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ABSTRACT: Transition-metal complexes are attractive targets for the design of catalysts
and functional materials. The behavior of the metal-organic bond, while very tunable for
achieving target properties, is challenging to predict and necessitates searching a wide, and
complex space to identify needles in haystacks for target applications. This review will focus
on the techniques that make high-throughput search of transition-metal chemical space
feasible for the discovery of complexes with desirable properties. The review will cover the
development, promise, and limitations of “traditional” computational chemistry (i.e., force
field, semi-empirical, and density functional theory methods) as it pertains to data generation
for inorganic molecular discovery. The review will also discuss the opportunities and
limitations in leveraging experimental data sources. We will focus on how advances in
statistical modeling, artificial intelligence, multi-objective optimization, and automation
accelerate discovery of lead compounds and design rules. The overall objective of this review
is to showcase how bringing together advances from diverse areas of computational
chemistry and computer science have enabled the rapid uncovering of structure—property
relationships in transition-metal chemistry. We aim to highlight how unique considerations in
motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding
strength/nature) set them and their discovery apart from more commonly considered organic
molecules. We will also highlight how uncertainty and relative data scarcity in transition-
metal chemistry motivate specific developments in machine learning representations, model
training, and in computational chemistry. Finally, we will conclude with an outlook of areas
of opportunity for the accelerated discovery of transition-metal complexes.
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1. Introduction.

Transition-metal complexes have properties that can be carefully tuned through ligand
design and metal selection for the control of spin/oxidation state and electronic or optical
properties. As a result, tailoring the properties of transition-metal complexes has led to
significant advances in catalysis and in the design of functional (e.g., magnetic) materials.
Computational chemistry and, in particular, quantum chemical modeling have long played
essential roles in explaining structure—property relationships and in designing this class of
inorganic molecules. More recently, the accelerated discovery and design of transition-metal
complexes has greatly benefitted from developments in accelerated computer hardware, larger
data sets from theory and experiment, and machine learning models. Advances in artificial
intelligence are changing all areas of chemistry at an increasingly rapid pace, and the
combinatorial challenges that metal-organic bonding at open-shell transition-metal centers make
this materials space particularly ripe for data-driven, accelerated methods.

1.1. Scope of the Review.

This review focuses on cases where computational chemistry and machine learning play a
leading role in accelerated inorganic complex discovery. To understand this role, we address the
intersection of developments in electronic structure theory, molecular modeling,
cheminformatics, and machine learning. To describe progress in large-scale, automation of
transition-metal chemical space exploration, we consider efforts in both experimental and
computational high-throughput screening. We also address specific challenges for open-shell,

first-row (i.e., 3d) transition-metal chemistry in terms of data availability and reliability, both

3



from conventional computational modeling and from experiment. We touch briefly upon heavier
elements (i.e., with open 4d, 5d, or lanthanide 4f shells), but the discussion is more limited in
scope, in part due to the smaller amount of available experimental data.

This review highlights recent developments over the past few years in machine learning
models capable of reproducing electronic structure property predictions at low cost in high-
throughput screening and accelerated discovery in transition-metal chemistry. It discusses
closely related efforts in data mining, semi-empirical modeling, and molecular mechanics over
the past fifty years. This discussion is necessary to provide context on where machine learning
models can supersede or, alternatively, learn from these methods. Other topics in the scope of
this review include data-driven efforts in extracting quantities from experimental literature or in
developing linear quantitative structure—property and scaling relationships from experimental
and literature data.

The central focus of this review is on methods and software for property prediction and
accelerated chemical discovery in metal-organic complexes and closely related materials (e.g.,
porous metal-organic frameworks), at the interface with more traditional domains of electronic
structure theory. Other inorganic materials, such as most solid-state materials or biological
systems (e.g., metalloenzymes) are not discussed. This review also largely excludes the special
considerations associated with neural network potentials and representations for carrying out
molecular dynamics. Where we cover catalytic applications, our emphasis is on the design of
catalysts rather than on the discovery of reaction mechanisms.

1.2. Previous Reviews.
Several previous reviews have been written that are of broad use to the reader and

provide complementary discussions of topics not extensively covered in this review. Li and



Merz! have written a comprehensive review of molecular modeling for metal ion bonding. Pidko
and coworkers? have extensively discussed the combined computational and experimental
considerations for transition-metal catalysis. Fey and coworkers® have examined the relationship
between chemical properties and relevant descriptors from cheminformatics for interpreting the
properties of transition-metal complexes. Jensen and coworkers recently discussed some of the
challenges for in silico catalyst design®. A number of reviews have addressed specific challenges
of density functional theory in its application to transition-metal chemistry>”’ as well as
opportunities for going beyond DFT in catalysis®. Additional reviews are mentioned in the
context of specific topics, as noted in relevant sections throughout this review.

1.3. Note on Machine Learning Nomenclature.

This review is written primarily from the perspective of computational and theoretical
chemistry with some reference to concepts from chemical bonding and transition-metal
chemistry as well as related experimental data. Applications of machine learning will be
introduced with some needed background, but concepts behind the terminology may be less
familiar to a reader without prior exposure to machine learning. To understand machine
learning’s relevance to transition-metal complex discovery, we will primarily discuss key aspects
of statistical machine learning. We will discuss descriptors or features, which are the inputs to
machine learning models. We will address supervised learning, where the model learns the
mapping between inputs and outputs (here, property prediction). This review will also introduce
applications of unsupervised or semi-supervised learning, where the model chooses the structure
of data without being provided any (or most) property output labels. The review will cover
models of varying complexity or interpretability and what role model choice plays in discovery.

This review will discuss how researchers determine when machine learning models are



confident, in an area of statistical learning known as uncertainty quantification. This aids in the
identification of model domain of applicability, which refers to where a machine learning model
should be applied. The model can either be exploited by being used only in its domain of
applicability, or we can engage in model exploration, preferentially acquiring promising data in
regions of high uncertainty. Finally, we will address some efforts focused on addressing scarce
or biased data, including through so-called active learning approaches that iteratively seek out
new information for machine learning models. For additional background on the fundamental
statistical learning concepts beyond the scope of this review, we suggest consulting reference
texts, such as The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman® or the
recent primer developed by Janet and Kulik for applications of machine learning in chemistry.!°
2. Molecular Modeling for Transition-Metal Chemistry.

There has long been significant interest in developing tractable, low-cost computational
models of transition-metal complexes. The special challenges arising from the diverse range of
bonding, spin, and oxidation states in open-shell transition-metal complexes have limited the
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development of general, accurate models. Nevertheless, semi-empirica and classical

molecular mechanics!3-20

models have been developed for understanding the properties of
transition-metal complexes, particularly prior to the advent of practical density functional theory
(DFT) functionals and wide applicability of DFT through increases in computational power in
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the 1990s. The earliest extended Huckel?! and other semi-empirical Hamiltonian
on transition-metal complexes were carried out over sixty years ago. This section describes
developments in both force field (Sec. 2.1) and semi-empirical (Sec. 2.2) methods along with

advancements and obstacles in the theory and practice of DFT (Sec. 2.3). Challenges for

correlated wavefunction theory (WFT) methods specific to transition-metal chemistry (Sec 2.4)



are also briefly reviewed. This section concludes with a brief description of how statistical
learning methods and molecular modeling methods have been simultaneously leveraged and
where opportunities remain.
2.1. Force Fields.

Despite the somewhat decreased focus on such methods in recent years, affordable but
reasonably accurate tools for structure generation and property prediction are often needed for
efficient computational workflows. While many force fields and semi-empirical theories were

2225 or force

primarily developed for main group chemistry, a number of semi-empirical methods
fields!6-17- 26-28 were developed with transition-metal chemistry in mind. The best performance is
typically obtained by focusing on a subset of properties (e.g., structure®® or spectra??) or
materials?®-3°. Here, we briefly review some of the key historical advances in force field
development with a focus on open-shell transition-metal chemistry.

2.1.1. General-Purpose Force Field Modeling.

Force fields capable of predicting properties across the periodic table have been
devised?® 3133, The most widely used and well known of these that is suitable for transition-metal
chemistry is the universal force field (UFF)?. In UFF, a heuristic set of rules based on mixing of
elements and on Badger’s rules for relating bond length and strength enables the generation of
parameters for a large number of elements. For transition-metal complexes, the ability of UFF to
predict experimental metal-ligand bond lengths varies from good (0.02 A) to fair (ca 0.08 A) or
poor, with average errors around 0.05 A?° to 0.10 A3, For open-shell transition-metal chemistry
in particular, it is problematic that a single oxidation and spin state is used in parameter

eneration for each metal®®, and the force field may not be accurate for alternative oxidation or
g y

spin states (Figure 1).3*3 The appropriate bond order for metal-ligand interactions must also be



manually adjusted for ligands that involve backbonding (e.g., carbonyl or phosphine) to avoid

over- or underestimating bond lengths.?°
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Figure 1. Comparison of relationships between bond length and chemical composition in
organic molecules (top) and inorganic chemistry (bottom) obtained from UFF (circles) to those
from DFT (vertical lines). For organic chemistry, the lengths of C—C bonds in acetylene,
ethylene, benzene, and ethane are compared. For inorganic chemistry, the Fe—C bond in four spin
and oxidation states of the homoleptic Fe(CO)s complex are compared. The relative bond lengths
obtained from first-principles calculation are shown to scale across the two data sets: the organic
molecules span a 0.34 A range from acetylene (1.20 A) to ethane (1.54 A), and the inorganic
complex bond lengths span a 0.37 A range from singlet Fe(II) (1.94 A) to quintet Fe(Il) (2.31 A).
Reprinted with permission from ref. 35. Copyright 2020 John Wiley and Sons.

To overcome some limitations, these general force fields have been specifically tailored
for common materials targets in inorganic chemistry, such as porous metal-organic framework
(MOF) materials (i.e., with UFF4AMOF?°). The MM33¢ force field of Allinger and coworkers is
another widely used general-purpose force field. It incorporates Morse potentials for bond
stretching to better describe distorted structures. In a similar spirit to the tailoring of UFF, a
number of groups have manually adjusted the MM3 parameters for a narrow range of transition-

metal complexes!> or materials (e.g., for MOFs with MOF-FF*?). To make this approach
p g

straightforward, a number of groups have employed genetic algorithms!®- 3% 37 to optimize metal-



specific force field parameters.

It is challenging for any of these general force fields to describe the relative stability of
isomers, e.g., tetrahedral versus square planar complexes. To address this limitation, Landis and
coworkers developed a Fourier series approach to handling angular potentials in the SHAPES3®
and VALBOND?"- 3940 force fields. These force fields address the fact that there are multiple
minima in the L-M-L angular potential (e.g., 90 and 180° for an octahedral complex), and
achieve bond length errors ca. 0.01-0.03 A on training complexes or up to 0.1 A for some
higher-error points. Recent extensions by Meuwly?® were added to predict other electronically
driven features (i.e., trans influence, see Sec. 2.1.2). Other efforts to tailor force fields to describe
aspects of metal-ligand bonding include adaptations for the Jahn—Teller effect'® *! and the trans
effect*?. A more thorough discussion of some of these considerations, especially for bioinorganic
systems is carried out in Refs. 1, 19.

A critical outstanding area is in the generation of conformers, where even for organic
molecules a force field conformer ranking often differs from that of more accurate methods.* In
catalysis, this can be critical, as choosing a different conformer for a reaction can change the
predicted activation energies**. For transition-metal chemistry, the question of how to address
the metal-ligand bond (i.e., with fixed bond order or non-bonded, electrostatic terms)*® adds
additional challenges to assessing and improving force field accuracy as well.

For conformer searching and other tasks where standard force fields fail but higher-level
methods remain cost-prohibitive, a divide-and-conquer approach may be useful. Errors from
general molecular mechanics force fields are dramatically smaller on organic components of
transition-metal complexes than on the metal-organic bond (Figure 2).>* Thus, in one strategy,

the metal and its coordinating atoms are described with QM, whereas the organic components



are treated with a force field and allowed to move during the conformer search.*’” Another family
of approaches called hierarchically improved methods, in which the structure is pre-optimized
with a force field or semi-empirical method (see Sec. 2.2) and then refined with DFT (see Sec.
2.3), has frequently been pursued in transition-metal chemistry (Figure 3).*%4° More recent
developments include systematic construction, e.g., from CSD fragments>’>! (see Sec. 5) or
databases of DFT data®>->. In combination with machine learning model predictions>*>, these

approaches have emerged as preferable alternatives (see Sec. 4).

Organic UFF

M IR PR
01 02 03
bond distance error (A)
Figure 2. Comparison of average organic (bottom) and metal-ligand (M—L) bond (middle)
errors (in A) for 66 M(II/IIT) homoleptic octahedral complexes with M = Cr, Mn, Fe, or Co. The
top pane shows the performance of an ANN trained in ref. 54. Representative compounds with
median errors for M—L prediction are shown in inset: 0.01 A abs. error for the ANN example of
quintet Fe(II)(pyr)s and 0.10 A abs. error for UFF example of singlet Fe(II)(misc)s. Reprinted
with permission from ref. 34. Copyright 2019 American Chemical Society.
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Figure 3. Modified de novo design pyramid suggested by Cundari and coworkers, and by
Gillespie et al. wherein many MM calculations are refined with semi-empirical quantum
mechanics (SQM, or SEQM in figure) followed by DFT. Further refinement with additional MM
and DFT-based conformer searching has also been proposed to ensure exhaustive searches are
completed. Reprinted with permission from ref. 48. Copyright 2002 American Chemical Society.
2.1.2. Ligand Field Effects and Molecular Mechanics Models.

The ligand field molecular mechanics (LFMM) approach first introduced in the 1990s'¢
incorporates a distance-dependent ligand field stabilization energy (LFSE) into the force field
that attempts to model the crystal field splitting. Each individual metal-ligand interaction is
parameterized using standard terms (e.g., stretch, bend, torsion, vdW) along with a ligand field
stabilization interaction.!” Notably, LFMM derives its terms from the widely employed empirical
Hamiltonian approach known as the angular overlap model (AOM) that was first introduced in
the 1960s°°. In the AOM approach, sparse matrix elements describing the ligand field are
parameterized based on experimental structural and spectroscopic data. These methods then aid
the interpretation of spectroscopic observations. Accurate structures are important inputs into the
AOM model for prediction of spectroscopic properties.’” Comba and coworkers developed the
multi-level MM-AOM>’ approach for cases where an accurate experimental structure is
unknown for input into the AOM model. In MM-AOM, a molecular mechanics force field

parameterized®®>® to reproduce structures of relevant compounds (e.g., Co(IIl) ammines) is

applied to the molecules being studied. One key feature of the AOM model and the related

11



LFMM approach is the assumption of additivity of ligand field effects®®. By comparing the
ability of AOM models to predict experimental spectra, the qualitative assumption of ligand field
additivity was confirmed®’, although minor exceptions can be noted.

In recent years, LFMM has become the most widely used implementation of AOM within
MM-based modeling. The LFMM field-splitting parameters for ¢ and © bonding!” are tuned to
reproduce a combination of experimental structural data from the CSD and DFT-calculated
distances®!, typically for a narrow range of spin and oxidation states (e.g., Ni(II) or Cu(II)'® and
Fe(I1)*!). As a result of inclusion of the LFSE term, LFMM can be parameterized to predict spin
state energies®!-%2, the preferred coordination geometry of a given spin or oxidation state®, ligand
exchange or dissociation energies®, and the presence of Jahn-Teller distortions'® 4!, Training
errors on structural properties are typically small in these models for a single set of force field
terms (around 0.01-0.02 A), but application to diverse test molecules® can yield larger errors of
ca. 0.06-0.10 A. LFMM-like terms have also been added to polarizable force fields (i.e., in
SIBFA-LF) to enable modeling of Jahn—Teller distortions.%

The LFMM parameters must be determined for each metal, oxidation, spin state, and
ligand field strength, but the developed parameters can be used in a way that exploits ligand
additivity. For example, LFMM parameters derived from homoleptic complexes can reproduce
general trends of some heteroleptic compounds®?, as exemplified by tests on the spin-splitting
energies of Co(III)Fn(CN)s.n complexes (Figure 4). The mixed LFMM parameters overestimate
the effect of each ligand addition on the spin splitting with respect to DFT, but they are able to

capture subtle differences in cis versus trans or fac versus mer isomers (Figure 4).

12



[COF(CN)e.o[*: E(Low-Spin) - E(High-Spin)

__ -20.00
5
£ 000
©
£ 20,00 |
8 40.00
c
o
$ 60.00
& mDFT
80.00
= OLFMM
& 100.00
&
120.00
mm M iy M mm m ul mm m m
o a » A 0w W N N = o
(@] (9] Q Q (9] [} o (@] O (@]
o - N N w w 'S S (4] =]

Stoichiometry: F = fluoride; C = cyanide
¢ = cis; t = trans; f = fac; m = mer

Figure 4. Comparison of LEMM-predicted spin state energetics for isomers of [CoFn(CN)e.n]*"
with BP86 DFT calculations, both in kcal/mol. The LFMM parameters were derived from DFT
on the homoleptic complexes. Reprinted with permission from ref. 62. Copyright 2003 Royal
Society of Chemistry.

While implemented in a number of codes (e.g., Tinker and DommiMOE)%: ©6
widespread adoption of the LFMM approach has predominantly been limited by the lack of
demonstrated general performance of the parameter set. Nevertheless, promising directions of
the LFMM approach include recent improvements in automated optimization of parameters.
Using multi-objective optimization with a genetic algorithm, Deeth and coworkers
simultaneously minimized standard LFMM parameter spin-splitting energy errors (ca. 1-7
kcal/mol) and metal-ligand bond length errors (ca. 0.02-0.03 A) with respect to DFT (i.e., with
the OPBE functional) results for Fe(Il) complexes including spin-crossover (SCO) complexes.5!
These continued methodological developments of LFMM have led to applications that include
modeling host-guest interactions of water in SCO Fe(Il) MOFs®. Using LFMM, Paesani and
coworkers®” performed molecular dynamics and Monte Carlo simulations to observe changes in
the spin-crossover transition of a Fe(II) SCO MOF in the presence of additional water molecules

in the unit cell that alter the ligand field environment around the Fe(Il) metal (Figure 5). Other

recent extensions of LFMM have been developed for metalloenzyme modeling®®.
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Figure 5. Distribution of bond lengths between Fe(II) and N atoms of pyrazine linkers in a spin-
crossover MOF evaluated from Monte Carlo/molecular dynamics with the LFMM force field for
the cases of a) below the transition temperature, 71,2, b) close to the transition temperature, and c)
above the transition temperature. Each curve corresponds to the number of water molecules, Nw,
adsorbed per unit cell. Reprinted with permission from ref. 67. Copyright 2016 American

Chemical Society.

2.1.3. Alternative Tailored Force Fields for Transition States.

Thus far, we have described a number of cases where specific force field parameters are
developed for a narrow range of metals and materials in their equilibrium structures. Transition
states play a critical role in transition-metal catalyst design, motivating a special example of
force fields tailored to optimize and characterize saddle points. The transition state force field
(TSFF) approach was pioneered by Houk and coworkers® and popularized by Norrby, Wiest,
and coworkers’®"! through combination with systematic parameterization. For the TSFF family
of approaches, a force field is generally fit to the quantum mechanical (i.e., DFT) Hessian of a
known transition state that is the target for ligand design.”? The negative eigenvalue of this
Hessian is shifted to become positive such that a minimization algorithm normally used for
geometry optimization locates the transition state.

While parameterized on the transition state for a single ligand, this approach can then be
used to screen a large number of ligands or carry out conformational searches in the TS

geometry. Chief limitations here are the difficulty of accurately parameterizing the force field
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and the prediction of changes in steric contributions along the reaction coordinate.”® Norrby and
coworkers have focused on identifying optimal parameterization objectives and weightings as
well as systematic, automated optimization of this objective from quantum data in the Q2MM
approach.”® Despite potential limitations in the TSFF formalism including sensitivity to
parameterization, these methods have been shown to successfully discern vanishingly small
energetic differences between ligands that are needed to predict enantiomeric excess.”! The
predictive capabilities of Q2MM/TSFF on experimental enantioselectivities also suggests they
may be able to identify errors in reported experimental values.”* Alternative methods to the
TSFF for characterizing transition states at low cost are summarized in Ref. 72.

2.2. Semi-Empirical Methods.

Over the past fifty to sixty years, semi-empirical quantum mechanical (SQM) methods
have been developed and applied to the study of transition-metal complexes.!!"!%2! As in organic
chemistry where these methods are most well developed’>”’, early developments included
parameterization with the complete neglect of differential overlap (CNDO)’87, followed by
improvements through less severe approximations in the intermediate neglect of differential
overlap (INDO)?* 898 and neglect of differential diatomic overlap (NDDO)® # flavors of semi-
empirical theory. Semi-empirical methods were most widely used following their development in
the 1970s—1980s prior to the advent of predictive DFT methodology. Nevertheless, the need for
rapid structural pre-optimization prior to DFT calculations, especially in data-driven workflows,
as well as possible improvements arising from larger available data sets and more sophisticated
parameterizations have motivated their continued development.

2.2.1. Early SQM Methods.

While SQM methods have long been demonstrated for main group chemistry, special
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considerations are needed for handling d electrons. INDO, which includes one-center exchange
integrals neglected in CNDO, can be expected to be the minimum level of theory capable of
capturing essential aspects of transition-metal chemistry, such as d-d orbital ordering and
transition characteristics.®?> The most successful demonstration of these early methods were
Zerner’s INDO?* and INDO/S?% % techniques for predicting ground state and spectral properties
(e.g., vertical spin transition energies®’ of [Fe(H20)s]*"). These methods were applied on static
structures of open-shell transition-metal complexes, typically obtained from experiment. Highly
successful semi-empirical methods developed for organic molecules (e.g., the PM6 and PM7
methods®-% or AM1°%) have modifications (e.g., AM1/d or PM3(tm))°!-? to enable treatment of
d electrons. Nevertheless, benchmarking of these methods on first-row transition-metal
complexes has been limited and not very promising.’® %>* The most glaring limitations of semi-
empirical methods are the inability to predict the existence of stable structures®>** and the
prediction of the incorrect ordering preference of conformers with respect to DFT benchmarks

(Figure 6).
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Figure 6. The Pearson correlation coefficient, p, between single-point energies from DFT with
PBEO0-D3/def2-TZVP (TZ) and PBE-D3/def2-SVP (DZ) as well as semi-empirical (PM6, PM6-
D3, PM6-DH+, PM6-DH2, PM6-DH2X, PM6-D3H4, PM6-D3H4X, and PM7) methods in
comparison to a M06/def2-TZVP reference for transition-metal complexes studied in ref. 93. The
solid blue bars correspond to average values over 27 transition-metal complexes with 3d, 4d, and
5d metals studied in ref. 93. The black bars correspond to the lowest and highest values, with
negative values corresponding to an anticorrelation between the method and the reference, which
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is observed for at least some compounds for all semi-empirical methods. Reprinted with
permission from ref. 93. Copyright 2018 American Chemical Society.

Other observed errors for SQM methods include incorrect metal-ligand bond lengths (by
ca. 0.1 A%), incorrect ground state spin prediction®>, and both over- and underestimation of
ligand dissociation energies’®. When tested on MOF crystal lattice optimizations, PM6 and PM7
generally underestimate lattice parameters by around 0.5-1.0 A (ca. 3%) even for relatively
simple (e.g., Mg-MOF-74) materials.”® In comparison to 3d metals and main group elements,

83,9798 Poor performance

few parameter sets have been developed for 4d or 5d transition metals.
for metal-ligand bond lengths (ca. 0.1 A on 48 training compounds) for an INDO-based model
was attributed to the inflexibility of parameters derived to reproduce atomic ionization
energies.®

Unlike in organic chemistry, errors for semi-empirical methods in transition-metal
chemistry are overall unsuitably large.’® *°> Parameterizations of these methods typically involve
fitting to experimental atomic data as well as to metal-ligand bond distances from experimental
structures of mononuclear complexes.”® However, the lack of explicit encoding of the effect of
ligand properties (i.e., field strength or contributions beyond the direct coordinating atoms) has
limited the predictive capabilities of these methods. The application and performance of semi-
empirical theory to polynuclear transition-metal complex properties (e.g., exchange coupling)
has been even less extensively explored.!® For example, Reiher and coworkers’® showed that
PM6® or PM7% ligand dissociation energies not only over- or underestimate the dissociation
energies from local coupled cluster theory references by as much as 150 kJ/mol (40 kcal/mol)

but also that modest changes from PM6 to PM7 parameterization significantly increase the errors

(ca. 10 kcal/mol or more) for some compounds (Figure 7). The current parameter sets are
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unlikely to be sufficiently flexible to eliminate these errors. Detailed, critical reviews of
developments and remaining limitations for semi-empirical theory are provided in Refs. 76-77,

99.
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Figure 7. Deviation of electronic ligand dissociation energies AE in kJ/mol between either PM6
or PM7 and DLPNO-CCSD(T) for the 10 reactions in the WCCR10 set. Reaction 4 is not shown
for PM6 due to the error being high. Reprinted with permission from ref. 76. Copyright 2018
John Wiley and Sons.

The best performance has been obtained when the semi-empirical parameters for the
metal center were optimized systematically (i.e., with a genetic algorithm) on experimental (i.e.,
CSD structure) data for a specific metal (e.g., Tc'®') and/or application (e.g., Ru dyes!®?) to
achieve errors on the order of 0.02-0.04 A in metal-ligand bond lengths. For example, by both
focusing on a narrow range of materials and re-optimizing the Ru parameters in PM6, metal—
ligand bond length errors were reduced from 0.04 A to less than 0.02 A on molecules both in and
held back from the training set!%2.
2.2.2. Recent Developments in Semi-Empirical Theory.

4849 that were

Hierarchical strategies proposed by Cundari, Gillespie and coworkers
critical in the early 1990s, due to the demanding nature of DFT at the time, remain relevant for
modern uses of semi-empirical methods for geometry per-optimization in high-throughput

workflows. These authors proposed the de novo structure prediction approach of MM-then-

SQM-then-DFT, occasionally requiring some retracing of steps in the hierarchy to ensure all
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minima were located in conformational searches (Figure 3). However, the large geometric errors
typically observed with early semi-empirical methods present a barrier to their use in modern
workflows. Improvements in the treatment of non-covalent interactions and thermochemistry,
e.g., with the orthogonalization-corrected OMx methods of Thiel and coworkers!®, have not
been extended to transition-metal chemistry. Readily available semi-empirical methods (e.g.,
PM6® or PM7%%) sometimes optimize structures to the incorrect coordination environment
favored by a metal, but constraining the local coordination environment does not generally
improve prediction accuracy.”

These challenges have motivated the development by Grimme and coworkers of the
GFN-xTB series of semi-empirical methods better suited to the prediction of structures?: 1% of
large transition-metal complexes. The GFN-xTB family generally outperforms PM6 and PM7
variants (Figure 8). However, these newer SQM methods have some limitations, in that they
cannot predict spin state energetics’>, and they generally perform poorly for predicting properties

105 or redox potentials!®. For use in

of open-shell transition-metal complexes such as pKas
characterizing transition states, the GFN-xTB methods slightly outperform PM6 or PM7 on
prediction of barrier heights and structures with respect to DFT reference values on the
MOBH35 set!'%” (Figure 9). Nevertheless, GFN-xTB cannot locate some transition states and

others have significantly different geometries (ca. 0.5-1 A RMSD) or energies (ca. 10-30

kcal/mol) in comparison to DFT reference values (Figure 9).!%
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The self-consistent charge (SCC) density functional tight binding (DFTB) method
represents a distinct family of semi-empirical techniques based on reproducing results from DFT
in the context of a minimal basis.?* 198-19 Because the method is largely parameterized to
reproduce results from semi-local DFT, it can suffer from the same challenges as DFT in
describing transition-metal complexes (see Sec. 2.3). Nevertheless, parameters have been
developed for some transition metals with DFTB (e.g., Ni!''%, Cu'!!, and earlier 3d transition
metals'!?). Reasonably promising results have been obtained especially for structural properties
of transition-metal complexes (ca. 0.06-0.10 A errors), but energetic errors are still significant
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(ca. 10-20 kcal/mol or higher) especially for charged ligands.''* 12 More parameters, including
those that can account for multiple spin and oxidation states in a balanced fashion are needed to
make DFTB a generally useful tool.

2.3. Density Functional Theory Modeling.

While the theoretical groundwork for density functional theory (DFT) was first
developed over 50 years ago, development of accurate functionals and increases in computing
power in the 1990s led to its rapid adoption for application to transition-metal chemistry. Much
like for the MM and SQM theories that preceded it, special considerations must be made in the
application of DFT to transition metals. In this section, we briefly review the most relevant
theoretical challenges (Sec. 2.3.1) and practical performance (Sec 2.3.2) of conventional DFT
functionals in this domain. We also describe the most widely employed semi-empirical
corrections that have been developed specifically for transition-metal chemistry (Sec. 2.3.3).
2.3.1. Theoretical Challenges for Conventional DFT Functionals

Although DFT is widely employed for its balance of cost and accuracy in main group
chemistry, most exchange-correlation (xc) approximations in DFT suffer from one- and many-
electron self-interaction errors.!!3!117 The self-interaction error has been associated with a number
of missing constraints in DFT, including the lack of piecewise linearity or derivative
discontinuity with respect to electron removal, which leads to underestimations of fundamental
gaps and incorrect hybridization.!'®120 As reviewed elsewhere (e.g., in Refs. 6, 121-122), a
popular approach to improving DFT accuracy in main group methods is to systematically
incorporate higher-order terms in an expansion of the density, which have been described as
rungs on a Jacob’s ladder to chemical accuracy heaven, while satisfying constraints on model

systems or against experimental data. This paradigm is challenged in open-shell transition-metal
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chemistry. The partially filled d shell is strongly sensitive to both absolute self-interaction error,

13,123 " 35 well as imbalances in delocalization across a

also referred to as delocalization error

reaction coordinate.
Exchange-correlation functionals that reduce delocalization error tend to increase the

static correlation error!?#126 (i.e., poor treatment of multi-determinantal solutions), important for

126-130  Recommendations of best-in-class

transition-metal chemistry, with few exceptions
functionals for transition-metal chemistry differ from the main group: pure semi-local
generalized gradient approximations (GGAs) tend to be favored!! in transition-metal chemistry
when static correlation error is manifest, whereas hybrid GGAs and “higher rung” functionals are
typically believed to improve over GGAs for organic molecules. Similarly, DFT errors are often
significantly larger in transition-metal chemistry, and practical correction schemes tend to differ
from those used in main group chemistry.
2.3.2. Practical Performance on Structures and Energetic Properties.

Some properties are disproportionately sensitive to self-interaction errors in DFT
functionals. For example, adiabatic spin state splitting!3>!%, barrier heights'4%-14!, frontier orbital

142-144

energies and absorption spectra are all very sensitive to functional choice. For complexes

that are known to exhibit near-degenerate spin states (i.e., spin-crossover complexes or SCOs),
incorporating a significant amount of HF exchange usually biases functionals toward
overpredicting high-spin ground states, whereas semi-local functionals predict too many

145-146

complexes to have low-spin ground states.!3213° Tsomerization or conformer energies as

well as ligand dissociation energies'4’ represent an intermediate case for sensitivity to self-
interaction error, generally increasing when there is an imbalance in the degree of delocalization

8

between intermediates.'*® Most observations have been made on 3d complexes, and
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comparatively less is known about the relative accuracy of electronic structure methods for 4d
complexes!'*-13!, However, a combination of the strong low-spin shift of 4d metals with respect
to their 3d counterparts and the more diffuse nature of orbitals suggests that some properties that
are normally quite sensitive to functional choice (i.e., spin-splitting energies) in 3d metals are
considerably less sensitive with 4d metals.!*?

Experimental gas-phase ligand dissociation energies from primarily closed-shell, late
transition-metal (Cu, Pd, Ru, Pt, and Ag) complexes were collected by Reiher and coworkers in
the WCCR10 dataset'*’. The WCCRI10 set was designed to isolate potential effects of a
condensed-phase environment on ligand dissociation energies. The errors obtained with DFT
functionals on this set are moderate (ca. 20-40 kJ/mol or 5-10 kcal/mol) '*7, outside the reported
error margin of the experiments. Reiher and coworkers!> also evaluated these ligand
dissociation energies with more accurate DLPNO-CCSD(T)!** reference energies and used
diagnostics of multi-reference character (MR) to estimate when the DLPNO-CCSD(T) results
should be most trustworthy. They found that discrepancies between DLPNO-CCSD(T) and
experiment persisted in these cases, suggesting some uncertainty in the experimental
interpretation.!>® In choosing a DFT functional that reproduced DLPNO-CCSD(T), PBEO with a
D3 dispersion correction was the best performer!3, albeit not agreeing particularly well with all
experimental results'¥’. Recent tests on 151 transition-metal complex and small-molecule
reaction energies known as TMC151'3°, which is a superset of previously proposed test sets!¢-
158 have also favored dispersion-corrected functionals but in combination with range-separated
hybrids.

Structures obtained from geometry optimizations (i.e., local minima) are generally less

sensitive to DFT functional than many other properties. Exceptions to this tend to occur only for
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isomers with small energetic differences that are sensitive to delocalization imbalances and can
lead to method disagreement!*> 1> A representative example of where delocalization errors from
DFT can influence structure is in the inserted dioxide structure of transition metal dioxides,
which progresses from bent to linear experimentally across the first-row transition metals. Semi-
local GGAs predict all structures to be bent!*® 3 in contrast with CCSD(T) or experiment,
whereas delocalization corrections (i.e., DET+U" or hybrids!'*®) tend to improve structures

(Figure 10).
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Figure 10. (Left) Comparison of favored angles (in °) for the inserted dioxide MO> (M = Cr,
Mn, Fe, Co, or Ni) molecules from experiment (black squares), CCSD(T) (blue circles), and PBE
(red circles). (Right) Overlay of the potential energy curves (in eV) from CCSD(T) for a bent X
3B, CrO; (gray circles) and linear X 'Z,* NiO; (green circles). Reprinted with permission from
ref. 146. Copyright 2020 American Chemical Society.

The most abundant source of geometric data is structures obtained from X-ray diffraction
of molecular complexes in the crystal field of surrounding ions and complexes (e.g., that are
deposited in the CSD!?). The condensed-phase, crystalline environment could be expected to be
distinct from the in vacuo calculations used to benchmark DFT. Thus, the effect of an implicit
solvent on DFT structures has been directly probed!®! and found to be influential particularly for
131, 150, 162

complexes with a mixture of ionic ligands. As an alternative, Biihl and coworkers

collected structures from gas-phase neutron diffraction for which more direct comparisons could
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be made. The data sets for these 3d'®?, 4d'*°, and 5d"! transition-metal complexes were
comparatively modest in size (ca. 20-30 complexes). Across all transition-metal complexes,
most functionals overestimated bond lengths, but errors were modest for all cases, and several
pure GGA functionals (e.g., PBE or BP86) performed well.!*! This divergence suggests that DFT
should provide suitable structures even when energetics cannot be predicted, whereas force fields
or semi-empirical methods®* may not be sufficient for structural predictions.
2.3.3. Semi-Empirical Corrections to DFT

A number of semi-empirical, albeit physically motivated, corrections have been
developed and applied as additive corrections for deficiencies in DFT functionals in a manner
that is not dissimilar from semi-empirical wavefunction theories. While several, such as
empirical dispersion corrections, are widely used across the periodic table, we focus here on
those that have been developed especially for open-shell transition metals. Corrections are often
motivated here by the need to address self-interaction errors to which open-shell (e.g., 3d)
electrons tend to be disproportionately sensitive. The so-called LDA+U or DFT+U approach!®*
165 which is reviewed in Refs. 6, 166, is one such method. While introduced for the solid state!'®3-
165 DFT+U was later demonstrated for open-shell transition-metal molecules® 4% 167 DFT+U
incorporates a Hubbard U correction term to localized (e.g., 3d) states. This correction can be
calculated from the electronic structure'®”'7% but is more frequently tuned!’!"!”3 to reproduce
target properties. Due to this association, we classify DFT+U as a semi-empirical correction,
despite having desirable fundamental origins in the Hubbard model and demonstrating the ability

to recover'®’

exact conditions (e.g., the derivative discontinuity!!®, Figure 11). The limits of
DFT+U in practice are that while it can improve some properties (e.g., band gaps or spin state

ordering), it may do so at the cost of worsening others (e.g., geometries) due to the limited
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flexibility of a single parameter applied to the 3d states.
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Figure 11. a) Comparison of explicit (circle symbols) and interpolated (dashed lines) deviation
from linearity (E%) for low-spin [Fe(CO)s]®9" for ¢ = 0 to 1. b) Highest occupied eigenvalue
(eno) with charge centered around Fe(CO)s**. The lines for both graphs are colored by the value
of U applied following the color bar shown in inset (i.e., red is a pure GGA result and blue is a U
= 6 eV result). Reprinted with permission from ref. 169. Copyright 2016 American Institute of
Physics.

A promising, holistic empirical approach is Friesner and coworkers’ DBLOC method!™*
176, Force-field-like energy corrections, which depend on the metal and electron configuration
(i.e., spin and oxidation state) as well as the ligand field strength, are added to DFT (typically
B3LYP) energetics. The DBLOC method has been demonstrated to correct hybrid B3LYP DFT
spin-splitting!”” or redox properties!’® (Figure 12). The approach’s empiricism comes in part
from the least-squares minimization of errors to obtain parameters!’”’ that increase

correspondence between hybrid DFT properties and curated experimental training data (e.g., 57

spin-splitting energies'”” or 95 redox potentials'’®). The total parameter set (ca. 5-12 per
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metal/ligand combination!””"17®) can approach the size of the available training set. Given the
limited training data, bondwise corrections due to ligand field strength are thus assumed to be

additive®® and also classified only in terms of a weak, intermediate, or strong ligand field.!”6-177
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Figure 12. Experimental redox potentials (in V) versus calculated redox potentials for B3LYP
(blue triangles) and after DBLOC correction (black circles) for 95 redox couples. Reprinted with
permission from ref. 178. Copyright 2012 American Chemical Society.

experimental redox potential / V

The DBLOC approach reduces absolute errors on both training and test'’”” molecules as
well as the standard deviation of errors with respect to curated experimental data sets, for
example, reducing B3BLYP MAEs on redox potentials from 0.4 V to 0.12 V!7® (Figure 12). In
addition to spin splitting or redox, the method has also been demonstrated on ligand dissociation
energies'”, overall typically reducing errors from moderate values (ca. 4!7° to 9'"® kcal/mol) to
near-chemical accuracy (ca. 1-3 kcal/mol). It has been noted that DBLOC can more
systematically reduce errors for few-parameter functionals in comparison to more complex DFT
functionals.'®® Nevertheless, the method has not reached widespread use due in part to the
difficulty with obtaining parameters or training data'’®.

A common systematic, albeit empirical approach, is to optimize DFT functional
parameters for specific DFT properties, such as redox potential'®! or spin-splitting energy'®2. In

these approaches, the optimal exchange fraction is typically sought by minimizing error with
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respect to experiment, leading to distinct values (e.g., 12% in BAXLYP!8! or 15% in B3LYP*!82)
from the parent functional and decreasing errors (e.g., ca. 0.05-0.06 V in redox potential '3!) on
test molecules. While tailoring the HF exchange fraction!8!-132 has been demonstrated to work
well when optimizing for a single class of materials and properties, e.g., spin-splitting energies of
Fe(II)/N spin-crossover complexes'®?, this approach can fail across broader ranges of
materials'3* 77, The optimal exchange fraction in a hybrid GGA or meta-GGA is strongly metal-
or ligand-dependent in spin state ordering (Figure 13).!35-136, 138139, 182186 Tyifferences in
exchange sensitivity for ligand dissociation energies or steps in a catalytic cycle create additional
complications for typically studied properties of transition-metal complexes.'*® 17 One type of
physically motivated tuning (i.e., like DFT+U) is the use of optimally tuned range-separated
hybrids!®-19 wherein the range-separation parameter for incorporating HF exchange is used to
eliminate deviations from piecewise linearity for each specific molecule with some improvement

noted for transition-metal complex properties, 2% 191-193
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Figure 13. Spin-splitting energies (in kcal/mol) as a function of % HF exchange (%HF, x-axis)
and % meta-GGA exchange (%omGGA, y-axis) in a PBE/TPSS (meta)-GGA with hybrid HF
exchange for Fe(II)(CO)s (top) and Fe(II)(NH3)s (bottom). The meta-GGA exchange from TPSS
has the opposite effect on the hexa-carbonyl complex to that of the weaker-field hexa-ammine
complex. The CASPT2 value is indicated with a green solid line along with a £3 kcal/mol
confidence interval (green dotted lines) in both cases. The plane is colored according to the
colorbar shown in inset, and dashed or solid lines correspond to increments of 10 kcal/mol.
Reprinted with permission from ref. 139. Copyright 2017 American Chemical Society.

An alternative approach is to leverage error cancellation by quantifying relative or

referenced!®* 19

energetics. Batista and coworkers'* demonstrated reduction of redox potential
errors to within the margin of error on experimental redox potential values (ca. 64 mV) by
calculating redox potentials relative to the value of a couple in the same row of the periodic table
and under the same solvent conditions (Figure 14). These results provided a slight improvement
over earlier suggestions of using the well-characterized one-electron Fc/Fc¢™ couple!'®.
Interestingly, it was more straightforward to reduce errors from modest basis sets (i.e., 6-311G*)

than larger ones!>. Similar observations have been made in referenced (i.e., isodesmic) pKa
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predictions involving transition-metal complexes'®® and in heterogeneous catalysis where

modified reference adsorbate energies (e.g., O atom from H>O - H;) have been suggested to be

less sensitive to the computational method'®”.
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Figure 14. Correlation between measured Eexp’ and calculated E1,° redox potentials in V vs RC,
where RC = [FeCp2]”*, [Ru(bpy);]*"3", and [Ir(acac);]”* for first-, second-, and third-row
transition-metal complexes, respectively, using n =1 (i.e., L1 = B3LYP/6-31G), n =3 (i.e., L3 =
B3LYP/6-311G*), and n = 5 (i.e., L5 = B3LYP/cc-PVTZ) levels of theory. Reprinted with
permission from ref. 194. Copyright 2012 American Chemical Society.

2.4. Moving Beyond DFT in Transition-Metal Chemistry.

198-202

As computing power increases and reduced-scaling algorithms have been developed'>*

, correlated wavefunction theory (WFT) methods have become increasingly tractable. In

return for the high formal scaling (i.e., > O(N°)), single-reference (SR) WFT methods such as
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coupled cluster theory are widely regarded as being able to achieve chemical accuracy (i.e.,
predictions to within 1 kcal/mol of experiment) in the realm of organic chemistry. However, the
challenges for DFT posed by transition-metal chemistry are not easily overcome by carrying out
SR WEFT. Both the larger size of transition-metal complexes (100s—1000s of electrons and 10s—
100s of atoms) and the nature of electron correlation in open d and f shells play a role in this
distinction. The SR methods that work well for organic chemistry are less predictive in open-
shell transition-metal chemistry.?®> This has been attributed to the greater contribution of static
correlation in open-shell transition-metal complexes as well as a greater sensitivity to the degree
of recovery of dynamic correlation.?*42% When two spin states or a reactant and intermediate are
compared, even a slight difference in the ability of a method to recover the dynamic correlation
from a single Slater determinant can lead to an outsized effect on relative energetics.

Among the outstanding challenges for WFT in transition-metal chemistry are that the
local approximations!>* 202 to single-reference CCSD(T) that make it tractable on larger
transition-metal complexes have a strong influence on spin state predictions®® as does the choice
of orbitals or determinants.?®® These observations have led some to question?*® or alternatively
defend?’” the proposition that coupled cluster methods can outperform DFT functionals for
transition-metal chemistry in terms of agreement with experiment. These comparisons are
complicated by the potentially greater uncertainty associated with experimental reference data
for transition-metal chemistry.

While multireference (MR) WFT methods appear to be promising, most such methods
remain intractable for high-throughput screening due to cost and typical requirements of manual
tuning of parameters and active spaces. Alternatives to overcome limitations imposed by manual

active space selection include rule-based?*®, automated?**-2!°, and machine learning (ML) model-
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based?!! approaches. Automated active space selection in transition-metal chemistry, e.g., with
measures of orbital entanglement?!22!4 often reveals a large number of participating orbitals for
systems with significant covalency (e.g., CrFs in Figure 15).2° Lower-scaling, multireference
perturbation theory (i.e., complete active space second-order perturbation theory or CASPT2)
can be applied to moderately sized transition-metal complexes. CASPT2 spin state ordering is
sensitive to both the zeroth-order Hamiltonian shift?!’> with predictions alternately biased!8
towards low-spin or high-spin states depending on the choice of shift and the treatment of semi-
core states?'® (Figure 16). Recent work has motivated a composite CASPT2/CC?!7 approach for

open-shell transition-metal chemistry.
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Figure 15. Entanglement analysis for active space selection for all 23 DMRG(N,23)[1000]-SCF
valence orbitals of CrFe* (N = 39) and CrFs (N = 36) (left and right, respectively). (top) Diagram
of orbital-entropy-selected active spaces from DMRG calculations described in ref. 209. All
orbitals are numbered and arranged on a circle. The area of the red circles assigned to each
numbered orbital is proportional to the single-orbital entropy of the respective orbital. The line
connecting two orbitals denotes their mutual information value. The lines in black indicate a
value of at least 0.1 for the mutual information, whereas dashed gray and green lines represent
mutual information values of at least 0.01 and 0.001, respectively. (bottom) Single-orbital
entropy threshold diagrams for the determination of the number of orbitals to be included in the
active space. Reprinted with permission from ref. 209. Copyright 2016 American Chemical
Society.
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Figure 16. CASPT2 spin-splitting energies, AE in kcal/mol, for HS-LS (circles) and HS-IS
(triangles), as indicated in inset, of hexa-aqua (top) and hexa-ammine (bottom) transition-metal
complexes. Results are shown for 3 IPEA shifts: 0.00 (blue symbols), 0.50 (dark gray symbols),
and 1.50 (red symbols) a.u.. Both M(II) and M(III) complexes are shown arranged by the number
of 3d electrons, from Ti** to Cu®*". Reprinted with permission from ref. 186. Copyright 2019
Frontiers Media SA.

Overall, MR WFT remains challenging to apply in high-throughput screening or data
generation for machine learning, with SR WFT and DFT being easier to automate. While this
could change in the near future with improvements in methods and computing power, it will
remain useful to know which compounds in a screening pool have the strongest MR character.
Numerous diagnostics with heuristic cutoffs have been proposed.?!8-22° These diagnostics can be
classified by whether they probe the propensity of frontier orbitals to become partially
occupied??*+225: 227831 or whether they indicate a strong sensitivity of a property (e.g., the
atomization energy) to the method employed as well as whether they are derived from a SR WFT
or DFT calculation versus directly from an MR WFT (e.g., CASSCF leading weights?!8-221)
calculation. Many of the most predictive diagnostics require carrying out computationally
demanding correlated WFT calculations (e.g., with CCSD for the T; diagnostic?'®) that would be

too costly for high-throughput screening. DFT-based diagnostics??* 226-239 that are more tractable

34



224, 226

have been proposed, including those based on the atomization energy as well as measures

of fractional occupation??’-230

in a finite-temperature DFT calculation. Appropriate diagnostic
cutoffs for identifying when MR character is large enough to erode SR WFT predictions differ
by material, typically with larger values motivated for transition-metal chemistry in comparison
to those for organic molecules.?3>233 Diagnostics often disagree, leading to reliance on intuition
or a subset of the proposed cutoffs. The ability of machine learning tools to overcome some of
these limitations is described in Sec. 5.3.

2.5. Bringing Statistical Learning to Molecular Modeling.

The molecular mechanics, semi-empirical, and quantum mechanical methods described
in Secs. 2.1-2.4 provide essential training data for machine learning model development, as
described in detail in the next sections. Here, we briefly touch upon some key efforts that have
been taken to systematically improve transition-metal chemical modeling techniques with
statistical learning.

MM force fields for transition-metal chemistry are traditionally parameterized by hand
against a small number of experimental crystal structures. Although more systematic

37, 61 or Newton—Raphson!® has been demonstrated, the small

parameterization, e.g., with GAs
sizes of the data sets limit testing or validation of the force fields. Still, opportunities for
incorporating machine learning into this approach were recognized early on.! In 2002, ANNs
were applied to transition-metal chemistry force field development by Marques and
Cukrowski?**, who used the ANN to interpolate estimated errors for the bond distance and force
constant of Co(Il) porphyrins, reducing the time required to test individual force field parameters

(Figure 17). A single trained ANN was selected for this interpolation, and further improvements

could be achieved by training on multiple subsets of the data in an approach known as cross-
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validation. In cross-validation, the subset of data not used in the training of each model is in the
validation set, and the lowest average error over the validation set is used to select parameters to

avoid overfitting to noisy data.
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Figure 17. Error response surface generated by an ANN with a single hidden layer with 10
neurons trained on 574 pairs of bond length, /o, and the Co—N bond stretch constant, ks, for the
modeling of four-coordinate Co(Il) porphyrins. The error (vertical axis) is the mean absolute
difference between the crystallographically observed and molecular-mechanics-calculated Co—N
bond lengths with the respective force constants. The global minimum is indicated by a filled
circle. Reprinted with permission from ref. 234. Copyright 2002 Royal Society of Chemistry.

In organic chemistry, SQM modeling and machine learning models have been combined
with some success. Integration of the DFTB Hamiltonian into deep learning models as an
additional layer has been shown to impart greater physics to the ML model and improve model
performance on small organic molecules.?®> Because correlations between SQM and DFT
structures or properties are poor??, the transfer learning approaches that have been successful in
organic chemistry?*¢-23” may fail in transition-metal chemistry.

The use of machine learning to accelerate DFT-level property prediction for transition-
metal chemistry at low cost is discussed in Sec. 4. Here, we note some early efforts to
systematically reduce errors in DFT functionals with statistical learning. The standard approach

to exchange-correlation development typically involves small datasets of organic molecules or

closed-shell atoms as well as constraints imposed by satisfying exact bounds of model
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systems!2!"122, For transition-metal chemistry, common guidance on functional selection tends to
fail, motivating correction schemes with a range of first-principles and empirical roots (Sec.
2.3.3). The “Minnesota” functionals developed by Truhlar and coworkers (e.g., the pure M06-
L8 or hybrid M06%°) are an exception to this and have gained wide popularity in modeling
inorganic complexes.?*® To develop these, a much larger training set that includes transition-
metal chemistry is used®*®. These functionals perform well when the chemistry being modeled is
sufficiently similar to the training data, but researchers have encountered difficulty in
systematically reducing their errors.'®® This can be interpreted in the context of statistical
learning, where a high number of parameters and paucity of training data lead to overfitting.?4!
Although not targeted at open-shell transition-metal chemistry, researchers have addressed this in
part by exploring ways to incorporate regularization and parameter selection’*? into DFT
functionals.

In complementary efforts, researchers have leveraged statistical tools, such as uncertainty
quantification (UQ) and sensitivity analysis, to inform DFT property prediction. UQ refers to a
Bayesian framework where an ensemble of functionals are employed to produce a credible
interval on an average prediction.?*3-24> While UQ of DFT has primarily been employed in the
solid state?*3-24% 246 Reiher and coworkers have demonstrated its value in identifying functional-
sensitive steps in a molecular reaction network.?*’ In closely related sensitivity analysis,
derivatives of model predictions with respect to one or more functional parameters are

138, 148

employed. For open-shell transition-metal chemistry, the single most relevant functional

parameter is the fraction of exact exchange, which is often associated with key variations of the

138, 148

transition-metal complex (e.g., ligand field, see Sec. 2.3.3). Both linear and non-linear ML

models®* (e.g., artificial neural networks or ANNs) of the relationship between chemical
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structure and exchange-correlation functional sensitivity have been developed. These models
were used to identify how spin-crossover (SCO) complexes (i.e., with near-degenerate HS and

LS states) changed in composition with varied HF exchange (Figure 18).

M 5%
[115%
M 20%

15% ¥ 20%
Figure 18. (top) A t-SNE plot of 5,600 complexes colored by connecting atom ligand field from
weak (white) to strong (black). Lead spin-crossover complexes (i.e., |AEn.L| < 5 kcal/mol) are
shown as circle symbols at three HF exchange fractions: 5% (red circles), 15% (green circles),
and 20% (blue circles). One-dimensional stacked histograms of lead compounds are shown for a
projection of the two t-SNE dimensions with the same coloring by exchange fraction as the
symbols and shown in inset legend. (bottom) Example Fe(Il) complex leads at different
percentages of HF exchange: a homoleptic 4-cyanopyridine complex at 5% (left), equatorial
porphine with two axial water ligands at 15% (middle), and a heteroleptic complex with
equatorial 4-cyanopyridine and axial t-butyl-isocyanide ligands at 20% (right). Reprinted with
permission from ref. 34. Copyright 2019 American Chemical Society.

ML models that reduce the cost or complexity of recovering the correlation energy in
wavefunction theory have yet to be demonstrated in transition-metal chemistry, but some have

been developed to aid identification of when correlated WFT is needed (See Sec. 5.3.2).
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Statistically informed (e.g., with mutual information between orbitals?!#) methods of active space
selection?%% 210: 214 have also demonstrated promise. ML models for active space selection?!! have
yet to be demonstrated on large transition-metal complexes but could be improved to enable
rapid assessment of the effect the active space on property prediction. The ways in which data
science is informing and enriching chemical discovery efforts by reducing barriers to the
application of expert-level computational chemistry decisions is discussed in greater detail in
Sec. 5.3.2.
3. Physicochemical Properties of Transition-Metal Complexes.

The tunable nature of metal centers in open-shell transition-metal complexes gives rise to
a range of applications. Transition-metal complexes are most well established in the field of
homogeneous catalysis, including their use as precatalysts.?*82%° Molecular transition-metal

250-251

complexes have also long been studied for their potential as sensors , machines®>,

253-254 255-256

molecular magnets , redox couples for energy storage , and dye sensitizers®”2%%, As a
result of their nature and applications, the target properties for prediction by machine learning or
traditional computational (e.g., quantum mechanical or molecular mechanical) techniques differ
from those in other domains, such as heterogeneous catalysis, solid-state materials, or in
discovery of organic molecules as therapeutic drugs. We thus briefly review these key focus
areas for property evaluation with experiment and their relationships to computational
predictions. Discussion of these properties provides useful background on the development of
statistical and deep learning methods for their prediction (Sec. 4) and in materials discovery (Sec.
5).

3.1. Catalytic Properties.

The most widespread application of transition-metal catalyst design is likely in the
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selective functionalization of fine chemicals (e.g., therapeutic drugs While heterogeneous

catalysts are favored in many large-scale operations®®, molecular catalysts remain superior for

)248, 260

select industrial applications such as hydroformylation (e.g., with Co or Rh , olefin

)?61, or selective C-H activation (e.g., with Pd)**?. Transition-metal

metathesis (e.g., with Ru
complexes also have been used widely in photocatalysis?®® and in molecular electrocatalysis®**
(e.g., for water oxidation?®). Identification of optimal catalyst ligand structures requires
determination of the mechanism and turnover frequency (i.e., how quickly the catalytic cycle
completes). Catalysts also must be optimized for their selectivity for the preferred reaction
without generating undesired intermediates. For a designed catalyst to be useful in practice, the
catalyst structure must also be determined to be stable (e.g., not prone to auto-oxidation,
dimerization, or ligand dissociation) and not easily deactivated.?® Observations of catalyst
activity will be sensitive to the reaction conditions, including temperature, solvent, and pH.
Frequently, experimental efforts tune the Hammett parameters of ligands?®’ (i.e., through
electron-donating and electron-withdrawing group addition) or otherwise vary ligand properties
in order to deduce structure—property relationships. Such kinetic studies can reveal linear free
energy relationships (LFERs) that identify limits of how reaction steps may be tuned.?68-26°
Challenges for interfacing data-driven or computational models with experiment occur
when the key reactive catalyst structure is poorly characterized, e.g., if the added species is
effectively a precatalyst?’" that aggregates into catalytically active nanoparticles?’!. Furthermore,
flexible ligand structure and noncovalent interactions have been increasingly adopted as useful
tools in catalyst design®’?, but their contributions in operando can be challenging to determine.

Experimentally, many characterization techniques can only be applied to the spent catalyst or

reaction products, with short-lived intermediates sometimes trapped through freeze-quenching
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X-ray absorption spectroscopy?’?, a technique more widely employed in enzymology?7427>.

Other useful spectroscopic techniques for catalyst characterization include ultrafast vibrational
(e.g., infrared) spectroscopy®’®, electrochemical characterization with cyclic voltammetry?”’,
isotopic labeling?’®, and mass spectrometry?’-280, Reactions involving hydrogen (e.g., hydrogen
atom transfer) can be sensitive to quantum mechanical tunneling effects. Experimentally, kinetic
isotope effects can be used to probe the relevance of such contributions in catalysis.?’8: 28!

Given the fleeting nature of intermediates, computational tools are an essential
complement to experimental catalyst studies. Computationally, relative energetics of

intermediates can be identified and activation energies used to obtain rate constants, with trends

in rate constants being less sensitive to method errors (see Sec. 2). Combining rate constants with

282 1283 284

microkinetic*** modeling or the simplifying degree of rate control*®> or energy span models
can help to refine the identification of rate-determining steps, rate laws, and to relate
computational predictions to experimentally observable turnover frequencies and numbers
(Figure 19).28% For many open-shell transition-metal complexes, the identity of the spin state is
believed to be important, whether by confining the reaction to a single spin state or by multiple

286287 Tn these cases, calculation of

spin states being invoked to explain reactivity patterns.
minimum energy crossing points between spin surfaces as well as coupling between spin
surfaces becomes important.?®® All of these efforts are sensitive to errors (Sec. 2) in the
electronic structure methods typically employed (i.e., DFT). The experimental resolution of spin-
state-dependent reactivity (i.e., with distinct kinetics for each spin state) is challenging but has

been corroborated through spectroscopic and kinetic isotope effect data (e.g., for C-H

activation).?89-2%
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Figure 19. Depiction of the use of the energetic span model to obtain turnover frequency (TOF)
and turnover number (TON) from (a) a simplified kinetic model in conjunction with (b)
computational activation energies and reaction energies. Deactivation of a catalyst by a slow,
irreversible step (red) will cause eventual deactivation. The turnover frequency on the target
catalytic cycle (blue) is defined by the energetic span, 0E. Reprinted with permission from ref.
285. Copyright 2011 American Chemical Society.

Computational modeling of reaction mechanisms can aid these experimental studies.
However, exhaustive search of intermediates and evaluation of transition states are time-
consuming. This motivates the reliance on the Bronsted—Evans—Polanyi principle to use reaction
thermodynamics as a proxy for activation energies, a particularly widely exploited approach in

computational heterogeneous catalysis.?*!

The benefit of such analysis has also been realized in
experiments through the observation that simple-to-obtain properties can predict catalytic
activity.?”?> The experimental characterization of some properties of the metal center (e.g.,
transition-metal hydricity?>®) has been used to predict the effect of solvent on the reactivity of
transition-metal catalysts (e.g., for CO, reduction®?).

The direct or indirect roles of the solvent and counterions in homogeneous catalysis are
increasingly areas of research focus.??>2° Computationally, the role of solvent, solubility, and
entropic corrections (i.e., both harmonic and anharmonic contributions) are often neglected or

treated only approximately (e.g., with implicit models)*’ with studies that consider these effects

in combination being rare exceptions.?”® Correction schemes for computational electrochemistry
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that may work well for redox potential refinement (Sec. 2) are expected to be challenged by
significant rearrangement across an electrocatalytic cycle?**-3%,
3.2. Redox Properties.

Redox activity and electron transfer processes are useful for catalysis and energy storage.
Cyclic voltammetry is used to determine redox potentials, including for electrocatalyst and
functional materials characterization.?”” Well-established redox processes, e.g., the one-electron

194-195

oxidation of ferrocene, can be useful as an internal reference both computationally and

301-302

experimentally , especially when varying the solvent in which the redox potential is

measured. Nevertheless, only a few moderately sized (ca. 100+ points) data sets of experimental

178,303 are available across a range

redox potentials for mononuclear transition-metal complexes
of solvents.

Experimentally, challenges exist in identifying if the structure changes (e.g., by
complexation of distinct solvent molecules or counterions***) when a material is oxidized or
reduced. When multiple metal centers are present in close enough proximity to form metal-metal
bonds, unexpected changes in the number of redox events and in redox potential values have
been observed (Figure 20).>% Some of these changes can be traced to the degree of metal-metal
bonding (i.e., distance estimated from the formal shortness ratio) and the resulting spin state
(Figure 20).’> An added challenge for both computation and experiment is the difficulty in
knowing a priori when ligand non-innocence will lead to ligand oxidation or reduction rather
than the electron transfer event occurring at the metal.’%-3% A well-established example of this
effect is the valence tautomerism between catecholate and semiquinonate forms of chelating
ligands, where a reversible equilibrium between the two ligand states can be observed at room

temperature, depending on the metal ion identity, charge, and spin state.>%
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Figure 20. (Left) Depiction of qualitative d-orbital manifolds of select bimetallic complexes
formed with double-decker ligands, with the first metal in the lower binding site. The coloring of
the energy levels and electrons denotes whether they are delocalized (black) or localized (red and
blue) to specific metal sites. The difference in electron configuration between the two metals is
indicated as AN. (Right) Cyclic voltammograms of selected bimetallic complexes with the same
ligands, some of which have up to 4 reversible one-electron transfers (e.g., CrNi or CrCo).
Adapted with permission from ref. 305. Copyright 2015 American Chemical Society.

For redox couples, even simple cases with a single metal and no anticipated ligand non-
innocence, accurate calculation of a redox potential can be a challenge because errors can be
sensitive to the relative accuracy of the evaluation of properties of the reduced and oxidized
species. Computationally, referenced Born—Haber cycles have been proposed'®*!%° as a way to
reduce errors (see Sec. 2 and Figure 14), but additional corrections are often necessary for highly

310-311

charged transition-metal complexes. Explicit treatment of solvent, especially in aqueous

312-314 " \whereas

solution, has been shown to be critical for reproducing experimental trends
implicit treatment of the solvation environment on redox processes is more computationally
tractable for screening and for training data-driven models.
3.3. Optical Properties.

Optical spectroscopic interrogation of transition-metal complexes is useful both for their

characterization®!>316 (e.g., electronic and oxidation state identification) and for understanding

how their optical properties can be exploited for various applications. For example, harnessing
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light to enable chemical transformations is widely exploited in photocatalysis.**> Transition-

317

metal complexes have long been used as dyes®!”, dye sensitizers in optoelectronic devices*’, and

318 The spectrochemical

have recently seen even broader application in molecular electronics
series of strong-field (e.g., CN™ or CO) to weak-field (e.g., H-O or oxalate) ligands is named for
the observed relationship between optical absorption of homoleptic octahedral complexes and
the effect of the ligands on the metal d states.’! In some cases, tuning optical absorption by a
complex across the visible range (i.e., as observed qualitatively or with UV/Vis absorption
spectra) is also possible via solvent adjustment or by tuning the field strength of the axial ligands
alone®? (e.g., tuning L in Rha(OAc)4(L)2, Figure 21). Depending on the ligand, the absorption

321 or into the near

range of transition-metal complexes can be tuned (e.g., into the visible
infrared®'”). While a key advantage of optical characterization is that the absorption spectrum

often provides useful insight into the electronic structure and magnetic properties (e.g., spin

state), the relationship between trends in these quantities is not always consistent®?2,

PPh; (480 nm)
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Figure 21. (top) (Rh2(OAc)4(L)2 solutions (OAc = acetate or “O.CCH3) from left to right with:
isonicotinate, triphenylphopshine (PPhs), p-toluenesulfonylmethyl isocyanide (TosMIC),
benzaldehyde, ethanol (EtOH), and acetonitrile (MeCN). (bottom) Quantitative absorption
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spectra of complexes shown at top, with the lowest-energy band observed to shift to higher
energy (i.e., lower wavelength) for increasing field strength. Adapted with permission from ref.
320. Copyright 2019 American Chemical Society.

In addition to the energy gaps between ground and excited states, other properties of
excited states can be designed such as lifetimes, e.g., for applications in small-molecule
sensing.??! The interplay of optical and redox or spin state properties gives rise to transition-
metal complexes with switchable absorption features®?*. Modulation of absorption in the near
infrared (NIR) has been demonstrated with potential applications include in
telecommunications.*?® Transition-metal complexes frequently act as emissive compounds, most
typically from triplet excited states®?* (e.g., in Ru or Ir polypyridyl compounds). Recently, some
of these complexes have been reported to have intense fluorescence with long lifetimes.*?* When
the intersystem crossing between excited states is faster in one direction than the other, the
resulting phenomenon is called thermally activated delayed fluorescence (TADF), which has
potential applications in lighting and molecular electronics?!® 32°-326, Because the metal center
and ligand chemistry of the transition-metal complex can be tailored to adjust these excited state
properties, they have significant potential for design. Luminescent properties of transition-metal

327 or ligand chemistry. In the context of

complexes can be readily tuned by adjusting solven
lighting applications, they can be tailored for emission ranges (e.g., blue) that are currently
limited in commercial light-emitting diodes (LEDs), leading to advances beyond existing LED
technologies.*!®

Broadly, numerous transition-metal complexes have been observed®?® to have unique
non-linear optical (NLO) properties*?’, making them amenable for switching in response to
chemical, photochemical, or electrochemical stimuli. Different architectures have been

developed, wherein metal centers act as donors, acceptors, or bridging moieties.**® This
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tunability and modularity has led to a range of designs of NLO materials based on transition-
metal complexes.?2-33!
3.4. Magnetism and Other Switchable Functional Materials Properties.

A change in electronic state of a transition-metal complex in response to stimuli that in
turn changes its properties presents opportunities for materials design. As a paradigmatic
example, open-shell metal centers (e.g., octahedral, N-coordinated Fe(Il) complexes) frequently
exhibit spin-crossover (SCO) behavior.?>!: 332333 The transition between a low-spin (LS) singlet
and high-spin (HS) quintet state is associated with changes in optical and structural properties
that can then be leveraged, e.g., in host-guest®>** sensing. This phenomenon also governs SCO
behavior in MOFs***, including the material Co[Cr(CN)s]23zH20, which changes both size and
color as it is reversibly dehydrated (Figure 22). The change in the spin state typically is
associated with a change in the metal-ligand bond length and thus entropic contributions to
stability.>3* In these cases, the high-spin state is often higher in energy but becomes stabilized
with increasing temperature®?2, in the presence of guest (e.g., solvent**3) molecules*®, change in

t337

solvent®7 or lattice packing®®8, or can be trapped via light-induced excitation to the high-spin

state (i.e., LIESST)*°. This behavior has also been observed for other metals®* (e.g., Co(I1)3*°)

and in non-octahedral’*!-3#? environments.
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Figure 22. Depiction of color (top) and structural (bottom) changes when Co[Cr(CN)s]23zH20
is reversibly dehydrated. The pink solid is a ferromagnet that reversibly transforms into a blue
antiferromagnet on dehydration, due to the presence or absence of water molecules at Co(II)

centers. Reprinted with permission from ref. 334. Copyright 2013 Royal Society of Chemistry.
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SCO complexes can be characterized a number of ways. The magnetic susceptibility as a
function of temperature typically reveals the nature of the crystalline or solution environment,
either having a gradual or abrupt switch along with differing hysteresis widths. SCO is also
typically associated with changes in the UV/Vis spectrum (see Sec. 3.1 and Figure 22). For iron-
containing complexes, Mossbauer spectroscopy provides key insight into electron density at the

343 In fact, Mossbauer spectroscopy was

metal center, electron configuration, and magnetic state
developed in part through observations on SCO complexes.*** Numerous metals (e.g., Mn, Co)
are also amenable to characterization with electron paramagnetic resonance (EPR)
spectroscopy>*+*

The magnetic properties of transition-metal complexes have also been tailored for device
miniaturization in data storage/memory and quantum computing. For quantum computing,
molecular qubits**-347 containing a range of V and Cu centers have demonstrated promise and

have been characterized with both magnetic susceptibility and EPR. For memory storage, single-

molecule magnets®>4 348-330 containing either multiple Mn centers or mononuclear metal
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centers®>?, often with heavier lanthanide elements, have also been designed and characterized for
their magnetic susceptibility. From a machine learning or computational chemistry perspective,
properties of SCOs, single-molecule magnets, and qubits are all influenced by spin state
ordering, entropic contributions and spin—orbit coupling between states, with each having some
challenges in its description with first-principles methods (see Sec. 2).

4. Statistical Modeling for Transition-Metal Chemistry.

Statistical modeling techniques have long been applied in transition-metal chemistry.
However, the availability and diversity of data in transition-metal chemistry imparts unique
challenges and opportunities. We describe the available data sets and analysis derived from data
mining of experimental and computational results in Sec. 4.1. Next, we briefly describe
descriptor development and application in quantitative structure—property relationships (QSPRs)
on both experimental and molecular modeling data in Sec 4.2. We conclude this section with
early and more recent demonstrations using machine learning algorithms such as kernel ridge
regression as well as deep learning (i.e., with artificial neural networks) in Sec. 4.3.

4.1. Data Mining Structures for Chemical Trends.

Data sets of transition-metal complexes tend to be smaller, more varied, and more subject
to uncertainty (i.e., noise) in both experimental (see Sec. 3) and computational (see Sec. 2)
properties than organic molecule data sets. The largest repository of metal-organic complexes is
the Cambridge Structural Database (CSD)'®’, which consists of approximately 140,000 unique
mononuclear transition-metal complexes in a larger number of solved X-ray crystal structures.
The value of mining geometric properties to understand trends and structure—property
relationships was recognized decades ago, despite the fact that the set of structures in the CSD

353

was considerably smaller at that time.*>!-352 User-friendly graphical tools**3, improved annotation
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of metal oxidation state and complex charge®>4, as well as a python API have made it
increasingly straightforward to mine experimental structures. We briefly review opportunities for
using CSD data in data-driven and machine learning models. Reviews by Fey?® and Orpen3*
provide greater detail of how CSD data mining has been used in transition-metal chemistry.
Subsets of the CSD have been mined to identify trends in transition-metal complex
structures, including the propensity of a metal for specific coordination numbers.*® In the 1990s,
Orpen and coworkers started curating subsets from the CSD to interpret “structural systematics”
that related ligand structure and bonding, especially in phosphine ligands.?>’-3¢! Avnir, Alvarez,
and coworkers analyzed large sets (i.e., over 23,000) of transition-metal complex structures from
the CSD and used this data to develop continuous shape measures that describe the relationships
between different idealized coordination symmetries and numbers.>623%5 These symmetry
measures have been employed to rationalize and interpret changes in SCO complex structure
observed with ultrafast spectroscopy.*®® Although developed for molecular crystals, similar local
measures of topology based on Voronoi polyhedral volumes and deviations from idealized
values have also recently shown promise, e.g., for porous MOFs.?’ Analysis of metal-ligand
bond lengths in the CSD has been used to estimate the effective size of atoms, including spin-

state-dependent covalent radii of transition metals*®®

and the degree of covalency in metal-ligand
bonds*®. The CSD has also been widely used to develop an understanding of structure—property
relationships among known classes of materials (e.g., structural asymmetry in Dy-containing
single molecule magnets®’?).

The CSD has been mined to uncover other structural trends. This has led to confirmation

of expected relationships between bond length and strength (e.g., for late Cu, Zn compounds

with common O/N-coordinating ligands)*’!, identification of metal coordination number
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preference®’?, quantification of metal-dependent trans effects (see Sec. 2)*”3, and validation of
the expectation of longer bond lengths for higher coordination numbers?’2. The large number of
structural variations in synthesized ligands also motivated data mining to elucidate the

358 or conformer preference in well-

relationship between metal-ligand bonding and steric effects
studied macrocycles®’4.

Although catalytic intermediates are often fleeting and cannot be captured
crystallographically, structure-reactivity relationships have been inferred from CSD data, e.g.,
by studying the relationship between complex structure and small-molecule binding.’”> For
example, a difference in preference of dinitrogen binding to mononuclear (i.e., end-on) versus
binuclear transition-metal complexes (i.e., side-on) was observed®”® as were shifts in the degree
of metal-dependent (i.e., 3d vs 4d and early vs late) back-bonding in metal-carbonyl bonds®’
(Figure 23). Structures from the CSD have been shown to have good correspondence’’” with
typically challenging to crystallize/characterize metalloenzyme active sites.”” This data set has

been leveraged in a number of other ways, including to curate fragments for improved structure

generation of de novo complexes®*! (see Sec. 5).
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Figure 23. (top) Data of average C—O bond lengths vs periodic group for all transition-metal
complexes with known CO bonds. The error bars shown represent 95% confidence intervals
around the mean. (bottom) Schematic illustration of regimes of bonding for CO ligands in
transition-metal complexes from data-mined CSD structures. Reprinted with permission from
ref. 376. Copyright 2007 American Chemical Society.

Despite the value the CSD data set provides, limitations on the utility of the data are
notable. Most structures are obtained from X-ray diffraction, which by definition includes the
influence of the crystal field environment. Researchers have analyzed packing effects and found
them to significantly influence structures of relatively flexible metal-organic complexes.*$! In
less pathological cases, these effects were observed to be small (ca. 0.01-0.02 A).35%-3¢! In 2006,
Fey, Orpen, and coworkers proposed semi-automated workflows to detect structural outliers and
use DFT calculations to determine if the disagreement between DFT and the crystal structure

was evidence of unusual chemistry versus a potentially erroneously solved crystal structure

(Figure 24).>® Other complications include the fact that structures in the CSD may have

52



unknown or erroneous oxidation state assignment, which has led to recent development of
efficient heuristic models that can automatically assign oxidation state with good (ca. 85%)

accuracy.>*
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DFT geometry
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Molecular Molecular
Structure in Structure in
Crystal Crystal
confirmed by not confirmed by

DFT DFT

Figure 24. Schematic of partially automatic identification and computational confirmation of
outliers in the CSD based on DFT calculations of unexpected transition-metal complex
structures. Reprinted with permission from ref. 378. Copyright 2006 American Chemical
Society.

The intense experimental focus on metal-organic frameworks (MOFs) has been
leveraged in the development of the computation-ready, experimental MOF (CoRE MOF)379-380
database first introduced in 2014°”. CoRE MOF consists of most 3D MOF structures deposited
in the CSD. In 2019, the database was refined**° to expand the original set of 5,109 3D MOFs to

a larger set of 14,142 MOFs along with an improved procedure for identifying and removing free

solvent molecules, recovering disordered structures, and mapping between literature references
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and CSD structural files. This type of database has been exploited to accelerate high-throughput

1

screening of MOFs for C-H activation®®' and to build machine learning models to predict

properties related to gas separations and storage, such as surface area’®?

and adsorption
isotherms®®®. These sets have also been instrumental in revealing mismatches between
hypothetical and synthesized materials®®*. Given that the CoRE MOF resource provides a
mapping between the structures and the literature associated with them, natural language
processing (NLP) has begun to be exploited to map structure to properties in MOFs.383-38 NLP
has been more widely demonstrated for other tasks, including understanding materials synthesis
recipes’® (see also Sec. 5.3.4).

New tools are also being developed as part of the CSD to allow for expansion and
analysis of experimental structures.®®” In a similar fashion to the MOF or solid-state datasets,
closed-shell molecular transition-metal complexes have recently been the subject of high-
throughput computational screening with a combination of semi-empirical methods (see Sec. 2)
and DFT.*8 The generation of DFT properties on experimental structures is considerably better
established for solid-state materials, where a number of repositories are available (e.g.,
AFLOWIib**®, Materials genome project’®®, and Open Quantum Materials Database®”!) that
share semi-local-DFT-computed properties for materials design. An outstanding limitation is that
many of these sets of extracted structures are primarily used as a starting point for simulation,
rather than mapping to experimental results (e.g., for extraction of spectroscopic or catalytic
quantities), which may not be systematically reported. For example, to curate experimental data
for their empirical DBLOC corrections (see Sec. 2), Friesner and coworkers manually analyzed

graphs for key peak features.!”

CSD structural data has also been subject to multiple linear regression (see Sec. 4.2) and
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supervised ML models (see Sec. 4.4) and analyzed with unsupervised machine learning (see Sec.
4.3). In particular, Fey, Orpen, and coworkers have leveraged the CSD data to build “ligand
knowledge base” (LKB)**>3? subsets and analyze them with PCA and MLR.

4.2. Building Structure—Property Relationships: Quantitative and Mechanistic Inquiry.

Recent years have seen the development of machine learning models (Sec. 4.4) that
encode structure—property relationships and enable large-scale chemical exploration (Sec. 5). We
briefly summarize here complementary approaches that bear similarity to machine learning
efforts but typically rely more on intuition and human intervention. First, we briefly review
quantitative structure—property relationships (QSPRs) for transition-metal chemistry, including
frequently invoked descriptors (Sec. 4.2.1) and examples of multiple linear regression QSPR
models (Sec. 4.2.2). Throughout, we use the term QSPR to refer broadly to simple, multivariate
or heuristic mapping of structure to either property or activity of molecules (i.e., both QSPR and
QSAR). Finally, we discuss how these approaches can be used quantitatively or qualitatively to
guide iterative and mechanistic inquiry (Sec. 4.2.3). Some of these approaches remain in
widespread use in conjunction with machine learning models, as will be discussed in subsequent
sections, and the performance of these transparent models can be used to determine when
moving to more sophisticated machine learning models is beneficial.

4.2.1. Common Descriptor Types for QSPRs.

Numerous descriptors have been developed as inputs to linear QSPR models or as guides
for iterative design of catalysts. Recent reviews in Refs. 2-3, 394-396 provide more detail on the
range of descriptors that have been used in the mechanistic study of transition-metal complexes.
We briefly highlight here some representative QSPR descriptors to enable comparison to

representations more typically applied in deep learning in Sec. 4.4. The descriptors typically used
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in QSPR models are either derived from quantities that are easy to measure experimentally (e.g.,
from vibrational spectroscopy or UV/Vis) or to compute. To be predictive across modest (ca. 40—
50) transition-metal complex sets, the descriptors are chosen to represent key chemical variations
that determine an activity or property.

For ligand design in homogeneous catalysis, where the approach of substrate to the
catalyst is strongly directed by ligand shape, a focus has been placed on the sterics of either the
individual ligands or of the complex. An early and prominent example of steric descriptors is the
cone angle for phosphine ligands devised by Tolman*’® (Figure 25). By approximating the
steric bulk of the substituted phosphine ligands, the Tolman cone angle was shown to
approximately quantify experimental measures of the ease of displacing ligands in catalytic Ni(0)
complexes®’3% (Figure 26). For N-heterocyclic carbene (NHC) complexes, the fraction of
volume of the first coordination sphere that is “buried” by overlap with atoms from the NHC
ligand has been proposed as an alternative quantitative descriptor of steric bulk (Figure 25).3%
399-400 Because this volume represents the space around the metal atom that must be shared by the
different ligands upon coordination, it has been shown to be a good linear predictor of the
experimentally measured relative cost to displace ligands from Cr-containing transition-metal
complexes (Figure 27).>% These descriptors have been made accessible to users through the
development of an easy-to-use web interface.*’ First developed in the 1970s, sterimol
parameters of ligand length and asymmetry have recently been demonstrated*”! to be useful
descriptors for QSPRs in the design of enantioselective catalysts*”. Steric descriptors have also
been obtained from the molecular mechanics ligand repulsion energy (i.e., van der Waals terms

only) associated with the cost to displace a ligand from a metal center.*2
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Figure 25. Depictions of (a) Tolman cone angle, (b) buried volume steric descriptors, and (c)
steric map of a (NCH)(Cl2)Ru=CH complex (right) oriented according to the structure shown
on the left. Adapted with permission from ref. 400. Copyright 2016 American Chemical Society.
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Figure 26. Stability of Ni(0) tetrahedral complexes measured through semiquantitative ligand
binding ability obtained from ligand competition experiments as a function of Tolman ligand
cone angle. Reproduced with permission from ref. 397. Copyright 1970 American Chemical
Society.
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Figure 27. Relative experimental bond disruption enthalpy (BDE, kcal/mol) vs steric parameter
(percent buried volume, % /¥ gur) of N-heterocyclic carbene ligands, L, in the Cp*Ru(L)Cl system
(slope: —1.01; R: 0.94). Reproduced with permission from ref. 399. Copyright 2003 American
Chemical Society.

Geometric properties were widely used as descriptors in early QSAR/QSPR studies
because they can be readily extracted from crystal structures*®® (see Sec. 4.1) or reasonably
estimated from moderately accurate molecular mechanics force fields*™* (see Sec. 2).
Experimental or calculated chelating atom distances were used to classify spin-crossover
complexes.*®> Similarly, molecular mechanics and DFT were both shown to be predictive of
experimental bidentate bite angles that can inform reactivity, thus demonstrating how tuning
ligand chemistry can be used to rationally design ligands.*** %% Analysis of known Ziegler—Natta
catalyst structures revealed the importance of metal-ligand dihedrals as descriptors.*®* Other
measures of the planarity of the ligand around the metal (e.g., twisting and puckering) have been
proposed from semi-empirical or force field modeling to be wuseful in predicting
enantioselectivity of catalysts (e.g., Jacobsen—Katsuki epoxidation catalysts).407-408

In addition to numerical descriptors, 3D QSPR descriptors originally developed for

organic chemistry were adapted to ligand design in transition-metal complexes. One of the most
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widely used approaches in 3D QSPR is comparative molecular field analysis (CoOMFA).*® In
CoMFA, a molecular electrostatic potential or steric repulsion is evaluated using a probe
molecule on a grid around the structure. Although initially designed with protein—ligand binding
in mind, CoOMFA descriptors found use in ligand design for transition-metal chemistry.#10-413

In close analogy to COMFA, specialized projections of steric bulk and crowding proximal
to the metal center in steric maps have been proposed to provide richer insight into potentially
anisotropic contributions relevant for enantioselective catalysis (Figure 25).4 Lipkowitz and
coworkers pioneered*!##!> an approach tailored for enantioselective catalyst design that they
referred to as stereocartography. In this approach, the probe is a transition state displaced along a
grid to identify regions of maximum stereoinduction (Figure 28). Using this stereocartography
technique in conjunction with semi-empirical energy evaluations, most (ca. 95% or 17 of 18)

catalysts were found to conform to the hypothesis that enantioselectivity is made possible only

when the point of greatest discrimination between enantiomers is close to the reacting center.*!#

415

Figure 28. Location of transition-state probe and region of maximum stereoinduction for a
catalyst with a docked transition-state probe (left: front, middle: side, and right: top views). The
heavy atoms of the catalyst are depicted as sticks, the transition-state probe atoms are shown in
ball-and-stick, and hydrogen atoms are omitted for clarity. The bottom row shows the most
enantiodiscriminating region within a sphere of 1 A radius centered about the most
enantiodiscriminating grid point. Reproduced with permission from ref. 414. Copyright 2002
American Chemical Society.
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Through-bond electronic effects are also known to have a significant influence on the
properties of transition-metal complexes and have therefore been invoked in QSPR models. For
example, Hammett parameters have long been used to quantify and predict effects of tuning on

416417 Both parameterized semi-empirical methods and DFT functionals became

catalysis.
increasingly accessible over the past 20 years (see Sec. 2), leading to the increased use of QM-
computed electronic descriptors in QSPR/QSAR modeling.® 3°* Electronic parameters easily
extracted from DFT were observed to correlate to experimentally measured structural
determinants of reactivity that could only be obtained after a catalyst was crystallized and

characterized.*'® Widely employed descriptors include metal partial charges and quantities

derived from frontier orbital energies.*!® Reactivity descriptors such as estimates of

419 420

electrophilicity*’” or softness*<” of the metal have been proposed. Similarly, explicitly computed
ionization potentials, electron affinities, or the analogous orbital energies (e.g., HOMO or
LUMO) have been widely used as descriptors owing to the expectation of their influence on
reactivity #2421 Other DFT-derived descriptors include simpler-to-compute quantities (e.g.,
LUMO, pK.) representative of the overall catalytic activity but obtained only on the organic
ligands in the complex.*?? The application of these descriptors in iterative catalyst design with
linear models is discussed next in Sec. 4.2.2, and the relationship of these descriptors to those
developed more recently for machine learning applications will be discussed in Sec. 4.4.
4.2.2. Examples of QSPR Models for Transition-Metal Chemistry.

QSPR modeling in transition-metal chemistry has provided important insight into the
design of transition-metal complexes. Here, we distinguish QSPRs from other supervised

learning (Sec. 4.4) models by referring specifically to models developed on small data sets (ca.

50-100) points that are typically used to predict an experimental measure of catalyst activity,
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redox potential, or other property using (multiple) linear regression (MLR).> 3% 410 While QSPR
models are typically fit to all available data given the small data set sizes, there are exceptions
where cross-validation error*?® or other error estimations from bootstrapping were
demonstrated.*%

Prediction and tuning of redox potentials is an example application to which QSPR
modeling has long been applied because the absolute experimental redox potential is challenging
to predict even from accurate theoretical chemistry methods (see Sec. 2). At the same time,
prediction of relative redox properties to identify opportunities for tuning is an easier task, and
corrections to DFT can be easily fit with simple linear models!** >4, For example, the difference
in strain energy between reduced and oxidized states of redox couples (e.g., Co(III/IT)*?3-426)
from a tailored (i.e., MM2 with tuned terms for the metal-ligand bond) force field has been
demonstrated to estimate experimental redox potentials with reasonable fidelity (i.e., R> = 0.78).
This agreement is impressive considering the neglect of solvent, entropic, and other electronic
effects not included in the methods. Descriptors from DFT, such as orbital energies of electrons
involved in oxidation, have also been used to identify how to tune redox potentials (e.g., in W-
containing complexes*?’).

For predicting spin-state-dependent behavior, Phan et al. showed that the experimental
nitrogen—nitrogen separation of a free ligand in 33 homoleptic Fe(Il) diimmine complexes could
be used to classify when a complex would exhibit spin-crossover behavior (Figure 29).40°
Geometric descriptors were also found to be important in iterative ligand design for spin state

428 Data mining and linear correlation analysis has also been

properties of Fe(Il) polypyridines.
carried out on substituted Mn cubanes to identify the most important structural properties that

influence magnetic behavior.*?
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Figure 29. Comparison of N-N separations (in A) for free ligands from 33 tris-diimine Fe(II)
complexes with their known spin state preference. Reprinted with permission from ref. 405.
Copyright 2017 American Chemical Society.

QSPRs have been most widely employed for experimental catalyst screening. Much of
this work is outlined in recent reviews such as Refs. 394, 413, 430. Often, the target predicted
quantity (i.e., experimental enantioselectivity) in these cases is sufficiently challenging to obtain
from computation such that even relatively expensive descriptors derived from DFT calculations
represent an efficiency improvement over direct screening. In nearly all such cases, a single
metal and oxidation state is employed, meaning that organic-focused descriptors developed for
organic chemistry QSPRs are often suitable. Sigman and coworkers have demonstrated both
quantum mechanical and steric descriptors across data sets of numerous catalysts to predict

431-433 a5 reviewed in detail in Refs. 401, 430. In most cases, descriptors are

experimental activity
evaluated on a single ligand or substrate conformer, but for highly flexible ligands and
substrates, weighted evaluation of 3D descriptors has been demonstrated.*** In many of these
examples, the QSPR models themselves serve to guide improvements to ligand chemistry.

At the same time, models capable of predicting DFT-derived catalytic properties have

also been pursued in cases where experimental data was limited or as a means to understand
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trends in DFT-derived reactivity. For example, Truhlar and coworkers investigated*'® how linear
models could predict selectivity of Ru catalysts with NHC ligands toward olefin metathesis over
cyclopropanation. To simplify screening, they correlated DFT estimates of catalyst selectivity
(i.e., relative reaction free energy barriers of the competing reactions) to electronic structure
descriptors (Figure 30).*!” They showed that both metal partial charge and electrophilicity could
explain DFT selectivities, highlighting a useful trend for experimental ligand design.*!® While
correlations to experimental data may be preferred, identification of predictive quantities from
the DFT calculation provides important insights into design principles where experimental data

is limited or not robust due to contributions from competing processes, such as side reactions.
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Figure 30. (top) Electrophilicity index, o, as a function of the CM5 partial atomic charge of the

Fe ion in the metallocyclobutane complex, O(Fe). (bottom) Free energy selectivity, o, from the

difference of free energies of activation of reactions 1 and 2 as a function of ®. Resulting linear
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fits are shown inset. In both panels, each data point is for a different ligand environment.
Reproduced with permission from ref. 419. Copyright 2018 American Chemical Society.

Parveen et al. investigated whether through-space geometric descriptors or through-bond
electronic effects could better explain differences in 38 sandwich Zr complexes for
polymerization.**> The developed MLR models were predictive of reactivity trends (R? = 0.86)
and performed nearly as well as more sophisticated (e.g., ANN) machine learning models.*¥
Jensen and coworkers employed a combination of cheminformatics-derived topological (see Sec.
4.4) and DFT-calculated descriptors to predict DFT-calculated estimates of activity for 82
ligands in Grubbs Ru olefin metathesis catalysts, where the DFT-calculated activity was also
known to correlate to relative experimental activity.**® The final MLR model consisted of 14
features and had a modest cross-validation error after manual pruning of descriptors on a
representative test set below 1 kcal/mol.**¢ Analysis of the most important features revealed the
dominant role of geometric and electronic properties of the Ru=CHz bond for iterative ligand
design (see Sec. 4.2.3).436

Linear models have also been built on DFT data to identify substrate-dependent factors
that favor different (e.g., homolytic vs heterolytic bond cleavage) catalytic mechanisms.*’
Nazemi and Cundari used this analysis to identify that substrate pK. could play a more
significant role than homolytic bond dissociation free energies in C—H activation by metal-oxo
catalysts.*3” Correlations of ligand pK. have also been demonstrated across far-ranging

422 kinetics.

applications from ligand precursors in quantum dot synthesis**® to CO> conversion
Relationships between pK. and a target activity/property are closely related those observed by

Hammett on organic compounds*'®#!7 and the concepts of linear free energy relationships

described in Sec. 4.2.3.
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Fey et al. used QSPR descriptors and MLR models as analysis tools for understanding
ligand chemistry for design.** They observed that stability of Cr complexes with chelating
bidentate P,P or P,N ligands, as judged by DFT ligand removal energies, could be well predicted
(R? = 0.95 and mean squared error of 3.2 kcal/mol, Figure 31).4% This model used a combination
of only five descriptors that included the proton affinity of the coordinating phosphorus in the
ligand, two from the binding energy of the ligand to other metals (Zn or Pd), and two structural
properties of the Zn complex analogue (i.e., the Zn—Cl bond in a Zn(L)Cl> complex and the
change in ligand angle upon complexation).*’ Addition of other descriptors, including the
HOMO energy or other geometric properties, did not substantially improve model performance.
This analysis highlights strategies to tune ligand chemistry and the extent to which these design

principles might be transferable across multiple metals.
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Figure 31. Prediction of the binding energy of a bidentate phosphine ligand, L, to Cr from DFT
(BE(Cr), in kcal/mol) in a Cr(CO)4L complex. The model R? is 0.95 and descriptors include the
binding energy for ligands to Zn and Pd complexes computed with DFT as well as proton
affinity of one side of the ligand and change in a ligand angle upon complexation. Adapted with

permission from ref. 406. Copyright 2008 American Chemical Society.
As an alternative approach, Maseras and coworkers*® used singular value decomposition
(SVD) to uncover the predominant descriptors to build QSPRs for ligand binding energy (Figure

32). They determined that the number of “hidden” descriptors needed to predict DFT-level bond

dissociation energies (BDEs) from transition-metal complexes was quite small, with a model that
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used only six able to predict the DFT BDE to within 1.4 kcal/mol. While application of the
model to new complexes requires additional calculations to generate the relevant matrix
elements, model generalization error was low** (Figure 32). They then identified the correlation

between the six predominant descriptors obtained from the SVD to individual descriptors from a

set of over 660 standard quantities (e.g., charges, volumes, ionization potential, etc.).***
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Figure 32. Schematic of singular value decomposition approach to analyzing hidden variables in
DFT-computed bond dissociation energies between a matrix of metals and ligands in transition-
metal complexes. The reduced dimensionality enables generation of a simplified matrix product
to obtain estimated BDEs. Reproduced with permission from ref. 439. Copyright 2018 American
Chemical Society.

4.2.3. Descriptors in Linear Models and Iterative Design.

Many transition-metal complex design studies leverage individual descriptors normally
employed in combination in QSPRs to instead develop, test, and validate hypotheses. Such
studies may evaluate effects one at a time or employ descriptors to guide the update of the set of
compounds to evaluate with DFT or experiments. For example, orbital energies found to
correlate to C—H activation were used to accelerate the screening of ligands for candidate
methane-to-methanol catalysts with metals (i.e., Rh) that have been less frequently studied
experimentally.**® Such relationships tend to hold well within a given spin state and metal, but

catalysts with varied ligand chemistry (e.g., denticity) or spin states often require the

development of multiple linear relationships when a single descriptor is used. As an example,
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Sautet and coworkers showed multiple correlation lines were needed to explain the relationship
between the LUMO c* orbital of open-shell Fe=O moieties and the C—H activation energy when

comparing monodentate and multidentate catalysts (Figure 33).44!
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Figure 33. Correlation between the DFT (i.e., OPBE) energy of the o* orbital of the Fe—oxo
complex in eV and the DFT barrier height of the C—H abstraction step in kJ/mol for model
catalysts in the HS-c path. Two subsets are distinguished: (1-12, monodentate model catalysts)
in black and (13-38, macrocyclic, experimentally motivated catalysts) in blue. Crosses indicate
complexes with a quintet ground state, while diamonds indicate those with a triplet ground state.
For the Fe=0O complexes with a triplet ground state, the activation energy for C—H abstraction
along the LS-m path is also plotted as a function of the energy of the n* orbital shown as red
diamonds without any correlation indicated. Reproduced with permission from ref. 441.

Copyright 2015 American Chemical Society.

Common phosphine ligand descriptors related to angle and bonding strength were used
by Cooney et al. to computationally identify novel ligands that exhibited behavior distinct from
those that had been previously synthesized (Figure 34).**> While less frequently applied, this
descriptor-guided screening approach has been employed to identify ways to improve catalyst
stability (i.e., by strengthening the bond with the weakest ligand) without affecting activity.**

When sterics are believed to play an essential role, this screening and iterative design process has

been accelerated by using molecular-mechanics-derived quantities such as the ligand repulsion
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energy*®? to predict relative stereoselectivity of substrate binding.*4

0

CF3
80 Me U pnome *
6 . | 7@ )
- mezph ¢ /| Etcre
o 40 ¥ 3 ]
s iPr o Bz r. OJ: axis2 |
= 30 f
by E nPr | !
20 Yoy, prol / / —[ ]
tBu ¢ L2 “‘ >’ )Ragiona I
10 |
axis 1 N’ i
0 . r . . . r . i
2060 2080 2100 2120 2140 2160 2180 2200 2220
SEP (cm-1) @Ay & An
@Fluoionated Alky
A4MemRings
135 B3 M em Rings
Ph hi
120 = . Sanenrires
06 Mem Ri
- 105 " h @5 tiem R
g 20 = 5 L] ‘n’r.:;m:-'.‘g
E 75— ofad——— aa
2 &0 4 4, b0 & 4 " & .
..E 45 E%""'&,oowo'?. o & ) )
;rj + @ 4" ° °
30 - =
L. (-]
15 |- - -
0 ; £

T T T T 1
2080 2100 2120 2140 2160 2180 2200 2220

SEP (cm™)

Figure 34. (top) Calculated stereoelectronic map for phosphines derived from semi-empirical
(i.e., PM3(tm)) calculations on trans-Rh(PR3)2(CO)Cl with ligands from the CSD. (bottom)
Proposed properties of novel phosphines that fill in the gap identified in the top graph. SEP
corresponds to the stretching frequency of the bound CO and S4’ is a modified Tolman cone
angle. Adapted with permission from ref. 442. Copyright 2003 American Chemical Society.

Exploiting linear free energy relationships (LFERs) between activation energies and
reaction energies or selectivities as well as relating energies to a specific descriptor is a special
example of descriptor-based design. This approach has been most widely applied and
popularized in heterogeneous catalysis, where it has been shown that bulk metal alloy reaction
energetics are closely related to descriptors (e.g., the d-band center), enabling estimation of
overall optimal activity (i.e., a maximum in a volcano plot) from a single descriptor.** The
natural bridges between heterogeneous and homogeneous catalysis have become more

381, 447-448

evident**, as LFERs have been widely demonstrated in single-site MOF catalysis
single-atom catalysts (SACs)**-430 a family of materials with isolated metal sites coordinated by
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N-doped graphene substrates that resemble and behave like macrocyclic catalysts (e.g.,
porphyrins)*!.

Within homogeneous catalysis, the potential role of LFERs for catalyst design has thus
been investigated with increasing interest in recent years.4?? 441, 446, 432-458 Corminboeuf and
coworkers*24 have demonstrated how LFER-based volcano plot development can be used to
accelerate homogeneous catalyst screening. They have demonstrated their approach to scaling
relations for a range of reactions including cross-coupling®4+°>, hydroformylation*>?, and CO,
hydrogenation*>2, among others. Recognizing the potential variability of mechanism and scaling
relationship as ligand chemistry changes, they proposed* developing and applying scaling

relations within families of ligand types (e.g., phosphines) to then construct multiple volcano

plots and identify the optimal ligand chemistry for a specific reaction (Figure 35).
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Figure 35. Summary of an approach to generate volcano plots from scaling relationships. a) The
free energy profiles for several catalysts bearing the same ligand are computed. b) Linear scaling
relationships between relative free energies of the transition states and the free energy of the

69



descriptor variable are established. ¢) Simulated volcano plots for each ligand type are derived
from the linear scaling relationships. d) The peak positions are then related to a steric parameter,
such as the cone angle, and equations are derived that relate the steric parameter to a new peak
position. €) The peak positions of the hypothetical volcanoes for new catalysts are plotted. f) The
final hypothetical volcanoes are created by using the volcano slopes from the computed data.
Reproduced with permission from ref. 453. Copyright 2016 Royal Society of Chemistry.

In cases where a mechanism and scaling relationship is known, iterative experimental-
computational efforts have been carried out in which calculations are used to predict
functionalizations of ligands that will lead to improved performance on established catalyst
scaffolds.***! In another example, computed relative free energies were correlated to
experimental selectivities (i.e., for 1-octene over 1-hexene formation) for ethylene
oligomerization.*%? This correlation was exploited to successfully computationally screen new
ligand chemistry with the desired selectivity and validated experimentally (Figure 36).46? This
type of relative free energy barrier screening has also been beneficial in identifying, for a fixed
Ni phosphine catalyst chemistry, which leaving groups on substrates were compatible with the
desired functionalization (Figure 37).%3 Numerous researchers have exploited computed*64-463
transition-metal hydricities?**>** as a descriptor for activity in Fe(Il) and Co(Ill) CO;
hydrogenation catalyst screening, owing to the scaling relationships to other governing steps in
the catalytic cycle, including CO binding. The energetic span model®®* represents a
generalization of this approach and has been fruitfully employed to iteratively vary pincer ligand
design to maximize activity for carboxylation with CO> by identifying ligand features that
increase turnover frequency*®® or to analyze the effects of functional groups on Rh sandwich

catalysts*®’.
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Figure 36. Predicted 1-hexene:l-octene weight % ratio for Cr-catalyzed ethylene
oligomerization with phosphine monocyclic imine ligands from relative free energy barriers for
the two reactions compared to the experimentally observed result. NA = catalyst not synthesized.
The experimental weight % ratios are normalized for Ce+Cs fractions and include all Cs or
Cs components. Bottom right corner shows the X-ray structure of [Li(THF)2]*[(L2)Cr''Cls]".
Reproduced with permission from ref. 462. Copyright 2018 American Chemical Society.
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Figure 37. Computational prediction and validation of the leaving groups compatible with Ni-
catalyzed trifluoromethylthiolation by the catalyst depicted at top. Reproduced with permission
from ref. 463. Copyright 2016 American Chemical Society.

Nevertheless, the LFER-based, iterative screening approach has been most successfully
demonstrated in closed-shell complexes with late transition metals. Larger-scale exploration of
multiple oxidation states and spin states typically reveals the limitations of LFERs in catalyst
screening. For example, the HOMO level of the resting state of a catalyst has been invoked as a

good descriptor for how favorably a high-valent metal-oxo species capable of C—H activation
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152, 441, 456, 468 Gani et al

will form**®, but numerous screening efforts have revealed exceptions.
observed®® that geometric distortions about Fe(Il) metal centers in minimal model catalysts
broke the strong scaling between HAT and oxo formation central to the design of direct
methane-to-methanol conversion catalysts (Figure 38). Tuning the ligand field, however, resulted
in shifts along a standard scaling relationship, and analysis of experimentally characterized
catalysts revealed that many macrocyclic catalysts indeed had the favored metal-ligand plane
distortion. Distortion was also observed to be naturally occurring and beneficial in a class of
Fe(I) single-molecule magnets due to Jahn-Teller distortions.*® Nandy et al. showed*’ that
over a set of nearly 1200 catalysts, scaling relationships between metal-oxo formation and HAT
differed widely with metal, oxidation, and spin state (Figure 39). The observed scaling relations
also differed from those that had been proposed in heterogeneous®!> # (i.e., including MOFs38!)
catalysis. These wide variations indicated that use of a single scaling relationship across the

entire data would fail to be predictive for catalyst screening, motivating more flexible machine

learning models (see Sec. 4.4).
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Figure 38. Oxo formation energy (AE1, in kcal/mol) versus HAT energy (AE>, in kcal/mol) for
minimal model Fe(II) complexes with square planar distorted geometries. The minimal models
are grouped by metal-ligand plane dihedral angle: 10° (circles), 20° (triangles), and 30°
(squares). Symbols are colored according to the corresponding CH3OH release energy (AE3, in
kcal/mol), as indicated in the inset color bar. A single outlier is indicated by a red border.
Reproduced with permission from ref. 456. Copyright 2018 American Chemical Society.

72



(4]
o
T

-0.1F

-0.21- :I:

=03 -
global

® ;
Q
]
» -0.41 I jI:

-0.5 | literature

N
(]
T T

AE(HAT) (kcal/mol)

1 ‘ ] A
0.7k = Cr Mn Fe Co 4 .5

1 1 1 1 1 1 1 1 1 1 1 il 1 1 1
Y% 001 0 1 % % % % 0 1 2 0 1 % % -125
M) s AE(oxo) (kcal/mol)

Figure 39. AE(oxo) vs AE(HAT) LFER slopes and standard errors obtained across catalysts in
16 metal/oxidation/spin states (left) along with representative data sets used to determine LFER
slopes (right). Data is colored by metal, with Cr in gray, Mn in green, Fe in red, and Co in blue,
and shown opaque for M(II) and translucent for M(III) resting states. The range of heterogeneous
catalysis (i.e., literature) slopes®®! 447 is shown as a shaded light brown area, and the global
LFER over all 16 metal/oxidation/spin states studied in the transition metal complex set is shown
as a gray dotted line. The data is labeled A for LS singlet Fe(Il) and B for HS quintet Fe(II), both
left and right, with LFER lines shown at right as dashed and dotted lines, respectively.
Reproduced with permission from ref. 457. Copyright 2020 American Chemical Society.

When the guiding descriptor for ligand design is unknown and the computational cost of
determining reaction energetics is relatively high, a combination of descriptor-based screening
and variation of ligand or metal chemistry in a small-scale screen is often beneficial. These
screens are often used to determine the relative magnitude of effects, first by varying metal and
then substrate or ligand chemistry. Pickup et al. built a computational database to observe what
effects governed the experimental stability of 60 alkyne/vinylidene isomers bound to a transition-
metal complex (Figure 40).4° By comparing metals, substituents on the alkyne, and ligands in
the rest of the complex, they determined*’® that the metal played a far more limited role in
comparison to the alkyne chemistry in favoring a vinylidene structure. Shiekh et al. studied
biomimetic Mo/W CO: hydrogenation catalysts to determine the relative magnitude of changing
metal oxidation state, functional groups distant from the metal, and axial coordinating ligands
(Figure 41).*”! They observed a wide range of feasible H, binding energies that could be used to

tune the catalysts, with oxidation state playing a pivotal role in comparison to functional group
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substitution.*’! Similarly, factors governing ligand redox non-innocence are poorly understood,
motivating a screen of how altering functional groups on o-benzoquinone ligands affects the

behavior of Co(IT) complexes.*’?

Au Au Au
Ag Ag Ag
Pt Pt | Pt |
L
Ru
eIy Cr Cr

S5 6 8 S10

Substituent Effect

Figure 40. Schematic illustrating the exploration of different variables in analyzing substituent
effects on vinylidene/acetylene tautomer stability in transition-metal complexes from
experimental data. The multivariate analysis involves analyzing multiple metals for different
substituents on the binding ligands along with studying ligand effects on select substituents.
Reproduced with permission from ref. 470. Copyright 2014 American Chemical Society.
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Figure 41. Free energy tuning of H» addition (green colored values) over the metal center in Mo-
based catalysts that act as formate dehydrogenase mimics along with their free energy of
activation values (blue colored values) all in kcal/mol. The choice of ligands is indicated
schematically in blue text and arrows highlight the effect of changing substituents versus
changing the axial ligand. Reproduced with permission from ref. 471. Copyright 2019 Royal
Society of Chemistry.

Such studies are also widely used in inferring and confirming metal- or spin-state-
dependent reactivity and mechanistic trends. Examples include comparisons of the role of metal
identity, oxidation state, and row on the relative preference for proton-coupled electron transfer
versus uncoupled reaction steps*’? and examinations of the influences on reactive intermediate
(e.g., metal-fluoro vs. metal-oxo) formation.*’* These studies can also reveal when a descriptor
that is pivotal in one class of reactions or catalysts bears less importance in others or when a

single descriptor will prove insufficient. For water oxidation in bimetallic complexes, varying the

metal identities revealed the numerous possible spin states and their cooperative effect on

75



relative reaction barriers or favored mechanisms, giving rise to complex patterns that could not
be captured by a single chemical descriptor.#’> Similarly, while bite angle is often invoked in
complexes with bidentate phosphine ligands, for reductive elimination at Pd(Il) catalysts, the
effect of electron-withdrawing groups on the ligands was found to be more significant.*’®
Iterative ligand design has also been demonstrated in cases where key aspects of an established
catalyst are preserved, such as the presence of a multidentate ligand, while designing other less
exhaustively explored ligands to propose improvements beyond known best-in-class catalysts.*>”
477 A key caveat in computational design is that ligand flexibility can alter reaction mechanism or
influence predicted activation energies, often requiring a tight coupling between computation and
experiment to realize such suggestions.*’®

While the design of transition-metal complexes for homogeneous catalysis has been the
focus of much of the effort in computational chemistry, the rise of porous metal-organic
frameworks or zeolites for gas separation has also spurred interest in mechanistic and iterative
design with some parallels to catalyst design. Given the distinct scale and nature of MOF
properties, the descriptors favored are often more focused on geometry or topology, as we will
describe in more detail in Sec. 4.4. For MOFs, iterative design has been carried out by holding
fixed metal secondary building units (SBUs) expected to be needed for stability and key features
(e.g., open sites for gas binding) while replacing and varying linker molecules to adjust for other
properties such as surface area for gas storage.*’*-*0 Alternately, researchers can study the effect
of substituting metal sites in well-established frameworks to reveal metal-dependent gas

I Analysis of the

adsorption without confounding factors from varied pore geometry.*s
relationship between the resulting topology of the material and properties for gas adsorption has

been used to reveal design principles and notably to identify a hypothetical material that was
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experimentally verified to have high gas uptake characteristics.**°
4.3. Unsupervised Learning.

The concept of distance in chemical space plays an essential role in the interpretation,
visualization, and manipulation of data sets and machine learning models (Sec. 4.4). Principal
component analysis (PCA) was among the first methods to leverage this concept and thus has
been the most widely employed technique.? PCA reduces a high-dimensional feature set to the
set of normal vectors that encode as much of the variance in the data as possible. PCA has been
widely applied to analyze trends in structural properties of common moieties (e.g., Mo=0) in the
CSD with changing ligand chemistry.*®? Orpen, Fey, and coworkers have developed the most
extensive PCA-based analysis of CSD structures, including through the application of PCA to
electronic descriptors from DFT on DFT-augmented “ligand knowledge bases” (LKB).> %83 They
have exploited PCA on these LKBs to analyze relationships among ligand classes from the CSD
(e.g., monodentate>®- 392 484 and bidentate*®> phosphine or carbene*®¢ ligands). For these curated
sets, Fey and coworkers computed a range of steric and DFT-derived descriptors, and they then
simplified the visualization of the ligand space by PCA dimensionality reduction (Figure 42).
The suitability of the PCA visualization was highlighted by i) good separation and clustering of
families of ligand types, ii) the two components typically represented the majority (> 65%) of the
data variance, and iii) the descriptors were used to build predictive multiple linear regression (see
Sec. 4.2) models (Figure 42). Using PCA on other LKBs, they have also related PCs back to key

ligand variations, such as functional groups*’?, and steric or electronic factors>: 4%,
b 9
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Figure 42. Principal component analysis of the LKB-P ligand set. The first two principal
components from a 28-descriptor set are shown and capture 65% of the variance in the data. PC1
is dominated by steric and G-bond electronic descriptors along with bonding terms, whereas PC2
has a greater emphasis on steric effects. Reprinted with permission from ref. 484. Copyright
2010 American Chemical Society.

As another early demonstration in the 1990s, Beyreuther et al. demonstrated both
structural-descriptor-based multiple linear regression and unsupervised learning approaches,
including PCA and self-organizing maps, which are a type of ANN used for unsupervised
dimensionality reduction (here, 10 neurons in a Kohonen map).**” Using such techniques, they
were able to predict tripodal complex conformations based on local descriptors such as bite
angles using 82 CSD complexes.*®” Within heterogeneous catalysis, PCA has recently been
applied to analyze which DFT binding energy descriptors explain experimental observations*®

or to guide search for new catalysts with improved properties*®

. Rothenberg and coworkers
highlighted the importance of dimensionality reduction in interpreting the three high-dimensional

spaces most relevant to catalyst optimization: continuous feature space, discrete ligand space,

and the ultimate property space being optimized (Figure 43).
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Figure 43. Depiction of how catalyst design involves three types of multidimensional space:
discrete catalysts (space A), continuous descriptor values from representations (space B), and
figures of merit (space C). Reproduced with permission from ref. 489. Copyright 2010 Royal of
Chemistry.

While PCA is primarily carried out on feature spaces, dimensionality reduction of the
space of molecular properties/activities for a set of compounds can also be useful. Such an
approach has been used to identify activity cliffs (i.e., abrupt changes in properties with small
changes in features) to reveal discontinuities in structure—activity relationships in therapeutic
drugs.**® When points are distant in a feature space but similar in property, they also provide
evidence that shallow, transparent models (e.g., MLR or KRR) would struggle to use these
features to obtain a suitable prediction of properties. Thus, selection of optimal features by PCA
has been carried out®! as a feature selection technique, including in an iterative fashion**?, for
ML model training on data sets, as discussed further in Sec. 4.4.

PCA remains the most widely used approach and performs best when visualizing the first
2-4 PCs that capture the most data variance (i.e., ideally the majority). Alternative
dimensionality reduction techniques have recently been proposed, including t-distributed
stochastic neighbor embedding (t-SNE)** and uniform manifold approximation and projection
(UMAP)#*4%and these techniques have seen increased use in materials and catalyst discovery.
Both aim to generate the most informative dimensions for visualizing data differences. The t-
493

SNE algorithm approximately preserves pairwise distances between each data point in a se

but it is stochastic in nature and thus cannot be used as a tool to visualize the effect of adding
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new data. UMAP aims to preserve local structure in a manner similar to t-SNE with slightly
relaxed requirements on the pairwise separation that nevertheless allows for data addition. Self-
organizing maps**’ and other clustering algorithms have been used in chemical discovery, for
example k-means clustering is often used in large chemical spaces to select diverse leads for
property optimization (see Sec. 5.2). An additional use of dimensionality reduction techniques is
in the visualization of the latent space of deep learning models or to identify when new data
points (i.e., either in feature or property space) are distinct from prior training data (see Sec. 4.4).
4.4. Deep Learning and Artificial Intelligence.

In recent years, more highly parameterized supervised and semi-supervised models have
been employed in transition-metal chemistry property prediction and for molecular discovery.
These include kernel methods (e.g., Gaussian processes and kernel ridge regression or KRR) as
well as deep artificial neural networks (ANNs) with multiple hidden layers. In this section, we
review some of the representations used for such models (Sec. 4.4.1) and discuss applications of
supervised regression (Sec. 4.4.2) and classification (Sec. 4.4.3) models to transition-metal
chemistry. In comparison to small-molecule organic chemistry, smaller data sets and more varied
properties introduces distinct challenges for ML in transition-metal catalysis.

4.4.1. Machine Learning Representations.

The representations introduced as QSPR descriptors in Sec. 4.2.3 (e.g., heuristic
Hammett parameters of ligands) can also be used®! #° in conjunction with deep learning
models. Here, we briefly review additional recent representation developments that are more
widely used in supervised deep learning models. For open-shell transition-metal chemistry, the
limitations of force fields and semi-empirical theories were discussed in Sec. 2.2. As a result,

force field or semi-empirical pre-optimization widely exploited in organic chemistry machine
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learning to predict DFT-level energetics®*® are typically avoided in transition-metal chemistry.
As an example of geometry-free representations in transition metal chemistry, Janet et al.
proposed® an ad hoc set of 25 mixed continuous discrete metal-local (MCDL-25) descriptors for
supervised learning (i.e., ANN) prediction of properties of octahedral complexes with mid-row
transition metals. The MCDL-25 descriptors included one-hot encoded metal and coordinating
atom identities, metal-local ligand atom electronegativity and bond order, all selected via
LASSO feature selection on the data set. The most non-local measure included was the truncated
Kier shape index*’ that measured the rigidity and branching of the ligands via the number of
two-bond paths formed by the atoms.

Graph-based representations such as Moreau-Broto autocorrelations®® were first
introduced 40 years ago for use in organic chemistry cheminformatics. In the mid-2000s, Burello
et al. proposed*” path-based descriptors tailored for bidentate phosphine ligands to be used in
machine learning models (Figure 44). Examples of these tailored, ad hoc descriptors included the
minimum path distance between phosphorus atoms, the number of rotatable bonds, and the mass
of atoms within three bonds of the chelating phosphorus atoms (Figure 44). Systematic sets of

1°% as extensions of Moreau-Broto

graph-based descriptors were proposed by Janet et a
autocorrelation (AC) functions® 498 300501 {5 develop the revised autocorrelation (RAC)

representation for transition-metal chemistry. Standard ACs have the form:

Pd:zzlf,l’jé(dij,d) (1)

where P is a heuristic, tabulated property and dj is the distance separating two atoms on the
molecular graph. Five heuristic properties typically used in ACs are: i) nuclear charge, Z; ii)
Pauling electronegativity, y, motivated by its importance in MCDL-254; iii) topology, 7, which

is the atom’s coordination number; iv) identity, 7, that is 1 for any atom, as suggested in Ref. °;
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and v) covalent atomic radius, S. Other heuristic properties that have been used include the

atomic polarizability.’®* These atomic properties can be correlated but recent analysis has

indicated they can be useful to indicate distinct aspects of elements in the periodic table.’*

Figure 44. Representative topological descriptors computed on backbone and R groups of
bidentate phosphorus ligands. (top) The red path indicates the minimum P;-P, connectivity path,
Di. The alternative longer Pi-P» path, D», is shown in blue. (middle) The number of rotatable
bonds is indicated in red. (bottom) The R group descriptor, SAMg<3, is shown in green and
corresponds to the sum of mass of atoms that are within three bonds of the P atoms. Reproduced

with permission from ref. *°. Copyright 2005 WILEY -VCH Verlag GmbH & Co.

RAC:s are an extension of ACs to include both products and differences on the molecular
graph. In order to capture the centrality of the metal and its coordination environment in
determining properties of a transition-metal complex, the convention of RACs also introduced
the selection of scope®, i.e., by choosing which atoms to sum over, such as equatorial versus

axial ligands (Figure 45). RACs also include metal-centered (mc) or ligand-centered (Ic) RACs
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in which one of the atoms in the AC expression is always a metal center or ligand coordinating
atom, respectively (Figure 45). Finally, a chief distinction of RACs is the inclusion of property
differences rather than products, which are non-trivial only for a minimum d of 1 and apply only

to Ic or mc RACs:

Ie or mescope

wreiPy= 3 3 (R=F)o(d,.q) @

i

where scope is chosen to be all ligands or averaged (i.e., equatorial or axial). Extension of RACs
to other materials has also motivated definition of new scopes, as described next. In total, there
are six types of standard ACs and RACs (i.e., full averaged over all, axial, or equatorial; Ic
averaged over axial or equatorial; and mc averaged over all). For a given cutoff d and five
heuristic properties, there are 42d+10 RACs. Observations on small organic molecule data sets
(i.e., QM9°%) has typically motivated>® the truncation of the expansion of standard ACs and
RACs to a depth of three bond paths (i.e., d = 3, RACs). Unlike MCDL-25 or other metal-
nearsighted representations, information about the full molecule is still included in the
expansions of ACs and RACs. However, specific properties of atoms more than three bonds
apart are not included in most RAC descriptors. To this set of graph-based descriptors, a number

of one-hot descriptors are added>*

, including ligand denticity and spin or oxidation state of the
metal. Eliminating RACs that are invariant in the data set typically (e.g., for mononuclear

octahedral transition metal complexes) produces a 155-dimensional feature set known as RAC-

155.50
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start: {lc,mc, f}

property: {x,Z,T,S, I}

scope: {eq,ax,all} <{eq) depth
Figure 45. Schematic of RACs in the equatorial plane of an iron octahedral complex with two

equatorial oxalate ligands shown in ball-and-stick representation. Regions of the molecule used
to classify descriptors are designated as proximal (metal and first coordination shell, in red),
middle (second coordination shell, in green) and distal (third shell and beyond, in blue). Light
green circles and arrows depict terms in a 2-depth mc RAC, and the light blue circles and arrows
depict terms in a 1-depth Ic RAC. Reproduced with permission from ref. 3°°. Copyright 2017
American Chemical Society.

A number of three-dimensional representations have been widely used in organic
chemistry and occasionally applied to open-shell transition-metal chemistry, and we briefly
review some of them here. One popular whole-molecule representation is the Coulomb Matrix
(CM) 3%, The off-diagonal elements of the CM are the products of the ith and jth atoms’ nuclear
charges, Z, scaled by their separation (i.e., Z;Zj/r;), and the diagonal terms are heuristically fit to
0.5Z?%*. The CM representation has strong size-dependence, requiring padding with zeros up to
number of atoms in the largest molecule studied, which can challenge chemical discovery efforts
where the system size is not known a priori. This size-dependence is particularly problematic for
transition metal complex properties (e.g., spin, catalytic) that depend much more on the metal-

local environment and less on the size. The CM also depends on the order of atoms in the

molecule. Alternative 3D descriptors have been proposed and used particularly in organic
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chemistry. These include the Bag of Bonds (BoB) descriptor, which groups interactions by the
pairwise atom-types and distances involved and computes CM-like interactions among them’%.
Other functions have explicit distance decay around local atomic environments, making them
amenable to development of force fields not discussed in this review, and avoid the strong size-
dependence of the CM. These include the smooth overlap of atomic position (SOAP)>%
representation, the SLATM’Y7 representation, and the many-body tensor representation
(MBTR)>%, Since all of these representations require geometries before their calculation, their
utility in transition metal chemistry is limited to closed shell transition metal complexes where
low-cost (e.g., semi-empirical) models provide an adequate initial geometry.

Distance-dependent modifications to RACs have also been proposed to partially account

for structure dependence.’” The Coulomb-decay RAC (CD-RAC) representation was proposed

for prediction of properties of both equilibrium and distorted molecular structures®® as follows:

iipfpf é(di/,,d), d>0
Pd,CD=%< T 3)
1, )

where the d = 0 term adopts the functional form of the CM diagonal, d > 0 terms incorporate
explicit internuclear dependence, and both types of terms are normalized by the number of
atoms, n, to limit size dependence. The heuristic properties encoded by CD-RACs can be the
same as standard RACs, but modified heuristics have also been proposed®” to increase
transferability, including the number of valence electrons (e.g., five for N and six for O) and the
number of bonds the neutral element should form based on the octet rule (e.g., four for C and
three for N).

Tailored representations have been developed for periodic MOFs. Geometric descriptors
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of pore volume and surface area or energetic descriptors from evaluation with probe

molecules®!3

have been employed in gas separation models. An extension to SMILES or InChl
has been proposed!'* to generalize these string expressions for more universal naming and
categorization of MOFs (Figure 46). Both string types preserve the domains of SBU and linker
that are normally used in describing MOF chemistry (Figure 46). Molecular graph-based
RACs*8, 300-501 have been generalized for periodic MOFs*** with an expanded heuristic set that
included atomic polarizabilities. MOFs are divided into the metal node SBUs, linkers, and
functional groups (FGs). Metal-centered RACs are computed on the SBUs, linker-only RACs are

computed both over the full linker and centered on coordinating atoms, and FG (i.e., non-C or H-

atoms in the linker) RACs are computed centered on the FG heavy atoms.?8
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Figure 46. Algorithms are developed to break MOFs down into chemical components and an
underlying topological net. This is then used to generate text-based MOFid and MOFkey strings.
An example of identifying the Cu-BTC MOF using the SMILES-derived MOFid format and
InChlI-based MOFkey format is shown. Reproduced with permission from ref. !4, Copyright
2019 American Chemical Society.

Representations based on atom-counting, compositional®!® features or one-hot encoding

316517 and functional groups only®!” have also been developed for MOFs.

of bond/atom types
While 3D geometric representations have been less widely employed in the context of MOFs,

atomic-property-weighted radial distribution functions (AP-RDFs)°!® have been proposed:
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all atom pairs

RDF'(R)=f Y PPe

rj

s @)

ij
where B is a smoothing parameter, 7;; is the minimum distance of atoms within a certain radius R
inside the unit cell, and f'is a normalization factor. These descriptors are evaluated over all pairs
in the entire MOF unit cell, and the properties P evaluated typically include tabulated
electronegativity, polarizability, and van der Waals volume.

A challenge in representations for inorganic bonding is the extent to which models should
be transferable across electronic states, including molecular charge or metal oxidation and spin
states, as well as across groups or rows of the periodic table. While this remains an outstanding
challenge for machine learning representation development as a whole, it is particularly relevant
for transition-metal chemistry. One approach that researchers have adopted to sidestep this
challenge is to use electronic-structure-based descriptors as inputs to ML models, typically
improving transferability but at the computational cost of an electronic structure calculation as
part of ML model evaluation. Many such descriptors are similar to those described for QSPRs
(see Sec. 4.2.1). In addition, tailored representations applied to machine learning in transition-

metal chemistry have included properties of the metal-centered gradient>!® and metal charge®!®-

521 522-523
2

, orbital coefficients and matrix elements from approximate electronic structure
HOMO-LUMO gaps®!> 32! vibrational frequencies®?!, or components from energy
decomposition analysis>?*.
4.4.2. Supervised Learning Regression Models.

Although supervised ML has been receiving increasing interest in recent years, the
earliest ML regression models applied to transition-metal chemistry were developed nearly 20
years ago.*!» 320- 525 Burello and Rothenberg used QM descriptors (e.g., frontier orbital energies

and structural descriptors) to train models to predict experimental catalytic activity of Pd-based
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cross-coupling catalysts, including with awareness of solvent effects. Available training sets
were around 500 experimental results (e.g., TOF and TON) and could be predicted well by the
models (Figure 47).4°!- 525 They showed that while a range of models were suitable (e.g., decision
trees, linear regression, ANNs), considerably smaller residuals were obtained with the non-linear
ANN models (Figure 47).4! Once trained, the ANN models could then be used to screen a large

space of candidate catalysts at the cost of only DFT-level evaluation*! (see Sec. 5).
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Figure 47. Predicted vs observed (A) TON and (B) TOF values for Heck reactions obtained by
ANN regression, and (C) TON by multiple linear regression. The inset shows the residuals for
each model. Training data is shown as solid circles and test data is shown as open circles.
Differences are observed in the scattered residuals for A and B in comparison to the more
structured residuals for C, suggesting that linear regression fails to capture higher-order effects
for some reactions. Reproduced with permission from ref. 491. Copyright 2004 WILEY-VCH
Verlag GmbH & Co.

&9



Janet et al. trained ANNs to predict the spin-splitting energies of mid-row transition-
metal complexes.>* They used an ad hoc, metal-local descriptor set (MCDL-25, see Sec. 4.4.1) to
increase transferability of the models across a range of transition-metal complex sizes.>* The
performance of the models was balanced across the Cr-Ni M(II)/M(III) complexes studied.’*
The ANN models accurately predict trends in spin-splitting with ligand field strength (e.g., as in
the spectrochemical series) for the full range of M(IT)/M(III) (M = Cr—Ni) metals studied (Figure
48).>* The models were trained on DFT data (ca. 1000 complexes using common ligands from
inorganic chemistry) from a range of Hartree—Fock exchange fractions to account for the
sensitivity of spin-splitting predictions to DFT functional choice. Models were both trained to
predict the exchange sensitivity and to enumerate different lead compounds with changed
exchange fraction (see Figure 18).>* > ANN test set performance (MAE: 2.5 kcal/mol, RMSE:
3.0 kcal/mol) was generally within 1 credible interval, which they estimated from Monte Carlo
dropout®?®, of the DFT ground-truth result (Figure 48). The models also outperformed whole-
molecule descriptors (e.g., the Coulomb matrix) by at least an order of magnitude for the same
data set size.>* Tests on out-of-distribution (i.e., larger complexes from the CSD) complexes
however revealed an increase in errors due to differences from training data.>* Given the high
degree of feature engineering in MCDL-25, Janet et al. showed feature-space distance could be

used to distinguish when ANN performance would be poor on out-of-distribution points.>*
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Figure 48. (Left) High-spin/low-spin splitting (AEu-L, in kcal/mol) for representative ligands
from left to right by increasing spectrochemical series ligand field strength obtained from the
MCDL-25/ANN with credible intervals and from DFT training data. (Middle and right) MAEs
for AEn-1 (in kcal/mol) and redox or adiabatic ionization potential (in eV) MAEs for both
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MCDL-25/ANN and RAC KRR models (full RAC-155, feature-selected, FS RAC, on a single
property, and URAC selected on multiple properties). Adapted with permission from ref. 34.
Copyright 2019 American Chemical Society.

Janet et al. trained ANN>?7 and KRR>% models to predict spin-splitting energies with the
graph-based, RAC representation (see Sec. 4.4.1). The RAC-155/ANN>?7 or RAC-155/KRR>%
models improved upon the performance of MCDL-25 (Figure 48).5% The best-performing RAC-
155 models®® achieved sub-kcal/mol test MAE on comparably sized data sets to the MCDL-
25/ANN model (Figure 48). Feature selection preserved the good performance of the RACs
while reducing the number of descriptors to a size comparable to MCDL-25 (Figure 48).°% PCA
of this feature-selected subset indicated that by eliminating non-local features from the full RAC
set, complexes with distinct sizes due to distal variation but otherwise comparable spin splitting
were more proximal in PC space of the reduced representation (Figure 49).°% In comparison, the
full RAC-155 or a poor-performing whole-molecule representation placed the same points very
far from each other, making it more challenging for ANNs to learn the structure—property
mapping (Figure 49).°% An approach to predict dynamic correlation energies (e.g., MP2
corrections to HF) from KRR models trained on orbital-based descriptors was also demonstrated

on transition-metal complexes from this dataset.?
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Figure 49. Projection of a spin-splitting data set onto the first two principal components

(arbitrary units) for the Coulomb matrix eigenspectrum (CM-ES, left), full revised AC set (RAC-
155, center), and the LASSO-selected (i.e., on spin splitting) RAC subset (LASSO-28, right).
The PCA plots are colored by DFT-calculated spin-splitting energy (top, scale bar in kcal/mol at
right) and size (bottom, scale bar in number of atoms at right). Ball and stick structures of
representative complexes are inset in the bottom left, and the associated data points are
highlighted with a blue circle and square in each plot. Reproduced with permission from ref. %,
Copyright 2017 American Chemical Society.
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Other applications focused on open-shell systems have additionally used geometry-
dependent descriptors. ML models (i.e., ridge regression) have been trained to interpolate the
potential energy surface for mononuclear Fe single-molecule magnet (SMM) candidates.>?8
These models reduced the computational cost to identify optimal structural properties in
designing single-ion magnetic anisotropy.’*® Using experimental data sets, LASSO models have
also been developed to design SMMs with a large isothermal magnetic entropy change.’?® Based
on a set of 60 data-mined experimentally synthesized SMMs, heuristic descriptors, such as size,
number and type of metal ions, were used as inputs to the LASSO model for both feature

529

selection and model prediction.”*” Gaussian processes have also been used to predict the
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exchange—spin coupling between copper centers in a small set (ca. 250) of dicopper complexes,
with good performance achieved on a range of distance-dependent descriptors from heuristics
(e.g., Cu-distance) to more sophisticated ML descriptors (e.g., SOAP, see Sec. 4.4.1).33°

As a demonstration of the benefit of avoiding structure-based descriptors, graph-based
descriptors have been used* % 49-300 to rapidly predict geometric properties relevant to
transition-metal catalysis and to overcome limitations in the cost and accuracy of physics-based
models (see Sec. 2.5). The bite angle or flexibility (i.e., range of low-energy bite angles) of
bidentate phosphine ligands were predicted by ML models trained on a tailored set of topological

descriptors.?

Given a small training set of 65 ligands from the CSD and limited number (ca. 19
after PCA selection) of input features, these early ANN demonstrations consisted of a small
number of nodes (ca. 4-7) and only one hidden layer.**® Despite the simplicity, these models
exhibited good performance on validation data (R*=0.84-0.9).4°

Janet et al. trained ANNSs to predict DFT-derived equilibrium bond lengths of transition-
metal complexes in a spin- and oxidation-state-dependent manner.>* > The data set consisted of
1,350 hybrid-DFT-geometry-optimized mononuclear octahedral transition-metal complexes with
mid-row, 3d transition metals (Cr—Ni) and common ligands used in inorganic chemistry. Using
the sparse, ad hoc MCDL-25%* descriptor set to train a fully connected ANN with two hidden
layers, bond lengths were predicted to 0.02-0.03 A MAE on set-aside test molecules for both
low-spin and high-spin states. ANNSs trained with 2-3 hidden layers on a 155-dimensional set of
RACs plus denticity and oxidation/spin state information®” improved these test errors to sub-

53,55

0.01 A on average (Figure 2).>* These models were implemented in the molSimplify code’s

531 ;

structure generation module®! including in a web frontend>? to enable rapid structure prediction

by force fields for organic components and the ANNs for the metal-organic bond length (Figure
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2). KRR models trained on feature-selected subsets achieved comparable errors to the ANNs.>*
3% Consistent with the symmetry of transition-metal complexes in the training data, the RAC-
155/ANN models predict both an averaged equatorial bond length and two independent axial
bond lengths. As a result, these ML models encoded the metal and ligands where Jahn—Teller
distortion will be present by accurately predicting asymmetry in these bond lengths.>* In a related
approach, neural network potentials (NNPs) have been developed for some solid-state materials
that can exhibit redox or spin state switching, in which case, changes in bond length for this
single NNP model have been ascribed to changes in oxidation or spin state.>*?

ML regression models (e.g., ANNs and Gaussian process regression or GPRs) have been

trained on moderately sized (ca. 2000 points) data sets (e.g., the MNSol database®?) for

535-536 (i.e', 537

predicting solvation free energies in numerous solvents) and redox potentials
predominantly for organic molecules. ANNs trained to predict DFT-derived transition-metal
complex redox potentials have demonstrated good performance (ca. 0.2-0.3 eV) even on small
(ca. 200-300 points) data sets (Figure 48).3* 3% Models trained on RACs or on MCDL-25 have
been used to predict the adiabatic ionization potential as well as the solvent- and thermo-
corrected redox potential of mid-row transition-metal complexes (Figure 48). As in the case of
spin splitting, the best performance has been obtained with feature-selected subsets of RACs>%,
and performance for predicting redox potential and ionization potential were comparable (Figure
48).

Using a similar dataset, Nandy et al. developed both KRR and ANN models on RACs for
predicting the HOMO, LUMO, and HOMO-LUMO gap of mid-row transition-metal
complexes.>® They observed comparable (ca. 0.2-0.3 eV) model errors from a RAC-155/ANN

and KRR models trained on feature-selected subsets.’> For the KRR models, they used random-
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forest-ranked recursive feature addition (RF-RFA) to a KRR model both to improve model
performance and to analyze important features.>> Liu et al. built models across a larger set of
4500 transition-metal complexes with a greater diversity in ligand chemistry and size, achieving
comparable errors on HOMO level and HOMO-LUMO gap prediction.>*® They generalized®3®
this ML approach to fractional occupation number (FON) DFT properties to accurately predict
the degree of MR character with a RAC-155/ANN (Figure 50). Enumeration of a large space of
187k candidate transition-metal complexes was used to identify ligand and metals that

corresponded to strong MR character (Figure 50).%3%

R R %L&E
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Figure 50. Dimensionality reduction with t-distributed stochastic neighbor embedding (t-SNE)
of ANN-predicted descriptions of MR character (7np, unitless) and HOMO-LUMO gap (right,
AEg in eV) highlights differences in the two quantities over a theoretical space of 187k
complexes. The 1D histograms of properties are shown at top with low MR character and small-
gap complexes shaded in green. A convex hull of a family of complexes with functionalized
pyridinyl ligands that have low MR character but small HOMO-LUMO gap is shown inset.
Reprinted with permission from ref. 33, Copyright 2020 American Chemical Society.

Redox potential and frontier orbital properties are also frequently used to rationalize and
design catalysts. Nandy et al. trained ML models on RACs to predict open-shell transition-metal

catalyst reaction energies (i.e., oxo formation) for methane-to-methanol conversion.*®® The
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models achieved good accuracy (ca. 4 kcal/mol) for predicting the reaction energetics, enabling
both enumerative study of 37k catalysts as well as screening for design principles. This
combined ML model prediction and feature analysis approach with RACs has also been
demonstrated on iridium catalysts for H» splitting (Figure 51).°* In this case, RAC-trained
models performed well for predicting barrier heights, and feature analysis revealed opportunities

for design of catalysts with lowered barriers (Figure 51).%%
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Figure 51. Approach to catalyst screening that uses RACs>® to accelerate both prediction of
DFT-calculated reaction energetics and extraction of design principles for accelerated catalyst
discovery.’® Reproduced with permission from ref. 3% Copyright 2020 Royal Society of
Chemistry.

The HOMO level is often suggested**® as a heuristic in methane-to-methanol catalyst
screening, but ML models have revealed a poor correlation between these two quantities when
the range of metals and ligands considered is large.**® Analysis of RF-RFA-selected features
with KRR models for oxo formation energy and HOMO level prediction revealed differences in
feature importance for these two properties (Figure 52).4® The HOMO level depended much
more on metal-distant RACs, highlighting its expected size dependence, whereas the oxo

formation energy was metal-local (Figure 52).46® The selected features for oxo formation energy

shared more commonalities with those essential for predicting spin splitting, which was
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consistent with observations of strong spin state dependence in catalyst reactivity (Figure 52 and
see Sec. 4.2). Despite some limitations for large-scale screening, HOMO prediction models have
been proposed for use in catalyst design involving a single metal and oxidation state. Chang et
al.*¥® trained ML models to predict the HOMO level for tungsten benzylidyne photoredox
catalysts since this quantity has been related to experimental redox potentials (Figure 53). After
comparing several ML model types (e.g., LASSO, Gaussian processes, and ANNSs) trained on
Hammett parameter heuristics, ANNs were observed to perform best at predicting DFT-level

HOMO energetics (Figure 53).4%

spin splitting oxo formation HOMO level

Figure 52. Pie charts of the spin-splitting-selected features (26, left) compared to features
selected for oxo formation (22, middle), and the HOMO level (33, right). Features are grouped
by the most distant atoms present: metal in blue, first coordination sphere in red, second
coordination sphere in green, third coordination sphere in orange, or global features in gray.
Within each distance category, the property (i.e., %, S, 7, Z, or I) is also indicated, and oxidation
state (ox) and spin are assigned as metal-local properties. Oxo formation features are more
similar to those for spin splitting than the HOMO level. Adapted with permission from ref. 468.
Copyright 2019 American Chemical Society.
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Figure 53. (left) Experimental potentials (V) of 32 W complexes plotted against their
corresponding DFT (B3LYP) dxy frontier orbital energies (eV). The method was chosen to
reproduce experimentally observed potentials from reversible (black circles) and quasi-reversible
(blue squares) experimental potentials. (right) Artificial neural network prediction of DFT orbital
energies. Reproduced with permission from ref. 4°¢. Copyright 2019 Royal Society of Chemistry.

Using structure-dependent descriptors, Meyer et al.>*° devised an ML-model-accelerated
approach for volcano-based (see Sec. 4.2) screening of cross-coupling catalysts. First, they
trained KRR models on a range of conventional organic chemistry descriptors to predict a
representative free energy in the cross-coupling reactions (Figure 54). On these complexes with
late transition metals (e.g., Pd, Cu, and Au), they used semi-empirically optimized geometries to
evaluate the structure-dependent features. Consistent with observations from Janet et al. on spin-

splitting energies>* 3%

, they observed poor performance of the Coulomb matrix representation in
learning curves up to around 7,000 catalysts (Figure 54). The bag of bonds (BoB, see Sec. 4.4.1)
and similar fragment-oriented structural descriptors achieved the highest accuracies up to 2.5

kcal/mol MAE, with some metal dependence likely attributable to poorer structure generation for

earlier metals (e.g., Ni, Figure 54).5%° This approach has also been used for screening other Ni
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catalysts for reductive cleavage in aryl ether compounds.>*!
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Figure 54. Learning curves, i.e., test error of catalytic descriptor values as a function of training
set size (N), for oxidative addition of vinyl bromide for the Coulomb matrix (blue line), bag of
bonds (BoB, green line), and SLATM potential (black line). Error bars correspond to standard
deviation in cross-validation. The inset shows the corresponding learning curves for individual
metals for BoB. Reproduced with permission from ref. 34, Copyright 2018 Royal Society of
Chemistry.

In recent years, ML regression models have also been extensively applied to
experimental data sets as a generalization of QSPRs (Sec. 4.2) often using similar QM
descriptors. In these cases, the DFT calculations and ML models tend to outperform standard
physics-based modeling but require considerable calculation time in comparison to models
trained on heuristic descriptors. Denmark and coworkers used descriptors of sterics and the
electrostatic potential (i.e., similar to those proposed by Lipkowitz and coworkers*'%) to train
supervised ML models (i.e., ANNs and SVMs) to predict enantioselective organocatalysts for

542-343 To avoid extrapolation, the

chiral phosphoric acid-catalyzed thiol addition to N-acylimines.
training subset was selected to uniformly cover the space spanned by the input features. The

model’s performance was sensitive to the data balance in the necessarily small training set

accessible to a synthetic chemist.>** The predicted free energy changes from the best-performing
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ANN models exceeded what could typically be obtained from DFT-based screening alone and
enabled prediction of new catalysts with up to 99% enantioselectivity.’#>>** Others have shown
that graph-based descriptors (e.g., Kier shape index used in MCDL-25) that have been
demonstrated for open-shell transition-metal complex ML are as important as steric- or charge-
based descriptors (e.g., in prediction of experimental ethylene polymerization catalysts).>4*

Doyle and coworkers predicted the yield of catalysts®*-346 for cases (e.g., Pd C-N cross-
coupling on substrates containing five-membered rings) where traditional approaches to
performance improvement had failed. Using high-throughput experimentation, they trained
random forest models on DFT-derived descriptors to predict reaction yields.>*> Feature selection
in conjunction with non-linear models (i.e., the random forest model) outperformed linear
models, but ANNs provided limited benefit on these small data sets.>* It has been debated the
extent to which the descriptors used allowed the models to generalize to unseen chemical

entities. 47348

LASSO models have also been trained on a similar series of QM descriptors (e.g.,
HOMO-LUMO gaps, charges, and frequencies) to predict the reaction yields of tungsten
epoxidation catalysts to good accuracy.’?! The benefit of QM charge descriptors to improve
predictive capabilities on small data sets echo earlier observations made for ML models (e.g.,
decision trees and SVMs) trained on a series of ligand descriptors (e.g., partial charges and shape
or connectivity) to predict the molecular weight of polymers generated by polymerization
catalysts.>2°

Iterative approaches to catalyst design that merge experimental, DFT-based, and data-
driven models have been pursued. For example, Maley et al. trained®* random forest models

with heuristic properties of transition state geometries to predict DFT barrier heights in Cr-

catalyzed olefin oligomerization. They interpreted the feature importance in these models to
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identify key ligand factors correlated strongly to barrier height and exploited them to identify
ligands that would enable selective formation of octene over hexene (Figure 55). Through this
process, they improved the catalyst selectivity to high levels®*® (Figure 55). Others have used
interaction energies from energy decomposition analysis to accurately predict experimental
activation energies with ML models and have observed these features to be as important as

conventional (e.g., steric, frontier orbital energy, or charge) descriptors.’?*
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Figure 55. (top) Structures for previous (P,N) ligand generations and new proposed ligands
(generation 3) based on DFT and machine-learning-identified features. The 1-hexene:l-octene
selectivity (predicted) is given below each structure. (bottom) Plot of 1-octene selectivity for
previous (P,N) ligand generations and proposed ligands in generation 3 obtained from a
combination of DFT and machine learning. Reproduced with permission from ref. 3#°. Copyright
2020 Royal Society of Chemistry.

Data-driven models have also been developed to predict a combination of experimental
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catalytic quantities that would be challenging to obtain from DFT-based energetic analysis.
Using kinetic characteristics of the catalysts as inputs to train a multi-task ANN, Rizkin et al.>°
built a model to predict the average molecular weights, polydispersity, and reactor temperature
for zirconocene-catalyzed olefin polymerization. Siebert et al.>>! built random forest models to
identify optimal reaction temperature, time, catalyst loading, and concentrations for CO»
reduction with ruthenium catalysts.

Considerable effort has been made towards supervised learning of the properties of solid-
state, inorganic materials owing to the large datasets of DFT calculations available. For example,
early efforts used these data sets and ad hoc descriptors to predict thermodynamic stability>>? and
electronic properties®3. More recently, graph-convolutional neural networks and graph-based
representations have been used to predict properties with improved accuracy.>>*3°

We next focus on MOF ML model predictions given the close connections of MOFs to
molecular transition-metal complexes. A number of ML regression models of MOF properties
have been developed using tailored representations described in Sec. 4.4.1. A range of models
(e.g., SVR, ridge regression, and random forest) were trained on one-hot compositional features
for very small experimental data sets (ca. 100 points) of MOF CO; and H adsorption curves, but

small data set sizes have limited performance.’!’

Instead, most predictive MOF models have
focused on predicting grand canonical Monte Carlo (GCMC)-simulated gas uptake
characteristics on hypothetically enumerated MOFs from compositional and structural
information in order to accelerate exhaustive screening efforts.

Support vector regression (SVR) models were trained on a subset of 120k hypothetical

MOFs featurized with geometric descriptors (i.e., AP-RDFs) to predict uptake of CO, and

methane from GCMC.’!'® The SVRs outperformed standard MLR models. While whole-
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structure, geometric descriptors were sufficient to yield predictive models for methane, the AP-
RDFs that encode chemical composition were needed to yield improved (R? = 0.75) models for
predicting CO> uptake. Work with training random forest and KRR models on graph-based
descriptors across a range of hypothetical MOF data sets has reaffirmed the observation that
chemical composition information is key to prediction of CO» uptake at low pressure but less
essential with high pressure or for predicting methane uptake.’8% 316 Analysis of feature
importance in these predictions in particular highlighted the importance of the metal SBU
chemistry®34, emphasizing limited transferability of MOF ML models to new SBUs not in the
training set (Figure 56).°'® Indeed, earlier feature importance analysis applied to the role of
topology and functionalization in MOFs (e.g., electron-donating and withdrawing groups) in a
carefully constructed data set that limited variation of the metal SBU had instead indicated that

geometry played a dominant role in determining relative gas uptake of CO», Hz, and N».310
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Figure 56. t-SNE on subsets of MOF RACs and geometric descriptors including: (top, left) pore
geometry in purple, (top, right) metal chemistry RACs in red, (bottom, left) linker RACs in blue,
and (bottom, right) functional group RACs. All hypothetical and experimentally characterized
(i.e., CoRE-2019) datasets are shown in gray, whereas only hypothetical data is colored,
highlighting the lack of diversity in metal chemistry in hypothetical sets. The radar charts show
the three diversity metrics: variety (V), balance (B) and disparity (D), for the three
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databases. Reproduced with permission from ref. 384. Copyright 2020 Springer Nature.

Despite the good performance of geometric descriptors on methane uptake, Pardakthi et
al.>!> showed that compositional information further improved predictions, with very good
performance for methane uptake prediction (R* = 0.97) on the HMOF data set>>® by random
forest models trained on both structural and chemical (i.e., elemental composition, bond types)
information (Figure 57).°!> Random forest models outperformed alternatives such as SVRs or a

single binary decision tree (Figure 57).°1
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Figure 57. Parity plots for predicted (ML) vs GCMC-simulated mass-based methane uptake
(cm?/g) using structural and chemical variables applied on (a) single decision tree (DT), (b)
Poisson, (c) support vector machine (SVM), and (d) random forests (RF) models for hypothetical
MOFs (HMOFs). The parity line indicating perfect correspondence between ML predictions and
GCMC simulation results is shown in red in each plot. The color scale indicates the data density
in the plots (i.e., number of counts). Reproduced with permission from ref. !>, Copyright 2017

104



American Chemical Society.

While most described models for MOF property prediction have favored random forests
or ANNSs and use heuristic compositional and structural descriptors, alternatives have also been
pursued. In a hybrid approach, Bucior et al.’'* developed a descriptor-based screening with a
probe H> molecule, in close analogy to the steric map approaches used for transition-metal
complex QSPR. These models involved evaluation of H> adsorption energies on a grid in the
MOF materials and used these energies as inputs to a LASSO regression model.>'* The
evaluation of interaction energies could be carried out on a coarse 1-A grid but still required
more time to compute than heuristic descriptors.

Models are typically judged based on prediction errors on a set-aside test set, and an
outstanding challenge is in quantifying uncertainty of a model for generalization to new
compounds in chemical discovery (see Sec. 5). For highly engineered feature sets, distances of
new compounds to the training data in feature space has been used in ML property prediction.>*
357 The popularity, flexibility, and performance of ANNs with numerous hidden layers that

effectively carry out feature engineering motivate alternative approaches to uncertainty

quantification (UQ). Ensembles of models trained on distinct partitions are sometimes used?”

558-560 t526

, and the Monte Carlo dropout’*® approach where uncertainty is estimated from different
ANN architectures (i.e., with zeroed out nodes) has also been applied in transition-metal
complex ML models.>*

Janet et al. showed?’ the distance in the latent space of an ANN to be a superior, low-
cost strategy to detecting high-error points, especially for discovery applications where standard
methods (e.g., ensembles) would be overconfident. Calibration of this distance with maximum

likelihood estimation enables conversion of the distance to a confidence interval on the property
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prediction. Optimization of the properties of organic molecules in continuous (i.e., latent space)
representations and inversion back to discrete candidates has also been demonstrated as useful

tool for molecular discovery.*¢!

More recently, the distance in latent space has been shown to be
useful for experimental catalyst optimization>®? and demonstrated for accelerated discovery with
active learning®%3-% (see Sec. 5.2).

4.4.3. Classification and Semi-Supervised Learning Models.

Although the majority of machine learning efforts in transition-metal chemistry have
been focused on regression for property prediction, there are a number of cases where alternative
models have been developed for classification. We briefly summarize these approaches,
including those focused on binary classification as well as emerging techniques in semi-
supervised learning for both regression and classification of materials in which only some of the
data labels are known beforehand. Classifiers and semi-supervised learning models have been

developed for artificial-intelligence-informed workflow decisions®!®: 363

, as presented in more
detail in Sec. 5.3.

In binary classification tasks, the model output is a score ranging from 0 (false) to 1
(true). The models most widely employed are support vector machines (SVMs) and ANN
classifiers. Typically, a threshold of 0.5 on the output score is used to assign each data point to a
class. The overall performance of the model is captured by the receiver operating characteristic
(ROC) curve that indicates the rate of false positives as the threshold is adjusted to increase the
rate of true positives. When the area under the curve (AUC) of the ROC approaches 1, the model
is robust in a manner that is less sensitive to the threshold chosen to assign the classes. In certain

cases, classification model scores can be interpreted as probabilities and therefore can be used

for uncertainty quantification. Duan et al. observed®® ANNs to generalize better than SVMs in
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some classification tasks, but application of ANN classifiers to diverse molecules suggested raw
probability scores were overconfident. This observation led them to introduce®® an alternative

uncertainty quantification metric they termed the latent space entropy (LSE):
] ~(i ~( i
s, ==, In(p") 5)
j

where the LSE measures the proximity of the training data in each class, j, and ranges from 0 for
perfect confidence to In(2) = 0.693 for no confidence. The confidence is low when the point is
close to the model’s decision boundary in latent space or when it is distant from all points even
those within the same class.

An early example of classification in transition-metal chemistry is the development of
models that could predict transition-metal binding sites in metalloenzymes from the protein’s
structure without the metal present (i.e., the apoenzyme).>*® This approach was motivated by the
much higher availability of structures of a protein without the metal resolved in the apoenzyme
in comparison to those with the metal bound. Decision trees and SVM classifiers were trained on
a series of geometric and sequence-based descriptors for 125 protein chains with 367 known
metal binding sites, and the models achieved a low rate of false positives (i.e., 95%
selectivity).>6

The phenomenon of spin-crossover poses a straightforward question for classification
models, and SCO complexes in the CSD represent a rich source of data for ML models because
crystal structures solved at multiple temperatures give access to strongly spin-state-dependent
bond lengths.’®” Comparison of approximate DFT bond lengths to experimental bond lengths
usually yields good agreement!3!- 150 162 (see Sec. 2). Taylor et al. leveraged ML-predicted DFT
bond lengths to assess and classify experimental spin states in the CSD.>®® This model improved

upon purely energetic predictions of ground state spins from approximate DFT functionals and
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correctly classified (i.e., high-spin vs low-spin) 96% of experimental structures based on the
similarity of the CSD metal-ligand bond length to the ML-predicted DFT value.>*® Cundari et al.
employed bond lengths from around 100 CSD complexes to build small neural network
classifiers, but over the small data set size, classification models based on Bayesian inference
performed better to determine relationships between M—N bond lengths and M—N—-C angles in
transition-metal imidos.>%

Classifiers have also been developed to separate good and bad materials characteristics
for CO; uptake by MOFs.>”° The classification task consisted of distinguishing MOFs capable of
greater than 1 mmol/g CO» uptake at low pressure (i.e., 0.15 bar CO2). The SVM models for this
classification task were trained on 10% of 324,000 hypothetical MOFs generated for the study
and featurized with AP-RDFs>!8, This approach could be used to accelerate pre-screening of
MOFs for improved gas uptake characteristics in hypothetical databases (see Sec. 5).57°

Semi-supervised learning techniques have yet to be widely employed in materials or
transition-metal chemistry. The term “‘semi-supervised” refers broadly to methods where a
mixture of initially labeled and unlabeled data is employed, and the remainder of labels get
assigned during model training.’’! In one example, researchers have combined clustering with
supervised learning in a two-step semi-supervised approach to image classification for labeling
X-ray diffraction images relevant to high-throughput experimentation in materials science®’2. In
analysis of the materials literature with natural language processing, where explicit labeling of
extracted results can be challenging, a two-step semi-supervised approach was also recently

3 and for materials

demonstrated for extraction of magnetic phase transition temperatures’
synthesis procedures (e.g., with a random forest classifier).>’* Still more applications of semi-

supervised learning are anticipated as a way to overcome limitations in the availability high-
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quality, unambiguous data in transition-metal chemistry, some of which are discussed in detail in
Sec. 5.3.
Within semi-supervised learning models, such as for training of ANN classifiers with

565

partially labeled data>®>, a related concern is the effect of the amount of labeled data on model

prediction. For chemical problems, models have been shown to be fairly insensitive to this

labeling threshold®®

, and the high cost of data generation may guide more when lower
thresholds are employed in labeling. For some supervised and semi-supervised learning models
where the classification task is based on an arbitrary cutoff>®>37?, the ROC may also not be the
optimal method for assessing model performance. Instead, some have qualified how well the
model separates the two classes>® using Bhattacharyya distance to measure the differences in the
distributions of the two classes.

5. Transition-Metal Chemical Space Exploration.

Thus far, we have described iterative, mechanistic search (Sec. 4.2) where a transition-
metal complex that addresses most design objectives may be known but requires some
improvements. Conversely, when good design principles are not known, alternative approaches
have been used to evaluate a larger space of feasible compounds as candidate materials or
catalysts. If the scoring and evaluation of materials is efficient (e.g., with low-cost computation
or surrogate models), expansive, combinatorial evaluation of all materials on a large scale (ca.
1000s to millions of compounds) is often carried out (Sec. 5.1). When seeking to identify
materials that satisfy design objectives without carrying out unproductive experiment or
computation, single- and multi-objective optimization with evolutionary algorithms (Sec. 5.2)

has been widely employed to guide experiment, computation, or ML-accelerated discovery.

5.1. Combinatorial Enumeration.
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In contrast with the functionalization and small-scale ligand permutation studies
discussed in Sec. 4.2, we refer here to combinatorial enumeration that generates a search space of
at least several thousand transition-metal complexes or materials. The reticular nature of metal
organic frameworks (MOFs) combined with the relatively low cost of evaluating their properties
with classical force fields (i.e., for gas separations characteristics) has led to a large number of
enumerative studies on MOFs over the past two decades®!? 336 575-381 a5 reviewed in detail in
Ref. 378, When previously synthesized secondary building units (i.e., metal nodes) are combined
with synthetically accessible linkers and then functionalized, they can easily yield large sets (ca.
100k or more) of hypothetical MOF materials.>® Early efforts in this area were limited to

336,575 whereas

straightforward-to-enumerate combinations that led to primitive cubic unit cells
later studies expanded to generalize to non-cubic unit cells.>”’

Given the possible ways to combine linkers, functional groups, and metal SBUs, more
focused approaches have also been used. Functional group variation has been used to create a
combinatorially large (ca. 10k or more) space for screening materials with improved
characteristics (e.g., for CO capture) even when the metal SBU is held fixed.®®® For gas
separation, it is also expected that the pore structure and overall topology should play key roles,
motivating a focus on the underlying MOF connectivity®’” 7% 381 Gémez-Gualdron et al.
focused on the relationship between MOF topology and gas adsorption characteristics,
identifying overall structures most suited for hydrogen storage in the TOBACCo MOF data set>”*-

582 Similar strategies were previously applied to generating hypothetical porous polymer

583 584

network materials*® and, even earlier, zeolites***. By sampling distinct crystal structures and
ring size distributions in porous zeolite materials®®*, Deem and coworkers built a database of 2.7

million hypothetical zeolites, a dramatically larger number than have ever been successfully
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synthesized.’®

These enumerated sets (e.g., of MOFs) are often used for large-scale screening (i.e., with
grand canonical Monte Carlo) of gas uptake properties. For example, Boyd et al.>’® screened a
space of 325k hypothetical MOFs for CO2 working capacity and selectivity of binding relative to
water. They identified design characteristics of the top 8k materials, finally identifying the MOFs
that looked synthetically accessible and were subsequently demonstrated to experimentally have
the computationally-predicted performance.’’® Given the large number of materials that can be
generated in this way, it is possible to identify numerous design leads and use intuition to address
questions regarding stability or synthetic accessibility. More recently, machine learning models
have been increasingly applied to the development of interpretable design rules from these sets
(see Sec. 5.2.3).

One concern for the use of enumerative sets is the extent to which design leads or design
principles are sensitive to the data set employed for their extraction. Moosavi and coworkers
observed®* that the CORE-MOF database of experimentally synthesized materials exhibits key
distinctions from most of these hypothetical MOF sets (Figure 56). Using t-SNE maps of MOF
materials in graph-based representations (i.e., RACs) extended for metal-organic frameworks in
combination with geometric descriptors, they analyzed the similarity of experimental and
hypothetical MOFs over specific domains (i.e., the SBU vs linker or functional group). Some
observed distinctions could be expected, such as that pores were larger in some hypothetical data
sets (i.e., ToBaCCo°%?) that had emphasized distinct topologies not synthetically accessible.
While greater diversity of hypothetical over synthesized materials was expected, the hypothetical
MOFs also interestingly lacked some diversity observed in experimental MOFs (Figure 56). In

particular, the SBUs sampled in hypothetical sets are often much narrower than those that have
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been experimentally synthesized. While demonstrated on MOFs, these observations highlight the
general challenges for combinatorial enumeration of inorganic materials in avoiding bias when
proposing new materials while maintaining some realism.

In comparison to MOFs or small organic molecules, fewer efforts have been made to
elucidate rules for enumeration of feasible transition-metal complexes. In organic chemistry, the
generated database (GDB)° series has enumerated molecules up to discrete numbers of heavy
(i.e., non-H) atom sizes under the constraints of obeying the octet rule and being in closed-shell
singlet states with no net charge. Subsets of the GDB with seven to nine heavy atoms have been
widely employed to generate data sets’® 387 for ML of properties of organic molecules and for
high-throughput screening. Enumerative strategies for transition-metal complexes are less well
developed. In one example, a small-scale study of hypothetical modified cyclopentadienyl
ligands (e.g., all-nitrogen or all-phosphorus rings) was used to understand the mechanism of
mononuclear single-molecule magnet behavior.’®® Because the smallest non-trivial octahedral
complex has at least seven heavy atoms due to the ligands and has more electrons than a typical
organic molecule due to the metal center, exhaustive generation of very small transition-metal
complexes has motivated a distinct strategy.>®

Gugler et al. constrained the search of individual ligands to a small number (ca. one or
two) of heavy atoms per metal-coordinating site (e.g., four heavy atoms in a bidentate ligand)
and relaxed typically applied constraints (e.g., for the GDB) in generating ligands with one to
four heavy (i.e., C, N, O, P, or S) atoms.>® They assigned more favorable scores to neutral and
octet-rule-obeying molecules but still allowed for exceptions, producing an octahedral
homoleptic ligand database, OHLDB*°, with DFT properties of 1250 complexes formed with

mid-row transition metals (i.e., Cr—Co). The enumeration of lower-symmetry heteroleptic
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complexes directly with these ligands or by exploiting ligand additivity®® leads to hundreds of
thousands of complexes. These data sets have been used to improve ML model performance on
larger complexes>®.

Exhaustive enumeration of transition-metal complexes has also been carried out in a
stepwise fashion for larger bidentate ligands. In 2006, Rothenberg and coworkers hypothesized
that generating bidentate ligands from a series of rings, bridging, and functional groups could
rapidly lead to vast (ca. 1.7 billion) transition-metal complex spaces infeasible for full-scale
exploration (Figure 58).°%° Instead, they focused on the properties of 600 representative
complexes from this larger space for which they carried out force field optimization and
ultimately further characterization of figures of merit (i.e., experimental turnover frequency,

1.56% started from well-studied five- and six-membered ring

Figure 43). More recently, Janet et a
motifs with common coordinating atoms (i.e., N or O), modified (i.e., with changes in
conjugation or additional heteroatoms) the rings, and bridged them to generate nearly 800 unique
core bidentate ligand types. Sequential functionalization and homoleptic complexation with mid-

row transition metals generated a space of 2.8 M candidate complexes for ML-accelerated multi-

objective optimization (see Sec. 5.2.3) validated with DFT calculations.

~

X8 2

ligating groups  backbone groups residue groups
Figure 58. Cartoon showing the construction of a bidentate ligand (top left) and an example
resulting structure (top right) from building blocks comprised of ligating, backbone, and residue
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groups shown at bottom. Reproduced with permission from ref. 3°°. Copyright 2006 WILEY -
VCH Verlag GmbH & Co.
5.2. Optimization Approaches.

When aiming to discover materials or catalysts with improved properties, exhaustive
enumeration of large chemical spaces is impractical and unnecessary. If we have a single, well-
defined objective, evolutionary algorithms such as standard genetic algorithms (Sec. 5.2.1) can
accelerate the identification of transition-metal complexes and materials that satisfy that
objective. In practice, multiple objectives must typically be satisfied (Sec. 5.2.2). Machine
learning models can accelerate single- or multi-objective optimization but introduce special
challenges related to model uncertainty (Sec. 5.2.3). Here, we briefly highlight efforts in discrete
optimization with evolutionary algorithms for transition-metal complex and materials design,
especially with ML-accelerated discovery. Details beyond the scope of this review regarding
design, including for efforts beyond transition-metal chemistry, are provided in Refs. 31592,
5.2.1. Genetic Algorithms.

Genetic algorithms (GAs) are widely employed in transition-metal complex and broader
materials discovery efforts to accelerate identification of lead compounds that satisfy a design

objective.>1-92

GAs are applied to a pool of candidate materials (e.g., transition-metal
complexes) with components that are represented by discrete genes. A fitness function that is a
score approaching one when the material approaches the ideal property (e.g., catalyst activity) is
used to determine which materials (i.e., combinations of genes) continue on to subsequent
generations in a GA. Operations at each generation involve crossover of genes between parents

and random mutations to avoid too rapid collapse to a local minimum. Although also used in

other areas of molecular discovery, GAs are a natural fit for the modularity of transition-metal
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complexes, in which the genes will often represent the metal, one or more ligand scaffolds, and
functional groups attached to the ligand scaffold. This set of genes is evolved by scoring each
complex with a fitness function and carrying out crossover and mutation on the top-scoring
subset for a number of generations.

The value of GAs in accelerating screening of combinations of reaction conditions in
experimental catalyst and materials screening as well as to explore large chemical spaces was
recognized over 20 years ago.’”*>** Within experimental homogeneous catalysis, advances in
microfluidics and high-throughput screening (e.g., with a 96-well plate) has enabled rapid
catalyst optimization. Early studies carried out sequential screens of catalysts (e.g., for
copolymerization), with a fast primary stage followed by slower secondary and tertiary screens
in a narrowed space of candidates.’®> This high-throughput experimentation approach also
enabled rapid GA evolution of catalyst chemistry and reaction conditions for methane oxidation
(Figure 59).5% A GA was used to explore genes representing variations in the catalyst metal from
8 choices, 11 co-catalyst types for oxygen activation, and 13 ligands.’*® To accelerate scoring,
colorimetric assays were developed, to avoid time-consuming but likely more conclusive

methods (e.g., NMR) of characterization (Figure 59).5%

Identify the relevant parameters Construct the population
to solve the problem (Mix the components together)

(catalyst, cocatalyst, ligand) - Perform fitness test
&'530- ©09 é”% (Compartmentalize
" ﬂ’;@ > c?]talystshinto plugs,
= i —— run the methane oxidation
Define composition of each rgﬂm.) S > reaction and analyze the
“e o

individual in the population e e )
(What catalysts, cocatalysts and ligands 072000 activity of the individuals)

are used in each of the 48 individuals)

Gene A Gene B Gene C s _OR
Catalyst  Cocatalyst Ligand Finish <« T
1 [Ag[Pt[Rh[BL[BL [Mn]Zn [Mn]L6 [BL |

Select and evolve

2 [AuTRn[Pd [BL [PV]Mo[Co[BL JL5 [BL | (Use the measured fitness to select for individuals to pass
on information to the next generation and undergo evolution
48 [Eu[AuJAg[BL]BL][ W [Fe[BL[L4 2] via either crossover with another individual or mutation)

|Ag|Pt|Pd|BL|PV|Mn|Zn|BL|L6 BL | Crossover[Ag] Pt [Rh[BL BL|Mn|Zn|Mn|L6|BL|
——
|Au|Rh]Rh|BL]BL[Mo|Co[Mn|L5[BL] |Au|Rh|Pd]BL]PV|M0]C0|BL|L5]BL]
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Figure 59. Schematic illustration of genetic algorithm implemented with microfluidics to search
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for catalysts. Each vessel contained three genes to optimize the different parameters: catalyst
(gene A), cocatalyst (gene B), and ligand (gene C). Each gene was composed of multiple
chemical species, examples of which are shown in this schematic: BL stands for blank solution,
PV for HsPMoi10V2040 POM-V2, Ln (n = 1, 2, 3, etc.) for one ligand type, and elemental
symbols represent the metal present. After the first generation was produced, the catalytic
activity of each individual was tested, and the results were analyzed to determine fitness and
generate a new population of 48 catalysts/co-catalysts/ligands through a combination of
crossover or mutation. The genetic algorithm optimization was repeated over eight generations.
Reproduced with permission from ref. 3¢, Copyright 2010 American Chemical Society.

In molecular discovery, when the objective function is explicitly calculated from

electronic structure methods, it is also necessary to avoid high computational cost in evaluating

each generation. For instance, in heterogeneous catalysis, GAs have been applied to search for

597 598

semiconductor alloys>’ or core-shell nanoparticle catalysts>® with favorable band gaps or
catalytic activity. Here, approximate (i.e., d-band theory) methods were used in scoring, rather
than more computationally demanding approaches. Within transition-metal chemistry, Chu et al.
built an objective function for Grubbs-type Ru metathesis catalysts based on semi-empirical PM6
descriptors in conjunction with a QSPR model capable of making DFT-quality activity
predictions.®” Although representing only a proof of principle due to the small scope of ligands
considered (i.e., two types of functionalized phosphines or NHCs), they showed that crossover,

mutation, and selection of fittest compounds led to the rapid selection of experimentally favored

NHC ligands over alternatives, such as phosphines (Figure 60).

50 '
45
40
§ 35
S 30

£ 25}

3
820
O 15

PR |
i P.
R:r‘©/ \©‘~RV

0t Itewvrvevryeevervveeyveevyrevvyevveyvvsbyveeey]
0 5 10 15 20 25 30 35 40 45 50
Generation

116



Figure 60. A genetic algorithm for optimization of ligand chemistry in metathesis. The objective
function is obtained from partial least-squares regression of semi-empirical geometries and DFT
molecular descriptors. Examples of how ligands are selected with the evolutionary (i.e., genetic)
algorithm grouped by whether it selects: an imidazol-2-ylidene scaffold with two substitution
points and two hydrogen atoms (termed I) or two chlorine atoms (I-Cl>), as well as a triphenyl
phosphine skeleton with substitution points at the phenyl para positions (PArs) and a trialkyl
phosphine skeleton with three substitution points (P(CH2R)3). Substitution points are indicated
by R” (enumeration by n) and dashed lines. Reproduced with permission from ref. 3°. Copyright
2012 American Chemical Society.

Foscato et al. demonstrated a more general approach to de novo complex discovery by
developing ring-closure operations embedded within a genetic algorithm for the design of spin-
crossover complexes.5% Starting from an initial population of 50 random complexes that were
evolved for 100 generations, the fitness of candidate Fe(II)/N octahedral complexes was
evaluated at each step with an objective function based on the adiabatic spin-splitting enthalpy
(Figure 61).9%° Both the use of an enthalpy and its evaluation with LFMM!617 kept the
computational cost of objective evaluation suitably low. Notably, because both graph-based and
3D information was used to introduce operations that altered the denticity of the ligands, GA
optimization identified the preference for tridentate ligands (e.g., terpy) over a starting
population that consisted predominantly of combinations of tetradentate and bidentate ligands
(Figure 61). The specific computational prediction of spin-crossover behavior for

[Fe(IT)(tamez)]*>* from this work was later experimentally verified, demonstrating the potential
p y g p

for computational design to reveal functional transition-metal complexes.5%!
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Figure 61. (top) Library of 3D fragments (scaffolds) used to initiate the construction of Fe(II)
complexes in experiments of types A and B. The addition of fragments can lead to further ring
closures. A fitness function of spin-splitting energies is evaluated using the LFMM force field in
experiments A (bottom, left) and B (bottom, right). The final surviving denticities of ligands are
indicated in the legends at bottom. Adapted with permission from ref. %°. Copyright 2015
American Chemical Society.

In a similar fashion, genetic algorithms have been used to accelerate exploration of
candidate MOF materials (e.g., to maximize methane storage capacity).’? Bao et al. focused on
using candidate linkers from commercially available molecules in combination with known
SBUs and MOF topologies.®*> They devised a series of operations to replace and mutate linker
chemistry, filtered the candidates based on geometric observations from classical molecular
dynamics, and then scored and retained structures with high methane storage capacity (Figure
62).°2 This procedure simultaneously increased the feasibility of the materials studied for

simulation (i.e., by filtering) and reduced the total number of materials that needed to be

screened by GCMC simulation.®*? Similarly, Collins et al. used a GA to identify how functional
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group variation could alter CO> uptake characteristics, searching a space of nearly 96k viable

structures and observing significant improvement in the best-performing materials after only a
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Figure 62. Approach for discovering new MOF materials with high deliverable capacity.
lustration of an algorithm for initializing a population with add or multiple add operations from
a precursor library. One randomly chosen linker from the population undergoes one of seven
evolution operations. The produced linker is evaluated by two filters: the number of torsions is <
8, and number of sites = 2. If the linker passes these filters, molecular dynamics is used on the
linker to produce a set of conformations. These linker conformations are evaluated by the two
additional filters of mean pairwise angle > 155° and a standard deviation of pairwise distance <
0.5 A. If the linker passes all filters, it is used to build a MOF of the chosen network. Finally, if
the constructed MOF has a greater deliverable capacity than the lowest one in the current
population, the linker is inserted into the population in rank order. Reproduced with permission
from ref. %2, Copyright 2015 American Chemical Society.

The large number of purely hypothetical MOFs that have been generated>® also creates a
large combinatorial space to search for new materials and guide new simulations. A GA was
used to accelerate discovery of hypothetical MOFs with high selectivity (i.e., over Hz) for CO»

uptake (Figure 63).6% Because some properties, such as surface area or working capacity were
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known for all of the MOFs, the GA strategy could be validated based on its ability to find the
best performers for those properties (Figure 63).%** Once validated, the GA was then used to
reduce the computational effort required for the selectivity studies to only 1% of what a brute
force effort would have required.®® Given their suitability for accelerating search of large
combinatorial spaces, GAs have been used to optimize candidate arrays of MOFs as sensing
materials by varying the individual MOF genes (i.e., from the CoRE-MOF database) and

favoring MOF arrays that maximize the differences in gas uptake properties among the MOFs. 5%
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Figure 63. (A) An example set of genes and the corresponding hypothetical MOF (HMOF)
structure. Colors illustrate the correspondence between the genes and the MOF structural
features. (B) Workflow of GA. (C to E) Histograms for all HMOFs (gray) and for the initial
population used in the GA runs (green). (C) Methane working capacity. (D) Gravimetric surface
area. (E) Volumetric surface area. (F to H) Histograms collected from 100 GA runs show the
fitness of the top-performing MOF at the end of each run: (F) Methane working capacity. (G)
Gravimetric surface area. (H) Volumetric surface area. The vertical lines in (F) to (H) correspond
to the fitness of the top performer from the initial population (black) and from the whole
database (red). Reproduced with permission from ref. %, Copyright 2016 AAAS.

5.2.2. Multi-Objective Optimization.

Most design challenges in materials or catalysis discovery require satisfying multiple
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objectives. For catalysis, these concerns could be activity (i.e., TOF) and stability, selectivity,
solubility, or cost. As an example from heterogeneous catalysis, satisfying the objectives of cost
and activity of methanation catalysts revealed an inherent trade-off in optimal properties (Figure
64).°% The hypersurface known as the Pareto front, when assessed for a two-objective
optimization, consists of the points that represent the best first property (e.g., activity) for a given
second property (e.g., cost), and depending on the primary concern®®, the most desirable
materials may more strongly emphasize one of these two objectives. Experiment or computation
should thus aim to enrich or move beyond known Pareto front compounds with multi-objective

optimization.
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Figure 64. Pareto plot of methanation catalysts using the activity measure and the cost for 117
elemental metals and bimetallic alloys of the form ABi- (x=0, 0.25, 0.50, 1). Each blue point
corresponds to a particular alloy. The elemental metals are shown (black), and the Pareto optimal
set is also indicated (red). The cost of the bimetallic alloys has been approximated by the
commodity price of the constituent elemental metals. Reproduced with permission from ref. 6%,
Copyright 2006 Elsevier.

Although GAs with composite fitness functions (i.e., by multiplying the satisfaction of

multiple individual objectives) have been successfully applied to transition-metal complex
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discovery*®®, multi-objective optimization typically benefits from algorithms less prone to
finding local minima due to the complexity of the structure—property landscape along a higher-
dimensional Pareto front. Multi-objective optimization has been carried out to obtain stable, low
band gap oxide polymorphs of TiO>. An evolutionary algorithm (i.e., multi-objective differential
evolution or MODE) was employed to rank each generation of points based on whether they sat
on the current Pareto front of these two properties evaluated with DFT.®7 Multi-objective
optimization has also been applied®® to the simultaneous optimization of two types of surface
area measures for gas uptake and identification of the relevant MOF topologies that maximize
these two quantities.

Multi-objective optimization methods have also been used in conjunction with high-
throughput experimentation to simultaneously optimize conversion and selectivity of
heterogeneous catalysts for propane dehydrogenation.®® Llamas-Galilea et al.’” employed a
multi-objective algorithm (i.e., the strength Pareto evolutionary algorithm-2, SPEA-2) that
assigns the highest fitness scores to points along the Pareto front and maximizes diversity in the
Pareto set to evolve catalyst genes consisting of elements and promoters. They observed that in
comparison to a single-objective optimization of yield (i.e., a composite of selectivity and
conversion), the multi-objective approach did a better job of improving both variables along the
Pareto front over six generations (Figure 65).°® Recently, Bayesian optimization algorithms
have been pursued in chemical problems®? especially to account for multi-objective

optimization when the evaluation of fitness is relatively costly.®!!
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Figure 65. Visualization of the evolution of the populations of catalysts for selective

dehydrogenation of propane in the objective space using a single-objective approach (left) and a
multi-objective strength-Pareto evolutionary algorithm (SPEA-2, right). Reproduced with
permission from ref. ¢, Copyright 2009 American Chemical Society.

5.2.3. ML-Accelerated Discovery.

Applying evolutionary algorithms to the optimization of properties in large materials
spaces requires efficient evaluation of fitness. Beyond low-cost approximate computation or
cheap proxies for experimental observables, a key way to achieve faster fitness evaluation is to
employ a surrogate (i.e., machine learning regression) model. When employing an ML model,
optimization algorithms should be adapted to address the approximate nature of the surrogate
either by restricting its use to its domain of applicability or by identifying high uncertainty points
with promise in active learning. Both approaches have advantages in accelerated transition-metal
complex or materials discovery, as highlighted below.

Artificial neural networks (ANNs) were first used for bulk heterogeneous catalyst
optimization nearly twenty years ago.®!?-6!” These early efforts in heterogeneous catalysis were
focused on encoding compositional descriptors, such as element identity and stoichiometric
contributions as well as adjustable scalars such as synthesis temperature. Corma et al.®'* trained

an ANN to identify optimal reaction conditions at each generation in combination with high-

throughput experimentation to optimize Ti zeolite catalysts for olefin epoxidation (Figure 66).

123



The ANN predictions were used to guide GA fitness evaluation, and the optimal results predicted
by the ANN-GA loop were then validated experimentally (Figure 66).6'3 The diversity in the
initial and subsequent pools was used to aid iterative ANN retraining to predict the rank of the

613 GAs were

catalysts for epoxidation starting from a modest initial training set of 38 catalysts.
frequently used in combination with ANNs because the ANN optimum is not invertible back to
realistic catalyst conditions. Other applications in heterogeneous catalyst screening included the
design of catalyst compositions with a multitask network that predicted both selectivity and

conversion for methane coupling®'* or propane dehydrogenation as well as catalyst composition

and catalyst treatment temperature for methane oxidation®!¢ or synthesis®!.
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Figure 66. Scheme of a hybrid optimization algorithm comprising a genetic algorithm assisted
by an artificial neural network for optimization of olefin epoxidation catalysts. High-throughput
characterization and synthesis is used to optimize pH, surfactant content, and Ti content in Ti
silicate materials. Reproduced with permission from ref. 13, Copyright 2005 Elsevier.

ML-accelerated discovery has similarly been applied in multi-objective optimization of
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materials and catalysts. In an early example, Scott et al.®'® used the multi-objective NSGA-II®"°
algorithm in conjunction with an ANN that predicted materials properties based on a binary
compositional elemental representation. They used the multi-objective optimization approach to
simultaneously optimize candidate quaternary electroceramic materials for 1) their permittivity,
i1) whether the selected materials composition had a neutral, balanced charge, and iii) the
distance to training data of the ANN.®'® Experimentally, NSGA-II was used in combination with
a trained ANN that detected relationships between SCO colors as inputs and the temperature to
identify the minimal SCO array for sensing applications.®*

In comparison to efforts in heterogeneous catalysis, computational or experimental
screening of molecular transition-metal complexes for homogeneous catalysis and materials
discovery with deeper ML (i.e., beyond MLR QSPRs) has been a more recent development.
Janet et al.>’” employed ANNs trained on the sparse MCDL-25 ad hoc feature set>* to predict
adiabatic DFT-quality spin-splitting energies in conjunction with a GA to explore a space of
around 5k feasible spin-crossover complexes, only about 2% of which had been seen during
ANN model training.>* To ensure that the ANN prediction errors did not rise rapidly on new
compounds, they introduced®’ a composite fitness function into the single objective GA that
penalized compounds distant in feature space from training data (Figure 67). Most (ca. 2/3)
ANN-selected leads were validated with DFT evaluation, with a modest increase in error (ca. 2x)
over test set errors.”’ In comparison, using DFT as the objective function in the GA would have
taken weeks instead of minutes the ANN required.>>’ This approach has also been demonstrated
for exploring 1040k transition-metal complex spaces, including through the targeted design of
HOMO-LUMO gaps® and discovery of C-H activation catalysts*® with stable metal-oxo

moieties.
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Figure 67. (a) t-SNE plot of 5600 SCO candidates colored by MCDL-25/ANN-predicted AEn.L
(in kcal/mol as indicated in inset color bar) with increasingly high distance-to-train regions
indicated in darker shades of gray. The convex hulls of two families of ligands are indicated by
orange and bright green triangles, respectively, with inset zooms showing the discrete hits as
filled green circles. (b) 1D histograms of the MCDL-25/ANN-predicted AEn.L (top) and distance
to training data (bottom) using distance and diversity control in a GA with a stacked bar graph
consisting of all sampled points (blue), non-sampled, non-hits (gray), and non-sampled hits (red).
Reproduced with permission from ref. °>’. Copyright 2018 American Chemical Society.

In addition to model exploitation, where a trained surrogate is used to accelerate solving
an optimization problem, ML-accelerated discovery of new materials and transition-metal
complexes motivates active learning algorithms that focus on promising compounds where ML
models are uncertain, also known as model exploration. For example, Jennings et al. used both a
semi-empirical approximation to DFT (i.e., effective medium theory) and an ML-accelerated GA
to optimize nanoparticle alloy shape prediction and reduce the full electronic structure
evaluations by around 50-fold with active learning.®?! This active learning approach is
particularly useful in multi-objective optimization of materials where prior training data may be
limited and search spaces are large, leading to a number of recent applications in chemical and
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materials discovery>%*: Several of these efforts have used the expected

improvement®2%-63

criterion in efficient global optimization (EGO), wherein the likelihood of a
new point residing beyond the Pareto front is balanced by the uncertainty of the model
prediction. Because Gaussian processes (GPs) inherently provide a measure of uncertainty, they
have been most widely employed in such active learning studies®?!> 623-624. 627 including recently
in experimental catalyst design®! or in the selection of conditions (e.g., solvents)®*? for catalysis.

Given the high cost of generating data within an active learning framework, many studies
have only been applied to evaluating algorithms in toy problems with data sets where the
ground-truth best material was already known. Such strategies have enabled comparison of how
leveraging surrogate models compares against heuristics in active learning or other autonomous
discovery strategies.®*® As an exception in which high-cost DFT data was acquired at each
generation, Janet et al.’® applied the 2D expected improvement criterion in EGO for the
simultaneous optimization of multiple properties of redox couples in redox flow batteries.
Starting from a space of 2.8 M bulky (ca. 100-200-atom) transition-metal complexes, they
simultaneously optimized the DFT-evaluated solubility in polar, non-aqueous electrolytes (i.e.,
with implicit-solvent calculated logP) and the solvent-corrected adiabatic redox potential.>®?
Rather than using a GP, they noted that a multi-task ANN exhibited better lookahead errors, i.e.,
the model’s performance on future generations of molecules it has not yet seen in training.>®?

This suggested the ANN would generalize better in active learning.%?

By using a calibrated
uncertainty metric based on distance to training data in the model’s latent space®?’, they
employed the 2D-EI to select promising and uncertain points likely to expand the Pareto front

(Figure 68).°%° In five generations, the Pareto front was expanded dramatically, with each

generation of 2D-EI requiring nearly a week of parallelized DFT computation to obtain 20—-50
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new transition-metal complex property results (Figure 68). In comparison to random search, the
algorithm accelerated discovery of new leads by 500-fold, which corresponded to obtaining the
same result in weeks that would have taken fifty years by brute force search (Figure 68). These

accelerations generally are expected to increase as more objectives are optimized simultaneously.
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Figure 68. (Left) Redox (i.e., AGox(sol) in €V) and logP values for complexes simulated during 5
generations of the design algorithm, colored by generation and with unique symbols for each
metal center (as indicated in inset legend). The range of values sampled in each generation is
indicated by a translucent convex hull, and the final Pareto front is indicated by a red line. Three
Pareto complexes along this front are labeled and shown at top. (Right) Distribution of AGox(sol)
(top) and logP (bottom) values for each generation (colors and symbols as in left pane) alongside
a random sample (gray symbols). Reproduced with permission from ref. 3. Copyright 2020
American Chemical Society.

All methods discussed thus far have relied on introducing realism into the predictions by
enumerating a hypothetical space of materials based on feasible building blocks. An alternative

promising approach is using generative machine learning models to learn the distribution of
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known materials (e.g., from a database of experimental structures) and predict new hypothetical

materials representing this distribution. Such an approach has been developed for bulk inorganic

634 635

materials®** and porous materials such as zeolites®*> or metal-organic frameworks®*¢ but not yet
extended to transition-metal complexes.
5.3. Automated and Autonomous High-Throughput Workflows

In large part, the QSPR (Sec. 4.2) and ML models (Sec. 4.4) as well as advances in
property optimization (Sec. 5.2) have depended heavily on new strategies to share and access
large data sets. In comparison to open-shell transition-metal chemistry that is the focus of this
review, high-throughput screening workflows and strategies are considerably more mature in
crystalline, solid-state materials as well as in small-molecule organic chemistry. Although
distinct challenges are apparent for bulk periodic materials in how they are characterized or
screened, some parallels are evident in the need to screen large chemical spaces for both the solid
state and transition-metal complexes. Representative reviews of how high-throughput screening,
large databases, and machine learning have advanced solid-state materials design or in organic
reaction discovery are provided in Refs. 30 637-638 and Ref. 3, respectively.

5.3.1. Computational High-Throughput Screening and Exploration.

A number of toolkits are available for the automation of high-throughput DFT
calculations for discovery and ML model generation. Some general-purpose tools are available
that are most frequently used for the screening of solid-state materials. For example, the atomic
simulation environment (ASE) is a python toolkit that enables unit cell generation and interfaces
to a wide number of codes, especially those that carry out periodic DFT and the analysis or

control of those calculations®%-%! The AFLOW®%*? code software framework and web interface

are even more tailored for the solid state, streamlining high-throughput calculation of crystalline
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alloys, including through permutations of experimental structures.®*

The pymatgen python
library®** was designed to perform initial calculation setup and structure generation for solid-
state materials as well as for the post-processing analysis of materials properties from raw data.
The FireWorks®*® and AiiDA% codes are designed to optimize the procedure of automating and
distributing calculation workflows as well as ensuring the provenance and reproducibility of
calculations, also with a focus on solid-state DFT.

While not originally tailored necessarily for DFT calculations, a number of
cheminformatics toolkits are available for studying small organic molecules. Small-molecule
organic chemistry codes such as RDkit and OpenBabel®’ are widely used for high-throughput
screening in organic chemistry. These tools carry out 3D structure generation from string-based
molecule identifiers such as the simplified molecular input line entry system (SMILES)**® and
have integrated force field (e.g., with MMFF94 or UFF) optimization. These codes are also
useful for computing molecular fingerprints and using them to quantify molecular similarity
(e.g., using the Tanimoto coefficient). Both codes have interfaces to large databases of organic
molecules (e.g., ChEMBL®).

Motivated by the distinct challenges in describing and modeling metal-organic bonding,
tailored toolkits have also been developed for transition-metal complexes. One early example
developed by Hay et al. was the HostDesigner code that automated construction of candidate
metal ion hosts.®*® The FORTRAN code modules (i.e., LINKER and OVERLAY) were used to
construct macrocycles from a fragment library in which terminal hydrogen atoms were replaced
with adjacent fragments. These components were force field optimized with MM3 to generate
candidate chelators of metals that were scored by the proximity of the metal-coordinating sites to

the optimal position for a metal center.®>°
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The molSimplify code®® was developed to enable divide-and-conquer structure
generation especially for high-throughput screening of open-shell transition-metal complexes.
The code enables commandline generation of a range of transition-metal complex symmetries
with ligands built from SMILES strings, large molecular databases, or a built-in dictionary of
common organic ligands for inorganic complexes that users can update (Figure 69).>3 The code
uses OpenBabel as a backend to force field preoptimize the individual ligands and then attach
them to points around a metal center with rotations and translations to minimize steric clashes
(Figure 69). The initial, spin-state-dependent metal-ligand bond lengths selected for structure
generation were derived from a database of DFT values and later updated to be obtained from an
ANN trained to predict>® 27 metal-ligand bond lengths (Figure 69). This ANN improves upon
general (i.e., UFF) force field bond length predictions by an order of magnitude (Figure 2).3* The
molSimplify code also interfaces to ChEMBL via OpenBabel for ligand selection. These tools
have been used to carry out both pattern matching (i.e., with SMARTS) and diversity-oriented

screens of organic molecules (e.g., for transition-metal complex™?

or inorganic molecule
generation®*®). A custom core and decorator module can be used to start from a pre-built
complex structure and then replace or modify aspects of the structure with functional groups.>?

The molSimplify code also generates input files and scripts for automating electronic structure

calculations on generated individual and supramolecular complexes.
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Figure 69. Schematic of molSimplify structure building: (top) the user selects a metal and
coordination environment as well as ligands (e.g., from a database, DB) that are force field
preoptimized; (bottom) the ligand is aligned to the metal coordination site and the metal-ligand
bond distance (dm-1) is set from a database of values or from an ANN. This can be followed by

constrained optimization of the full complex. Reproduced with permission from ref. 52.
Copyright 2017 American Chemical Society.
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Foscato et al. developed methods to fragment existing transition-metal complexes and
reassemble them to make new complexes®® (Figure 70). Fragments were most readily derived
from structures obtained from the CSD or PubChem. Cutting rules were developed based on
pattern matches (i.e., with SMARTS) to identify where complexes should be fragmented.*®
Attachment points (APs) were then defined and used for the reassembly of new transition-metal
complexes from available building blocks (Figure 70).°° First demonstrated for building 2D
structures®, these methods were generalized through a series of fragment rotations to generate
3D structures of acceptable quality®!. This approach was further extended to include operations

600

that closed rings to form ligands of increased denticity from fragments®””, generalizing beyond

fragments available in the CSD. In a similar fashion, the MOLASSEMBLER code is a tool that
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was developed to build molecular graphs and then identify stereocenters and conformational

permutations during automated 3D structure generation for both organic and inorganic

molecules.®!
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Figure 70. Schematic representation of fragmenting experimental structures of complexes and
building new ones for transition-metal complex structure generation. Reproduced with
permission from ref. 50. Copyright 2014 American Chemical Society.

Other codes have been specifically designed to focus on catalyst screening. The AARON
code®? focuses on computational prediction of the stereoselectivity of catalysts. AARON is
applicable to reactions with well-established mechanisms but multiple possible stereocontrolling
transition states to enable systematic screening and optimization of catalysts with quantum
chemical calculations (Figure 71).52 AARON relies on the existence of a good template library
of prior catalysts and ligands to build catalyst structures but can detect rotatable bonds for
conformer searching and transition state generation, and it automates a series of DFT

calculations needed to evaluate catalysts®? (Figure 71). These tools have been primarily

demonstrated on widely studied Pd- and Rh-containing catalysts.%>%53 Like AARON, the CatVS
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code uses a user-defined complex and substrate and screens a library of candidate ligands.®>*

CatVS differs from AARON in that it employs force fields (i.e., TSFF and MM3, see Sec. 2) to
accelerate catalyst screening.%* Notably, the CatVS program was recently used to make
computational predictions of highly enantioselective thodium hydrogenation catalysis that were
then verified experimentally to display the predicted behavior.®* The autodE code® was
developed to overcome some challenges in structure generation for transition-metal catalysts by
fully automating catalytic intermediate structure generation from input SMILES strings.®> The
graphs of the reactants and products are used to generate guess transition states, which are

refined with electronic structure calculations.®>?
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Figure 71. Overall workflow of AARON: From a library of candidate structures in the template
library, AARON constructs each possible catalyst/substrate combination and locates all TS
structures for these combinations, following the same workflow for each combination. It
performs a series of constrained and unconstrained optimizations and frequency calculations that
are analyzed. Transition state structures that have been located are used as templates for new
substrates (shown at right). Reproduced with permission from ref. 52, Copyright 2018 American
Chemical Society.

Given the high computational cost of carrying out explicit DFT calculations on a large
number of complexes in a screening context, toolkits have also been developed for evolutionary
optimization®: %6 (see Sec. 5.2.1). The molSimplify automatic design (mAD) module is an
extension to molSimplify that carries out evolutionary (i.e., single and multi-objective genetic
algorithms) optimization of transition-metal complexes represented as a series of genes. The
fitness function can be evaluated directly from DFT calculations (i.e., with automated generation
of input and queue script files for running electronic structure calculations) or by one of

molSimplify’s artificial neural networks (e.g., for spin-splitting prediction®* 327), and the set of

genes is evolved to best satisfy the design objectives® (Figure 72).
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Figure 72. Workflow for mAD with key mAD components shown in blue: transition-metal
chemical (TMC) space is discretized into genes and converted to 3D geometries and optional
input files using molSimplify (shown in green), and properties are either calculated using an
external DFT package using molSimplify-generated input files or internal ML models. Results
are analyzed and guide iterative discovery using the design logic in mAD. An example 3D
geometry is shown in the inset. Reproduced with permission from ref. 55. Copyright 2018
American Chemical Society.

Jensen and coworkers developed the DENOPTIM code®® to enable evolutionary-
algorithm-based design of transition-metal complexes from fragments, building upon several
other earlier tools (e.g., the fragment explorer’) with wrapper codes (Figure 73). DENOPTIM

represents the molecule as a graph%*¢

, and the code analyzes fragments in the molecule by
comparison to available databases (e.g., ChAEMBL and the CSD). Mutations to the fragments of
the complex are carried out through a series of routines that ensure synthetic accessibility while
optimizing for the user-provided fitness function (Figure 73).9%¢ Because the fitness function is a
user-provided external call in a BASH script, DENOPTIM supports®*¢ force field, ML model, or
DFT calculations for the fitness evaluation if the user has these available for the problem at hand
(Figure 73). The globally optimal catalyst (GOCAT) framework is another toolkit that has been
developed to optimize an abstraction of the catalyst environment (i.e., the electric field) with
low-cost semi-empirical theory and to use genetic algorithms to identify discrete candidates that

best match the optimal field.%” Further development is needed (i.e., including in low-cost

molecular modeling) to demonstrate this approach for open-shell transition-metal catalyst design.
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Figure 73. Schematic of the DENOPTIM code, which consists of a series of modules, including
input parameters for the main interface, a genetic algorithm that uses fragments to explore
chemical space, and a fitness function provider. The output from DENOPTIM is an organized
series of SDF files, each containing a candidate molecule, its Cartesian coordinates, connectivity,
and associated data fields such as the fitness, SMILES/InChl encoding, and other properties that
the user may choose to include via the Fitness Provider. Reproduced with permission from ref.
656 Copyright 2019 American Chemical Society.
5.3.2. Autonomous and ML-Accelerated Computational Chemistry.

The interface of data science tools with traditional modeling was described briefly in Sec.
2.5. We expand upon that section to discuss how artificial intelligence has begun to be employed
in a way that can guide and accelerate the high-throughput screening workflows described in
Sec. 5.3.1 for transition-metal chemistry.

For transition-metal complex and catalyst screening, a unique challenge is the high rate of

failure of calculations carried out with semi-empirical methods and DFT (see Sec. 2.5) that can

be difficult to predict a priori. At the same time, the large size and associated high computational
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cost of calculations of transition-metal complexes relative to small organic molecules further
highlights the importance of only initiating calculations that are likely to be successful. To
automate and inform such a procedure, Duan et al. first defined> a series of geometric health
metrics to determine when transition-metal complex geometry optimizations resulted in
distortion of ligands or loss of ligand bonding to the metal. They also employed heuristic cutoffs
for deviations of <§?> from its expected value of S(S+1) and lower than expected localization of
the spin to the metal (e.g., from Mulliken spin analysis).>> To address the challenges of
calculation failure, Duan et al. trained>!® ANN classifiers to accurately (ca. 88-95%) predict the

300501 Because

likelihood of calculation failures using graph-based RAC descriptors.**®
calculations take longer to fail than to succeed’!, they showed that these models both avoid
generating spurious data for property prediction models and explore most (ca. 88%) of the
feasible chemical space in 33% of the computational time.’! Because the models employed
graph-based descriptors, they required no prior calculation to predict calculation success, but
their accuracy dropped rapidly on materials (e.g., high-valent metal-oxo catalysts) distinct from
training data. Use of uncertainty quantification®?” improved performance on the smaller fraction
of calculations for which the model was confident. Compositional descriptors have also
demonstrated utility in training machine learning models to predict the computational cost of
electronic structure calculations to guide calculation selection. >

As a complementary approach, Duan et al.’>' trained convolutional neural networks
(CNNs) trained on a set of 30 transferable descriptors of the electronic structure of the complex
during the first 2—40 steps of a geometry optimization without including any explicit

connectivity or chemical information. This information typically corresponded to around the first

6 hours of GPU-accelerated calculation time (e.g., with TeraChem®?) and no more than one third
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of the total average time.’'” Given the strong path dependence of calculation outcomes, analysis
of the CNN model’s focus®!® with gradient-weighted class-activation mapping®® revealed that
some calculations took a significant number of steps before the model could determine if failure
would occur. An extension®! was incorporated into workflows for active learning®®® of methane-
to-methanol catalysts*’ in order to reduce calculation attrition rates in catalyst discovery (Figure
74). This extended dynamic multi-task network model predicted three measures of calculation
health (i.e., metal spin, deviations of <$?> from expected values, and geometry optimization
outcome) based solely on properties of the wavefunction and the energetic gradient, representing
an artificial intelligence model that avoided unfruitful calculations during active learning with

limited prior training data (Figure 74).
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Figure 74. (top) Schematic of how electronic features are collected from the properties of the
wavefunction during a geometry optimization and used as input to an ANN classifier with a
convolutional layer followed by a fully connected layer. The model is a multi-task ANN
classifier that predicts calculation success with respect to geometry, deviations of <§*> from the
expected value, and the deviation of the spin on the metal from the total spin. (bottom) Gradient-
weighted class-activation map (GCAM)®® analysis of the multi-task model. In this example, the
geometry optimization leads to a good result for all three properties, but features oscillate in
early stages of the optimization (left). For each of the three prediction models, the GCAM focus
is on different phases of the geometry optimization (right). Reproduced with permission from
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ref. 561, Copyright 2021 American Chemical Society.

In addition to sensitivity analysis and Bayesian techniques for uncertainty quantification
in DFT as described in Sec. 2.5, Bayesian optimization has recently been proposed as a tool to

optimize DFT functional forms.%%2

To increase the domain of applicability of functionals, they
proposed®®? an automated approach to functional fitting against a dataset by stochastic sub-
sampling and iterative improvement of the functional coefficients with the tree-structured Parzen
estimator, the same algorithm widely employed in ML architecture selection (e.g., HyperOpt).
The automatically selected functionals were observed to outperform functionals developed with
expert knowledge but also could fail when suitable benchmark data was insufficient to guide
coefficient selection.%6?

As an alternative strategy to address the challenge of balancing cost and accuracy,
McAnanama-Brereton et al.®> demonstrated a proof-of-concept application of game theory to
the selection of the appropriate density functional and basis set for studying a new molecule.
Within game theory, the optimal choice for all players is selected in a so-called Nash
equilibrium, and the goal of method selection was to balance expected performance, similarity to
known data, and calculation cost. Using the Decider interface®®, the Tanimoto similarity of an
input molecule to benchmark organic molecules with known basis set/functional performance is
calculated (Figure 75). Using this information, the optimal basis set and functional are chosen to
balance performance and complexity (i.e., computational cost, Figure 75).°% While not yet

developed for strongly correlated systems or beyond a limited range of DFT functionals, such an

approach could be highly beneficial in the screening of transition-metal complexes.
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Figure 75. (a) Game theory model (i.e., Decider) score vs relative timing (i.e., times are relative
to the fasted calculation performed). (b) Decider score vs mean absolute percent deviation
(MAPD) to the reference GMTKN24 benchmark set (i.e., the lower the MAPD, the closer the
value is to the reference value). (c) Relative timing vs MAPD for the same points. One
functional, rPW86PBE, is labeled, and M06-2X is circled in blue in all graphs. The overall
ranking by the Decider model of the 15 points are indicated as top five (green circles), middle
five (blue squares), and bottom five (red circles). Reproduced with permission from ref. %3,
Copyright 2018 American Chemical Society.

A particularly relevant issue for transition-metal complexes is that the presence of strong

multi-reference (MR) character could call into question results from a high-throughput screen or

ML-accelerated exploration. Liu et al.>*® developed ML models to predict diagnostics of multi-
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reference (MR) character at low cost, enabling rapid assessment of strong correlation.>*® Using
these models, they visualized regions of an enumerated space containing complexes with
relatively low- or high-MR character and identified that traditional measures such as the
HOMO-LUMO gap provide an incomplete picture of what gives rise to MR character>*® (Figure
50). These models can be used alongside chemical discovery algorithms to avoid regions where
low-cost methods cannot be trusted.

Although a number of MR diagnostics have been proposed?!3-23!- 664 in combination with
heuristic cutoffs (see Sec. 2.5), their application in high-throughput screening has nevertheless
been limited. Because the diagnostics have a range of relative cost and reliability, it can be
challenging to know beforehand which diagnostics are most suitable for a class compounds to be
screened. Sprague et al. proposed a classification analysis®®® to define MR effect as having a
large error on predicted bond dissociation energies and determined that most diagnostics and
cutoffs produced more false positives than negatives, with %TAE(T) providing the best
performance, in part due to the close relationship between the diagnostic form and the predicted
quantity®® (Figure 76). Comparison of diagnostic pairs (e.g., geometric mean, minimum, or
maximum) showed that no combination improved upon the single best-performing diagnostic®®,
despite suggestions by Wilson and coworkers?*2-2*3 that a combination of WFT-based diagnostics

with adjusted thresholds was useful in predicting MR character in transition-metal complexes.
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Figure 76. Relationship of unsigned fractional errors on atomization energies, |f|, with
diagnostics %TAE(T) (left) and 71 (right) on small organic molecules. The vertical red dashed
lines correspond to the recommended diagnostics. The horizontal dashed lines correspond to
twice the root mean square error used to assign false positives. Reproduced with permission from
ref. 5%, Copyright 2015 Springer Nature.

Most studies to date on MR character have necessarily been limited to small molecules.
Duan et al. confirmed®” over a large data set of small organic molecules in equilibrium and
distorted structures®®’ that established diagnostics disagree. Using the recovery of the correlation
energy as a figure of merit for diagnostic performance, they showed®®” that lower-cost
diagnostics from DFT were outperformed by higher-cost diagnostics obtained directly from MR
WET (e.g., the leading weight of the CASSCF wavefunction?!3-22!) that would be intractable in a
high-throughput screening context. They developed ML models to overcome these limitations
first by building regression models on size-independent, structure-dependent™® descriptors (see

Sec. 4.4.1) in combination with the low-cost, DFT-level diagnostics to predict high-cost, WFT-

based diagnostics.

To address the disagreement of multiple WFT-based diagnostics in combination with

heuristic cutoffs, Duan et al.’®

used virtual adversarial training (VAT) to train an ANN classifier
of MR character. In this semi-supervised learning approach, an ANN was trained with a

modified loss function that contained both a supervised and an unsupervised term, starting with

labels only for the most extreme points where all diagnostics agreed. Because VAT models are
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robust to noisy inputs (e.g., in image classification), the ML-model-predicted WFT-based MR
diagnostics could be used as inputs to the VAT model, reducing the overall cost of MR
classification to that of DFT in a manner that robustly distinguished SR from MR molecules at a
level of accuracy that surpassed the conventional cutoff-based approach.’®> Such methods can be
used in large-scale chemical space exploration to determine where DFT is reliable and adapt to

automated MR WFT where it is not.

Within correlated wavefunction theory, ML models have been developed to predict the

522-523, 666

correlation energy or corrections on top of lower-level theories or in transfer learning

models?*® 7 A number of representations have been developed for this and related approaches,

522-523 666

including transferable orbital-derived densities and energies/matrix elements®®, in addition
to standard 2D and 3D ML representations. With few preliminary demonstrations on transition-
metal complexes®?®, such techniques have largely been applied to closed-shell singlet organic
molecules with unambiguous ground states at their equilibrium structures. Automated,
statistical>®® and ML-informed?!' methods for active space selection discussed in Sec. 2.5 likely
require further advances to enable their application in high-throughput screening in transition-
metal chemistry. For example, a preliminary demonstration has shown that artificial neural
networks can accelerate convergence of selected configuration interaction on small molecules by
selecting the most essential configurations.%®

For mechanism discovery, automated and semi-autonomous tools to identify the most
important reaction mechanisms have been proposed to minimize computational cost or expert
intervention. The artificial force-induced reaction (AFIR) of Morokuma and coworkers enables

the automated identification of approximate local minima and transition states, including for

reactions catalyzed by transition-metal complexes.®®® Bergeler et al. proposed®’® a computational
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protocol for generation of candidate reactive transition-metal complexes from heuristic rules
derived from conceptual DFT. By adding reactive protons, they analyze changes to the catalyst
electronic structure to identify candidate reactive intermediates. They retain only those below an
energy cutoff, and finally they refine transformations of similar intermediates with path-based
transition state search (Figure 77).°7° This approach remains too computationally demanding to

apply in combination with computational catalyst design.

Energy

Cutoff

Rule

Initial Set . A.ccessible Sgt )
Figure 77. Illustration of the process of removing intermediates (shown as vertices) from a

chemical reaction network by applying the energy cutoff Ec. The vertex representing the
substrate colored blue; vertices to be removed are colored red. Reproduced with permission from
ref. 67°, Copyright 2015 American Chemical Society.

Other researchers have developed fully automated workflows that leverage accelerated
high-temperature ab initio®’'%7? (e.g., Hartree—Fock) or semi-empirical®’® molecular dynamics as
well as enhanced sampling®’* (e.g., metadynamics) for mechanism discovery primarily in small

671-672

organic molecules. The nanoreactor and tsscds2018%7 tools automate the normally

challenging task of identifying reactive events by using heuristics to detect bond

rearrangement®’2-673

and then post-process these structures as starting points for automated
transition state searches. Caveats remain in the application of these semi-empirical or low-cost ab

initio methods in transition-metal chemistry where intermediates and transition states could be

missed by lower-accuracy methods (see Sec. 2).
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ML models have also been demonstrated to reduce the number of explicit calculations
required during time-consuming geometry optimization and transition state search in mechanism
discovery. These techniques include using surrogate models (e.g., Gaussian processes or ANNs)
to estimate the local potential energy surface®’>-%%, to reduce the time to self-consistent energy
evaluation®!, or to estimate when a candidate mechanistic step in a reaction network will be too
high in energy to contribute to a reaction mechanism%82-683,

5.3.3. Machine Learning Toolkits.

The majority of tools used in machine learning model training are general-purpose in
nature and developed by the computer science community. Given the fast-changing nature of the
field, we only briefly mention some of these tools and their purpose. We also briefly mention
some tailored tools useful for property prediction in chemistry and materials science. ML model
training is most frequently carried out with scikit-learn or for more intensive models (e.g., neural
networks) with Keras or PyTorch as a frontend to TensorFlow. Hyperparameter selection in ML
model training, including selection of model architectures for neural networks, is too
computationally demanding for exhaustive search. As a result, Bayesian optimization has been
demonstrated as an approach to identify optimal architectures, e.g., in Hyperopt®®* and GPtune%®®
toolkits. Recently, the COMBO toolkit®®® was developed specifically for materials science
applications and includes Bayesian optimization with Thompson sampling both for the
optimization of hyperparameters in neural networks as well as specifically for optimization of
materials objectives. In materials science, frameworks for data mining from external databases®®’
and automatic ML model building with a diverse set of ad hoc attributes have also been
demonstrated®®3-689,

Within the chemical sciences, efforts have been made to make ML and data visualization
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and feature selection more user friendly. Examples of these efforts include the automated
training and optimization of ML models. An early example is the DeepChem open-source
project, including the MoleculeNet® dataset of benchmarks and model training wrappers for
organic chemistry. More recent developments include the application of chemistry-specific
featurizations with the ML4Chem®! toolkit. The ChemML®? toolkit specializes in providing a
high-level wrapper for automated ML model training and visualization. Within the QSPR/QSAR
community, automated tools have been developed for some time?3-%%°, Special attention here has
been paid to whether pharma-relevant quantities are reproducibility predicted by models (e.g., in
AMPL®?) or automated feature selection and to estimating the “learnability” of a data set®-.
None of these tools have been tailored for open-shell transition-metal chemistry to date, in part
due to the smaller data sets and few available benchmarks.

5.3.4. Data Extraction and Automation of Experiments.

This review has focused on accelerated discovery of transition-metal complexes with
high-throughput screening and machine learning from a computational perspective. Here, we
briefly review synergistic efforts in extraction from the literature and autonomous
experimentation that could inform computationally driven efforts. For discussion beyond the
scope of this review, readers are encouraged to consider the more detailed reviews of Refs. 6%
99 Tn comparison to the outstanding challenges for autonomous computational chemistry, self-
driving laboratory demonstrations have matured substantially over the past 30 years®®. Advances
include integration of AI with robotics and flow synthesis to enable autonomous organic
molecule synthesis’®7%*, Both neural networks for reaction outcome prediction from literature
data’5-7% and reinforcement learning with microdroplet reactions for experimental design and

707

mechanism discovery’?’ along with improvements in online characterization’> 7% 798 have
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enabled the retrosynthetic advances necessary for this autonomous experimentation (Figure 78).
While somewhat less mature, robotics and Al have also been demonstrated in the synthesis and
characterization of materials, such as quantum dots’”. In a related, manual approach,
recommendations from an ANN have been scored by experimentalists to guide synthesis of

organic light-emitting diodes’!°.
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Figure 78. Computational and experimental feedback loops for automated reaction optimization
with flow synthesis. Reproduced with permission from ref. 7. Copyright 2016 American
Chemical Society.

Machine learning in the form of natural language processing (NLP) has extended?®> 7!!-

712 text-mining tools to enable extraction of information about materials properties and synthesis

from the literature, as recently reviewed in Ref. 7!3. Although examples have been demonstrated
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for extraction of uniformly reported properties (e.g., surface area of a MOF>#%), natural language
processing has been demonstrated to be essential to capture complexities in sentence structures

r’12 aim to tailor NLP to common chemical

(Figure 79). Toolkits such as chemdataextracto
phrases and properties (Figure 79). Extraction of synthesis recipes has generated sufficiently
large data sets on a range of solid-state materials (e.g., metal oxides®® or zeolites’'*) to enable
prediction of which conditions improve synthesis outcomes. These large data sets have enabled
unsupervised (e.g., variational autoencoder) methods to develop representations of influences on

LTS semi-supervised models where only a fraction of synthesis outcomes are

synthesis
labeled®™, as well as regression models where more chemically informed descriptors of materials

properties are known’!4,

Sentence Figure 2 shows the UV-vis absorption
Splitting spectra of 3a (red) and 3b (blue) in acetonitrile.
Figure 2 | shows | the UV-vis absorption @ spectra | of
Tokenization
3a ( red |) and 3b ( |blue |) 'in @ acetonitrile
Part-of-speech Figure 2 | shows| the UV-vis absorption  spectra | of
Tagging NN cD VBZ oT NN NN NNS N
i 3a [([red ) |and| [3b| [(| [blue )| |in  |acetonitrile
Entity NN W cC NN & IN oM
Recognition
‘ Figure
1
I 1
Phrase Parsing 2 Spectrum
l I T : T 1
Type Of Of In
Information —t— — —— |
Extraction UV-vis | absorption | 3a red 3b | | blue | acetonitrile
Interdependency 3a —  2-[2-[4-(dimethylamino)phenyl]diazenyl]-benzoic acid
Resolution . 5 5 .
3b —  2-[2-[4-(dipropylamino)phenyl]diazenyl]-benzoic acid

Figure 79. Schematic of a pipeline for natural language processing applied to a materials
chemistry manuscript. The manuscript text is split into sentences and then tokens followed by
parsing with rule-based grammar to extract individual chemical records. Example tags shown
include nouns (singular: NN, plural: NNS), cardinal number (CD), verb (VBZ), determiner (DT),
preposition (IN), adjective (JJ), and chemical mention (CM). Reproduced with permission from
ref. 712, Copyright 2016 American Chemical Society.

Still, limitations in extending NLP extraction efforts to transition-metal complexes and

metal-organic materials property predictions remain. This is largely due to data sparsity or lack
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of uniformity in the reporting of properties (e.g., in the supplemental information versus main
text) as well as publication and experimentation bias toward successful results’!6-71%,
Nevertheless, such data should significantly augment currently available experimental data sets
in transition-metal chemistry that are either small or consist only of X-ray diffraction structures
(see Sec. 4.1).

6. Conclusions and Outlook.

In recent years, machine learning has emerged as an essential complement to traditional
physics-based models and experiment. The advances in this area have presented unique
opportunities and challenges in transition-metal chemistry due to the diversity of chemical
bonding possible in a transition-metal complex as well as the interplay between spin, oxidation
state, and metal electron configuration. This review has covered how machine-learning-
accelerated discovery in this space has benefitted from key advances in automation, ligand
chemistry, experimental data sets, and physics-based modeling. These advances have enabled
improvement upon best-in-class experimental catalysts and materials. The development of
uncertainty-aware search with surrogate ANN models of large spaces have led to identification
of compounds with optimal properties and revealed new design principles. Further improvements
have come with the automation and acceleration of computational modeling techniques.

Despite this progress, several outstanding challenges in the field remain for fully
autonomous machine-learning-accelerated transition-metal chemical discovery to be realized.
We will briefly outline some of these now.

A practical approach to systematically improve electronic structure method accuracy is
not as well established for transition-metal chemistry as it is for organic chemistry. While

automated or rule-based active space selection methods have demonstrated some promise, they
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often suggest active spaces that are beyond reach of high-throughput screening workflows.
Furthermore, the cost—accuracy trade-off is not well established here. There is a need still for
development of low-cost methods that can robustly predict properties of open-shell transition-
metal complexes, and when such a method (e.g., MM, SQM, or DFT) will perform well or fail
needs to be more broadly understood in transition-metal chemistry for these choices to be easily
incorporated into automated workflows. Similarly, robust benchmarks from experiment or those
that eliminate uncertainty in the identity of the reacting species are an outstanding challenge in
transition-metal chemistry. Extraction of larger, robust data sets will benefit both benchmarking
of physics-based and data-driven models.

Transferability remains an open challenge for machine-learned representations and
models. This refers both to generalization to new regions of chemical space and to better
prediction from smaller data sets. For transition-metal chemistry, the balance between near- and
far-sighted properties has been established to be distinct from organic chemistry. This distinction
can be encoded in learned representations or in feature-selected representations. Just as force
fields are often developed for a single or small range of metals, present machine learning models
often only attempt to generalize to a small portion of the periodic table. Building models that
truly generalize between rows of metals or across different ligand types is essential. Furthermore,
interpreting the appropriate feature or latent space that accurately describes similarity of
isovalent species will be essential for developing new approaches to design in transition-metal
chemical space.

A perhaps even greater question only starting to be addressed is the extent to which
machine learning models should simultaneously capture multiple Born-Oppenheimer potential

energy surfaces. Should such models learn not just the ground state but also when the ground
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state changes and in what manner, either for photoexcited species or multiple low-lying spin
states?

A combinatorial challenge for data generation and chemical space exploration also
remains. While enumerative strategies have been exploited for early successes in machine
learning for subsets of small-molecule organic chemistry, the path to enumeration in transition-
metal chemical space is less clear. Furthermore, it is not obvious to what extent chemical space
should be explored in neighborhoods around known hits versus through larger variations in
chemistry to overcome the multiple constraints in most practical materials design. While not the
focus of this review, the twin challenge of materials discovery is mechanism discovery,
especially in catalysis. Often, one must be simplified to address the other in screening, but at
present there are no systematic approaches to identifying when changing the material changes
the mechanism or how to design a catalyst or material with the intent of improving its stability.

Despite some of these limitations, machine-learning-accelerated discovery of transition-
metal complexes is showing rapid progress across a range of applications. The inherently
challenging to describe quantum mechanical nature of open-shell metal centers has particularly
benefitted from non-linear machine learning models in their accelerated discovery. It is expected
the next few years will bring ever more changes to the way we think about carrying out materials

and molecular discovery on a computer, especially in these challenging materials spaces.
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