force search (Figure 68). These 

accelerations generally are expected to increase as more objectives are optimized simultaneously.  

 
Figure 68. (Left) Redox (i.e., DGox(sol) in eV) and logP values for complexes simulated during 5 
generations of the design algorithm, colored by generation and with unique symbols for each 
metal center (as indicated in inset legend). The range of values sampled in each generation is 
indicated by a translucent convex hull, and the final Pareto front is indicated by a red line. Three 
Pareto complexes along this front are labeled and shown at top. (Right) Distribution of DGox(sol) 
(top) and logP (bottom) values for each generation (colors and symbols as in left pane) alongside 
a random sample (gray symbols). Reproduced with permission from ref. 563. Copyright 2020 
American Chemical Society. 
 

 All methods discussed thus far have relied on introducing realism into the predictions by 

enumerating a hypothetical space of materials based on feasible building blocks. An alternative 

promising approach is using generative machine learning models to learn the distribution of 
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known materials (e.g., from a database of experimental structures) and predict new hypothetical 

materials representing this distribution. Such an approach has been developed for bulk inorganic 

materials634 and porous materials such as zeolites635 or metal–organic frameworks636 but not yet 

extended to transition-metal complexes.  

5.3. Automated and Autonomous High-Throughput Workflows 

In large part, the QSPR (Sec. 4.2) and ML models (Sec. 4.4) as well as advances in 

property optimization (Sec. 5.2) have depended heavily on new strategies to share and access 

large data sets. In comparison to open-shell transition-metal chemistry that is the focus of this 

review, high-throughput screening workflows and strategies are considerably more mature in 

crystalline, solid-state materials as well as in small-molecule organic chemistry. Although 

distinct challenges are apparent for bulk periodic materials in how they are characterized or 

screened, some parallels are evident in the need to screen large chemical spaces for both the solid 

state and transition-metal complexes. Representative reviews of how high-throughput screening, 

large databases, and machine learning have advanced solid-state materials design or in organic 

reaction discovery are provided in Refs. 390, 637-638 and Ref. 639, respectively. 

5.3.1. Computational High-Throughput Screening and Exploration.  

 A number of toolkits are available for the automation of high-throughput DFT 

calculations for discovery and ML model generation. Some general-purpose tools are available 

that are most frequently used for the screening of solid-state materials. For example, the atomic 

simulation environment (ASE) is a python toolkit that enables unit cell generation and interfaces 

to a wide number of codes, especially those that carry out periodic DFT and the analysis or 

control of those calculations640-641. The AFLOW642 code software framework and web interface 

are even more tailored for the solid state, streamlining high-throughput calculation of crystalline 
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alloys, including through permutations of experimental structures.643 The pymatgen python 

library644 was designed to perform initial calculation setup and structure generation for solid-

state materials as well as for the post-processing analysis of materials properties from raw data. 

The FireWorks645 and AiiDA646 codes are designed to optimize the procedure of automating and 

distributing calculation workflows as well as ensuring the provenance and reproducibility of 

calculations, also with a focus on solid-state DFT.  

 While not originally tailored necessarily for DFT calculations, a number of 

cheminformatics toolkits are available for studying small organic molecules. Small-molecule 

organic chemistry codes such as RDkit and OpenBabel647 are widely used for high-throughput 

screening in organic chemistry. These tools carry out 3D structure generation from string-based 

molecule identifiers such as the simplified molecular input line entry system (SMILES)648 and 

have integrated force field (e.g., with MMFF94 or UFF) optimization. These codes are also 

useful for computing molecular fingerprints and using them to quantify molecular similarity 

(e.g., using the Tanimoto coefficient). Both codes have interfaces to large databases of organic 

molecules (e.g., ChEMBL649). 

 Motivated by the distinct challenges in describing and modeling metal–organic bonding, 

tailored toolkits have also been developed for transition-metal complexes. One early example 

developed by Hay et al. was the HostDesigner code that automated construction of candidate 

metal ion hosts.650 The FORTRAN code modules (i.e., LINKER and OVERLAY) were used to 

construct macrocycles from a fragment library in which terminal hydrogen atoms were replaced 

with adjacent fragments. These components were force field optimized with MM3 to generate 

candidate chelators of metals that were scored by the proximity of the metal-coordinating sites to 

the optimal position for a metal center.650 
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 The molSimplify code53 was developed to enable divide-and-conquer structure 

generation especially for high-throughput screening of open-shell transition-metal complexes. 

The code enables commandline generation of a range of transition-metal complex symmetries 

with ligands built from SMILES strings, large molecular databases, or a built-in dictionary of 

common organic ligands for inorganic complexes that users can update (Figure 69).53 The code 

uses OpenBabel as a backend to force field preoptimize the individual ligands and then attach 

them to points around a metal center with rotations and translations to minimize steric clashes 

(Figure 69). The initial, spin-state-dependent metal–ligand bond lengths selected for structure 

generation were derived from a database of DFT values and later updated to be obtained from an 

ANN trained to predict54, 527 metal–ligand bond lengths (Figure 69). This ANN improves upon 

general (i.e., UFF) force field bond length predictions by an order of magnitude (Figure 2).34 The 

molSimplify code also interfaces to ChEMBL via OpenBabel for ligand selection. These tools 

have been used to carry out both pattern matching (i.e., with SMARTS) and diversity-oriented 

screens of organic molecules (e.g., for transition-metal complex52 or inorganic molecule 

generation438). A custom core and decorator module can be used to start from a pre-built 

complex structure and then replace or modify aspects of the structure with functional groups.53 

The molSimplify code also generates input files and scripts for automating electronic structure 

calculations on generated individual and supramolecular complexes.  
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Figure 69. Schematic of molSimplify structure building: (top) the user selects a metal and 
coordination environment as well as ligands (e.g., from a database, DB) that are force field 
preoptimized; (bottom) the ligand is aligned to the metal coordination site and the metal−ligand 
bond distance (dM‐L) is set from a database of values or from an ANN. This can be followed by 
constrained optimization of the full complex. Reproduced with permission from ref. 52. 
Copyright 2017 American Chemical Society. 
 

 Foscato et al. developed methods to fragment existing transition-metal complexes and 

reassemble them to make new complexes50 (Figure 70). Fragments were most readily derived 

from structures obtained from the CSD or PubChem. Cutting rules were developed based on 

pattern matches (i.e., with SMARTS) to identify where complexes should be fragmented.50 

Attachment points (APs) were then defined and used for the reassembly of new transition-metal 

complexes from available building blocks (Figure 70).50 First demonstrated for building 2D 

structures50, these methods were generalized through a series of fragment rotations to generate 

3D structures of acceptable quality51. This approach was further extended to include operations 

that closed rings to form ligands of increased denticity from fragments600, generalizing beyond 

fragments available in the CSD. In a similar fashion, the MOLASSEMBLER code is a tool that 
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was developed to build molecular graphs and then identify stereocenters and conformational 

permutations during automated 3D structure generation for both organic and inorganic 

molecules.651  

 
Figure 70. Schematic representation of fragmenting experimental structures of complexes and 
building new ones for transition-metal complex structure generation. Reproduced with 
permission from ref. 50. Copyright 2014 American Chemical Society. 
 

 Other codes have been specifically designed to focus on catalyst screening. The AARON 

code652 focuses on computational prediction of the stereoselectivity of catalysts. AARON is 

applicable to reactions with well-established mechanisms but multiple possible stereocontrolling 

transition states to enable systematic screening and optimization of catalysts with quantum 

chemical calculations (Figure 71).652 AARON relies on the existence of a good template library 

of prior catalysts and ligands to build catalyst structures but can detect rotatable bonds for 

conformer searching and transition state generation, and it automates a series of DFT 

calculations needed to evaluate catalysts652 (Figure 71). These tools have been primarily 

demonstrated on widely studied Pd- and Rh-containing catalysts.652-653 Like AARON, the CatVS 
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code uses a user-defined complex and substrate and screens a library of candidate ligands.654 

CatVS differs from AARON in that it employs force fields (i.e., TSFF and MM3, see Sec. 2) to 

accelerate catalyst screening.654 Notably, the CatVS program was recently used to make 

computational predictions of highly enantioselective rhodium hydrogenation catalysis that were 

then verified experimentally to display the predicted behavior.654 The autodE code655 was 

developed to overcome some challenges in structure generation for transition-metal catalysts by 

fully automating catalytic intermediate structure generation from input SMILES strings.655 The 

graphs of the reactants and products are used to generate guess transition states, which are 

refined with electronic structure calculations.655  
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Figure 71. Overall workflow of AARON: From a library of candidate structures in the template 
library, AARON constructs each possible catalyst/substrate combination and locates all TS 
structures for these combinations, following the same workflow for each combination. It 
performs a series of constrained and unconstrained optimizations and frequency calculations that 
are analyzed. Transition state structures that have been located are used as templates for new 
substrates (shown at right). Reproduced with permission from ref. 652. Copyright 2018 American 
Chemical Society. 
 

 Given the high computational cost of carrying out explicit DFT calculations on a large 

number of complexes in a screening context, toolkits have also been developed for evolutionary 

optimization55, 656 (see Sec. 5.2.1). The molSimplify automatic design (mAD) module is an 

extension to molSimplify that carries out evolutionary (i.e., single and multi-objective genetic 

algorithms) optimization of transition-metal complexes represented as a series of genes. The 

fitness function can be evaluated directly from DFT calculations (i.e., with automated generation 

of input and queue script files for running electronic structure calculations) or by one of 

molSimplify’s artificial neural networks (e.g., for spin-splitting prediction54, 527), and the set of 

genes is evolved to best satisfy the design objectives55 (Figure 72).  
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Figure 72. Workflow for mAD with key mAD components shown in blue: transition-metal 
chemical (TMC) space is discretized into genes and converted to 3D geometries and optional 
input files using molSimplify (shown in green), and properties are either calculated using an 
external DFT package using molSimplify-generated input files or internal ML models. Results 
are analyzed and guide iterative discovery using the design logic in mAD. An example 3D 
geometry is shown in the inset. Reproduced with permission from ref. 55. Copyright 2018 
American Chemical Society. 
 

 Jensen and coworkers developed the DENOPTIM code656 to enable evolutionary-

algorithm-based design of transition-metal complexes from fragments, building upon several 

other earlier tools (e.g., the fragment explorer50) with wrapper codes (Figure 73). DENOPTIM 

represents the molecule as a graph656, and the code analyzes fragments in the molecule by 

comparison to available databases (e.g., ChEMBL and the CSD). Mutations to the fragments of 

the complex are carried out through a series of routines that ensure synthetic accessibility while 

optimizing for the user-provided fitness function (Figure 73).656 Because the fitness function is a 

user-provided external call in a BASH script, DENOPTIM supports656 force field, ML model, or 

DFT calculations for the fitness evaluation if the user has these available for the problem at hand 

(Figure 73). The globally optimal catalyst (GOCAT) framework is another toolkit that has been 

developed to optimize an abstraction of the catalyst environment (i.e., the electric field) with 

low-cost semi-empirical theory and to use genetic algorithms to identify discrete candidates that 

best match the optimal field.657 Further development is needed (i.e., including in low-cost 

molecular modeling) to demonstrate this approach for open-shell transition-metal catalyst design. 
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Figure 73. Schematic of the DENOPTIM code, which consists of a series of modules, including 
input parameters for the main interface, a genetic algorithm that uses fragments to explore 
chemical space, and a fitness function provider. The output from DENOPTIM is an organized 
series of SDF files, each containing a candidate molecule, its Cartesian coordinates, connectivity, 
and associated data fields such as the fitness, SMILES/InChI encoding, and other properties that 
the user may choose to include via the Fitness Provider. Reproduced with permission from ref. 
656. Copyright 2019 American Chemical Society. 
 

5.3.2. Autonomous and ML-Accelerated Computational Chemistry. 

 The interface of data science tools with traditional modeling was described briefly in Sec. 

2.5. We expand upon that section to discuss how artificial intelligence has begun to be employed 

in a way that can guide and accelerate the high-throughput screening workflows described in 

Sec. 5.3.1 for transition-metal chemistry.  

 For transition-metal complex and catalyst screening, a unique challenge is the high rate of 

failure of calculations carried out with semi-empirical methods and DFT (see Sec. 2.5) that can 

be difficult to predict a priori. At the same time, the large size and associated high computational 
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cost of calculations of transition-metal complexes relative to small organic molecules further 

highlights the importance of only initiating calculations that are likely to be successful. To 

automate and inform such a procedure, Duan et al. first defined55 a series of geometric health 

metrics to determine when transition-metal complex geometry optimizations resulted in 

distortion of ligands or loss of ligand bonding to the metal. They also employed heuristic cutoffs 

for deviations of <S2> from its expected value of S(S+1) and lower than expected localization of 

the spin to the metal (e.g., from Mulliken spin analysis).55 To address the challenges of 

calculation failure, Duan et al. trained519 ANN classifiers to accurately (ca. 88–95%) predict the 

likelihood of calculation failures using graph-based RAC descriptors.498, 500-501 Because 

calculations take longer to fail than to succeed519, they showed that these models both avoid 

generating spurious data for property prediction models and explore most (ca. 88%) of the 

feasible chemical space in 33% of the computational time.519 Because the models employed 

graph-based descriptors, they required no prior calculation to predict calculation success, but 

their accuracy dropped rapidly on materials (e.g., high-valent metal-oxo catalysts) distinct from 

training data. Use of uncertainty quantification527 improved performance on the smaller fraction 

of calculations for which the model was confident. Compositional descriptors have also 

demonstrated utility in training machine learning models to predict the computational cost of 

electronic structure calculations to guide calculation selection.658 

 As a complementary approach, Duan et al.519 trained convolutional neural networks 

(CNNs) trained on a set of 30 transferable descriptors of the electronic structure of the complex 

during the first 2–40 steps of a geometry optimization without including any explicit 

connectivity or chemical information. This information typically corresponded to around the first 

6 hours of GPU-accelerated calculation time (e.g., with TeraChem659) and no more than one third 
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of the total average time.519 Given the strong path dependence of calculation outcomes, analysis 

of the CNN model’s focus519 with gradient-weighted class-activation mapping660 revealed that 

some calculations took a significant number of steps before the model could determine if failure 

would occur. An extension661 was incorporated into workflows for active learning563 of methane-

to-methanol catalysts457 in order to reduce calculation attrition rates in catalyst discovery (Figure 

74). This extended dynamic multi-task network model predicted three measures of calculation 

health (i.e., metal spin, deviations of <S2> from expected values, and geometry optimization 

outcome) based solely on properties of the wavefunction and the energetic gradient, representing 

an artificial intelligence model that avoided unfruitful calculations during active learning with 

limited prior training data (Figure 74).  

 
Figure 74. (top) Schematic of how electronic features are collected from the properties of the 
wavefunction during a geometry optimization and used as input to an ANN classifier with a 
convolutional layer followed by a fully connected layer. The model is a multi-task ANN 
classifier that predicts calculation success with respect to geometry, deviations of <S2> from the 
expected value, and the deviation of the spin on the metal from the total spin. (bottom) Gradient-
weighted class-activation map (GCAM)660 analysis of the multi-task model. In this example, the 
geometry optimization leads to a good result for all three properties, but features oscillate in 
early stages of the optimization (left). For each of the three prediction models, the GCAM focus 
is on different phases of the geometry optimization (right). Reproduced with permission from 
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ref. 661. Copyright 2021 American Chemical Society. 
 

 In addition to sensitivity analysis and Bayesian techniques for uncertainty quantification 

in DFT as described in Sec. 2.5, Bayesian optimization has recently been proposed as a tool to 

optimize DFT functional forms.662 To increase the domain of applicability of functionals, they 
proposed662 an automated approach to functional fitting against a dataset by stochastic sub-
sampling and iterative improvement of the functional coefficients with the tree-structured Parzen 

estimator, the same algorithm widely employed in ML architecture selection (e.g., HyperOpt). 

The automatically selected functionals were observed to outperform functionals developed with 

expert knowledge but also could fail when suitable benchmark data was insufficient to guide 

coefficient selection.662 

 As an alternative strategy to address the challenge of balancing cost and accuracy, 

McAnanama-Brereton et al.663 demonstrated a proof-of-concept application of game theory to 

the selection of the appropriate density functional and basis set for studying a new molecule. 

Within game theory, the optimal choice for all players is selected in a so-called Nash 

equilibrium, and the goal of method selection was to balance expected performance, similarity to 

known data, and calculation cost. Using the Decider interface663, the Tanimoto similarity of an 

input molecule to benchmark organic molecules with known basis set/functional performance is 

calculated (Figure 75). Using this information, the optimal basis set and functional are chosen to 

balance performance and complexity (i.e., computational cost, Figure 75).663 While not yet 

developed for strongly correlated systems or beyond a limited range of DFT functionals, such an 

approach could be highly beneficial in the screening of transition-metal complexes.  
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Figure 75. (a) Game theory model (i.e., Decider) score vs relative timing (i.e., times are relative 
to the fasted calculation performed). (b) Decider score vs mean absolute percent deviation 
(MAPD) to the reference GMTKN24 benchmark set (i.e., the lower the MAPD, the closer the 
value is to the reference value). (c) Relative timing vs MAPD for the same points. One 
functional, rPW86PBE, is labeled, and M06-2X is circled in blue in all graphs. The overall 
ranking by the Decider model of the 15 points are indicated as top five (green circles), middle 
five (blue squares), and bottom five (red circles). Reproduced with permission from ref. 663. 
Copyright 2018 American Chemical Society. 
 

 A particularly relevant issue for transition-metal complexes is that the presence of strong 

multi-reference (MR) character could call into question results from a high-throughput screen or 

ML-accelerated exploration. Liu et al.538 developed ML models to predict diagnostics of multi-
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reference (MR) character at low cost, enabling rapid assessment of strong correlation.538 Using 

these models, they visualized regions of an enumerated space containing complexes with 

relatively low- or high-MR character and identified that traditional measures such as the 

HOMO–LUMO gap provide an incomplete picture of what gives rise to MR character538 (Figure 

50). These models can be used alongside chemical discovery algorithms to avoid regions where 

low-cost methods cannot be trusted.  

 Although a number of MR diagnostics have been proposed218-231, 664 in combination with 

heuristic cutoffs (see Sec. 2.5), their application in high-throughput screening has nevertheless 

been limited. Because the diagnostics have a range of relative cost and reliability, it can be 

challenging to know beforehand which diagnostics are most suitable for a class compounds to be 

screened. Sprague et al. proposed a classification analysis665 to define MR effect as having a 

large error on predicted bond dissociation energies and determined that most diagnostics and 

cutoffs produced more false positives than negatives, with %TAE(T) providing the best 

performance, in part due to the close relationship between the diagnostic form and the predicted 

quantity665 (Figure 76). Comparison of diagnostic pairs (e.g., geometric mean, minimum, or 

maximum) showed that no combination improved upon the single best-performing diagnostic665, 

despite suggestions by Wilson and coworkers232-233 that a combination of WFT-based diagnostics 

with adjusted thresholds was useful in predicting MR character in transition-metal complexes.  
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Figure 76. Relationship of unsigned fractional errors on atomization energies, |f|, with 
diagnostics %TAE(T) (left) and T1 (right) on small organic molecules. The vertical red dashed 
lines correspond to the recommended diagnostics. The horizontal dashed lines correspond to 
twice the root mean square error used to assign false positives. Reproduced with permission from 
ref. 665. Copyright 2015 Springer Nature. 
 

 Most studies to date on MR character have necessarily been limited to small molecules. 

Duan et al. confirmed509 over a large data set of small organic molecules in equilibrium and 

distorted structures587 that established diagnostics disagree. Using the recovery of the correlation 

energy as a figure of merit for diagnostic performance, they showed509 that lower-cost 

diagnostics from DFT were outperformed by higher-cost diagnostics obtained directly from MR 

WFT (e.g., the leading weight of the CASSCF wavefunction218-221) that would be intractable in a 

high-throughput screening context. They developed ML models to overcome these limitations 

first by building regression models on size-independent, structure-dependent509 descriptors (see 

Sec. 4.4.1) in combination with the low-cost, DFT-level diagnostics to predict high-cost, WFT-

based diagnostics.  

 To address the disagreement of multiple WFT-based diagnostics in combination with 

heuristic cutoffs, Duan et al.565 used virtual adversarial training (VAT) to train an ANN classifier 

of MR character. In this semi-supervised learning approach, an ANN was trained with a 

modified loss function that contained both a supervised and an unsupervised term, starting with 

labels only for the most extreme points where all diagnostics agreed. Because VAT models are 



144 

 

robust to noisy inputs (e.g., in image classification), the ML-model-predicted WFT-based MR 

diagnostics could be used as inputs to the VAT model, reducing the overall cost of MR 

classification to that of DFT in a manner that robustly distinguished SR from MR molecules at a 

level of accuracy that surpassed the conventional cutoff-based approach.565 Such methods can be 

used in large-scale chemical space exploration to determine where DFT is reliable and adapt to 

automated MR WFT where it is not. 

 Within correlated wavefunction theory, ML models have been developed to predict the 

correlation energy522-523, 666 or corrections on top of lower-level theories or in transfer learning 

models236, 667. A number of representations have been developed for this and related approaches, 

including transferable orbital-derived densities522-523 and energies/matrix elements666, in addition 

to standard 2D and 3D ML representations. With few preliminary demonstrations on transition-

metal complexes523, such techniques have largely been applied to closed-shell singlet organic 

molecules with unambiguous ground states at their equilibrium structures. Automated, 

statistical209 and ML-informed211 methods for active space selection discussed in Sec. 2.5 likely 

require further advances to enable their application in high-throughput screening in transition-

metal chemistry. For example, a preliminary demonstration has shown that artificial neural 

networks can accelerate convergence of selected configuration interaction on small molecules by 

selecting the most essential configurations.668 

 For mechanism discovery, automated and semi-autonomous tools to identify the most 

important reaction mechanisms have been proposed to minimize computational cost or expert 

intervention. The artificial force-induced reaction (AFIR) of Morokuma and coworkers enables 

the automated identification of approximate local minima and transition states, including for 

reactions catalyzed by transition-metal complexes.669 Bergeler et al. proposed670 a computational 
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protocol for generation of candidate reactive transition-metal complexes from heuristic rules 

derived from conceptual DFT. By adding reactive protons, they analyze changes to the catalyst 

electronic structure to identify candidate reactive intermediates. They retain only those below an 

energy cutoff, and finally they refine transformations of similar intermediates with path-based 

transition state search (Figure 77).670 This approach remains too computationally demanding to 

apply in combination with computational catalyst design.  

 

 
Figure 77. Illustration of the process of removing intermediates (shown as vertices) from a 
chemical reaction network by applying the energy cutoff EC. The vertex representing the 
substrate colored blue; vertices to be removed are colored red. Reproduced with permission from 
ref. 670. Copyright 2015 American Chemical Society. 
 

 Other researchers have developed fully automated workflows that leverage accelerated 

high-temperature ab initio671-672 (e.g., Hartree–Fock) or semi-empirical673 molecular dynamics as 

well as enhanced sampling674 (e.g., metadynamics) for mechanism discovery primarily in small 

organic molecules. The nanoreactor671-672 and tsscds2018673 tools automate the normally 

challenging task of identifying reactive events by using heuristics to detect bond 

rearrangement672-673 and then post-process these structures as starting points for automated 

transition state searches. Caveats remain in the application of these semi-empirical or low-cost ab 

initio methods in transition-metal chemistry where intermediates and transition states could be 

missed by lower-accuracy methods (see Sec. 2).  
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 ML models have also been demonstrated to reduce the number of explicit calculations 

required during time-consuming geometry optimization and transition state search in mechanism 

discovery. These techniques include using surrogate models (e.g., Gaussian processes or ANNs) 

to estimate the local potential energy surface675-680, to reduce the time to self-consistent energy 

evaluation681, or to estimate when a candidate mechanistic step in a reaction network will be too 

high in energy to contribute to a reaction mechanism682-683. 

5.3.3. Machine Learning Toolkits. 

 The majority of tools used in machine learning model training are general-purpose in 

nature and developed by the computer science community. Given the fast-changing nature of the 

field, we only briefly mention some of these tools and their purpose. We also briefly mention 

some tailored tools useful for property prediction in chemistry and materials science. ML model 

training is most frequently carried out with scikit-learn or for more intensive models (e.g., neural 

networks) with Keras or PyTorch as a frontend to TensorFlow. Hyperparameter selection in ML 

model training, including selection of model architectures for neural networks, is too 

computationally demanding for exhaustive search. As a result, Bayesian optimization has been 

demonstrated as an approach to identify optimal architectures, e.g., in Hyperopt684 and GPtune685 

toolkits. Recently, the COMBO toolkit686 was developed specifically for materials science 

applications and includes Bayesian optimization with Thompson sampling both for the 

optimization of hyperparameters in neural networks as well as specifically for optimization of 

materials objectives. In materials science, frameworks for data mining from external databases687 

and automatic ML model building with a diverse set of ad hoc attributes have also been 

demonstrated688-689. 

 Within the chemical sciences, efforts have been made to make ML and data visualization 
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and feature selection more user friendly. Examples of these efforts include the automated 

training and optimization of ML models. An early example is the DeepChem open-source 

project, including the MoleculeNet690 dataset of benchmarks and model training wrappers for 

organic chemistry. More recent developments include the application of chemistry-specific 

featurizations with the ML4Chem691 toolkit. The ChemML692 toolkit specializes in providing a 

high-level wrapper for automated ML model training and visualization. Within the QSPR/QSAR 

community, automated tools have been developed for some time693-695. Special attention here has 

been paid to whether pharma-relevant quantities are reproducibility predicted by models (e.g., in 

AMPL694) or automated feature selection and to estimating the “learnability” of a data set693. 

None of these tools have been tailored for open-shell transition-metal chemistry to date, in part 

due to the smaller data sets and few available benchmarks. 

5.3.4. Data Extraction and Automation of Experiments. 

 This review has focused on accelerated discovery of transition-metal complexes with 

high-throughput screening and machine learning from a computational perspective. Here, we 

briefly review synergistic efforts in extraction from the literature and autonomous 

experimentation that could inform computationally driven efforts. For discussion beyond the 

scope of this review, readers are encouraged to consider the more detailed reviews of Refs. 696-

699. In comparison to the outstanding challenges for autonomous computational chemistry, self-

driving laboratory demonstrations have matured substantially over the past 30 years696. Advances 

include integration of AI with robotics and flow synthesis to enable autonomous organic 

molecule synthesis700-704. Both neural networks for reaction outcome prediction from literature 

data705-706 and reinforcement learning with microdroplet reactions for experimental design and 

mechanism discovery707 along with improvements in online characterization702, 704, 708 have 
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enabled the retrosynthetic advances necessary for this autonomous experimentation (Figure 78). 

While somewhat less mature, robotics and AI have also been demonstrated in the synthesis and 

characterization of materials, such as quantum dots709. In a related, manual approach, 

recommendations from an ANN have been scored by experimentalists to guide synthesis of 

organic light-emitting diodes710. 

 

 
Figure 78. Computational and experimental feedback loops for automated reaction optimization 
with flow synthesis. Reproduced with permission from ref. 708. Copyright 2016 American 
Chemical Society. 
 

 Machine learning in the form of natural language processing (NLP) has extended385, 711-

712 text-mining tools to enable extraction of information about materials properties and synthesis 

from the literature, as recently reviewed in Ref. 713. Although examples have been demonstrated 
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for extraction of uniformly reported properties (e.g., surface area of a MOF386), natural language 

processing has been demonstrated to be essential to capture complexities in sentence structures 

(Figure 79). Toolkits such as chemdataextractor712 aim to tailor NLP to common chemical 

phrases and properties (Figure 79). Extraction of synthesis recipes has generated sufficiently 

large data sets on a range of solid-state materials (e.g., metal oxides385 or zeolites714) to enable 

prediction of which conditions improve synthesis outcomes. These large data sets have enabled 

unsupervised (e.g., variational autoencoder) methods to develop representations of influences on 

synthesis711, 715, semi-supervised models where only a fraction of synthesis outcomes are 

labeled574, as well as regression models where more chemically informed descriptors of materials 

properties are known714. 

 
Figure 79. Schematic of a pipeline for natural language processing applied to a materials 
chemistry manuscript. The manuscript text is split into sentences and then tokens followed by 
parsing with rule-based grammar to extract individual chemical records. Example tags shown 
include nouns (singular: NN, plural: NNS), cardinal number (CD), verb (VBZ), determiner (DT), 
preposition (IN), adjective (JJ), and chemical mention (CM). Reproduced with permission from 
ref. 712. Copyright 2016 American Chemical Society. 
  

 Still, limitations in extending NLP extraction efforts to transition-metal complexes and 

metal–organic materials property predictions remain. This is largely due to data sparsity or lack 
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of uniformity in the reporting of properties (e.g., in the supplemental information versus main 

text) as well as publication and experimentation bias toward successful results716-719. 

Nevertheless, such data should significantly augment currently available experimental data sets 

in transition-metal chemistry that are either small or consist only of X-ray diffraction structures 

(see Sec. 4.1).  

6. Conclusions and Outlook. 

In recent years, machine learning has emerged as an essential complement to traditional 

physics-based models and experiment. The advances in this area have presented unique 

opportunities and challenges in transition-metal chemistry due to the diversity of chemical 

bonding possible in a transition-metal complex as well as the interplay between spin, oxidation 

state, and metal electron configuration. This review has covered how machine-learning-

accelerated discovery in this space has benefitted from key advances in automation, ligand 

chemistry, experimental data sets, and physics-based modeling. These advances have enabled 

improvement upon best-in-class experimental catalysts and materials. The development of 

uncertainty-aware search with surrogate ANN models of large spaces have led to identification 

of compounds with optimal properties and revealed new design principles. Further improvements 

have come with the automation and acceleration of computational modeling techniques. 

Despite this progress, several outstanding challenges in the field remain for fully 

autonomous machine-learning-accelerated transition-metal chemical discovery to be realized. 

We will briefly outline some of these now. 

A practical approach to systematically improve electronic structure method accuracy is 

not as well established for transition-metal chemistry as it is for organic chemistry. While 

automated or rule-based active space selection methods have demonstrated some promise, they 
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often suggest active spaces that are beyond reach of high-throughput screening workflows. 

Furthermore, the cost–accuracy trade-off is not well established here. There is a need still for 

development of low-cost methods that can robustly predict properties of open-shell transition-

metal complexes, and when such a method (e.g., MM, SQM, or DFT) will perform well or fail 

needs to be more broadly understood in transition-metal chemistry for these choices to be easily 

incorporated into automated workflows. Similarly, robust benchmarks from experiment or those 

that eliminate uncertainty in the identity of the reacting species are an outstanding challenge in 

transition-metal chemistry. Extraction of larger, robust data sets will benefit both benchmarking 

of physics-based and data-driven models.  

Transferability remains an open challenge for machine-learned representations and 

models. This refers both to generalization to new regions of chemical space and to better 

prediction from smaller data sets. For transition-metal chemistry, the balance between near- and 

far-sighted properties has been established to be distinct from organic chemistry. This distinction 

can be encoded in learned representations or in feature-selected representations. Just as force 

fields are often developed for a single or small range of metals, present machine learning models 

often only attempt to generalize to a small portion of the periodic table. Building models that 

truly generalize between rows of metals or across different ligand types is essential. Furthermore, 

interpreting the appropriate feature or latent space that accurately describes similarity of 

isovalent species will be essential for developing new approaches to design in transition-metal 

chemical space. 

A perhaps even greater question only starting to be addressed is the extent to which 

machine learning models should simultaneously capture multiple Born-Oppenheimer potential 

energy surfaces. Should such models learn not just the ground state but also when the ground 



152 

 

state changes and in what manner, either for photoexcited species or multiple low-lying spin 

states?  

A combinatorial challenge for data generation and chemical space exploration also 

remains. While enumerative strategies have been exploited for early successes in machine 

learning for subsets of small-molecule organic chemistry, the path to enumeration in transition-

metal chemical space is less clear. Furthermore, it is not obvious to what extent chemical space 

should be explored in neighborhoods around known hits versus through larger variations in 

chemistry to overcome the multiple constraints in most practical materials design. While not the 

focus of this review, the twin challenge of materials discovery is mechanism discovery, 

especially in catalysis. Often, one must be simplified to address the other in screening, but at 

present there are no systematic approaches to identifying when changing the material changes 

the mechanism or how to design a catalyst or material with the intent of improving its stability. 

Despite some of these limitations, machine-learning-accelerated discovery of transition-

metal complexes is showing rapid progress across a range of applications. The inherently 

challenging to describe quantum mechanical nature of open-shell metal centers has particularly 

benefitted from non-linear machine learning models in their accelerated discovery. It is expected 

the next few years will bring ever more changes to the way we think about carrying out materials 

and molecular discovery on a computer, especially in these challenging materials spaces. 
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