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1 | INTRODUCTION

Fisher randomization tests (FRT) are flexible tools because they are model free, permit assessment of
causal effects of interventions on any type of response for any assignment mechanism using any test
statistic, and can be easily extended to model-based inference (Rubin, 1980, 1984). The tremendous
recent development of computing resources has sparked much interest in using FRT to test complex
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causal hypotheses that can arise from modern-day randomized experiments (e.g. Athey et al., 2017,
Basse & Feller, 2018; Basse et al., 2019; Hennessy et al., 2016) in social, biomedical, educational and
behavioural sciences. The work by Morgan and Rubin (2012) has shown how randomization tests can
be applied to design and analyse randomized experiments with several pre-treatment covariates. As
modern experiments continue to grow in size (in terms of number of experimental units, interventions,
covariates and as combinations of several independent sub-experiments) and complexity (e.g. non-
standard randomized assignment mechanisms), the flexibility and wide applicability of FRT make it
a particularly promising tool to analyse such experiments.

However, there are three aspects of FRT that can arguably be made more transparent and thus
more appealing to scientists. The first concern is related to the theoretical and implementation aspects
of inverting FRTs to generate interval estimators of treatment effects, because interval estimates are
typically more appealing than a p-value or an acceptance-rejection decision. This inversion is done
by testing a sequence of sharp null hypotheses of constant treatment effects, and using the curve of
the resulting p-values. The first original reference of a similar inversion procedure appears in Pitman
(1937). Whereas proposed procedures and algorithms appear to work well in large sample settings
(Ding, 2017; Garthwaite, 1996), it is somewhat surprising that the theoretical properties of this in-
version procedure, especially in a finite population setting, have been scantily discussed in causal
inference literature and apparently counter-intuitive simulation results have sometimes been difficult
to explain. See, for example, discussion in Section 7.3 of Ding (2017) on the intervals for factorial
effects obtained in Dasgupta et al. (2015). The research in this paper reveals how the discrete nature of
the p-value statistic poses complexities associated with the inversion procedure in a finite population
setting and proposes a viable solution.

The second aspect is computational. The FRT is a computation-intensive procedure, as its classical
form involves generating all possible permutations of the observed assignment vector that are consis-
tent with the assignment mechanism. The total number of such permutations in a balanced completely
randomized design increases from 252 to 10* as the number of units increases from 10 to 100. A
common way to get around this issue is to generate a sample of all possible permutations, say 1000 or
5000, and use it to obtain a Monte Carlo estimate of the p-value. However, to the best of our knowl-
edge, there does not exist any insights or theoretical results about how large a sample size is needed to
guarantee acceptable inferential properties. This computational complexity increases manyfold when
we consider the problem of interval estimation, because it entails computing the p-values at several
values of the treatment effect.

The third aspect, related to the broader subject of fusion learning, is performing meta-analysis
using FRT. This entails combining results from independently conducted randomized experiments,
possibly with different assignment mechanisms, to draw sharper inference on a common treatment
effect. Whereas there exist several methods in literature to combine p-values from independent tests
of hypotheses, obtaining a composite interval with the desired coverage poses additional challenges,
especially in the finite population case when the p-value function is discrete.

This paper aims to address the three issues mentioned above by providing a new theoretical perspec-
tive of FRT using the concept of confidence distributions (CDs), which will be formally introduced in
Section 2.2. Specifically, the paper makes the following contributions: (i) Drawing inspiration from
the concept of CDs, it provides the first formal definitions of a class of p-value functions in the context
of FRTs. It is noteworthy that these definitions are not direct implications of the existing CD literature,
considering the discrete nature of the randomization distribution of any test statistic. (ii) It identifies
specific mathematical conditions that guarantees inversion of the p-value functions to generate confi-
dence intervals with desired coverage. (iii) It provides a precise algorithm for computing confidence
intervals that is more robust than the traditional approach, because it does not depend on the choice of
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discrete levels of treatment effects. (iv) It addresses the computational complexity associated with (iii)
by providing a novel result on the impact of Monte Carlo sample size on the accuracy of estimation
of the entire p-value function, when such estimation is based on a single Monte Carlo sample. (v) It
provides a general procedure for combining inferences from similar and dissimilar experiments by
extending methods for combining CDs (again, such an extension is non-trivial due to the discreteness
of the randomization distribution of the test statistic).

In Section 2, we introduce the basic notions and concepts of FRT and CD. Section 3 establishes
the bridge between FRT and CD by defining five different p-value functions, examining theoretical
properties of these p-value functions and showcasing their applications in the context of hypothesis
testing. Section 4 identifies conditions that are necessary for inverting FRTs to generate confidence
intervals with guaranteed coverage and provides an algorithm to do this inversion. Section 5 investi-
gates the effect of size of the Monte Carlo sample on the estimation of p-value functions and provides
a result that quantifies the estimation accuracy of the entire p-value function based on a single Monte
Carlo sample. Section 6 develops efficient methods to combine FRTs from independent experiments.
Using a real-life example, Section 8 demonstrates the usefulness of the p-value functions in drawing
inference. Section 9 contains some concluding remarks.

2 | FUNDAMENTALS

2.1 | The Fisher randomization test understood through the potential
outcomes model

Consider a finite population of N experimental units, each of which can be exposed to either a treat-
ment (denoted by 1) or a control (denoted by 0). For unit i, let Y;(1) and Y;(0), respectively, denote
the potential outcomes (Neyman, 1923; Rubin, 1974) under treatment and control. We define the
unit-level causal effect of the treatment on unit i as 6; = Y,(1) — Y;(0), and the finite-population level
average causal effect

N N N
O=N"'Y0,=N"'"D ¥(1)-N"'Y ¥,0).

i=1 i=1 i=1

In a randomized design, the N units are assigned to the two treatment groups using a known ran-
domized assignment mechanism. Let W = (W,, ..., W,)T denote a binary random vector whose ith
element W; equals one or zero according as unit i is assigned to treatment or control. The assignment
mechanism is defined as the probability distribution of the random vector W and dictates all inference
statements. In a completely randomized design with N; and N, units assigned to treatment and control,
respectively, where N and N, are predetermined, the assignment mechanism is:

-1
N!
P(Wl =W1’ ey WNZWN): <W> |]( Z §V=1Wi=N1),
041~

where [ (A) is the indicator function for event A. The development in this paper covers any randomized

assignment mechanism as long as the assignment probability P(W, = wy, ..., Wy =wy) is fully specified.

The observed outcome for the ith unit is denoted by Yi"bs = WYy,(1) + 1 - W)Y,0), i=1, ..., N.

Thus, only one of the two potential outcomes for each unit is observed and the other is missing.
Consider testing the sharp null hypothesis
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HO:Y(1)—=Y(0)=0, foralli=1, ..., N, (1

that is, all units have an identical treatment effect 6. A special case of this hypothesis is Hg :0=0
, Fisher's sharp null hypothesis of no treatment effect on any unit (Fisher, 1935; Rubin, 1980). The hy-
pothesis Hg can be tested by considering a suitable test statistic 7, and comparing its observed value 7°™
with the randomization distribution of 7" under the null hypothesis. This randomization distribution of 7'is
generated by imputing the missing outcomes under Hg and repeatedly generating values of 7' by drawing
from the known probability distribution of the assignment vector W. The p-value is the tail probability
measuring the extremeness of the test statistic with respect to its randomization distribution. Rejection of
Hg if the p-value is less than or equal to a € (0,1) leads to a test procedure with level a, that is, the proba-
bility of Type-I error not exceeding a. The beauty of this procedure is, it can be tested with any reasonable
test statistic that is capable of summarizing the difference between the treatment and control groups.

By varying € and testing a set of sharp null hypotheses H?, it is possible to obtain a ‘p-value func-
tion’ of @, which is a step-value function. This step function can be inverted to generate an interval
estimator for the true additive effect 8. As we shall see in Section 3, most of the subsequent develop-
ments will be based on this p-value function and its variants. A toy example presented in the supple-
mentary material demonstrates each step involved in conducting a randomization test, generating a
p-value function and inverting it to obtain a confidence interval for 6.

2.2 | A brief overview of confidence distributions and confidence curves

The idea of a confidence distribution is to use a sample-dependent distribution function defined on the
parameter space to estimate a fixed but unknown (scalar/vector) parameter (Cox, 1958; Efron, 1993,
1998; Schweder & Hjort, 2016; Xie & Singh, 2013). Such a practice elevates one point (point estima-
tor using the single value of a sample statistic) and two points (confidence interval using a lower limit
and an upper limit) to a full function that can be used to draw inference on the parameter of interest.
Similar to a Bayesian posterior, a CD contains rich inferential information and can yield all forms of
inference, including the classical point and interval estimators.

For ease of illustration, consider the simple case of a scalar parameter 8 € ® with sample data
Y, =, ....Y,) € Y. Afunction H,(-) = H(-, Y,)on® X Yis called a CD function for 6, if (i)
given Y,, H,(-) is a cumulative distribution function (CDF) on ®; and (ii) at the true parameter value
0 =26y, H,(0, = H®,, Y,). as a function of the sample Y, follows a Uniform[0, 1] distribution
(Schweder & Hjort, 2002; Singh et al., 2005). In other words, (i) requires that a CD is a sample-
dependent distribution function on ®. Requirement (ii) ensures that the CD function can be used to
obtain confidence intervals and test hypotheses. For example, by (ii), ( — oo, H I(@))is a 100a% con-
fidence interval for 6, and H,(b) provides a p-value function for testing the hypothesis Q : 8 < b ver-
sus Q; : @ > b. This shows that a one-sided p-value function is a special case of a CD. Corresponding
to a CD function H,(), one can obtain a confidence curve (CV)

CV(0) = 2min{H,(0), 1 — H,(0)},

which can also be used to draw similar inferences (Birnbaum, 1961).

Due to the discrete nature of the FRT in which the p-value is a step function as in the last
panel of Figure 3 (supplementary material), the following new definition will be useful for this
paper. Note that, in the existing literature (e.g. Schweder & Hjort, 2016; Xie & Singh, 2013), CDs
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in discrete sample distributions are handled by asymptotics. Finite sample performance is not

investigated.

Definition1 (Upper and Lower CDs)A function Hr%( ) = H“(-, Y,)mapping® X Yto[0,1]is said
to be a lower CD for a parameter 0 if at the true parameter value 6=6,, Hb(&o) = H“(0,, Y,), as
a function of the sample Y,, is stochastically larger than a Uniform[0, 1] random variable, that is,

P[H"0,, Y,)<a| <a forall «e€(0,1). )

An upper CD H}Lj( -) = HY(-, Y,) for parameter 6 can be defined similarly but with Equation (2) re-
placed by P [HV(8, Y,) < a]| > aforalla € (0, 1).

3 | BRIDGING FRT AND CD THROUGH p-
VALUE FUNCTIONS

We note that both FRT and CD historically have an implicit ‘fiducial’ flavour, although in recent
developments (Schweder & Hjort, 2016; Xie & Singh, 2013), the concept of CD has been developed
without any fiducial interpretation or reasoning. Some researchers consider a CD as ‘a frequentist ana-
logue of a Bayesian posterior’ (Schweder & Hjort, 2003). On the other hand, Rubin (1984) provided
the following Bayesian justification of the FRT: it gives the posterior predictive distribution of the
estimand of interest under a model of constant treatment effects and fixed units with fixed responses.
These connections motivate us to better understand the properties of FRT by connecting it to CD and
exploiting recent results on CD. It should be pointed out that this connection is non-trivial because the
theory of CD primarily revolves around parametric models, whereas FRT is essentially a model-free
procedure. Obviously, the discrete nature of the distribution of the p-value in FRT also adds further
complication.

We first extend the notion of the p-value for the FRT to a p-value function along the lines of that
introduced in Section 2.2. To do this, we start with a more careful handling of the notations involved.
Let Y™ denote the true N X 2 matrix of potential outcomes and Ylmp the N X 2 imputed matrix con-
sisting of the observed outcomes and imputed missing outcomes under the null hypothesis Hg. Let
WO denote the N x 1 observed assigned vector and Y° the N x 1 observed vector of responses.
Then the observed data from the experiment can be denoted by D = (Y%, W), Also, let W™
denote any repeated draw from the distribution of W while generating the randomization distribution
of T. Such a repeated draw generates repeated data Drep = (Yrep W) where Y “P is the vector of
observed outcomes generated from Y " by assignment vector W',

Let T be any test statistic and T denote the discrete random variable having the randomization
distribution of 7" under the null hypothe31s H" Then the distribution of T depends on the imputed
potential outcomes matrix Y P and WP, Consequently, we can write

rep =T (Drep) T(Yiemp , Wrep ). (3 )

Finally, note that the observed value of the test statistic 7°* depends on D°®, and consequently on Y™®
and W, This allows us to write

Tobs — T(DobS) — T(erue’ WObS). (4)
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3.1 | p-value functions for one-sided alternatives of the sharp null

Whereas the sharp null hypothesis has been widely discussed in literature, the alternative hypothesis
against which the sharp null is tested has seldom been mentioned. In this paper, we will keep our alter-
natives restricted to the class of sharp-nulls to make the interval estimation problem readily interpret-
able. A violation of the sharp null can be one-sided or two-sided. Below, we define p-value functions
for one-sided alternative hypotheses.

Definition 2 Consider the one-sided alternative
HY":Y,(1) - Y,(0) = ¢( > 6), ©)

forall i =1, ..., N. Assuming that larger values of the test statistic 7 indicate departure from the sharp
null in favour of H' f ", we define the following p-value functions for testing Hg against alternatives H' f "as:

PHHD™, 0) = P, > T) = P (T(Y)™ W) > TO™)), ©)
PVt D, 0) = P(TP > 7o) = p (T(Y;“‘P, wWeP) > T(D"bS)) . %)
Definition 3
HY Y1) - Y,(0) = y(<0), 8)
forall i =1, ..., N. Assuming that smaller values of the test statistic 7" indicate departure from the sharp

null in favour of H' f *, we define the p-value function for testing Hg against alternatives H' f " as

PO, 0) = P(TY < T = P(T(Y,", W) <TO™)), ©)
PV (D, 9) = P(T' < T°%) = p (T(Y;“‘P, WeP) < T(DObS)) . (10)

Note that the p-value functions defined in Equations (6)—(10) are random variables under the ran-
dom mechanism of W, because of their dependence on D° = (Y, W°"). However, conditional
on D (i.e., when W° is realized), they are functions of 6 only.

Proposition 1  For any test statistic T, the p-value functions defined in Equations (6)—(10) satisfy the
Jfollowing properties:

1. Both pL*(D°*, §) in Equation (6) and p“~ (D°®, ) in Equation (9) are lower CDs as per
Definition 1, which means they both stochastically dominate the Uniform[0, 1] random vari-
able at the true value 6, of € and satisfy

P(p** (D™, 0) <a) <a, and P (p*~ (D™, ) <a) <a,
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fora € (0, 1).
2. Both pU+(D°®, @) in Equation (7) and pU~ (D°®, 6) in Equation (10) are upper CDs in the sense that
at @ = 6, they are both stochastically dominated by the Uniform[0, 1] random variable and satisfy

P (pU+(D°bS, 0)<a) >a, and P (pU_(DObS, 6p) <a) >a,

fora € (0, 1).
3. Let Tyy < T < -+ < Ty, be the m unique ordered values of 7T for 6 = 6, and
vi = P(T(Y™, W) =T,) > Ofori=1,2, ..., m. Then, for any a € (0, 1),

P (p" D™, o) <a) 2a—y*, P (p (D™, 0)<a) 2a—y*,

11
P (p"r(D, 0y <a) <a+y*, P (p"" (D™, fp)<a) <a+r", b

where y* =max{y;, Y2 ---» Vim}-
Implications of Proposition 1 and some remarks

1. Consider testing the sharp null hypothesis (1) against one-sided alternatives (5) or (8) using a
test statistic whose large or small values indicate departure from the null in favour of Equation
(5) or (8), respectively. By part (a) of Proposition 1, the test procedure that rejects the sharp
null if the observed value of pL*(D°, ) < a is valid in the sense that the probability of
Type-I error does not exceed a. However, by part(b), the rejection rule pUt (D, 0) < «
is not valid. Similarly, use of pL‘(DObS, 0) for the one-sided alternative (8) leads to a valid
test, while use of pV ~(D°®, 9) does not.

2. Equation (11) provide a set of theoretical upper bounds for the discrepancies between the empirical
CDFs of the four p-value functions given by Equations (6)—(10) from the CDF of a Uniform[0, 1]
variable. However, in practice, these upper bounds will typically be unknown to an analyst because
both m and the y;'s depend on the unknown matrix of potential outcomes and the true parameter
value 6. An illustration with a toy example is given in the supplementary material.

3.2 | Two-sided alternatives

We now consider testing the sharp null Hg against a two-sided alternative hypotheses

H=Y(1)=Y0)=n (#6), foralli=1,...,N. (12)

Definition 4 The p-value function for testing Hg against alternatives H fi is
pL(DObS, 9) = 2min {pL+ (DObS, 0)’ pL— (DObS, 0)} , (13)

where p£+ (D, 8) and p=~ (D°*, @) are defined in Equations (6) and (9), respectively.
The function pL(DObS, 0) can be considered a discrete version of a CV function. By part (a) of
Proposition 1, p=*(D°, §) and p~~ (D°®, ) stochastically dominate a Uniform[0, 1] random variable
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when 0 = 6, and thus is a valid p-value function to test Hg against H f*. Note that, if the p-value func-
tion for this two-sided testing problem had been constructed along the lines of the CV function intro-
duced in Section 2.2 as

2min{p"* (D, 0), 1 = p"* (D, )} = 2min {p** (D™, 0), p!~ (D, O)},

then it would not have dominated a Uniform[0, 1] random variable by part (b) of Proposition 1.
Figure 1 illustrates a p=(D°®, @) function based on the toy example in the supplementary
materials.

4 | INVERTING THE FRT TO OBTAIN CONFIDENCE
INTERVALS

As briefly mentioned in the introductory section, the procedure of inverting FRTs to obtain
intervals for treatment effects has been described rather loosely in literature as one obtained by
‘inversion’ of the p-value function. In Section 3, we have defined five p-value functions, but the
inversion procedure leading to construction of valid confidence intervals is not obvious from
these definitions. Furthermore, the definitions and results stated so far do not guarantee mono-
tonicity of the p-value functions (see Section 3 of the Supplementary materials for an example).
Non-monotonic p-value functions will not produce confidence intervals for the treatment effect
at all levels of significance. In this section, we explore conditions that guarantee monotonicity
of p-value functions, and then provide a concrete algorithm for constructing valid confidence
intervals.

pE(DO%, 0) vs 6
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4.1 | Monotonicity of the p-value functions

We now aim at providing a set of sufficient conditions to guarantee that p=+(D°*, ) ‘behaves’ like
a CDF in the sense that is monotonically non-decreasing and right continuous. We first introduce the
following definitions along the lines of Caughey et al. (2017).

Definition 5 (Ordered vectors of potential outcomes)Two vectors of potential outcomes under treat-
ment Y(1) = (Y,(1), ..., Yy(1)) and Y'(1) = (Y/(1), ..., Y}(1)) are ordered as Y(1) < Y'(1)
ifY;(1) <Y l’ (D) foralli=1, ..., N. An order between two vectors of potential outcomes under
control Y(0) and Y’(0) is similarly defined.

Caughey et al. (2017) introduced the notion of an ‘effect increasing’ (EI) statistic in the context of
testing null hypotheses that are weaker than the sharp null. A definition of an EI test statistic is given
below.

Definition 6 (Effect increasing (EI) test statistic)A test statistic 7(Y, W) = T(Y (1), Y(0), W) is said
to possess the EI property if it is non-decreasing in Y(1) and non-increasing in Y(0).

Examples of EI statistics include difference in means or Wilcoxon rank sum statistic. On the other
hand, the commonly used Studentized Fisher—Behren-type statistic in the example given in Section
3 of the supplementary material does not satisfy the EI property. Caughey et al. (2017) pointed
out the important role of EI statistics in constructing valid tests for null hypothesis that are weaker
than the sharp null. Theorem 1 stated below relates the test statistic to the properties of the p-value
functions, and establishes that the EI condition is sufficient for monotonicity of p-value functions
in FRT.

Theorem 1

1. If the test statistic T is EI, then the p-value function p“+(D°*, §) defined in Equation (6)
is non-decreasing in @ for fixed D°*.

2. For fixed W, if T(Yigmp, W) is right continuous as a function of 6, then p%+ (D, @) is right con-
tinuous in 6.

3. Furthermore, for fixed W # WObS, if T(Y;mp, W) approaches —oco and +co as § — —oco and
6 — +o0, respectively, then p=+ (D, §) — 1as 6 — oo and pE+ (D, ) — P(W = W) as
60— —o0.

Similar results also hold for p~~ (D°*, 9) defined in Equation (9), which is non-increasing if T is

EI

4.2 | An Algorithm for generating confidence intervals with coverage at
least 1 —

From the foregoing discussion, itis clear that the ‘traditional’ approach of inverting just one p-value func-
tionbased on an arbitraryteststatistic does not yield one or two-sided intervals with the desired coverage.
Based on (i) the properties of the p-value functions in Proposition 1, (ii) the description of valid proce-
dures for testing the sharp null against one- or two-sided hypotheses in Section 3, and (iii) the conditions
required to guarantee that inversion of p-value functions will generate intervals as stated in Theorem 1,
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we now arrive at the following proposition that provides a rule to generate confidence intervals with
the desired coverage.

Proposition 2 Assume that for fixed D, the p-value functions p* (D>, ) and p-~ (D>, 6)
are (i), respectively, non-decreasing and non-increasing and (ii) right continuous functions
of 6.

1. Define 0,(a) = sup, {6: pL+(D°bS, 60) < a}. Then the one-sided interval [GK(a), oo) covers
the true value of 6 with probability of at least 1 — a.

2. Define 6,(a) = inf, {6 pL‘(DObS, 0) < a}. Then the one-sided interval ( — 0, Hu(a)) covers
the true value of @ with probability of at least 1 — a.

3.For 0 < aj, ay < 1 and a; + a, = a, define 0,(a;) = sup, {0: p** (D™, ) < a,} and
0,(a,) = inf, {0: p*~(D°™, #) < a,}. Then the two-sided interval [0,(a,), 0,(a,)) covers the
true value of @ with probability of at least 1 — a.

Proposition 2 provides methods to construct confidence intervals for the treatment effect with
the desired coverage. The most straightforward approach is to obtain the interval [6,(a/2),0,(a/2))
where 0,(a/2) and 0,(a/2) are obtained by substituting a; = a, = a/2 in part (c) of Proposition 2
and solving the equations p=+ (D, 0) = a/2, pv~(D°®, 6) = «/2, which are equivalent to solving
pED, 0) = a. Because p=* (D, §) and p=~ (D°, 6) are stepwise functions that are monotonic in
6, we propose Algorithm 1 that is based on the conventional bisection method to find the left endpoint
6,(a/2) of the interval. The right endpoint 6,(a/2) can be obtained similarly.

Remark I The final 6, and 6, in Algorithm 1 still satisfy p£+ (D, §,) < a/2 and P** (D™, 6,) >
a /2. These inequalities, the monotonicity of pt+ (D, ) and definition of 0,(al2) collectively
imply that 9, < 6,(a/2) < 6, and consequently 6,(a/2) — € < 0, < 0,(a/2). It should be stressed
that such a result is independent of the choice of initial input [0, 6 *].

Algorithm 1 Bisection method for estimating 6,(a/2)
Inputs: An initial interval [0}, 0] with p+(D°",07) < a/2

1'Yr

and pit (DO, 0%) > a/2; a specified error level € > 0

Procedure:
1. Fix 6; «+ 6; and 0, « 0.
2. Calculate the p-value function p“+(D°> 6) at 6 = nger;
3' If pL+(DObsa #) S Oé/2, then Hl — w Otherwise, 97“ — 91‘;97—;
4. Repeat steps 1, 2 and 3 until 6, — 0; < e.
Output: 6.

Remark 2 All existing procedures (e.g. Dasgupta et al., 2015) of obtaining confidence intervals by
inverting FRTs essentially involve a grid-search procedure that entails (i) choosing a sequence
of parameter values {6, 6,, ...}, (ii) calculating ﬁ(Hj), an estimator of the p-value function p(6;)
at 0 = 0, by testing the sharp null H;:0 = 0,, j = 1, ..., (iii) fitting a p-value function using the
(0_,-, /p\(Bj)) pairs and (iv) inverting the fitted function to obtain the confidence interval for 6.
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However, the interval obtained by inverting the p-value function fitted with these chosen param-
eter values depends on the choice of the sequence {6, 65, ...}. The algorithm proposed above
is more robust compared to the traditional approach because it does not depend on the choice
of discrete levels of 6.

Remark 3 Although the proposed algorithm can be more robust compared to a grid search, calcu-
lating p* (D°®, ) for several values of @ while searching for the lower and upper limits is still
computationally challenging even when Monte Carlo estimates (obtained by randomly drawing
assignment vectors W) are used to estimate the p-values. However, the computational load can
be considerably reduced if we can estimate the entire p-value function using a single Monte
Carlo sample. Thus we arrive at an important question that connects statistical and computa-
tional efficiency: how to efficiently estimate the entire p-value function for an infinite number
of parameter values in a computationally viable manner? We address this important question in
the following section.

5 | EFFICIENT ESTIMATION OF THE p-VALUE
FUNCTION: COMPUTATIONAL VIABILITY AND
THEORETICAL GUARANTEE

The p-value functions defined in Sections 3.1 and 3.2 can be computed for any given value of 0 if all
possible realizations W™ of the assignment vector W can be obtained and used to generate the exact
randomization distribution of the test statistic T(Yigmp, W™P). However, even for a moderate popula-
tion size the total number of possible realizations of W is typically computationally prohibitive. The
common solution to this problem is to draw, repeatedly and independently, randomized treatment as-
signment vectors W[, ..., Wi, and obtain a Monte Carlo estimate of the p-value function based on
the values of the test statistic computed from these K draws. Consider specifically the estimation of
pL* (D, 9) defined in Equation (6). The Monte Carlo estimator of p&+(D°, 6) based on K draws
is given by

=

/p\f{+ (DObS, 0) = % Z I (T(Yiemp’ Wfp) > T(DobS)) , (14)
k=1

where [(A) is the indicator function for event A. All other p-value functions can be estimated similarly.
Although this estimator has long been used since the times of Fisher, the effect of the Monte Carlo sample
size K on the accuracy of the estimator /p\L+ (D%, ) for fixed 6 remains largely unexplored. The current
problem is even more challenging, because the goal is to estimate the entire p-value function, and not only
values at specific values of 6. As mentioned in Remark 3, the computational viability of our proposed
algorithm hinges crucially on the ability to estimate the p-value function using only one Monte Carlo
sample. The question is, how large should such a sample be to ensure that estimated p-value function has
a desired level of precision. Below, we provide a new result in the form of a concentration inequality to
shed light on this question.

Theorem 2 Let K denote the size of the Monte Carlo sample drawn from the distribution of W and
let ﬁ? (D, 9) be as defined in Equation (14), where the underlying test statistic T satisfies the
conditions in parts (1) and (2) of Theorem 1, that is, it is EI and a right continuous function of
0 for fixed W. Fix € > 0. Then,
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E2
P <sup |ﬁ§+ (D, §) — p~+ (D, 9)| > e> < min { 1, de= % } . (15)
0

It is important to note that the bound (15) does not depend on N, making it particularly useful for
cases when the total number of possible assignments M is large. In our numerical studies in Section
7, for experiments in which M < 10,000, we have used a complete enumeration of all M assign-
ments to compute the p-value function. If M > 10,000, 10000 Monte Carlo draws have been used
to estimate the p-value functions. Such a choice would estimate the p-value functions without error
if M < 10,000. When M > 10,000, Theorem 2 guarantees that the maximum probability of making
a 5% estimation error does not exceed 0.18, and that of making a 10% estimation error is bounded
above by approximately 1.5 X 107>, This guarantee holds however large M might be.

6 | CONFIDENCE DISTRIBUTION AS A TOOL FOR
COMBINING FISHER RANDOMIZATION TESTS FROM
INDEPENDENT STUDIES

Studies with a large number of experimental units now frequently arise from aggregation of informa-
tion from multiple independent sources (e.g. Hemkens et al., 2017) and require strategies for efficient
meta-analysis. Several researchers (e.g. Bareinboim & Pearl, 2016; Liu et al., 2020) have emphasized
on the importance of development of new methodologies for combining information from multiple
sources, stating that the objective of such fusion inference is ‘to combine results from many experi-
mental and observational studies, each conducted on a different population and under a different set
of conditions in order to synthesize an aggregate measure of targeted effect size that is better, in some
sense, than any one study in isolation’. In this section, we use CD to develop efficient and robust ap-
proaches to synthesizing an aggregate measure of effect size from difference sources.

There exist several classical methods in literature to combine p-values from independent tests of hy-
potheses, for example, Fisher's method (Fisher, 1932) and Stouffer's method (Stouffer et al., 1949). See
Marden (1991) for a detailed review of these and other methods. However, while it is straightforward
to combine p-values from multiple independent tests, it is not obvious how to combine the results into
a composite p-value function from which a composite interval estimator for 6 can be obtained. Singh
et al. (2005) and Xie et al. (2011) proposed a general approach to combine CDs, and specifically p-
value functions, that encompass all the classical methods for combining p-values as special cases. We
describe their approach before explaining why it cannot be directly adopted to combine FRTs.

Xie et al. (2011) combined a sequence of CDs H,(0), ..., H,,(6) to obtain a combined CD

H,(0)=G, (g, (H©0), ..., H,())), (16)

where g, : [0, 1]" — Risacontinuous function that is non-decreasing in each coordinate, G, : R — [0, 1]
is the continuous CDF of g(Uy, ..., U,,) where Uy, ..., U,, are independently and identically distributed
(iid) Uniform[0, 1] random variables. This combined function H(6), is non-decreasing, right continuous
and a lower CD as per Definition 1. Consequently, it is used to obtain the left endpoint of a 100(1 — @)% CI
for 0, the true value of 6. To obtain the right endpoint of a (1 — a)% CI, the function 1 — H,(6) is induced.
This function is also a lower CD, right continuous, but non-increasing in 6. These three properties of this
induced function 1 — H () are guaranteed by two conditions: (i) Fori =1, ..., m all H(0), are CDs and
(i1) G.(?) is a continuous function of 7.
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In the context of FRT, while attempting to combine p-value functions from m independent experiments,
we can combine the m lower CDs p“*(0) = p~* (D™, 9),i=1, ..., m, defined by Equation (6) obtained
from these experiments in a manner similar to Equation (16) to obtain a combined lower CD function
pf* (0) and use it to generate the lower endpoint of a confidence interval. However, this combination does
not automatically generate the counterpart of 1 — H(6) because 1 — pf+ (0)1is not a lower CD.

Thus we face the following theoretical questions: (a) Which p-value functions (e.g. pL_(-) or pU+(-))
should be combined to mimic 1 — H (-) of Xie et al. (2011) and (b) What conditions are needed
to guarantee that the combined function is a lower CD, right continuous and non-increasing in 6.
Proposition 3 provides an answer to these questions and also gives rise to an unambiguous procedure
for combining results from m independent experiments.

Proposition 3 For i = 1, ..., m, let p-*(0) = piL"’(D?bs, 0) defined by Equation (6) and
piL_ o) = piL_ (D;’bs, 0) defined by Equation (9) denote one-sided p-value functions obtained
from m independent randomized experiments. Define the combined p-value functions:

pErO) =G, (2. (P O0), ... 5T ©)). PO =G, (g (p;0). ... P57 (®))., (T

whereg. : [0, 1]" — Risacontinuous function thatis non-decreasingineach coordinate,G,: R — [0, 1]

isthe CDFof g (U 4, ..., U,) where U , ..., U, are iid Uniform[0, 1] random variables. Then the com-

bined p-value functions p£+ (0) and pf‘ (0) are both lower CDs as per Definition 1.

Remark 4 The proof of the result that H.(6) in Xie et al. (2011) is a CD and thus 1-H(0) is a lower
CD relies on the continuity of the function G,(-). This condition is not necessary in Proposition
3. Thus, although the discrete nature of the p-value functions in FRT entails combining two dif-
ferent sets of functions, ultimately they can be used to generate valid confidence intervals under
conditions weaker than those in Xie et al. (2011).

As a consequence of Proposition 3, the combined p-value functions pf‘“ (0) and pf‘ (@) can be in-
verted to generate Cls for 6 with guaranteed coverages. ForO < a ;, @, a <1 and a | + a , = a, define
0y, = sup,y {0: p§+(0) < a;}and 8, = inf, {6: pﬁ‘(@) < a,}. Then arguing along lines similar
to that in part (3) of Proposition 2, the interval [0 , ., € , ) is a 100(1 — a)% interval for & obtained by
combining the m studies.

To implement the steps described above, we need to choose specific forms of the function g.(-).
Xie et al. (2011) showed that the form g.(u,, ..., u,) = :.”zlwiFo_l(ul-), where Fy(-) is a CDF
of a random variable X, F, o ! refers to the quantile function associate with X, that is, for p € [0, 1],
Fy I(p) = min{x € R: p < Fy(x)}and wy, ..., w,, are non-negative weights with at least one w; # 0,
generates most classical methods for combining p-values. Two examples are given below.

1. With w; = 1 for all i = 1, ..., m and negative exponential CDF Fy(x) = ¢ for x < 0
generates Fisher's method, in which

PErO)=P | 13,2 -2 log (p,“(e))] . PO =P l;{gm > =2 ) log (pi~(®)) | . (18)

i=1 i=1

2. Again taking w; = 1 for all i = 1, ..., m and Fy(x) = %e"ﬂ(xso) + 1 - %e"‘)l](po), that is, the
double exponential or Laplace CDF instead of the negative exponential CDF leads to the double
exponential (DE) method for combining p-values.
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The proposed approach for combining FRT-based inference from independent randomized ex-
periments will be demonstrated in Section 7 using Fisher's and the DE methods described above. A
theoretical comparison of the two methods performed by Singh et al. (2005) in the context of com-
bining CDs established the superiority of the DE method over Fisher's method in terms of Bahadur
efficiency. Because the p-value functions considered here are lower CDs, and not CDs, such superi-
ority of the DE method, while intuitive, is not immediate. However, an empirical comparison of the
two methods in terms of width of the generated confidence intervals (Section 7) suggests a similar
phenomenon when combining p-value functions from randomized experiments.

Our simulations also suggest that taking equal weights w; = 1 is not necessarily a good strategy
for combining experiments, especially when the experiments have highly unbalanced sample sizes.
Some empirical investigation along these lines is performed in Section 7. The results are interesting
and open up possibilities of further theoretical investigations.

Remark 5 An intuitive approach for combining results of FRT from different studies is to treat them
as a unique experiment, where each individual experiment constitutes a block (or a group of
blocks) and the joint assignment mechanism follows the joint distribution assembled from the
individual mechanisms. For this new block design experiment, we define the one-sided p-value
functions as

P (0)=P ( Y wT(Y,", WiP) < Z w,T,(D%™) ) (19)
i=1 i=1
P @) =r < D wiT(Y)P, WP) > Z w,T,(D) > (20)
i=1 i=1
where wy, ..., w,, the weights for the m blocks and Z " owT; (Ylmp Wrep) represents the combined test

statistic. Applylng Algorithm 1 to p% - (0) and pi7 L+ (0), we can obtain a valid confidence interval for the
treatment effect. We will refer to this approach as the ‘block-randomization inspired (BRI) approach’. Our
preliminary empirical investigation (reported in Section 5.1 of the supplementary material) shows that the
proposed approach described above is superior to the BRI approach when combining a large number of
small size experiments. A more comprehensive comparison between the two approaches is left as future
research. In the following remark, we define a generalization of the p-value combination approach that
is closely related but superior to the BRI approach in terms of width of generated confidence intervals.

Remark 6  Two different g, functions, say g* and g -, can be employed in Equation (17) to define the
p-value functions pf+ and pf ~. The functions g.'s can also be #-dependent, and their continuity
requirements can be dropped as well. The relaxation on g, can further increase the flexibility
and expand the reach of the proposed combined p-value framework. However, it may increase
computational complexity and thus may not be preferred in practice. One such example is to
take g;ﬁ and g, in Equation (17) with

gr o) = Y wiF) T ) and g (uys s w,) = Y wiFe) T @), 21

i=1 i=1
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where fori =1, ..., m, (F +) 'and (Fy)~ lare quantile functions of the random variables with CDFs
Fj(n =P ( - T (Ylmp Wrep) < t) and F; =P (T (Ylmp WiP) < t) respectively. We refer to
this method of comblnmg p-value functions usmg these choices of ga’c and 8y aS in Equation (21) as the
‘Parameter-dependent double g, (PDD-g,.) approach. The PDD-g,. approach is closely related to the BRI
approach. In fact, if the functions Ft()and F () in Equation (21) are continuous and monotonic, so that
(F* (-))_l and (F~ (-))_1 represent inverse functions, then the PDD-g,. and BRI can be shown to be exactly
equivalent along the lines of argument in Xie et al. (2011). In the case of FRT, while the two approaches
are not exactly similar due to discreteness of F*(-) and F~(-), discreteness turns out to be advantage for the
PDD-g,. approach. We prove (Section 5.2 of Supplementary materials) that confidence intervals generated
by inverting the combined p-value function obtained through the PDD-g.. approach cannot be wider than
those generated by inverting the p-value function obtained through the BRI approach.

7 | SIMULATIONS

In this section, we conduct simulations to establish that our proposed guidelines and algorithms for
(a) estimating the p-value functions, (b) inverting them to obtain confidence intervals and (c¢) combin-
ing inferences across multiple independent experiments to produce the desired results. We consider
two types of randomized experiments: the completely randomized design (CRD) and the randomized
block design (RBD). In the former, an even number N of experimental units are equally split into treat-
ment (denoted by 1) and control (denoted by 0) groups at random. In the latter, we consider b blocks
of experimental units with an equal even number (k) of units in each block (block size), so that N = bk
is the total number of units. The k units within each block are equally split into treatment and control
groups at random. Note that b = 1 for an RBD is equivalent to a CRD.

We consider several scenarios shown in Table 1, in each of which we consider combining results
from two experiments with design parameters (b, k;) and (b,, k,), where for j = 1, 2, b; and k; denote
the number of blocks and the block size, respectively. The two individual experiments are either CRD
or RBD.

For each individual experiment across all scenarios, the potential outcomes under control, Y;(0),
i=1, ..., Nare generated from a lognormal distribution with parameters 0 and 1. The true additive ef-
fect is assumed to be zero, so that Y,(1) = Y,(0) fori =1, ..., N. Potential outcomes once generated are
kept fixed. The units are assigned to treatments in a manner described earlier, depending on whether
the design is CRD or RBD.

Next, for each experiment, FRT is conducted using the difference of averages between treatment and
control groups as the test statistic. Either a complete enumeration all M assignments for M < 10,000,
or a set of 10,000 random permutations when M > 10,000, is used to calculate or estimate the p-value
functions pL* (D, 9) and p=~ (D°*, ). A justification for this choice of K was provided in the last
paragraph of Section 5. For each individual experiment, 95% confidence intervals are obtained using
the method described in Algorithm 1 with a ;| = a , = 0.025. Finally, the p-value functions from the
two experiments in each scenario are combined using Fisher's method given by Equation (18) and the
double exponential (DE) method, and the 95% confidence intervals are generated using the combined
p-value functions p%* (#) and p-~ (6), again using Algorithm 1.

The simulation for each scenario is repeated 5000 times to calculate the coverage of the 95% inter-
vals generated from the individual and combined experiments. The results are shown in Table 1. The
simulations provide empirical evidence of the theoretical result that the proposed method for inverting
FRT to obtain confidence intervals produces intervals with the desired coverage for individual as well
as combined experiments.
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TABLE 1 Coverage of 95% ClIs obtained using Fisher's and DE p-value combination methods

Scenario Coverage

Designs 1 & 2 by ky b, k, Exp 1 Exp 2 Fisher DE

CRD & CRD 1 10 1 10 0.954 0.952 0.961 0.961
1 16 1 16 0.951 0.949 0.952 0.953
1 24 1 24 0.956 0.947 0.954 0.953
1 30 1 30 0.946 0.944 0.948 0.947
1 10 1 16 0.952 0.950 0.956 0.955
1 16 1 24 0.947 0.956 0.948 0.949
1 24 1 30 0.954 0.951 0.952 0.952
1 10 1 30 0.953 0.954 0.955 0.943

RBD & RBD 2 8 2 8 0.953 0.949 0.950 0.949
10 2 10 2 0.948 0.949 0.951 0.947
4 4 4 0.956 0.952 0.949 0.949
2 8 4 0.947 0.950 0.952 0.952
4 4 10 2 0.952 0.948 0.950 0.950
2 10 10 2 0.949 0.953 0.950 0.950

CRD & RBD 1 10 10 2 0.950 0.950 0.959 0.958
1 10 2 10 0.949 0.948 0.954 0.956
1 16 2 10 0.950 0.951 0.952 0.951
1 24 2 10 0.953 0.947 0.947 0.950
1 30 10 2 0.944 0.952 0.951 0.952

Table 2 provides a summary of comparison of widths of confidence intervals of the individual
experiments and the combined experiments. It is natural to expect that the width of the interval gen-
erated by combining the two individual experiments would be shorter than the width of the interval
obtained from each individual experiment with a high probability, as such a fusion should increase
the precision of inference. To check if simulation results are consistent with these expectations, we
compute (a) the percentages of cases in which the widths of the intervals obtained from combined
experiments (using Fisher's and the DE method) are shorter than the lengths of intervals obtained
from individual experiments, and (b) the median width of intervals obtained from individual as
well as combined experiments. To compare the performance of the two combining methods, we
also compute the proportion of cases in which The DE method produces shorter intervals than
Fisher's method.

The results suggest that, as expected, combining experiments using Fisher's or DE methods always
results in reducing median width of confidence intervals. Further, in almost all settings, combining
experiments using either method reduces the width of confidence intervals in a very high percentage
(90-100%) of cases. Only in one situation, where the number of units in the two experiments vary
the most (CRDs with 10 and 30 units), this percentage reduces to 0.77 for the Fisher method and 0.79
for the DE method. However, it was interesting to note that once Fisher's method and the DE method
were slightly modified by taking weights w; proportional to the sample sizes in the two experiments,
the percentages again were higher and consistent with other settings.
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Looking at the percentage of cases in which the DE method produced shorter intervals than
Fisher's method, and the median widths produced by the two methods, it is obvious that the former
method performs uniformly better than the latter across all the settings. As explained in Section
6, this observation is consistent with the theoretical comparison of the two methods performed by
Singh et al. (2005), although such a theoretical extension of such a comparison to our case involving
discrete p-value functions is not immediate.

8 | REAL DATA EXAMPLE

Using data from a randomized experiment reported in Shadish et al. (2008), we demonstrate the
proposed approach of estimating the p-value function and its usefulness for testing any sharp null
hypothesis and obtaining a confidence interval for the average treatment effect. In this experiment,
235 undergraduate students from introductory psychology classes at a large mid-southern public
university received either the treatment (vocabulary training) or control (math training) through
a completely randomized treatment assignment. The number of students assigned to treatment
and control were 116 and 119, respectively. The outcome was the vocabulary test score after the
experiment.

The P value functlons pEH (D, 9), pL= (D™, 9) and p=(D°™, #) based on the test statistic
T=7" (1) - Y (0) are shown in Figure 2. These p-value functions are estimated from Equation
(14) by drawing a single Monte Carlo sample of size K = 10° from the distribution of the treatment
assignment vector. Each draw in the sample is essentially a permutation of a binary vector consisting
of 116 ones and 119 zeros.

We can test the sharp null hypothesis of no treatment effect on any student against the two-sided
alternative. The p-value for such a test can be obtained from the function p“(D°®, ) for = 0, and
turns out to be zero, indicating presence of a treatment effect. Suppose one is interested in testing the
sharp null hypothesis that the treatment effect is 6 versus the alternative that it is greater than 6. The
p-value for such a test can be obtained from p~+ (D, ), and is also zero providing strong evidence
against the null hypothesis. Next, using Algorithm 1, we obtain 95% confidence intervals for the aver-
age treatment effect as [7.24, 10.72]. Note that the lower and upper limits can be individually obtained
from the one-sided p-value functions p* (D°, §) and p=~ (D°®, ), respectively, and they can also
be obtained from the two-sided p-value function p“(D°®, ), as shown by the superimposed red dotted
lines in all the three curves in Figure 2.
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FIGURE 2 p-value functions for the Shadish experiment
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9 | DISCUSSION AND FUTURE DIRECTIONS

In most scientific studies, assessing causal relationships among variables is considered more impor-
tant with more practical implications than merely studying associations. The distinct difference be-
tween association and causality is now well understood: causality can only be determined by utilizing
known or assumed knowledge about how the data were collected and consequently is more difficult
to establish than association. However, technology has now created a perfect platform to design and
analyse large studies conducted to assess causal effects of interventions and the FRT, with its unique
ability to facilitate model-free assessment of causal effects is expected to have tremendous potential
in modern day experiments. In this article, we attempt to address some long standing unclear aspects
associated with the methodology for computation, inversion and principled aggregation of FRTs by
developing a unified and comprehensive framework based on the versatile inferential tool confidence
distribution.

One of the main criticisms of FRT has been the sharp null hypothesis, that many, including Neyman
had considered overly strong, triggering the infamous Neyman—Fisher debate in 1935 (Sabbaghi &
Rubin, 2014). However, the possibility of applying FRT to assess weaker null hypothesis has been
explored and identified by a few researchers - see for example, Ding and Dasgupta (2018), Caughey
et al. (2017), Wu and Ding (2019) and Cohen and Fogarty (2021). Caughey et al. (2017) showed
that the interval estimators obtained by inverting FRT can be interpreted more meaningfully under a
bounded null hypotheses if EI test statistics are used. Ding and Dasgupta (2018) derived a statistic that
is asymptotically valid while testing Neyman's null hypothesis on average treatment effects. It will be
interesting to extend our results to such weaker hypotheses and consequently have broader interpreta-
tions of the interval estimators.

We believe this article will open up a number of research possibilities. First, all our results per-
tain to finite samples. Exploring asymptotic properties of the interval estimators for individual and
combined experiments using finite population asymptotics (Li & Ding, 2017) and borrowing relevant
literature from CD literature will be a useful direction. Second, exploring ways to optimally combine
experiments, as discussed in the last paragraph of Section 6 will be an interesting line of investigation.
Third, extending the FRT-CD framework for analysis of data from observational studies and conduct-
ing sensitivity analysis is an interesting possibility. Finally, combining experiments and observational
studies is an area of growing interest, and the FRT-CD may provide an excellent foundation for this
area of research.
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) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file. - 24 more not
displayed
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Page 14 Results

(X) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
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(X) Font widths must be the same in both the font dictionary and the embedded font file.
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(X) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file.
) Font widths must be the same in both the font dictionary and the embedded font file. - 30 more not
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X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file.
X) Font widths must be the same in both the font dictionary and the embedded font file. - 1 more not
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(X) Font widths must be the same in both the font dictionary and the embedded font file.
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(X) Font widths must be the same in both the font dictionary and the embedded font file.
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(X) Font widths must be the same in both the font dictionary and the embedded font file.
(X) Font widths must be the same in both the font dictionary and the embedded font file.
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(X) Font widths must be the same in both the font dictionary and the embedded font file.
(X) Font widths must be the same in both the font dictionary and the embedded font file.



