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1 |  INTRODUCTION

Fisher randomization tests (FRT) are flexible tools because they are model free, permit assessment of 
causal effects of interventions on any type of response for any assignment mechanism using any test 
statistic, and can be easily extended to model- based inference (Rubin, 1980, 1984). The tremendous 
recent development of computing resources has sparked much interest in using FRT to test complex 
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Abstract
The flexibility and wide applicability of the Fisher rand-
omization test (FRT) make it an attractive tool for assess-
ment of causal effects of interventions from modern- day 
randomized experiments that are increasing in size and 
complexity. This paper provides a theoretical inferential 
framework for FRT by establishing its connection with 
confidence distributions. Such a connection leads to devel-
opment’s of (i) an unambiguous procedure for inversion 
of FRTs to generate confidence intervals with guaranteed 
coverage, (ii) new insights on the effect of size of the Monte 
Carlo sample on the estimation of a p- value curve and (iii) 
generic and specific methods to combine FRTs from mul-
tiple independent experiments with theoretical guaran-
tees. Our developments pertain to finite sample settings 
but have direct extensions to large samples. Simulations 
and a case example demonstrate the benefit of these new 
developments.
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causal hypotheses that can arise from modern- day randomized experiments (e.g. Athey et al., 2017; 
Basse & Feller, 2018; Basse et al., 2019; Hennessy et al., 2016) in social, biomedical, educational and 
behavioural sciences. The work by Morgan and Rubin (2012) has shown how randomization tests can 
be applied to design and analyse randomized experiments with several pre- treatment covariates. As 
modern experiments continue to grow in size (in terms of number of experimental units, interventions, 
covariates and as combinations of several independent sub- experiments) and complexity (e.g. non- 
standard randomized assignment mechanisms), the flexibility and wide applicability of FRT make it 
a particularly promising tool to analyse such experiments.

However, there are three aspects of FRT that can arguably be made more transparent and thus 
more appealing to scientists. The first concern is related to the theoretical and implementation aspects 
of inverting FRTs to generate interval estimators of treatment effects, because interval estimates are 
typically more appealing than a p- value or an acceptance– rejection decision. This inversion is done 
by testing a sequence of sharp null hypotheses of constant treatment effects, and using the curve of 
the resulting p- values. The first original reference of a similar inversion procedure appears in Pitman 
(1937). Whereas proposed procedures and algorithms appear to work well in large sample settings 
(Ding, 2017; Garthwaite, 1996), it is somewhat surprising that the theoretical properties of this in-
version procedure, especially in a finite population setting, have been scantily discussed in causal 
inference literature and apparently counter- intuitive simulation results have sometimes been difficult 
to explain. See, for example, discussion in Section 7.3 of Ding (2017) on the intervals for factorial 
effects obtained in Dasgupta et al. (2015). The research in this paper reveals how the discrete nature of 
the p- value statistic poses complexities associated with the inversion procedure in a finite population 
setting and proposes a viable solution.

The second aspect is computational. The FRT is a computation- intensive procedure, as its classical 
form involves generating all possible permutations of the observed assignment vector that are consis-
tent with the assignment mechanism. The total number of such permutations in a balanced completely 
randomized design increases from 252 to 1029 as the number of units increases from 10 to 100. A 
common way to get around this issue is to generate a sample of all possible permutations, say 1000 or 
5000, and use it to obtain a Monte Carlo estimate of the p- value. However, to the best of our knowl-
edge, there does not exist any insights or theoretical results about how large a sample size is needed to 
guarantee acceptable inferential properties. This computational complexity increases manyfold when 
we consider the problem of interval estimation, because it entails computing the p- values at several 
values of the treatment effect.

The third aspect, related to the broader subject of fusion learning, is performing meta- analysis 
using FRT. This entails combining results from independently conducted randomized experiments, 
possibly with different assignment mechanisms, to draw sharper inference on a common treatment 
effect. Whereas there exist several methods in literature to combine p- values from independent tests 
of hypotheses, obtaining a composite interval with the desired coverage poses additional challenges, 
especially in the finite population case when the p- value function is discrete.

This paper aims to address the three issues mentioned above by providing a new theoretical perspec-
tive of FRT using the concept of confidence distributions (CDs), which will be formally introduced in 
Section 2.2. Specifically, the paper makes the following contributions: (i) Drawing inspiration from 
the concept of CDs, it provides the first formal definitions of a class of p- value functions in the context 
of FRTs. It is noteworthy that these definitions are not direct implications of the existing CD literature, 
considering the discrete nature of the randomization distribution of any test statistic. (ii) It identifies 
specific mathematical conditions that guarantees inversion of the p- value functions to generate confi-
dence intervals with desired coverage. (iii) It provides a precise algorithm for computing confidence 
intervals that is more robust than the traditional approach, because it does not depend on the choice of 
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discrete levels of treatment effects. (iv) It addresses the computational complexity associated with (iii) 
by providing a novel result on the impact of Monte Carlo sample size on the accuracy of estimation 
of the entire p- value function, when such estimation is based on a single Monte Carlo sample. (v) It 
provides a general procedure for combining inferences from similar and dissimilar experiments by 
extending methods for combining CDs (again, such an extension is non- trivial due to the discreteness 
of the randomization distribution of the test statistic).

In Section 2, we introduce the basic notions and concepts of FRT and CD. Section 3 establishes 
the bridge between FRT and CD by defining five different p- value functions, examining theoretical 
properties of these p- value functions and showcasing their applications in the context of hypothesis 
testing. Section 4 identifies conditions that are necessary for inverting FRTs to generate confidence 
intervals with guaranteed coverage and provides an algorithm to do this inversion. Section 5 investi-
gates the effect of size of the Monte Carlo sample on the estimation of p- value functions and provides 
a result that quantifies the estimation accuracy of the entire p- value function based on a single Monte 
Carlo sample. Section 6 develops efficient methods to combine FRTs from independent experiments. 
Using a real- life example, Section 8 demonstrates the usefulness of the p- value functions in drawing 
inference. Section 9 contains some concluding remarks.

2 |  FUNDAMENTALS

2.1 | The Fisher randomization test understood through the potential 
outcomes model

Consider a finite population of N experimental units, each of which can be exposed to either a treat-
ment (denoted by 1) or a control (denoted by 0). For unit i, let Yi(1) and Yi(0), respectively, denote 
the potential outcomes (Neyman, 1923; Rubin, 1974) under treatment and control. We define the 
unit- level causal effect of the treatment on unit i as θi = Yi(1) − Yi(0), and the finite- population level 
average causal effect

In a randomized design, the N units are assigned to the two treatment groups using a known ran-
domized assignment mechanism. Let W = (W1, …, WN)⊤ denote a binary random vector whose ith 
element Wi equals one or zero according as unit i is assigned to treatment or control. The assignment 
mechanism is defined as the probability distribution of the random vector W and dictates all inference 
statements. In a completely randomized design with N1 and N0 units assigned to treatment and control, 
respectively, where N1 and N0 are predetermined, the assignment mechanism is:

 where ! (A) is the indicator function for event A. The development in this paper covers any randomized 
assignment mechanism as long as the assignment probability P(W1 = w1, …, WN = wN) is fully specified. 
The observed outcome for the ith unit is denoted by Yobs

i
= WiYi(1) + (1 − Wi)Yi(0), i = 1, …, N. 

Thus, only one of the two potential outcomes for each unit is observed and the other is missing.
Consider testing the sharp null hypothesis

! = N −1

N∑

i= 1

!i = N −1

N∑

i= 1

Yi(1) − N −1

N∑

i= 1

Yi(0).

P(W1 = w1, …, WN = wN) =

(
N !

N0 !N1 !

)−1

!(
∑

N
i=1

wi = N1),
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that is, all units have an identical treatment effect θ. A special case of this hypothesis is H0
0

: ! = 0

, Fisher's sharp null hypothesis of no treatment effect on any unit (Fisher, 1935; Rubin, 1980). The hy-
pothesis H!

0
 can be tested by considering a suitable test statistic T, and comparing its observed value Tobs 

with the randomization distribution of T under the null hypothesis. This randomization distribution of T is 
generated by imputing the missing outcomes under H!

0
 and repeatedly generating values of T by drawing 

from the known probability distribution of the assignment vector W. The p- value is the tail probability 
measuring the extremeness of the test statistic with respect to its randomization distribution. Rejection of 
H!

0
 if the p- value is less than or equal to α ∈ (0,1) leads to a test procedure with level α, that is, the proba-

bility of Type- I error not exceeding α. The beauty of this procedure is, it can be tested with any reasonable 
test statistic that is capable of summarizing the difference between the treatment and control groups.

By varying θ and testing a set of sharp null hypotheses H!
0
, it is possible to obtain a ‘p- value func-

tion’ of θ, which is a step- value function. This step function can be inverted to generate an interval 
estimator for the true additive effect θ. As we shall see in Section 3, most of the subsequent develop-
ments will be based on this p- value function and its variants. A toy example presented in the supple-
mentary material demonstrates each step involved in conducting a randomization test, generating a 
p- value function and inverting it to obtain a confidence interval for θ.

2.2 | A brief overview of confidence distributions and confidence curves

The idea of a confidence distribution is to use a sample- dependent distribution function defined on the 
parameter space to estimate a fixed but unknown (scalar/vector) parameter (Cox, 1958; Efron, 1993, 
1998; Schweder & Hjort, 2016; Xie & Singh, 2013). Such a practice elevates one point (point estima-
tor using the single value of a sample statistic) and two points (confidence interval using a lower limit 
and an upper limit) to a full function that can be used to draw inference on the parameter of interest. 
Similar to a Bayesian posterior, a CD contains rich inferential information and can yield all forms of 
inference, including the classical point and interval estimators.

For ease of illustration, consider the simple case of a scalar parameter θ ∈ Θ with sample data 
Yn = (Y1, …, Yn) ∈ . A function Hn( ⋅ ) ≡ H( ⋅ , Yn) on Θ ×  is called a CD function for θ, if (i) 
given Yn, Hn(·) is a cumulative distribution function (CDF) on Θ; and (ii) at the true parameter value 
θ = θ0, Hn(!0) = H(!0, Yn), as a function of the sample Yn, follows a Uniform[0, 1] distribution 
(Schweder & Hjort, 2002; Singh et al., 2005). In other words, (i) requires that a CD is a sample- 
dependent distribution function on Θ. Requirement (ii) ensures that the CD function can be used to 
obtain confidence intervals and test hypotheses. For example, by (ii), ( −∞, H −1

n
(!)) is a 100α% con-

fidence interval for θ, and Hn(b) provides a p- value function for testing the hypothesis Ω0 : θ ≤ b ver-
sus Ω1 : θ > b. This shows that a one- sided p- value function is a special case of a CD. Corresponding 
to a CD function Hn(θ), one can obtain a confidence curve (CV)

which can also be used to draw similar inferences (Birnbaum, 1961).
Due to the discrete nature of the FRT in which the p- value is a step function as in the last 

panel of Figure 3 (supplementary material), the following new definition will be useful for this 
paper. Note that, in the existing literature (e.g. Schweder & Hjort, 2016; Xie & Singh, 2013), CDs 

(1)H!
0
: Yi(1) − Yi(0) = !, for all i = 1, …, N,

CV(!) = 2min{Hn(!), 1 − Hn(!)},
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in discrete sample distributions are handled by asymptotics. Finite sample performance is not 
investigated.
Definition 1 (Upper and Lower CDs)A function HL

n
( ⋅ ) = HL( ⋅ , Yn) mapping Θ ×  to [0,1] is said 

to be a lower CD for a parameter θ if at the true parameter value θ=θ0, HL
n

(!0) ≡ HL(!0, Yn), as 
a function of the sample Yn is stochastically larger than a Uniform[0, 1] random variable, that is,

An upper CD HU
n

( ⋅ ) = HU( ⋅ , Yn) for parameter θ can be defined similarly but with Equation (2) re-
placed by P

[
HU(!0, Yn) ≤ "

]
≥ " for all α ∈ (0, 1).

3 |  BRIDGING FRT AND CD THROUGH p - 
VALUE FUNCTIONS

We note that both FRT and CD historically have an implicit ‘fiducial’ flavour, although in recent 
developments (Schweder & Hjort, 2016; Xie & Singh, 2013), the concept of CD has been developed 
without any fiducial interpretation or reasoning. Some researchers consider a CD as ‘a frequentist ana-
logue of a Bayesian posterior’ (Schweder & Hjort, 2003). On the other hand, Rubin (1984) provided 
the following Bayesian justification of the FRT: it gives the posterior predictive distribution of the 
estimand of interest under a model of constant treatment effects and fixed units with fixed responses. 
These connections motivate us to better understand the properties of FRT by connecting it to CD and 
exploiting recent results on CD. It should be pointed out that this connection is non- trivial because the 
theory of CD primarily revolves around parametric models, whereas FRT is essentially a model- free 
procedure. Obviously, the discrete nature of the distribution of the p- value in FRT also adds further 
complication.

We first extend the notion of the p- value for the FRT to a p- value function along the lines of that 
introduced in Section 2.2. To do this, we start with a more careful handling of the notations involved. 
Let Ytrue denote the true N × 2 matrix of potential outcomes and Yimp

!
 the N × 2 imputed matrix con-

sisting of the observed outcomes and imputed missing outcomes under the null hypothesis H!
0
. Let 

W
obs denote the N × 1 observed assigned vector and Yobs the N × 1 observed vector of responses. 

Then the observed data from the experiment can be denoted by Dobs = (Yobs, W
obs). Also, let Wrep 

denote any repeated draw from the distribution of W while generating the randomization distribution 
of T. Such a repeated draw generates repeated data Drep

!
= (Y

rep

!
, W

rep), where Yrep

!
 is the vector of 

observed outcomes generated from Yimp

!
 by assignment vector Wrep.

Let T be any test statistic and T rep

!
 denote the discrete random variable having the randomization 

distribution of T under the null hypothesis H!
0
. Then the distribution of T rep

!
 depends on the imputed 

potential outcomes matrix Yimp

!
 and Wrep. Consequently, we can write

Finally, note that the observed value of the test statistic Tobs depends on Dobs, and consequently on Ytrue 
and Wobs. This allows us to write

(2)P
[
HL(!0, Yn) ≤ "

]
≤ " for all " ∈ (0, 1).

(3)T
rep

!
= T(D

rep

!
) = T(Y

imp

!
, W

rep).

(4)Tobs = T(Dobs) = T(Ytrue, W
obs).
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3.1 | p- value functions for one- sided alternatives of the sharp null

Whereas the sharp null hypothesis has been widely discussed in literature, the alternative hypothesis 
against which the sharp null is tested has seldom been mentioned. In this paper, we will keep our alter-
natives restricted to the class of sharp- nulls to make the interval estimation problem readily interpret-
able. A violation of the sharp null can be one- sided or two- sided. Below, we define p- value functions 
for one- sided alternative hypotheses.

Definition 2 Consider the one- sided alternative

for all i = 1, …, N. Assuming that larger values of the test statistic T indicate departure from the sharp 
null in favour of H! +

1
, we define the following p- value functions for testing H!

0
 against alternatives H! +

1
 as:

Definition 3 

for all i = 1, …, N. Assuming that smaller values of the test statistic T indicate departure from the sharp 
null in favour of H! −

1
, we define the p- value function for testing H!

0
 against alternatives H! −

1
 as

Note that the p- value functions defined in Equations (6)– (10) are random variables under the ran-
dom mechanism of Wobs, because of their dependence on Dobs = (Yobs, W

obs). However, conditional 
on Dobs (i.e., when Wobs is realized), they are functions of θ only.

Proposition 1 For any test statistic T, the p- value functions defined in Equations (6)– (10) satisfy the 
following properties:

1. Both pL+ (Dobs, !) in Equation (6) and pL− (Dobs, !) in Equation (9) are lower CDs as per 
Definition 1, which means they both stochastically dominate the Uniform[0,  1] random vari-
able at the true value θ0 of θ and satisfy

(5)H! +

1
: Yi(1) − Yi(0) = "( > !),

(6)pL+ (Dobs, !) = P(T
rep

!
≥ Tobs) = P

(
T(Y

imp

!
, W

rep) ≥ T(Dobs)
)

,

(7)pU+ (Dobs, !) = P(T
rep

!
> Tobs) = P

(
T(Y

imp

!
, W

rep) > T(Dobs)
)

.

(8)H! −

1
: Yi(1) − Yi(0) = "( < !),

(9)pL− (Dobs, !) = P(T
rep

!
≤ Tobs) = P

(
T(Y

imp

!
, W

rep) ≤ T(Dobs)
)

,

(10)pU− (Dobs, !) = P(T
rep

!
< Tobs) = P

(
T(Y

imp

!
, W

rep) < T(Dobs)
)

.

P
(
pL+ (Dobs, !0) ≤ "

)
≤ ", and P

(
pL− (Dobs, !0) ≤ "

)
≤ ",
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for α ∈ (0, 1).
2. Both pU+ (Dobs, !) in Equation (7) and pU− (Dobs, !) in Equation (10) are upper CDs in the sense that 

at θ = θ0 they are both stochastically dominated by the Uniform[0, 1] random variable and satisfy

for α ∈ (0, 1).
3. Let T(1)  <  T(2)  <  ⋯  <  T(m) be the m unique ordered values of T for θ  =  θ0 and 
! i = P

(
T(Ytrue, W) = T(i)

)
> 0 for i = 1, 2, …, m. Then, for any α ∈ (0, 1),

where γ* = max{γ1, γ2, …, γm}.

Implications of Proposition 1 and some remarks

1. Consider testing the sharp null hypothesis (1) against one- sided alternatives (5) or (8) using a 
test statistic whose large or small values indicate departure from the null in favour of Equation 
(5) or (8), respectively. By part (a) of Proposition 1, the test procedure that rejects the sharp 
null if the observed value of pL+ (Dobs, !) ≤ " is valid in the sense that the probability of 
Type- I error does not exceed α. However, by part(b), the rejection rule pU+ (Dobs, !) ≤ " 
is not valid. Similarly, use of pL− (Dobs, !) for the one- sided alternative (8) leads to a valid 
test, while use of pU− (Dobs, !) does not.

2. Equation (11) provide a set of theoretical upper bounds for the discrepancies between the empirical 
CDFs of the four p- value functions given by Equations (6)– (10) from the CDF of a Uniform[0, 1] 
variable. However, in practice, these upper bounds will typically be unknown to an analyst because 
both m and the ! j's depend on the unknown matrix of potential outcomes and the true parameter 
value θ0. An illustration with a toy example is given in the supplementary material.

3.2 | Two- sided alternatives

We now consider testing the sharp null H!
0
 against a two- sided alternative hypotheses

Definition 4 The p- value function for testing H!
0
 against alternatives H! ±

1
 is

where pL+ (Dobs, !) and pL− (Dobs, !) are defined in Equations (6) and (9), respectively.
The function pL(Dobs, !) can be considered a discrete version of a CV function. By part (a) of 

Proposition 1, pL+ (Dobs, !) and pL− (Dobs, !) stochastically dominate a Uniform[0, 1] random variable 

P
(
pU+ (Dobs, !0) ≤ "

)
≥ ", and P

(
pU− (Dobs, !0) ≤ "

)
≥ ",

(11)P
(
pL+(Dobs, !0)≤"

)
≥"−#∗, P

(
pL−(Dobs, !0)≤"

)
≥"−#∗,

P
(
pU+(Dobs, !0)≤"

)
≤"+#∗, P

(
pU−(Dobs, !0)≤"

)
≤"+#∗,

(12)H
!±
1

: Yi(1) − Yi(0) = " ( ≠ !), for all i = 1, …, N.

(13)pL(Dobs, !) = 2min
{

pL+ (Dobs, !), pL− (Dobs, !)
}

,
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when θ = θ0 and thus is a valid p- value function to test H!
0
 against H!±

1
. Note that, if the p- value func-

tion for this two- sided testing problem had been constructed along the lines of the CV function intro-
duced in Section 2.2 as

then it would not have dominated a Uniform[0, 1] random variable by part (b) of Proposition 1.
Figure 1 illustrates a pL(Dobs, !) function based on the toy example in the supplementary 

materials.

4 |  INVERTING THE FRT TO OBTAIN CONFIDENCE  
INTERVALS

As briefly mentioned in the introductory section, the procedure of inverting FRTs to obtain 
intervals for treatment effects has been described rather loosely in literature as one obtained by 
‘inversion’ of the p- value function. In Section 3, we have defined five p- value functions, but the 
inversion procedure leading to construction of valid confidence intervals is not obvious from 
these definitions. Furthermore, the definitions and results stated so far do not guarantee mono-
tonicity of the p- value functions (see Section 3 of the Supplementary materials for an example). 
Non- monotonic p- value functions will not produce confidence intervals for the treatment effect 
at all levels of significance. In this section, we explore conditions that guarantee monotonicity 
of p- value functions, and then provide a concrete algorithm for constructing valid confidence 
intervals.

2min{pL+ (Dobs, !), 1 − pL+ (Dobs, !)} = 2min
{

pL+ (Dobs, !), pU− (Dobs, !)
}

,

F I G U R E  1  pL(Dobs, !) vs. θ

pL(Dobs, θ) vs θ

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

θ

pv
al
ue
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4.1 | Monotonicity of the p- value functions

We now aim at providing a set of sufficient conditions to guarantee that pL+ (Dobs, !) ‘behaves’ like 
a CDF in the sense that is monotonically non- decreasing and right continuous. We first introduce the 
following definitions along the lines of Caughey et al. (2017).

Definition 5 (Ordered vectors of potential outcomes)Two vectors of potential outcomes under treat-
ment Y(1) =

(
Y1(1), …, YN(1)

)
 and Y′(1) =

(
Y ′

1
(1), …, Y ′

N
(1)

)
 are ordered as Y(1) ≤ Y

′(1) 
if Yi(1) ≤ Y ′

i
(1) for all i = 1, …, N. An order between two vectors of potential outcomes under 

control Y(0) and Y′(0) is similarly defined.

Caughey et al. (2017) introduced the notion of an ‘effect increasing’ (EI) statistic in the context of 
testing null hypotheses that are weaker than the sharp null. A definition of an EI test statistic is given 
below.

Definition 6 (Effect increasing (EI) test statistic)A test statistic T(Y, W) = T(Y(1), Y(0), W) is said 
to possess the EI property if it is non- decreasing in Y(1) and non- increasing in Y(0).

Examples of EI statistics include difference in means or Wilcoxon rank sum statistic. On the other 
hand, the commonly used Studentized Fisher– Behren- type statistic in the example given in Section 
3 of the supplementary material does not satisfy the EI property. Caughey et al. (2017) pointed 
out the important role of EI statistics in constructing valid tests for null hypothesis that are weaker 
than the sharp null. Theorem 1 stated below relates the test statistic to the properties of the p- value 
functions, and establishes that the EI condition is sufficient for monotonicity of p- value functions 
in FRT.

Theorem 1 

1. If the test statistic T is EI, then the p- value function pL+ (Dobs, !) defined in Equation (6) 
is non- decreasing in θ for fixed D

obs.
2. For fixed W, if T(Y

imp

!
, W) is right continuous as a function of θ, then pL+ (Dobs, !) is right con-

tinuous in θ.
3. Furthermore, for fixed W̃ ≠ W

obs, if T(Y
imp

!
, W̃) approaches −∞ and +∞ as θ  →  −∞ and 

θ → +∞, respectively, then pL+ (Dobs, !) → 1 as θ → ∞ and pL+ (Dobs, !) → P(W = W
obs) as 

θ → −∞.
Similar results also hold for pL− (Dobs, !) defined in Equation (9), which is non- increasing if T is 

EI.

4.2 | An Algorithm for generating confidence intervals with coverage at 
least 1 − α

From the foregoing discussion, it is clear that the ‘traditional’ approach of inverting just one p- value func-
tion based on an arbitrary test statistic does not yield one or two- sided intervals with the desired coverage. 
Based on (i) the properties of the p- value functions in Proposition 1, (ii) the description of valid proce-
dures for testing the sharp null against one-  or two- sided hypotheses in Section 3, and (iii) the conditions 
required to guarantee that inversion of p- value functions will generate intervals as stated in Theorem 1,  



10 |   LUO ET AL.

we now arrive at the following proposition that provides a rule to generate confidence intervals with 
the desired coverage.

Proposition 2 Assume that for fixed Dobs, the p- value functions pL+ (Dobs, !) and pL− (Dobs, !) 
are (i), respectively, non- decreasing and non- increasing and (ii) right continuous functions 
of θ.

1. Define !!(") = sup! {! : pL+ (Dobs, !) ≤ "}. Then the one- sided interval 
[
!!("), ∞

)
 covers 

the true value of θ with probability of at least 1  −  α.
2. Define !u(") = inf! {! : pL− (Dobs, !) ≤ "}. Then the one- sided interval 

(
−∞, !u(")

)
 covers 

the true value of θ with probability of at least 1 − α.
3. For 0  <  α1, α2  <  1 and α1  +  α2  =  α, define !!("1) = sup! {! : pL+ (Dobs, !) ≤ "1} and 
!u("2) = inf! {! : pL− (Dobs, !) ≤ "2}. Then the two- sided interval [θℓ(α1), θu(α2)) covers the 
true value of θ with probability of at least 1 − α.

Proposition 2 provides methods to construct confidence intervals for the treatment effect with 
the desired coverage. The most straightforward approach is to obtain the interval [θℓ(α/2),θu(α/2)) 
where θℓ(α/2) and θu(α/2) are obtained by substituting α1 = α2 = α/2 in part (c) of Proposition 2 
and solving the equations pL+ (Dobs, !) = "∕2, pL− (Dobs, !) = "∕2, which are equivalent to solving 
pL(Dobs, !) = ". Because pL+ (Dobs, !) and pL− (Dobs, !) are stepwise functions that are monotonic in 
θ, we propose Algorithm 1 that is based on the conventional bisection method to find the left endpoint 
θℓ(α/2) of the interval. The right endpoint θu(α/2) can be obtained similarly.

Remark 1 The final θl and θr in Algorithm 1 still satisfy pL+ (Dobs, !l) ≤ "∕2 and pL+ (Dobs, !r) >

!∕2. These inequalities, the monotonicity of pL+ (Dobs, !) and definition of θℓ(α/2) collectively 
imply that θl ≤ θℓ(α/2) ≤ θr and consequently θℓ(α/2) − ε < θl ≤ θℓ(α/2). It should be stressed 
that such a result is independent of the choice of initial input [! ∗

l
, ! ∗

r
].

Remark 2 All existing procedures (e.g. Dasgupta et al., 2015) of obtaining confidence intervals by 
inverting FRTs essentially involve a grid- search procedure that entails (i) choosing a sequence 
of parameter values {θ1, θ2, …}, (ii) calculating p̂("j), an estimator of the p- value function p(θj) 
at θ = θj by testing the sharp null H0:θ = θj, j = 1, …, (iii) fitting a p- value function using the 
(
!j, p̂(!j)

)
 pairs and (iv) inverting the fitted function to obtain the confidence interval for θ. 
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However, the interval obtained by inverting the p- value function fitted with these chosen param-
eter values depends on the choice of the sequence {θ1, θ2, …}. The algorithm proposed above 
is more robust compared to the traditional approach because it does not depend on the choice 
of discrete levels of θ.

Remark 3 Although the proposed algorithm can be more robust compared to a grid search, calcu-
lating pL+ (Dobs, !) for several values of θ while searching for the lower and upper limits is still 
computationally challenging even when Monte Carlo estimates (obtained by randomly drawing 
assignment vectors W) are used to estimate the p- values. However, the computational load can 
be considerably reduced if we can estimate the entire p- value function using a single Monte 
Carlo sample. Thus we arrive at an important question that connects statistical and computa-
tional efficiency: how to efficiently estimate the entire p- value function for an infinite number 
of parameter values in a computationally viable manner? We address this important question in 
the following section.

5 |  EFFICIENT ESTIMATION OF THE p - VALUE 
FUNCTION: COMPUTATIONAL VIABILITY AND 
THEORETICAL GUARANTEE

The p- value functions defined in Sections 3.1 and 3.2 can be computed for any given value of θ if all 
possible realizations Wrep of the assignment vector W can be obtained and used to generate the exact 
randomization distribution of the test statistic T(Y

imp

!
, W

rep). However, even for a moderate popula-
tion size the total number of possible realizations of W is typically computationally prohibitive. The 
common solution to this problem is to draw, repeatedly and independently, randomized treatment as-
signment vectors Wrep

1
, …, W

rep

K
, and obtain a Monte Carlo estimate of the p- value function based on 

the values of the test statistic computed from these K draws. Consider specifically the estimation of 
pL+ (Dobs, !) defined in Equation (6). The Monte Carlo estimator of pL+ (Dobs, !) based on K draws 
is given by

where !(A) is the indicator function for event A. All other p- value functions can be estimated similarly. 
Although this estimator has long been used since the times of Fisher, the effect of the Monte Carlo sample 
size K on the accuracy of the estimator p̂L+

(Dobs, ") for fixed θ remains largely unexplored. The current 
problem is even more challenging, because the goal is to estimate the entire p- value function, and not only 
values at specific values of θ. As mentioned in Remark 3, the computational viability of our proposed 
algorithm hinges crucially on the ability to estimate the p- value function using only one Monte Carlo 
sample. The question is, how large should such a sample be to ensure that estimated p- value function has 
a desired level of precision. Below, we provide a new result in the form of a concentration inequality to 
shed light on this question.

Theorem 2 Let K denote the size of the Monte Carlo sample drawn from the distribution of W and 
let p̂L+

K
(Dobs, ") be as defined in Equation (14), where the underlying test statistic T satisfies the 

conditions in parts (1) and (2) of Theorem 1, that is, it is EI and a right continuous function of 
θ for fixed W. Fix ε > 0. Then,

(14)p̂
L+
K

(Dobs, ") =
1

K

K∑

k= 1

!

(
T(Y

imp

"
, W

rep

k
) ≥ T(Dobs)

)
,
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It is important to note that the bound (15) does not depend on N, making it particularly useful for 
cases when the total number of possible assignments M is large. In our numerical studies in Section 
7, for experiments in which M ≤ 10,000, we have used a complete enumeration of all M assign-
ments to compute the p- value function. If M > 10,000, 10000 Monte Carlo draws have been used 
to estimate the p- value functions. Such a choice would estimate the p- value functions without error 
if M ≤ 10,000. When M > 10,000, Theorem 2 guarantees that the maximum probability of making 
a 5% estimation error does not exceed 0.18, and that of making a 10% estimation error is bounded 
above by approximately 1.5 × 10−5. This guarantee holds however large M might be.

6 |  CONFIDENCE DISTRIBUTION AS A TOOL FOR 
COMBINING FISHER RANDOMIZATION TESTS FROM 
INDEPENDENT STUDIES

Studies with a large number of experimental units now frequently arise from aggregation of informa-
tion from multiple independent sources (e.g. Hemkens et al., 2017) and require strategies for efficient 
meta- analysis. Several researchers (e.g. Bareinboim & Pearl, 2016; Liu et al., 2020) have emphasized 
on the importance of development of new methodologies for combining information from multiple 
sources, stating that the objective of such fusion inference is ‘to combine results from many experi-
mental and observational studies, each conducted on a different population and under a different set 
of conditions in order to synthesize an aggregate measure of targeted effect size that is better, in some 
sense, than any one study in isolation’. In this section, we use CD to develop efficient and robust ap-
proaches to synthesizing an aggregate measure of effect size from difference sources.

There exist several classical methods in literature to combine p- values from independent tests of hy-
potheses, for example, Fisher's method (Fisher, 1932) and Stouffer's method (Stouffer et al., 1949). See 
Marden (1991) for a detailed review of these and other methods. However, while it is straightforward 
to combine p- values from multiple independent tests, it is not obvious how to combine the results into 
a composite p- value function from which a composite interval estimator for θ can be obtained. Singh 
et al. (2005) and Xie et al. (2011) proposed a general approach to combine CDs, and specifically p- 
value functions, that encompass all the classical methods for combining p- values as special cases. We 
describe their approach before explaining why it cannot be directly adopted to combine FRTs.

Xie et al. (2011) combined a sequence of CDs H1(θ), …, Hm(θ) to obtain a combined CD

where gc : [0, 1]m
→ ℝ is a continuous function that is non- decreasing in each coordinate, Gc : ℝ→ [0, 1] 

is the continuous CDF of gc(U1, …, Um) where U1, …, Um are independently and identically distributed 
(iid) Uniform[0, 1] random variables. This combined function Hc(θ), is non- decreasing, right continuous 
and a lower CD as per Definition 1. Consequently, it is used to obtain the left endpoint of a 100(1 − α)% CI 
for θ0, the true value of θ. To obtain the right endpoint of a (1 − α)% CI, the function 1 − Hc(θ) is induced. 
This function is also a lower CD, right continuous, but non- increasing in θ. These three properties of this 
induced function 1 − Hc(θ) are guaranteed by two conditions: (i) For i = 1, …, m all Hi(θ), are CDs and 
(ii) Gc(t) is a continuous function of t.

(15)P

(

sup
!

|
|
|
p̂

L+
K

(Dobs, !) − pL+ (Dobs, !)
|
|
|
> #

)

≤ min

{

1, 4e− K#2

8

}

.

(16)Hc(!) = Gc

(
gc

(
H1(!), …, Hm(!)

))
,
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In the context of FRT, while attempting to combine p- value functions from m independent experiments, 
we can combine the m lower CDs pL+

i
(!) = pL+

i
(Dobs

i
, !), i = 1, …, m, defined by Equation (6) obtained 

from these experiments in a manner similar to Equation (16) to obtain a combined lower CD function 
pL+

c
(!) and use it to generate the lower endpoint of a confidence interval. However, this combination does 

not automatically generate the counterpart of 1 − Hc(θ) because 1 − pL+
c

(!) is not a lower CD.
Thus we face the following theoretical questions: (a) Which p- value functions (e.g. pL−(·) or pU+(·)) 

should be combined to mimic 1 − Hc(·) of Xie et al. (2011) and (b) What conditions are needed 
to guarantee that the combined function is a lower CD, right continuous and non- increasing in θ. 
Proposition 3 provides an answer to these questions and also gives rise to an unambiguous procedure 
for combining results from m independent experiments.

Proposition 3 For i  =  1,  …,  m, let pL+
i

(!) = pL+
i

(Dobs
i

, !) defined by Equation (6) and 
pL−

i
(!) = pL−

i
(Dobs

i
, !) defined by Equation (9) denote one- sided p- value functions obtained 

from m independent randomized experiments. Define the combined p- value functions:

where gc : [0, 1]m
→ ℝ is a continuous function that is non- decreasing in each coordinate, Gc : ℝ → [0, 1] 

is the CDF of g c(U 1, …, U m) where U 1, …, U m are iid Uniform[0, 1] random variables. Then the com-
bined p- value functions pL+

c
(!) and pL−

c
(!) are both lower CDs as per Definition 1.

Remark 4 The proof of the result that Hc(θ) in Xie et al. (2011) is a CD and thus 1−Hc(θ) is a lower 
CD relies on the continuity of the function Gc(·). This condition is not necessary in Proposition 
3. Thus, although the discrete nature of the p- value functions in FRT entails combining two dif-
ferent sets of functions, ultimately they can be used to generate valid confidence intervals under 
conditions weaker than those in Xie et al. (2011).

As a consequence of Proposition 3, the combined p- value functions pL+
c

(!) and pL−
c

(!) can be in-
verted to generate CIs for θ with guaranteed coverages. For 0 < α 1, α 2, α < 1 and α 1 + α 2 = α, define 
!!,c = sup! {! : pL+

c
(!) ≤ "1} and !u,c = inf! {! : pL−

c
(!) ≤ "2}. Then arguing along lines similar 

to that in part (3) of Proposition 2, the interval [θ ℓ,c, θ u,c) is a 100(1 − α)% interval for θ obtained by 
combining the m studies.

To implement the steps described above, we need to choose specific forms of the function gc(·). 
Xie et  al. (2011) showed that the form gc(u1, …, um) =

∑ m
i=1

wiF
−1
0

(ui), where F0(·) is a CDF 
of a random variable X, F−1

0
 refers to the quantile function associate with X, that is, for p ∈ [0, 1], 

F−1
0

(p) = min{x ∈ ℝ : p ≤ FX(x)} and w1, …, wm are non- negative weights with at least one wi ≠ 0, 
generates most classical methods for combining p- values. Two examples are given below.

1. With wi  =  1 for all i  =  1,  …,  m and negative exponential CDF F0(x)  =  ex for x  ≤  0 
generates Fisher's method, in which

2. Again taking wi = 1 for all i = 1, …, m and F0(x) = 1

2
ex!(x≤0) + (1 − 1

2
e− x)!(x>0), that is, the 

double exponential or Laplace CDF instead of the negative exponential CDF leads to the double 
exponential (DE) method for combining p- values.

(17)pL+
c

(!) = Gc

(
gc

(
pL+

1
(!), …, pL+

m
(!)

))
, pL−

c
(!) = Gc

(
gc

(
pL−

1
(!), …, pL−

m
(!)

))
,

(18)pL+
c

(!) = P

[

"2
2m

≥ − 2

m∑

i= 1

log
(
pL+

i
(!)

)
]

, pL−
c

(!) = P

[

"2
2m

≥ − 2

m∑

i= 1

log
(
pL−

i
(!)

)
]

.
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The proposed approach for combining FRT- based inference from independent randomized ex-
periments will be demonstrated in Section 7 using Fisher's and the DE methods described above. A 
theoretical comparison of the two methods performed by Singh et al. (2005) in the context of com-
bining CDs established the superiority of the DE method over Fisher's method in terms of Bahadur 
efficiency. Because the p- value functions considered here are lower CDs, and not CDs, such superi-
ority of the DE method, while intuitive, is not immediate. However, an empirical comparison of the 
two methods in terms of width of the generated confidence intervals (Section 7) suggests a similar 
phenomenon when combining p- value functions from randomized experiments.

Our simulations also suggest that taking equal weights wi = 1 is not necessarily a good strategy 
for combining experiments, especially when the experiments have highly unbalanced sample sizes. 
Some empirical investigation along these lines is performed in Section 7. The results are interesting 
and open up possibilities of further theoretical investigations.

Remark 5 An intuitive approach for combining results of FRT from different studies is to treat them 
as a unique experiment, where each individual experiment constitutes a block (or a group of 
blocks) and the joint assignment mechanism follows the joint distribution assembled from the 
individual mechanisms. For this new block design experiment, we define the one- sided p- value 
functions as

where w1, …, wm the weights for the m blocks and ∑ m
i=1

wiTi(Y
imp

!,i
, W

rep

i
) represents the combined test 

statistic. Applying Algorithm 1 to pL−
IT

(!) and pL+
IT

(!), we can obtain a valid confidence interval for the 
treatment effect. We will refer to this approach as the ‘block- randomization inspired (BRI) approach’. Our 
preliminary empirical investigation (reported in Section 5.1 of the supplementary material) shows that the 
proposed approach described above is superior to the BRI approach when combining a large number of 
small size experiments. A more comprehensive comparison between the two approaches is left as future 
research. In the following remark, we define a generalization of the p- value combination approach that 
is closely related but superior to the BRI approach in terms of width of generated confidence intervals.

Remark 6 Two different gc functions, say g+
c

 and g−
c

, can be employed in Equation (17) to define the 
p- value functions pL+

c
 and pL−

c
. The functions gc's can also be θ- dependent, and their continuity 

requirements can be dropped as well. The relaxation on gc can further increase the flexibility 
and expand the reach of the proposed combined p- value framework. However, it may increase 
computational complexity and thus may not be preferred in practice. One such example is to 
take g+

!,c
 and g−

!,c
 in Equation (17) with

(19)pL−
IT

(!) = P

(
m∑

i= 1

wiTi(Y
imp

!,i
, W

rep

i
) ≤

m∑

i= 1

wiTi(D
obs
i

)

)

,

(20)pL+
IT

(!) = P

(
m∑

i= 1

wiTi(Y
imp

!,i
, W

rep

i
) ≥

m∑

i= 1

wiTi(D
obs
i

)

)

,

(21)g+
!,c

(u1, …, um) =

m∑

i= 1

wi(F
+
!,i

)−1(ui) and g−
!,c

(u1, …, um) =

m∑

i= 1

wi(F
−
!,i

)−1(ui),
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where for i = 1, …, m, (F+
!,i

)−1 and (F−
!,i

)−1 are quantile functions of the random variables with CDFs 
F+
!,i

(t) = P
(
− Ti(Y

imp

!,i
, W

rep

i
) ≤ t

)
 and F−

!,i
(t) = P

(
Ti(Y

imp

!,i
, W

rep

i
) ≤ t

)
, respectively. We refer to 

this method of combining p- value functions using these choices of g+
!,c

 and g−
!,c

 as in Equation (21) as the 
‘Parameter- dependent double gc’ (PDD- gc) approach. The PDD- gc approach is closely related to the BRI 
approach. In fact, if the functions F+(·) and F−(·) in Equation (21) are continuous and monotonic, so that 
(F+(·))−1 and (F−(·))−1 represent inverse functions, then the PDD- gc and BRI can be shown to be exactly 
equivalent along the lines of argument in Xie et al. (2011). In the case of FRT, while the two approaches 
are not exactly similar due to discreteness of F+(·) and F−(·), discreteness turns out to be advantage for the 
PDD- gc approach. We prove (Section 5.2 of Supplementary materials) that confidence intervals generated 
by inverting the combined p- value function obtained through the PDD- gc approach cannot be wider than 
those generated by inverting the p- value function obtained through the BRI approach.

7 |  SIMULATIONS

In this section, we conduct simulations to establish that our proposed guidelines and algorithms for 
(a) estimating the p- value functions, (b) inverting them to obtain confidence intervals and (c) combin-
ing inferences across multiple independent experiments to produce the desired results. We consider 
two types of randomized experiments: the completely randomized design (CRD) and the randomized 
block design (RBD). In the former, an even number N of experimental units are equally split into treat-
ment (denoted by 1) and control (denoted by 0) groups at random. In the latter, we consider b blocks 
of experimental units with an equal even number (k) of units in each block (block size), so that N = bk 
is the total number of units. The k units within each block are equally split into treatment and control 
groups at random. Note that b = 1 for an RBD is equivalent to a CRD.

We consider several scenarios shown in Table 1, in each of which we consider combining results 
from two experiments with design parameters (b1, k1) and (b2, k2), where for j = 1, 2, bj and kj denote 
the number of blocks and the block size, respectively. The two individual experiments are either CRD 
or RBD.

For each individual experiment across all scenarios, the potential outcomes under control, Yi(0), 
i = 1, …, N are generated from a lognormal distribution with parameters 0 and 1. The true additive ef-
fect is assumed to be zero, so that Yi(1) = Yi(0) for i = 1, …, N. Potential outcomes once generated are 
kept fixed. The units are assigned to treatments in a manner described earlier, depending on whether 
the design is CRD or RBD.

Next, for each experiment, FRT is conducted using the difference of averages between treatment and 
control groups as the test statistic. Either a complete enumeration all M assignments for M ≤ 10,000, 
or a set of 10,000 random permutations when M > 10,000, is used to calculate or estimate the p- value 
functions pL+ (Dobs, !) and pL− (Dobs, !). A justification for this choice of K was provided in the last 
paragraph of Section 5. For each individual experiment, 95% confidence intervals are obtained using 
the method described in Algorithm 1 with α 1 = α 2 = 0.025. Finally, the p- value functions from the 
two experiments in each scenario are combined using Fisher's method given by Equation (18) and the 
double exponential (DE) method, and the 95% confidence intervals are generated using the combined 
p- value functions pL+

c
(!) and pL−

c
(!), again using Algorithm 1.

The simulation for each scenario is repeated 5000 times to calculate the coverage of the 95% inter-
vals generated from the individual and combined experiments. The results are shown in Table 1. The 
simulations provide empirical evidence of the theoretical result that the proposed method for inverting 
FRT to obtain confidence intervals produces intervals with the desired coverage for individual as well 
as combined experiments.
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Table 2 provides a summary of comparison of widths of confidence intervals of the individual 
experiments and the combined experiments. It is natural to expect that the width of the interval gen-
erated by combining the two individual experiments would be shorter than the width of the interval 
obtained from each individual experiment with a high probability, as such a fusion should increase 
the precision of inference. To check if simulation results are consistent with these expectations, we 
compute (a) the percentages of cases in which the widths of the intervals obtained from combined 
experiments (using Fisher's and the DE method) are shorter than the lengths of intervals obtained 
from individual experiments, and (b) the median width of intervals obtained from individual as 
well as combined experiments. To compare the performance of the two combining methods, we 
also compute the proportion of cases in which The DE method produces shorter intervals than 
Fisher's method.

The results suggest that, as expected, combining experiments using Fisher's or DE methods always 
results in reducing median width of confidence intervals. Further, in almost all settings, combining 
experiments using either method reduces the width of confidence intervals in a very high percentage 
(90– 100%) of cases. Only in one situation, where the number of units in the two experiments vary 
the most (CRDs with 10 and 30 units), this percentage reduces to 0.77 for the Fisher method and 0.79 
for the DE method. However, it was interesting to note that once Fisher's method and the DE method 
were slightly modified by taking weights wi proportional to the sample sizes in the two experiments, 
the percentages again were higher and consistent with other settings.

T A B L E  1  Coverage of 95% CIs obtained using Fisher's and DE p- value combination methods

Scenario Coverage

Designs 1 & 2 b1 k1 b2 k2 Exp 1 Exp 2 Fisher DE
CRD & CRD 1 10 1 10 0.954 0.952 0.961 0.961

1 16 1 16 0.951 0.949 0.952 0.953
1 24 1 24 0.956 0.947 0.954 0.953
1 30 1 30 0.946 0.944 0.948 0.947
1 10 1 16 0.952 0.950 0.956 0.955
1 16 1 24 0.947 0.956 0.948 0.949
1 24 1 30 0.954 0.951 0.952 0.952
1 10 1 30 0.953 0.954 0.955 0.943

RBD & RBD 2 8 2 8 0.953 0.949 0.950 0.949
10 2 10 2 0.948 0.949 0.951 0.947
4 4 4 4 0.956 0.952 0.949 0.949
2 8 4 4 0.947 0.950 0.952 0.952
4 4 10 2 0.952 0.948 0.950 0.950
2 10 10 2 0.949 0.953 0.950 0.950

CRD & RBD 1 10 10 2 0.950 0.950 0.959 0.958
1 10 2 10 0.949 0.948 0.954 0.956
1 16 2 10 0.950 0.951 0.952 0.951
1 24 2 10 0.953 0.947 0.947 0.950
1 30 10 2 0.944 0.952 0.951 0.952
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Looking at the percentage of cases in which the DE method produced shorter intervals than 
Fisher's method, and the median widths produced by the two methods, it is obvious that the former 
method performs uniformly better than the latter across all the settings. As explained in Section 
6, this observation is consistent with the theoretical comparison of the two methods performed by 
Singh et al. (2005), although such a theoretical extension of such a comparison to our case involving 
discrete p- value functions is not immediate.

8 |  REAL DATA EXAMPLE

Using data from a randomized experiment reported in Shadish et al. (2008), we demonstrate the 
proposed approach of estimating the p- value function and its usefulness for testing any sharp null 
hypothesis and obtaining a confidence interval for the average treatment effect. In this experiment, 
235 undergraduate students from introductory psychology classes at a large mid- southern public 
university received either the treatment (vocabulary training) or control (math training) through 
a completely randomized treatment assignment. The number of students assigned to treatment 
and control were 116 and 119, respectively. The outcome was the vocabulary test score after the 
experiment.

The p- value functions pL+ (Dobs, !), pL− (Dobs, !) and pL(Dobs, !) based on the test statistic 
T = Y

obs
(1) − Y

obs
(0) are shown in Figure 2. These p- value functions are estimated from Equation 

(14) by drawing a single Monte Carlo sample of size K = 106 from the distribution of the treatment 
assignment vector. Each draw in the sample is essentially a permutation of a binary vector consisting 
of 116 ones and 119 zeros.

We can test the sharp null hypothesis of no treatment effect on any student against the two- sided 
alternative. The p- value for such a test can be obtained from the function pL(Dobs, !) for θ = 0, and 
turns out to be zero, indicating presence of a treatment effect. Suppose one is interested in testing the 
sharp null hypothesis that the treatment effect is 6 versus the alternative that it is greater than 6. The 
p- value for such a test can be obtained from pL+ (Dobs, !), and is also zero providing strong evidence 
against the null hypothesis. Next, using Algorithm 1, we obtain 95% confidence intervals for the aver-
age treatment effect as [7.24, 10.72]. Note that the lower and upper limits can be individually obtained 
from the one- sided p- value functions pL+ (Dobs, !) and pL− (Dobs, !), respectively, and they can also 
be obtained from the two- sided p- value function pL(Dobs, !), as shown by the superimposed red dotted 
lines in all the three curves in Figure 2.

F I G U R E  2  p- value functions for the Shadish experiment
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9 |  DISCUSSION AND FUTURE DIRECTIONS

In most scientific studies, assessing causal relationships among variables is considered more impor-
tant with more practical implications than merely studying associations. The distinct difference be-
tween association and causality is now well understood: causality can only be determined by utilizing 
known or assumed knowledge about how the data were collected and consequently is more difficult 
to establish than association. However, technology has now created a perfect platform to design and 
analyse large studies conducted to assess causal effects of interventions and the FRT, with its unique 
ability to facilitate model- free assessment of causal effects is expected to have tremendous potential 
in modern day experiments. In this article, we attempt to address some long standing unclear aspects 
associated with the methodology for computation, inversion and principled aggregation of FRTs by 
developing a unified and comprehensive framework based on the versatile inferential tool confidence 
distribution.

One of the main criticisms of FRT has been the sharp null hypothesis, that many, including Neyman 
had considered overly strong, triggering the infamous Neyman– Fisher debate in 1935 (Sabbaghi & 
Rubin, 2014). However, the possibility of applying FRT to assess weaker null hypothesis has been 
explored and identified by a few researchers -  see for example, Ding and Dasgupta (2018), Caughey 
et al. (2017), Wu and Ding (2019) and Cohen and Fogarty (2021). Caughey et al. (2017) showed 
that the interval estimators obtained by inverting FRT can be interpreted more meaningfully under a 
bounded null hypotheses if EI test statistics are used. Ding and Dasgupta (2018) derived a statistic that 
is asymptotically valid while testing Neyman's null hypothesis on average treatment effects. It will be 
interesting to extend our results to such weaker hypotheses and consequently have broader interpreta-
tions of the interval estimators.

We believe this article will open up a number of research possibilities. First, all our results per-
tain to finite samples. Exploring asymptotic properties of the interval estimators for individual and 
combined experiments using finite population asymptotics (Li & Ding, 2017) and borrowing relevant 
literature from CD literature will be a useful direction. Second, exploring ways to optimally combine 
experiments, as discussed in the last paragraph of Section 6 will be an interesting line of investigation. 
Third, extending the FRT- CD framework for analysis of data from observational studies and conduct-
ing sensitivity analysis is an interesting possibility. Finally, combining experiments and observational 
studies is an area of growing interest, and the FRT- CD may provide an excellent foundation for this 
area of research.
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