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ABSTRACT

Fusion learning refers to synthesizing inferences frommultiple sources or studies to make a more effective
inference and prediction than from any individual source or study alone. Most existing methods for
synthesizing inferences rely on parametric model assumptions, such as normality, which often do not hold
in practice. We propose a general nonparametric fusion learning framework for synthesizing inferences for
multiparameters fromdifferent studies. Themain tool underlying theproposed framework is thenewnotion
of depth confidence distribution (depth-CD), which is developed by combining data depth and confidence
distribution. Broadly speaking, a depth-CD is a data-driven nonparametric summary distribution of the
available inferential information for a target parameter. We show that a depth-CD is a powerful inferential
tool and, moreover, is an omnibus form of confidence regions, whose contours of level sets shrink toward
the true parameter value. The proposed fusion learning approach combines depth-CDs from the individual
studies, with each depth-CD constructed by nonparametric bootstrap and data depth. The approach is
shown to be efficient, general and robust. Specifically, it achieves high-order accuracy and Bahadur efficiency
under suitably chosen combining elements. It allows the model or inference structure to be different
among individual studies. And, it readily adapts to heterogeneous studies with a broad range of complex
and irregular settings. This last property enables the approach to use indirect evidence from incomplete
studies to gain efficiency for the overall inference. We develop the theoretical support for the proposed
approach, and we also illustrate the approach in making combined inference for the commonmean vector
and correlation coefficient from several studies. The numerical results from simulated studies show the
approach to be less biased and more efficient than the traditional approaches in nonnormal settings. The
advantages of the approach are also demonstrated in a Federal Aviation Administration study of aircraft
landing performance. Supplementary materials for this article are available online.
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1. Introduction

Powerful data acquisition technologies have greatly enabled the
simultaneous collection of data from different sources in many
domains. It is often impossible or inappropriate to simply aggre-
gate all the data to draw inference, due to concerns over storage,
privacy, cost constraints, or the desire to enhance inference
by incorporating external or publicly available data sources,
etc. Instead, one would need to combine the inference results
from individual sources to draw an overall inference. Fusion
learning refers to synthesizing inferences frommultiple sources
or studies to provide a more effective inference than that from
any individual source or study alone.

1.1. Amotivating example

We begin with an example to illustrate the need of efficient
fusion learning. This example arose from a research project
sponsored by the Federal Aviation Administration (FAA). The
FAA, as the regulatory agency for air transportation safety,
establishes guidelines for all air operations. For example, to
ensure safe aircraft landings, FAA analysis has set guidelines
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recommending that the height of the aircraft at the crossing of
runway threshold be around 15.85m and touchdown distance
be around 432m from runway threshold. To help assess whether
aircraft landings generally follow these guidelines, we can simply
test the hypothesis H0 : μ = (15.85, 432)′, where μ is the
mean vector for the height and distance. A sample of 2796
landing records (820 fromAirbus and 1976 from Boeing) yields
a combined sample mean of (15.86, 432.95)′, and a p-value of
0.942 from Hotelling’s T2 test. The finding would lead to the
conclusion that aircraft landings generally comply with the FAA
guidelines. Surprisingly, this conclusion appears to contradict
the conclusion that we would draw from the two separate indi-
vidual tests from Airbus and Boeing, with respective p-values
0.006 and 0.167. A closer examination of the scatter plots in
Figure 1, of the two individual studies for Airbus and Boeing,
indicates that the two samples do not appear to follow the
same distribution and neither follows an elliptical distribution,
and that the Boeing sample seems to be truncated on the
right. This casts doubt on the aforementioned conclusion of
landing operations meeting the FAA guidelines, and suggests
the need of a nonparametric test for the hypothesis that both
landing operations from Airbus and Boeing meet the FAA

© 2021 American Statistical Association
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Figure 1. Scatterplots of Distance versus Height for the two aircraft makes, Airbus and Boeing.

guidelines, that is, H : μAirbus = μBoeing = (15.85, 432).
More importantly, this example shows that blindly aggregat-
ing data from different data sources may not necessarily yield
correct overall inferences. This example is discussed further in
Section 7.

1.2. Outline of Proposed Approach and Highlights of

Results

In this article, we develop an efficient nonparametric approach
for fusion learning to make inference for the common fea-
tures or parameters shared by different studies. This approach
consists of two key parts: (a) We develop a general non-
parametric inference procedure to ascertain a valid inference
for each individual study by applying the notion of depth
confidence distribution (depth-CD) and its associated depth
confidence curve (depth-CV). Specifically in this article, we
construct a depth-CD using data depth and bootstrap and
show the depth-CD as a comprehensive summary distribu-
tion of all the inferential information for the target parame-
ter; (b) We derive an overall combined inference by suitably
combining the depth-CVs from the individual studies. Our
proposed approach for individual-study inference and that for
the combined inference are completely nonparametric and data
driven, and broadly applicable without any model assump-
tions. For instance, this can substantially broaden the scope of
the existing meta-analysis and evidence synthesis, where com-
mon practice routinely requires parametric models, often the
normality assumption, see, for example, Normand (1999) and
Sutton and Higgins (2008).

The proposed fusion learning framework is established based
on depth confidence distribution (depth-CD), which is a new
powerful inference tool developed in this article by using three
distinct concepts: confidence distribution (e.g., Xie and Singh
2013; Schweder and Hjort 2016), data depth (e.g., Liu 1990;
Liu, Parelius, and Singh 1999; Zuo and Serfling 2000), and
bootstrap (Efron 1979). Simply put, a depth-CD is a sample-
dependent distribution function defined on the space of the
target parameter, which summarizes all the information from
the data that is relevant for the inference of the parameter. Based
on the evidence in the given data, a depth-CD can also be
viewed as a reference function that reflects the plausibility or
“confidence” associated with each possible parameter value in

the parameter space.We investigate general properties of depth-
CD, in particular the following three, in Sections 3.2-3.4,

(P-1) a depth-CD is an omnibus form of confidence regions at
all confidence levels;

(P-2) a depth-CD is an omnibus form of p-values for testing
any parameter value on the entire parameter space;

(P-3) the contours of the level sets of a depth-CD shrink
toward the true value of the parameter as the sample size
increases.

These properties show that a depth-CD is useful in yielding all
inference outcomes commonly sought in practice, and also that
it is a versatile tool for nonparametric fusion learning.

Under the proposed general depth-CD fusion learning
framework, we develop an efficient nonparametric fusion learn-
ing approach by fusing the depth-CDs from individual studies
where the depth-CD of each study is constructed from data
depth and nonparametric bootstrap as described in Section 4.
The fused output, similar to the individual input, remains a dis-
tribution function on the parameter space, which now depicts
the level of “confidence” in assuming each possible parameter
value in view of the totality of all available evidence gathered
from all studies. This combined depth-CD, following P-1, 2, 3
above, can readily provide an overall inference such as confi-
dence regions, p-values, or consistent point estimators.

The proposed fusion approach is shown to be efficient, gen-
eral and robust. More precisely, it is efficient, as it achieves high-
order accuracy and Bahadur efficiency under suitably chosen
combining elements, as shown in Section 5.1. It is general,
as (a) it covers multiparameter settings, (b) it is nonparamet-
ric, and (c) it permits flexible choices of mappings of input
functions, weighting schemes and methods for deriving each
individual depth-CD, across all studies. Such choices are often
needed to account for the different circumstances or degrees of
trustworthiness surrounding each individual study. It is robust,
as it adapts efficiently to the fusion of heterogeneous studies,
covering a wide range of complex and irregular studies, as
investigated in Section 5.2. In fact, our fusion approach covers
the particularly challenging setting where the target parameter
may not be even estimable in some subset of studies, such as in
the case of incomplete studies. Although the target parameter
vector may not be estimable in incomplete studies, those studies
often contain information from their data that can contribute to
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the overall inference of the target parameter, as the information
among different component parameters is often correlated; see,
for example, Liu, Liu, and Xie (2015). This data information
from incomplete studies is often regarded as indirect evidence.
Therefore, our fusion approach can incorporate both direct and
indirect evidence, all in a nonparametricmanner. This is a desir-
able property since it gains efficiency in the overall inference, as
shown in Section 6.1.

We present an extensive comparison study of our fusion
method with several existing methods in the setting of making
inference for a common mean vector, in three data scenarios.
The results can be summed up as three advantages of our
method, namely, in the absence of the normality assumption:
(i) it preserves inference accuracy in hypothesis testing and
confidence regions; (ii) its point estimator has less bias and is
more efficient; and (iii) it achieves a gain of efficiency in the
presence of heterogeneous studies. We also present a numerical
study of our method in meta-analysis of correlation coefficients
in Section 6.2. There we observe that traditional methods may
yield misleading conclusions, while ours remains valid in both
normal and nonnormal cases.

The remaining article is organized as follows. Section 2 gives
a general setup for fusion learning. Section 3 covers a brief
review of confidence distribution (CD) and data depth, and
then the development of depth-CD and depth confidence curve
(depth-CV) for multiparameter inference. Section 4 provides a
concrete procedure for constructing a depth-CV by using boot-
strap and data depth. Section 5 develops nonparametric fusion
learning by combining the depth CDs derived from individual
studies. Section 6 covers all simulation studies. Section 7 applies
our fusion learning approach to conduct the FAA study of air-
craft landing performance. Section 8 contains more comments
and discussions.

2. A General Problem Setting for Fusion Learning

We consider the problem of fusion learning in a general setting.
Suppose that K independent studies are available for analysis to
address the same scientific or business question. Let

Xk,1,Xk,2, . . . ,Xk,nk , iid ∼ Fk, (1)

be the sample from the kth study, k = 1, . . . ,K, where Fk is
an unknown pk-dimensional multivariate distribution. Assume
that the parameter of interest θk is a finite-dimensional func-
tional of Fk, which can be scalar or vector-valued. Assume that

θ ≡ θ1 = θ2 = · · · = θK . (2)

The goal is to make an efficient inference for θ by fusing the
information from all K studies, without assuming specific para-
metric forms of the distributions Fk(θk). This setting covers:

Example 1 (common mean inference). Let θk =
∫

x dFk(x) be
the mean of the distribution Fk, θ ≡ θ1 = · · · = θK is the (p-
dimensional) common mean of the K unknown distributions.
We are interested in constructing a confidence region for θ or
testing the hypothesis �0 : θ = μ versus �1 : θ �= μ for a
particular value μ.

Example 2 (correlation inference). Consider the correlation
coefficient of any two components of the p-dimensional distri-
bution Fk. Let θk include all such pairwise correlation coeffi-
cients. Then θ ≡ θ1 = · · · = θK is a parameter vector of
dimension p(p−1)/2.We are interested in testing the hypothesis
�0 : θ = 0 versus �1 : θ �= 0.

These two examples will be used throughout the devel-
opment and simulations to illustrate the proposed fusion
approach. In various scenarios these examples help showcase
themerits of our approach, described briefly as efficient, general
and robust in the Introduction. To elaborate further, our fusion
framework is general because it requires no specific paramet-
ric forms of the underlying distributions Fk. It is also robust
because it permits a broad range of heterogeneity among stud-
ies: (i) the individual studies do not have be homogeneous in
terms of their designs, reporting formats, models, and inference
methods; (ii) the studies can have different types of data (e.g.,
continuous, binary or ordinal responses); (iii) the studies can
be analyzed using different models, such as linear regression
models for continuous outcomes in some studies and logistic
regression models for binary outcomes in others, and (iv) the
individual studies can even use different inference methods,
for instance, estimating the population location by the sample
mean, the trimmed mean or the median as dictated by the
specific situation of each study; and v) our fusion framework
does not require that the parameter θk be estimable in all studies.

To be more precise with the last point, our CD fusion
approach applies even if the parameter of interest θk is not
estimable in some studies, as long as there exists a known
continuous mapping from the parameter space � (of θ) to a
lower-dimensional space �k such that

θ̃k = f k(θk) (3)

is estimable. Similar formulation of partially estimable parame-
ters also arose in the applications in (Sutton and Higgins 2008;
Liu, Liu, and Xie 2015). Obviously, when all f k’s are identifiable
mappings, this setting reduces to the case where all θk’s are
estimable. Our fusion approach is thus adaptable to indirect
evidence. Two numerical examples in Sections 6.1 and 7 illus-
trate how our approach gains efficiency in the final combined
inference from incorporating indirect evidence.

3. Depth-CD and Depth-CV for Multiparameter

Inference

3.1. Reviews: Confidence Distribution (CD) and Data

Depth

3.1.1. Confidence Distribution (CD) and Confidence Curve

(CV) for Scalar Parameter

The idea of the confidence distribution (CD) is borne out of the
wish to use a sample-dependant distribution function, rather
than a point estimate or an (confidence) interval estimate, to
estimate an unknown parameter. For a scalar parameter θ ∈ �,
a function Hn(·) ≡ Hn(Xn, ·) is said to be a CD function for
θ if it meets these two requirements: (i) given a sample Xn, it
is a distribution function on �; and (ii) at the true parameter
value θ = θo,Hn(θ

o) ≡ Hn(Xn, θ
o), as a function of the sample
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Xn, follows the uniform distribution on (0,1) (Schweder and
Hjort 2002; Singh, Xie, and Strawderman 2005). Essentially, (i)
says that a CD function is a ’distribution estimate’ dependent
on the observed sample, and (ii) ensures that a CD function
carries frequentist properties in terms of repeated sampling. For
instance, under (ii), (−∞,H−1

n (1− α)) is a (1− α) confidence
interval, and alsoHn(θ

o) can be used as a p-value for testing the
hypotheses �0 : θ ≤ θo versus �1 : θ > θo. More precisely,
given a dataset and an inferential procedure, a CD function rep-
resents a set of confidence intervals for all possible confidence
levels. It describes a distribution of confidence associated with
each θ value in �.

Note that, conditional on the observed sample Xn, a CD
function Hn(θ) ≡ Hn(Xn, θ) is a distribution function on the
parameter space �. Let θ∗ be a random variable following the
distribution Hn(·). We refer to θ∗ as a CD-random variable.
Conditional on the given data, we can used simulated samples
θ∗’s fromHn(·) to carry out inference, as discussed in Section 4.

To illustrate the CD inference approach, we consider simple
example with a sample x = {xi, i = 1, . . . , n} from N(θ , 1),
where the mean θ is the parameter of interest. A natural CD for
θ isN (x̄n, 1/n) or equivalently its cumulative distribution func-
tion Hn(θ) = �(

√
n(θ − x̄n)). Given a sample x, the function

Hn(θ) is a distribution function on the parameter space �, and
it carries all commonly used inference outcomes. For instance,
(H−1

n (α/2),H−1
n (1 − α/2)) = (x̄n + �−1(α/2)/

√
n, x̄n +

�−1(1 − α/2)/
√
n) is a (1 − α) confidence interval for θ , for

any 0 < α ≤ 1; the mean/median of (H−1
n (.5) (= x̄n) is a point

estimate for θ ; and the tail mass Hn(b) = �(
√
n(b − x̄n))) is a

p-value for testing the one-sided hypothesis K0 : θ ≤ b versus
K1 : θ > b. The curve in Figure 2(a) is a CD function given
a random sample of size n = 20. The dashed lines there help
illustrate all types of inference outcomes from a CD function,
including a point estimate of 0.11, a 90% confidence interval of
(-0.26, 0.48), and a p-value of 0.31 for testing �0 : θ ≤ 0 versus
�1 : θ > 0.

For the ease of visualization of confidence intervals of differ-
ent levels, the distributional form of a CD Hn(·) ≡ Hn(Xn, ·)
seen in in Figure 2(a) can be expressed alternatively as a confi-
dence curve (CV) seen in Figure 2(b) which is defined as

CVn(θ) = 1−2|Hn(θ)−0.5| = 2min{Hn(θ), 1−Hn(θ)}, (4)

(see Xie and Singh 2013, pp. 29 and 31; Schweder and Hjort
2016, pp. 10–14 ). While the CD function Hn(θ) represents the
upper limits of one-sided confidence intervals, the confidence
curve CVn(θ) gives an omnibus form of the limits of two-sided
confidence intervals. In Figure 2(b), the two limits of a 90%
confidence interval identified by the two points on the confi-
dence curve at the height α = 0.1 are exactly the same as those
obtained from Figure 2(a). Furthermore, following the duality
between confidence intervals and hypothesis testing, CVn(θ

0)

can serve as a p-value function for the two-sided hypothesis
testing, �0 : θ = θo versus �1 : θ �= θo, for any θo ∈ �. Also,
the confidence curve peaks at the median of the CD function,
that is, CV−1

n (1) = 0.11 as shown in Figure 2(b), which yields a
median-unbiased estimate for θ .

Without linking to CD, the concept of CV has actually been
explored in Birnbaum (1961), Blaker (2000), and Blaker and
Spjøtvoll (2000) for a scalar parameter θ . In fact, Blaker and
Spjøtvoll (2000) interpreted a CV as a summary of “how each
parameter value is ranked in view of the data” from the peak
decreasing gradually along the tails. This ranking interpretation
of the CV in fact suggests a natural extension of the CD to
the multiparameter setting by incorporating the notion of data
depth, which has been developed to establish a center-outward
ordering of multivariate observations. We will develop this
extension after the brief review of data depth and its properties.

3.1.2. Data Depth and Center-outward Ordering of

Multivariate Data

Data depth is a way tomeasure how deep or central a given point
is with respect to a multivariate sample cloud, say {ξ1, ..., ξm} ∼
F ∈ IRp, or to its underlying distribution F. It naturally yields
a measure of “outlyingness” and thus also a center-outward
ordering of these multivariate points. Common depth functions
include, Mahalanobis depth (MD) (Mahalanobis 1936), half-
space depth (HD) (Hodges 1955; Tukey 1975), simplicial depth
(SD) (Liu 1990), among others.

Using simplicial depth as an example, the depth at point
z ∈ IRp with respect to F is DF(z) = PF{z ∈
s[ξ 1, . . . , ξ p+1]}, where s[ξ i1 , . . . , ξ ip+1

] is the p-dimensional

simplex with vertices {ξ i1 , . . . , ξ ip+1
}. The empirical version

of DF(z) is DF̂(z) =
∑

1{z∈s[ξ i1 ,...,ξ ip+1
]}
/( m

p+1

)

). In IR2,

Figure 2. The curves represent a confidence distribution function (a) and the corresponding confidence curve (b) for the mean parameter θ in the normal distribution
N(θ , 1). They are obtained based on a sample x = {xi , i = 1, . . . , 20} from N(0, 1). Illustrated is how to draw commonly used inferential outcomes such as a point estimate
of 0.11, a 90% confidence interval of (−0.26, 0.48), and a p-value of 0.31 for testing the hypothesis�0 : θ ≤ 0 versus�1 : θ > 0.
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DF̂(z) =
∑

i,l,k 1{z∈�(ξ i,ξ l ,ξk)}
/(m

3

)

, the fraction of the triangles
�(ξ i, ξ l, ξ k) generated from the sample that contains z inside.
Clearly, a point with a larger depth value indicates that it lies
more central within the data cloud or closer to the center of the
distribution.

By computing the depth values for all data points ξ i’s and
then ordering ξ i’s by their descending depth values, we can
obtain the depth order statistics {ξ [1], . . . , ξ [m]} with an order-
ing from the deepest (or most central) point ξ [1] to the most
outlying ξ [m]. This center-outward ordering naturally gives rise
to nested central regions expanding with increasing levels of
probability coverage. The convex region spanning the deepest
(1−α)n sample points is referred to as the (1−α)-central region.
Formally, the population and empirical versions of (1 − α)-
central region can be expressed respectively as

A(1−α);F = {z : CF(z|DF) ≥ α} and

A
(1−α);F̂ = {z : CF̂(z|DF̂) ≥ α}, 0 < α < 1. (5)

Here, CF(z|D) and CF̂(z|DF̂) are referred to as centrality func-
tions with, respectively,

CF(z|D) = PF{ξ : DF(ξ) ≤ DF(z)} and

CF̂(z|DF̂) = 1

m

m
∑

i=1

1{DF̂(ξ i)<DF̂(z)}. (6)

The central regionsA
(1−α);F̂ are data driven and nonparametric,

and are shown to be particularly useful for inference under
asymmetric underlying distributions or nonstandard asymp-
totics.

Lemma 1 below shows important properties of centrality
functions. Its proof is in the appendix (supplementarymaterial).

Lemma 1. Let η be a random vector following a p-dimensional
distribution F. The centrality function in Equation (6) satisfies
these properties:
(a) (Uniform transformation) The transformed variable
CF(η|DF) satisfies CF(η|DF) ∼ U(0, 1), provided that the
depth contours {η : DF(η) = t} all have probability zero w.r.t. F
for any t > 0.
(b) (Affine-invariance) Let A be a p × p nonsingular matrix
and b a p × 1 constant vector. If both F(·) and DF(·) are affine
invariant, that is, for any point z ∈ IRp, F̃(Az + b) = F(z) and
DF(z) = DF̃(Az + b), then so is the centrality function CF(·),
that is, CF(z|DF) = CF̃(Az + b|DF̃).

Typically, depth functions have been used to rank sample
points and provide a center-outward ordering of sample points
in the sample space, as reviewed above. In this article, a depth
function will be used instead to rank parameter values and pro-
vide an ordering of all parameter values in the parameter space.
Specifically, instead of applying depth ordering to the sample ξ i’s
drawn from the distribution F(·), we apply it to the sample CD-
random variables θ∗

i ’s drawn from the confidence distribution
Hn(·). This center-outward ordering in the parameter space can
be interpreted as the plausibility of each parameter value relative
to the others. This line of interpretation underlies the proposed
CD fusion learning framework and justifies the resulting infer-
ences, for example, using the central regions formed by θ∗’s
as confidence regions for the parameter of interest θ . This is
elaborated further in Sections 3.2–3.4.

3.2. Depth-CD andDepth-CV: an Omnibus Form of

Confidence Regions

The definition of a CD as a sample-dependent distribution
function on the parameter space that can represent confidence
regions for all possible confidence levels applies to a scalar
parameter (as seen in Section 3.1.2) as well as a vector parame-
ter. However, mathematical rigor for multiparameter CDs has
so far been elusive, since the region created by the inversion
of a multivariate cumulative distribution function may not be
unique or suitable for providing any natural form of inference.
To this end, (Singh, Xie, and Strawderman 2007; Xie and Singh
2013; Schweder and Hjort 2016) have proposed to limit con-
fidence regions within a certain subclass. In this article, we
propose to consider the set of center-outward nested confi-
dence regions derived from using data depth, which we refer
to as depth-CDs. The depth-CDs provide a natural extension
of the CD concept from the scalar setting to the multiparameter
setting.

As discussed in Section 3.1.1, a confidence curve (CV), as
plotted in Figure 2(b), can provide two-sided confidence inter-
vals for a scalar parameter of all levels, with the intervals expand-
ing outward to two tails as the level of confidence increases. The
CV in Figure 2(b) clearly ranks parameter values in the param-
eter space from the center outward as the level α decreases. In
fact, the CV defined in Equation (4) can be re-expressed, using
data depth and its associated centrality function, as

CHn(θ |DHS) = PHn{ξ : DHS(ξ) ≤ DHS(θ)} (7)

= 2min{Hn(θ), 1 − Hn(θ)} = CVn(θ), (8)

where DHS(ϑ) = infE{PHn(E) : E is a closed half-space in R
p

and ϑ ∈ E} is the half-space depth when p = 1 and PHn is
the probability measure corresponding to the CD Hn(·) on the
parameter space, that is, PHn{(−∞, t]} = Hn(t).

By extending Equation (7), we can directly define a CV for a
parameter vector ϑ ∈ � ⊂ R

p as

CVn(ϑ) =: CHn(ϑ |D) = PHn{ξ : D(ξ) ≤ D(ϑ)}, (9)

whereD is a depth functionwith the associated probabilitymea-
sure PHn from a multivariate depth-CD Hn(·) on �. Formally,
we define multivariate depth- CD and CV as follows:

Definition 1 (depth-CD and depth-CV). (A) A functionHn(·) ≡
Hn(Xn, ·) on � ⊆ R

p is called a depth confidence distribution
(depth-CD) associated with depth function D for a vector-
valued parameter θ , if (i) it is a distribution function on the
parameter space � for any fixed sample set Xn; and (ii) the
(1 − α) “central region” of the distribution Hn(·), R1−α(H) =
{ϑ ∈ � : CHn(ϑ) ≥ α}, is a confidence region for θ with a
coverage probability of (1 − α). Here, the centrality function
associated with depth D and CD Hn(·), that is, CHn(ϑ), is also
referred to as depth confidence curve (depth-CV).
If the statements in (ii) holds only asymptotically, then we refer
to Hn and CHn as asymptotic depth-CD and asymptotic depth-
CV, respectively.

Continuing with half-space depth in the scalar setting, we
see that the result in Lemma 1(a) resembles 2min{G(Z), 1 −
G(Z)} for a univariate random variable Z with its cumulative
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distribution function G. This result ensures that {θ : CVn(θ) ≥
α} = [H−1

n ,H−1
n (b)], with a = min(α/2, 1 − α/2) and b =

max(α/2, 1−α/2), is a (1−α) confidence interval θ . Similarly,
by Lemma 1(a), the (1− α) “central region” of depth-CDHn(·)
or depth-CV CVn(·)

R1−α(Hn) = {ϑ ∈ � : CHn(ϑ) ≥ α} (10)

leads to a (1 − α) confidence region for a multiparameter θ .
In conclusion, Lemma 1 ensures that the depth-CD and depth-
CV (defined in Definition 1) can provide valid center-outward
confidence regions of all levels.

For convenience, we use the familiar bivariate normal to
illustrate the above framework of depth-CD inference, where
the depth contours have explicit expressions, although the nor-
mality assumption is not required in our general framework.

Example 3 (Bivariate normal distribution). Given a random
sample {Y i}ni=1 from a bivariate normal distribution BN(θ ,�),
we consider making inference for the mean parameter θ . Let
Ȳn =

∑n
i=1 Y i/n. Assuming that� is known, then the bivariate

normal distribution BN(Ȳn,�) is a depth-CD for θ , since: I)
BN(Ȳn,�) is a sample-dependent distribution function of the
parameter space of θ , and II) the depth contours of BN(Ȳn,�),
using any depth mentioned in Section 3.1.2, provide valid
center-outward confidence regions of all levels.

For a given simulated sample of size {Y i}20i=1 under θ =
(1, 1), and � =

(

1 1
1 2

)

, using Mahalanobis depth, we obtain
the depth-CD on the parameter space � as a 3D-surface plot in
Figure 3(a). Projecting this 3D plot to � (the two-dimensional
plane below) gives depth contours in a gray-color heat map in
Figure 3(b), where the brighter the region, the larger the depth
value. A depth contour in Figure 3(b) connects the points in
� which have the same depth value DH(·). Corresponding to
Figure 3(b), a similar projection of the 3D-surface plot of the
depth-CV results in Figure 3(c) showing the contours which
connect the points in�with the same centrality valueCHn(·|D).
For instance, the peak of depth-CV corresponds to the deepest
(ormost central) point in Figure 3(c), which also corresponds to

the highest point in the depth-CD in Figure 3(a) as well as the
deepest point in Figure 3(b).The depth-CV in Figure 3(c) ranks
the plausibility of each possible value of the bivariate parameter
space�. For instance, the black round dot being on the contour
with centrality value 0.9 implies that this particular parameter
value is deeper than 90% of all the possible parameter values
w.r.t. the confidence distribution H(·) or more plausible than
90% of all the possible parameter values in �.

Inferences about θ can be derived from the depth-CD or
depth-CV with its contours in Figure 3. For example, the largest
elliptical regionwithin the contour of centrality value .1 (labeled
with a solid triangle) in Figure 3(c) is a 90% confidence region
for θ . The deepest point in all three plots (0.94, 0.92), marked by
a cross, can be considered the most plausible parameter value
and thus a suitable point estimate for θ . This point estimate is
shown to be consistent later in Section 3.4.

When � is unknown, the BN(Ȳn, �̂) can be shown to be a
depth-CD for θ asymptotically. Here �̂ is the sample covariance
matrix. Similar illustration plots and asymptotic inferences can
be drawn accordingly.

3.3. Depth-CD andDepth-CV: AnOmnibus Form of

p-Values

To show how depth-CD and depth-CV can give rise to an
omnibus form of p-values, we first justify that, for a given ϑ ∈
�, the depth CV CHn(Xn,·)(ϑ) is a limiting p-value for testing the
hypothesis �0 : θ = ϑ versus �1 : θ �= ϑ . Liu and Singh
(1997) defines a sequence of statistics pn to be a limiting p-value
if pn ∈ [0, 1] and pn satisfies

(a) lim supn→∞ PF{pn ≤ t} ≤ t for all F ∈ �0 and any t ∈
[0, 1]; and

(b) pn → 0 in probability for all F ∈ �1, as n → ∞.

Note that (a) is required to ensure the testing size and (b) to
ensure that the asymptotic test power goes to 1, as the sample
size increases.

Figure 3. Illustrations of a depth-CD for the mean parameter θ in BN(θ ,�): (a) a 3D-surface plot for the depth-CD; (b) a gray-color heat map for the depth contours with
Mahalanobis depth values. The contours in (c) in the parameter space connect the parameter values of the same centrality value. (c) illustrates the utility of the depth-CV
for drawing confidence regions, p-values, and a point estimate. The plots are based on a simulated sample of size n = 20 and θ = (1, 1).
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To see why CHn(Xn,·)(ϑ) is a limiting p-value, we need the
simple but useful result below:

Proposition 1. The statement that R1−α(Hn(Xn, ·)) is a con-
fidence region for θ with a coverage probability of (1 − α)

(Requirement (ii) in Definition 1) is equivalent to the statement
that CHn(θ

o) ≡ CHn(Xn,·)(θ
o), as a function of the sample Xn,

follows the uniform distribution on [0,1], where θo is the true
value of θ .

In view of Proposition 1, CHn(Xn,·)(ϑ) is a limiting p-value as
long as CHn(Xn,·)(ϑ) → 0 in probability for all ϑ �= θo, which
is a mild condition that holds generally. Such a CD p-value and
the classical p-value share a similar idea in their approaches, as
they both try to assess the degree of inconsistency between the
given data and the target null hypothesis by comparing a fixed
value w.r.t. a reference distribution. But they are fundamentally
different, since

• A classical p-value is derived by comparing the observed
value t of a statistic T with a reference distribution over the
sample space, that is, the null distribution of T, say FT,0;

• A CD p-value is derived by comparing a hypothesized value
ϑ of the parameter θ with a reference distribution over the
parameter space, that is, the depth-CD Hn(Xn, ·).

The key difference is that the assessment of statistical signifi-
cance, namely, measuring the outlyingness of the value (t or ϑ)
w.r.t. the reference distribution (FT,0 orHn(Xn, ·)), is performed
in different (sample or parameter) spaces.

The CD p-value has several advantages, including:
(A1) Given an inference procedure, the reference distribution
Hn(Xn, ·) is determined solely by the sample Xn and it does not
depend on the specified value in the null hypothesis. This is
different from the classical p-value method where the reference
distribution must satisfy the null constraint and thus may vary
depending on the null value.
(A2) Since the CD method does not need to rely on a test
statistic, the CD p-value essentially serves simultaneously as a
test statistic and a p-value. Thus, it compress the usual three-step
test procedure in the classical p-value approach into just one,
bypassing: (i) construct an explicit test statistic, and then (ii)
establish or approximate its sampling distribution. This advan-
tage will be elaborated further in Section 4 where bootstrap is
used to devise depth-CD functions.
(A3) The CD reference distribution Hn(Xn, ·) carries infinitely
many p-values {CHn(Xn,·)(ϑ) : ϑ ∈ �} for a set of hypothesis
testing problems {{�0 : θ = ϑ versus �1 : θ �= ϑ} : ϑ ∈ �}.
This implies that CHn(·) provides a distribution of p-values over
�; see for example Figure 3(c), where the contours of centrality
values can be used as p-value contours. As a p-value in testing
θ = ϑ is generally viewed as the strength of evidence from the
data in support of the assumption θ = ϑ ,CHn(ϑ) can be viewed
as a measure of the plausibility of assuming θ = ϑ . The smaller
the value of CHn(ϑ), the less plausible θ = ϑ . In Figure 3(c),
for example, the parameter value marked by the solid triangle is
much less plausible than the one marked by the solid round dot.
To sum up, a depth-CD provides a simple but comprehensive
summary of data evidence in the sense that a single reference

distribution Hn(Xn, ·) can express the plausibility of every θ

value for the entire parameter space�. In contrast, the reference
distribution FT,0 used in the classical p-value method expresses
only the plausibility of the specific parameter value under the
null hypothesis. For instance, it does not simultaneously provide
the plausibility of θ values in the alternative parameter space.

Following along Example 3, for a given sample there, the
centrality valueCHn(θ0) in the depth-CVas in Figure 3(c)would
be a p-value for testing �0 : θ = θ0 versus �1 : θ �= θ0.

3.4. Depth-CD: Its Deepest Point As a Consistent Estimator

Given a datasetXn and a depth-CDHn(Xn, ·), we propose to use
the deepest point of the depth-CDHn(Xn, ·) or equivalently the
maximum point of the centrality function CHn(Xn,·)(·), denoted
by θ̂

MCE

n , as a point estimate for the parameter of interest θ . That
is,

θ̂
MCE

n = argmax
θ∈�

CHn(Xn,·)(θ). (11)

This estimate is referred to as a maximum centrality estimate
(MCE). Note that, in IR1, the MCE corresponds to the highest
value of CV in Figure 2(b) or, equivalently, the median (also

central most point) of the CD in Figure 2(a). The estimate θ̂
MCE

n

extends to general multiparameter settings the idea of using the
“median” or deepest point of a CD function for point estimation.

We show below that θ̂
MCE

n is a consistent estimator under some
mild conditions.

Proposition 2. Assume that for any ε > 0, as n → ∞,

�n(ε) = max
ϑ i,ϑ j∈{ϑ :CHn(Xn ,·)(ϑ)=ε}

||ϑ i − ϑ j|| → 0

in probability. Then, θ̂
MCE

n → θo in probability. Furthermore,
if �n(ε) = Op(an) for a nonnegative sequence an → 0, then

θ̂
MCE

n − θo = Op(an).

The condition �n(ε) → 0 basically requires that the depth
contours {ϑ : CHn(Xn,·)(ϑ) = ε} (e.g., the contours in Fig-
ure 3(c)) shrink to a single point (e.g., the cross in Figure 3(c))
as the sample size n → ∞. For scalar parameters, �n(ε) is the
distance between the two intersection points of the CV and the
horizontal dashed line in Figure 2(b). The condition�n(ε) → 0
means that as information increases (n → ∞), the depth-CD
concentrates onto a shrinking area of the parameter spacewhose
measure decreases to zero. This is a mild condition which holds
often in practice. Under this condition, Proposition 2 justifies

that the estimate θ̂
MCE

n converges to the true value θo. Thus,
we have established Property (P-3) of depth-CDs stated in the
Section 1.

4. Construct Depth-CDs FromNonparametric

Bootstrap

This section provides a concrete approach of using nonparamet-
ric bootstrap to construct a depth-CD and derive inferences for
the target parameter vector in an individual study. Given the
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sample {X1,X2, . . . ,Xn}, assume that θ̂n is an estimate of the
target parameter θ , where

θ̂n ≡ θ̂n(X1,X2, . . . ,Xn). (12)

Let θ̂
∗
n = θ̂

∗
n(X

∗
1 ,X

∗
2 , . . . ,X

∗
n) be a bootstrap estimate of θ , where

{X∗
1 ,X

∗
2 , . . . , X

∗
n} is a bootstrap sample drawn independently

from {X1,X2, . . . ,Xn} with replacement. Let Bn and B∗
n denote

the sampling distribution of θ̂n and θ̂
∗
n, respectively. Theorem 1

below shows that the bootstrap distribution B∗
n is a depth-CD

for θ asymptotically under the following regularity conditions:

(C1) Let Ln be the distribution of an(θ̂n−θ) for some positive
sequence an → ∞, as n → ∞. Assume that Ln converges D-
regularly to a distribution L, namely, (i) Ln converges weakly to
L as n → ∞; and (ii) limn→∞ supx∈Rp |D(Ln, x)−D(L, x)| = 0.

(C2) Let L∗
n be the distribution of an(θ̂

∗
n − θ̂n). Assume that L∗

n

converges D regularly to the distribution L almost surely.
(C3) The distribution L is continuous and symmetric around 0.
(C4) The distribution of D(L, l) is continuous, where the ran-
dom variable l ∼ L.

Theorem 1. Under the regularity conditions (C1)–(C4), the

distribution of θ̂
∗
n, conditional on the sample {X1,X2, . . . ,Xn},

is a depth-CD for the parameter θ asymptotically as n → ∞.

Theorem 1 shows that the bootstrap distribution B∗
n is a

depth-CD, and hence justifies the validity of using B∗
n to make

inferences about the parameter vector θ . For example, the deep-
est point of the distribution B∗

n can be used as a point estimate
of θ , and the central region R1−α(B∗

n), as defined in Equation
(10), as a (1 − α) confidence region for θ . Moreover, for testing
the hypothesis θ = ϑ versus θ �= ϑ , the value of the centrality
function at ϑ , that is, CB∗

n
(ϑ), can be used as a p-value.

This p-value approach for hypothesis testing is fundamen-
tally different from traditional approaches, as mentioned in
Section 3.3. First, the reference distribution here is depth-CD
B∗
n, which is fully determined by the sample. Once the sample

is given, it does not vary, unlike the traditional approaches.
Second, depth-CD B∗

n is a single reference distribution and
provides a p-value for testing each parameter value in the entire
parameter space �. Third, in the derivation of the p-value,
CB∗

n
(ϑ) does not rely on any test statistic. Essentially, CB∗

n
(ϑ)

now simultaneously serves as a test statistic and as a p-value.
This actually compresses into a single step, namely calculating
the centrality of ϑ w.r.t. depth-CD B∗

n, the usual three steps in
traditional testing procedures, namely identifying a test statis-
tic, establishing its sampling distribution, and then calculating
the p-value. Fourth, the reference distribution depth-CD B∗

n is
obtained by resampling directly from the empirical distribution,
rather than from the null distribution that is usually restricted by
parametric assumptions. This also explains why our CD infer-
ence here can be obtainedwithout distributional assumptions of
the sample.

The idea of connecting bootstrap to data depth for mul-
tiparameter inference is not new. For example, it has been
used in Liu and Singh (1997) for hypothesis testing and in
Yeh and Singh (1997) for deriving confidence regions. These
two inference methods can be viewed as special cases in our

depth-CD inference framework, since Theorem 1 implies that
the bootstrap distribution is a depth-CD.

Theorem 2 is a direct consequence of Lemma 1 and Proposi-
tion 1, and it provides a procedure for constructing depth-CDs
from pivot statistics.

Theorem 2. Assume that An(Xn) is a nonsingular matrix such

that An(Xn)(θ̂n − θ) follows a distribution Qn that is free of all
unknown parameters. Also assume that ηn is a random vector,
independent of the sample Xn, following the distribution Qn.

Then, conditional on Xn, the distribution function of (θ̂n −
An(Xn)

−1ηn) is a depth-CD for θ , under the following condi-
tions
(i) The depth D is affine-invariant; and
(ii) The depth contours {ηn : DQn(ηn) = t} all have probability
zero w.r.t. Qn.

Theorem 2 shows that when the statistic An(Xn)(θ̂n − θ)

is a pivot, a depth-CD can be easily derived using the inverse
probability function. Returning to Example 3 where we make
inference for the mean parameter of a bivariate normal distri-
bution. In this case, we know that �−1/2(Ȳn − θ) is a pivot
following a bivariate standard normal distribution and that the
three depthsmentioned in Section 3.2 are affine-invariant. Thus,
by Theorem 2, the bivariate normal distribution BN(Ȳn,�) is a

depth-CD for θ . When � is not known, BN(Ȳn, �̂) is a depth-
CD for θ asymptotically. In this example, the distribution of the
pivot �−1/2(Ȳn − θ), namely Qn in Theorem 2, is structured
under certain distributional assumptions, that is,Qn is bivariate

standard normal. But generally, as long as An(Xn)(θ̂n − θ) can
be structured to have (approximately) a parameter-free distri-
bution, Theorem 2 can be applied to construct depth-CDs and
draw all forms of inference accordingly, as seen in Section 3.

With the distribution Qn as a prerequisite, Theorem 2 may
be perceived as applicable only for deriving depth-CDs in the
setting of parametric inference, but its precise formulation can
actually shed light on the bootstrap approach in Theorem 1 and
other general nonparametric approaches for deriving depth-
CDs. Here is how Theorem 2 explains intuitively why the non-
parametric bootstrap distribution is indeed a depth-CD. To
avoid making assumptions about the distribution Qn of the

statistic An(Xn)(θ̂n − θ), a natural choice is to use the bootstrap

distribution of An(Xn)(θ̂
∗
n − θ̂n) to approximate Qn, that is,

set ηn = An(Xn)(θ̂
∗
n − θ̂n) in Theorem 2. Assuming that

this approximation is appropriate (e.g., under conditions (C1)-

(C4)), Theorem 2 shows that the distribution of (2θ̂n − θ̂
∗
n)

(= θ̂n −An(Xn)
−1An(Xn)(θ̂

∗
n − θ̂n)) is a depth-CD for θ . Note

that (2θ̂n − θ̂
∗
n) and θ̂

∗
n have an identical distribution (provided

that the distribution of (θ̂
∗
n − θ̂n) is symmetric, see condition

(C3)), since when centering around θ̂n, the reflection image of

(2θ̂n − θ̂
∗
n) is exactly θ̂

∗
n. Hence, the bootstrap distribution of θ̂

∗
n

is also a depth-CD.

5. Fusion Learning Using Depth-CVs

5.1. Combining Depth-CVs

We have shown that the very form of the depth-CD being an
all-encompassing distributional function estimate, rather than a
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mere point or interval estimate, is the key feature that leads to the
omnibus form of all inferences of a parameter. This feature will
also be shown to underlie the great flexibility that makes depth-
CDs particularly suited for combining inferences from different
and even heterogeneous studies.

For each individual study, we can obtain a depth-CD
Hk,nk(·) ≡ Hk,nk(Xk; ·) and its corresponding depth-CV
CHk,nk

(·) (see Definition 9) for the parameter θ , k = 1, 2, . . . ,K,

fromK independent studies. Here we propose a general formula
in Equation (13) for synthesizing those K individual inference
results to draw an overall and efficient inference for the param-
eter θ ,

C(c)(θ) = Gc

(

gc(CH1,n1
(θ),CH2,n2

(θ), . . . ,CHK,nK
(θ))

)

. (13)

Here, gc(u1, u2, . . . , uK) is a continuous mapping from [0, 1]K
to R which is increasing in each coordinate, and Gc(t) ≡
P{gc(U1,U2, . . . ,UK) ≤ t} where Uk’s are iid random variables
following U[0,1] distribution. A special yet important case of
Equation (13) to which we will return often later is

C(c)(θ) = F(c)

{

w1ϕ(CH1,n1
(θ)) + w2ϕ(CH2,n2

(θ)) + · · ·

wKϕ(CHK,nK
(θ))

}

, (14)

with gc(u1, u2, . . . , uK) = w1ϕ(u1) + w2ϕ(u2) + · · ·wKϕ(uK),
where ϕ(·) is a monotonic increasing “mapping function” and
wk > 0 is the weight assigned to the k-th study.

Fusion formulas similar to Equations (13) and (14) have
been used in Singh, Xie, and Strawderman (2005), Xie, Singh,
and Strawderman (2011), and Liu, Liu, and Xie (2014) to com-
bine CDs for a scalar parameter. However, these do not apply
directly to combining depth-CDs for multiparameter inference.
If the combining formula Equation (13) were applied directly,
the resulting function Gc(gc(H1,n1(θ),H2,n2(θ), . . . ,HK,nK (θ)))

would not yield any valid statistical inference. To mitigate this
shortcoming, our proposal in Equations (13) and (14) combines
the depth-CVs through their corresponding centrality functions
CHk,nk

(θ)’s to obtain C(c)(θ) (cf. Equation (13)) and the desired

overall inference.

Theorem 3. Given the individual depth-CDs Hk,nk(θ), k =
1, . . . ,K, the following forms of inference for the common
parameter θ derived from the combined depth CV function
C(c)(θ) in Equation (13) are valid.
(a) (Hypothesis testing) For testing the null hypothesis

�0 : θ = ϑ versus �1 : θ �= ϑ ,

C(c)(ϑ) is a limiting p-value, as discussed in Section 3.3, pro-
vided that CHk,nk

(ϑ) → 0 in probability for all ϑ �= θo. Here θo

is the true parameter value.
(b) (Confidence region) A (1 − α) confidence region for θ is

R
(c)
1−α(H1,n1 ,H2,n2 . . . ,HK,nK ) = {θ ∈ � : C(c)(θ) ≥ α}.

(c) (Point estimation) Assume that C(c)(θ) achieves its maxi-

mum at θ̂ (c), that is,

θ̂ (c) = max
θ∈�

C(c)(θ). (15)

Then, C(c)(θ) is a consistent estimator for θo. Specifically, as

n1, n2, . . . , nK → ∞, θ̂ (c) → θo in probability, provided that
CHk,nk

(·) is continuous and

�k,nk(ε) = max
ϑ i,ϑ j∈{ϑ :CHk,nk

(Xk,nk
,·)(ϑ)=ε}

||ϑ i − ϑ j|| → 0

in probability, for k = 1, 2, . . . ,K.

Theorem 3 justifies that the overall inferences based on the
combined centrality function C(c)(θ) can be made in ways
similar to those based on centrality functions from individual
studies. For example, Theorem 3(a) shows that, similar to each
individual centrality function, the combined function C(c)(θ) is
a single invariant (under the given samples) function defined on
the parameter space and it provides infinitely many p-values for
testing all θ values in the entire parameter space. It expresses the
relative ranking or level of plausibility of each θ value w.r.t. the
totality of evidence collected from all studies. This expression
of relative ranking of plausibility adapts readily to the common
interpretation of a p-value. Theorem 3(b) describes a (1 − α)

confidence region for θ as the collection of parameter values
whose C(c)(θ) is no less than α. Theorem 3(c) shows that the
maximizer of the combined C(c)(·) is a valid point estimator.

Our fusion learning does not rely on parametric assump-
tions, if Equations (13) or (14) is applied to depth-CDs from
nonparametric approaches, such as bootstrap. This fusion
approach is broadly applicable. It is valid as long as the input
functions Hk,nk(θ)’s are depth-CDs (or asymptotically).

5.1.1. Higher-Order Accuracy of C(c)(·) and its Inference

Results

The depth-CDs obtained by bootstrap are not exact, in the
sense they only satisfy asymptotically the requirement (ii) in
Definition 1 or (ii)′ in Proposition 1. To see how this approx-
imation accuracy affects the accuracy of the inference results,
we consider the example of a univariate common mean prob-
lem, where a CD obtained by the regular bootstrap in Sec-
tion 4 is Hk,nk(θ) = P∗{X̄∗

k ≤ θ}. Such a CD can yield
confidence regions whose coverage probability approximates
the nominal value. A better accuracy can be achieved by using
the bootstrap t (Efron and Tibshirani 1994). This bootstrap

method generates a second-order accurate CD H
(t)
k,nk

(θ) =
P∗ {

(X̄∗
k − X̄k)/S

∗ ≥ (X̄k − θ)/S
}

, where S is an estimate of the
standard deviation. It would be interesting to know whether or
not the improved accuracy in the inputCDs is carried over to the
combined outcome. It is worth noting that our fusion approach
in Equation (14) generally does preserve the order of accuracy
of the individual depth-CDs, even if they are not exact. To state
the result, we first define the order of accuracy for a depth-CD.

A depth-CD function Hn(·) ≡ Hn(Xn, ·) on � ⊆ R
p is said

to be jth-order accurate, if the random variable CHn(θ
o) ≡

CHn(Xn ,·)(θ
o), where θo is the true value of θ , converges in

distribution to the uniform distribution on (0,1) at the order

of n−j/2, that is, P
{

CHn(θ
o) ≤ a

}

−a = O(n−j/2) for any a ∈
(0, 1). If a depth-CD function Hn(·) is jth order accurate, the

coverage probability ofR1−α(Hn) in Equation (10) converges

to its nominal level at the rate of O(n−j/2).
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Theorem 4. (Accuracy of C(c)(·)). For the kth study (k =
1, 2, . . . ,K), assume that nk/n converges to a constant ak and
also that its depth-CD function Hk,nk(θ) is jth-order accurate

uniformly, in the sense that P
{

CHk,nk
(θo) ≤ a

}

− a = O(n−j/2)

uniformly for all a ∈ (0, 1) as n → ∞. Then the combined
function C(c)(θ) in its general form Equation (13) is also jth-
order accurate.

Our numerical studies in Section 6 show that, even in small-
sample cases, the overall inferences are quite accurate, when the

input CD functionsH
(t)
k,nk

(θ)’s are obtained by the bootstrap t.

5.1.2. Bahadur Efficiency of C(c)(·)

The fusion formula in Equation (13) provides a general class
of fusion approaches for synthesizing nonparametric or para-
metric inferences. We show here that among this general class,
a specific form of Equation (14) with wk = 1 for all k and
ϕ(t) = log(t) yields the most efficient combination in terms of
achieving Bahadur efficiency. Following the ideas in Littell and
Folks (1973) and Singh, Xie, and Strawderman (2005), we define
the concept of Bahadur slope for a depth-CV.

Definition 2. A nonnegative function Sλ(b) ≡ Sλ(b; θ
o) is said

to be the Bahadur slope for the depth-CV functionCHn(·) along
the direction λ, where λ ∈ R

p and ||λ|| = 1, if Sλ(b) ≡
limn→∞ − log{CHn(θ

o+bλ)}/n almost surely for any non-zero
b ∈ R.

The Bahadur slope Sλ(b) defined above reflects the rate, in an
exponential scale, at which CHn(θ

o + bλ) decays toward zero as
the sample size increases. The larger the slope, themore efficient
the depth-CV in Bahadur’s sense. In the multiparameter case
where the depth-CD Hn(θ) is a multivariate distribution, we
need Bahadur slope functions Sλ(b) along each direction λ to
characterize how fast the tails of the distribution decay to zero.

The Bahadur slope provides a means assessing the efficiency
of the proposed fusion method Equation (13). Specifically, the
theorem below establishes an upper bound of the Bahadur slope
(i.e., the fastest possible rate of tail decay) for the combined
functionC(c)(θ). It also suggests a specific combination formula
for achieving exactly this bound.

Theorem 5. Under θ = θo and nk = {ak + o(1)}n, as n → ∞,
the following inequality holds for any fused function C(c)(θ) as
defined in the general fusion formula Equation (13)

lim sup
n→∞

− log{C(c)(θ
o + bλ)}/n ≤

K
∑

k=1

akSk,λ(b). (16)

Furthermore, let C
log
(c) denote the fused function in its specific

form Equation (14) when wk = 1 for all k and ϕ(t) = log(t).
Then,

lim
n→∞

− log{Clog
(c) (θ

o + bλ)}/n =
K

∑

k=1

akSk,λ(b). (17)

Theorem 5 states that the Bahadur slope of any combined
function C(c)(·) derived from Equation (13) has an upper
bound, and that this upper bound can be achieved by taking

wk = 1 for all k and ϕ(t) = log(t) in Equation (14). In this
case, the explicit formula for combining depth-CVs is

C
log
(c) (�) = P

{

χ2
2K ≥ −2

K
∑

k=1

log(CHk,nk
(θ))

}

. (18)

This formula turns out to be the same as Fisher’s method used
for combining p-values. The optimality of this particular choice
does not rely on the direction λ. Thus, an interesting implication
is that if we use Equation (18) to combine depth-CVs, the
highest Bahadur slope (or the fastest rate of tail decay) will be
achieved along every direction (i.e., the line spanned by θo + bλ
as b varies). The optimality established in Theorem 5 is a global,
rather than merely directional, property of Equation (18).

5.2. Fusion of Heterogeneous Studies

Our fusion framework is general and can cover complex and
irregular settings containing heterogeneous studies. Study het-
erogeneity arises often in practice, due to different study designs,
populations or outcomes, as seen in the applications in (Chen,
Chatterjee, and Carroll 2013; Yang et al. 2014; Liu, Liu, and
Xie 2015; Chatterjee et al. 2016; Gao and Carroll 2017). In the
presence of heterogeneous studies, the parameter of interest
may not be estimable in some studies. These studies are often
excluded from conventional analyses, which can result in a
nonnegligible loss of information. Our fusion method Equation
(13) can be extended to incorporate heterogenous studies in the
analysis. The theoretical results established in previous sections
remain valid and applicable as well.

To accommodate heterogeneous studies, we give up the
assumption that θk is estimable in each study. Instead, we

assume only that a certain mapping of θk, denoted by θ̃k(=
f k(θk)) as in Equation (3), is estimable and its corresponding

depth-CD Hk,nk(θ̃k) for θ̃k can be derived, say, using bootstrap.
With aminormodification, the general fusion formula Equation
(13) is still applicable to combining depth-CDs from different

θ̃k’s for making the overall inference about the common param-
eter of interest θ . More specifically,

CHet
(c) (θ) = Gc

(

gc(CH1,n1
(θ̃1),CH2,n2

(θ̃2), . . . ,CHK,nK
(θ̃K))

)

.

(19)
Similar to Equation (14), a special case is

CHet
(c) (θ) = F(c)

{

w1ϕ(CH1,n1
(θ̃1)) + w2ϕ(CH2,n2

(θ̃2)) + · · ·

wKϕ(CHK,nK
(θ̃K))

}

. (20)

Theorem 6 shows how to use CHet
(c) (θ) in Equations (19)

or (20) to make valid combined inference about θ . Here, we
require that θ be identifiable in the combined function CHet

(c) (θ).
Following Rothenberg (1971) and Little, Heidenreich, and Li
(2010), we say that θ is (locally) identifiable if for any θ ∈
�, there is no ϑ �= θ (in a neighborhood of θ) such that
CHet

(c) (X1, . . . ,XK ; θ) = CHet
(c) (X1, . . . ,XK ;ϑ) almost surely.

Theorem 6. Consider the setup in Equation (3) and the given

depth-CDs Hk,nk(θ̃k) for θ̃k, k = 1, . . . ,K. Assume that the
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parameter θ is identifiable in the combined function CHet
(c) (θ) in

its general form Equation (19). Then, the following inferences
derived from CHet

(c) (θ) are valid.
(a) (Hypothesis testing) For testing the null hypothesis

�0 : θ = ϑ versus �1 : θ �= ϑ ,

CHet
(c) (ϑ) is a limiting p-value, in the sense as discussed in Sec-

tion 3.3, provided that CHk,nk
(ϑk) → 0 in probability for all

ϑk �= θok.
(b) (Confidence region) A (1 − α) confidence region for θ is

R
(c)
1−α(H1,n1 ,H2,n2 . . . ,HK,nK ) = {θ ∈ � : CHet

(c) (θ) ≥ α}.

(c) (Point estimation) Assume that CHet
(c) (θ) achieves its maxi-

mum at θ̂ (c), that is,

θ̂ (c) = max
θ∈�

CHet
(c) (θ).

Then, C(c)(θ) is a consistent estimator for θo. Specifically, as

n1, n2, . . . , nK → ∞, θ̂ (c) → θo in probability, provided that
CHk,nk

(·) is continuous and

�k,nk(ε) = max
ϑ i,ϑ j∈{ϑ :CHk,nk

(Xk,nk
,·)(ϑ)=ε}

||ϑ i − ϑ j|| → 0

in probability, for k = 1, 2, . . . ,K.

Theorem 6 justifies the validity of using the modified com-
bined depth-CV to draw overall inferences from heterogenous
studies, which is the counterpart of Theorem 3 in the case of
homogeneous studies. In fact, the counterparts of Theorems 4-
5 can also be established to obtain the same theoretical results
of high-order accuracy and Bahadur efficiency under heteroge-
nous studies. In short, the combining in Equation (19) preserves
the order of accuracy of each individual study, and it achieves
Bahadur efficiency when wk = 1 for all k and φ(t) = log(t).

Compared to the meta-analysis of heterogeneous studies in
Liu, Liu, andXie (2015), our fusionmethodhere ismore general.
Liu, Liu, and Xie (2015) requires normality of the distribution
of summary statistics. Our fusion method does not require a
parametric form of distributional assumptions. If each individ-
ual depth-CD is derived using the nonparametric bootstrap,
then the inference drawn from the combined function is also
nonparametric. When it is reasonable to make an assumption
of the underlying distribution, we can derive depth-CDs using
Theorem 2 and our fusion method is still applicable and yields
valid inferences.

6. Simulation Studies

To demonstrate the theoretical advantages of our fusion
method, we conduct simulation studies for the common mean
problem and meta-analysis of correlation coefficients.

6.1. The CommonMean Problems

Making inference on the common mean parameter of multiple
populations is referred to as the common mean problem. This
problem has been investigated extensively, see, for example, Lin,
Lee, and Wang 2007; Pal et al. 2007, and the references therein.

Traditional approaches rely on the assumption that the sample of
each study is drawn from a normal distribution. The normality
assumption however is often unrealistic in practice, and it can
be hardly justified when the sample size is small. To the best of
our knowledge, there have not been any systematic investiga-
tion of the common mean problem in general and nonnormal
situations.

Our framework of fusion learning readily applies to the
common mean problem, in both normal and nonnormal set-
tings. In this section, we examine its numerical performance,
in comparison with that of several existing methods associated
with thewell-knownGraybill-Deal estimator (Graybill andDeal
1959). The numerical results show that without the normality
assumption, our fusionmethod has the following advantages: (i)
it preserves inference accuracy in hypothesis testing/confidence
regions; (ii) its point estimator has less bias and is more efficient;
and (iii) it achieves a gain of efficiency in the presence of
heterogeneous studies.

In the multiparameter setting, the Graybill-Deal estimator is

μ̂GD =
{

K
∑

k=1

nkS
−1
k

}−1 K
∑

k=1

nkS
−1
k X̄k,

where X̄k = 1
nk

∑nk
j=1 Xk,j and Sk = 1

nk−1

∑nk
j=1(Xk,j−X̄k)(Xk,j−

X̄k)
′. This estimator yields confidence intervals and p-values by

considering the statistic (Lin, Lee, and Wang 2007)

K
∑

k=1

wkT
2
k =

K
∑

k=1

wknk(X̄k − μ0)
′S−1
k (X̄k − μ0). (21)

Assume that Xk,j follows a multivariate normal distribution,

then T2
k ’s are Hotelling’s T

2 statistics and
nk−p

p(nk−1)T
2
k ∼ Fp,nk−p.

Thus, the statistic in Equation (21) follows a weighted con-
volution of multiple F distributions. We evaluate (21) in the
construction of confidence regions and hypothesis testing when
wk ≡ 1 (referred to as the GD method) and wk = var(T2

k)
−1 =

{2p(nk−1)2(nk−2)}/{(nk−p−2)2(nk−p−4)} (referred to as the
KJ method, Jordan and Krishnamoorthy 1995). If the normality
assumption holds, both the GD and KJ methods are exact in the
sense that the test (or confidence region) achieves the nominal
Type I error (or coverage probability), since the exact distri-
bution of Equation (21) is known. We also consider a method
based on the central limit theorem (CLT). This method needs a
weaker assumption, namely that X̄k only approximately follows
a normal distribution. The inference relies on the statistic

{

K
∑

k=1

nk�̂
−1

k (X̄k − μ0)

}′ { K
∑

k=1

nk�̂
−1

k

}−1

{

K
∑

k=1

nk�̂
−1

k (X̄k − μ0)

}

,

where �̂k = (nk−1)Sk/nk. This statistic followsχ2 distribution
with p degrees of freedom.

To implement our CD fusion method Equation (14), we use
half-space depth and Bahadur-efficient combination in Equa-
tion (18). The bootstrap-t is used, when applicable, with 2000
bootstrap replicates in each run. We compare our method with
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the GD, JK and CLT methods under the following scenarios.
Without loss of generality, we set K = 2 and consider bivariate
distributions.
Scenario 1 (Normal distribution) Let X = (Z1,Z2)

′ follow a
bivariate normal distribution with μ0 = E(X) = (0, 0)′,
σ(Z1) = 1, σ(Z2) = 2, and Corr(Z1,Z2) = ρ. In Study 1,
X1,j iid ∼ X with ρ = 0.8, and in Study 2: X2,j iid ∼ X

with ρ = 0.3.
Scenario 2 (χ2 distribution) Let X = (Z2

1 ,Z
2
2)

′ where (Z1,Z2)
′

follows the same bivariate normal distribution as in Scenario 1.
The true value μ0 = E(X1,j) = E(X2,j) = (1, 4)′.
Scenario 3 (Cauchy distribution) Let X = (Z1,Z2)

′ follow a
bivariate Cauchy distribution where Z1 and Z2 are independent.
The scale parameters σ(Z1) = 1 and σ(Z2) = 2 in Study 1, and
σ(Z1) = 4 and σ(Z2) = 2 in Study 2. The location parameters
μ0 = (0, 0)′ in both studies.

6.1.1. Inference Accuracy in Hypothesis Testing/Confidence

Regions
To assess inference accuracy, we present the null distribution
of p-values in Figures 4–6 (based on 10,000 simulation repli-
cations). The deviation of this distribution from the U(0,1)
distribution depicts the difference between the actual and nom-
inal Type I error rates in hypothesis testing, or equivalently,
the difference between the actual and the nominal coverage
probabilities of confidence regions. When the sample distri-
bution is normal, Figure 4 shows that the null distribution
of p-values aligns well with the U(0,1) distribution for all the
methods considered, except that the CLT method is slightly
off the target line. However, when the sample distribution is
nonnormal, such as χ2, Figure 5 shows a notable deviation for
GD, JK, and CLT methods. More details on those deviations

can be seen from the empirical values reported in Table 1 for
a set of specific points. The numerical values in the table can
also be viewed as the (nominal or actual) Type I error rates.
Boldfaced are the values with a notable deviation from their
nominal levels. For example, when the nominal probability (or
the Type I error rate) is 0.05, the actual probability is 0.18, 0.18,
and 0.25, respectively, for GD, JK, and CLT methods. Such a
substantial deviation indicates a non-negligible loss of inference
accuracy and raises serious concerns on using those methods
for inference. Only our CD method yields a null distribution
following very closely the target distribution. This example
shows that our CD method, due to its nonparametric nature,
is robust against the violation of the normality assumption. In
Scenario 3, we sample from a bivariate Cauchy distribution,
whose mean does not exist, and our inference is on the location
parameter instead. Since the moments of Cauchy distributions
do not exist, it is not surprising to see in Figure 6 that GD, JK
and CLT methods all exhibit an appreciable loss of inference
accuracy. Again, our method remains approximately accurate,
when using the median in Equation (12) to construct depth-
CDs. The advantage of CD method seen in Figure 6 is also
confirmed numerically in Table 1, where the actual Type I
error rates are quite close to the nominal levels. This exam-
ple highlights the flexibility of our method in adapting easily
to irregular situations where moments of the distribution do
not exist.

6.1.2. Bias and Efficiency in Point Estimation

We compare our CD point estimator in Equation (15) and
Graybill-Deal estimator μ̂GD in estimating the common mean
(or location) parameter μ = (μ1,μ2)

′. The distribution of
estimates (based on 1000 simulation replications) is presented

Figure 4. The null distributions of p-values derived from an individual study (upper row) and from the combined inference (lower row) for the commonmean. The sample
of size n = 30 in each individual study are drawn from a bivariate normal distribution.
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Figure 5. The null distributions of p-values derived from an individual study (upper row) and from the combined inference (lower row) for the commonmean. The sample

of size n = 30 in each individual study are drawn from a bivariate χ2 distribution.

Figure 6. The null distributions of p-values derived from an individual study (the upper row) and the combined inference (the lower row) for the common mean. The
sample of size n = 30 in each individual study are drawn from a bivariate Cauchy distribution.

as boxplots in Figure 7.When the sample distribution is normal,
it shows in the first column that both estimators (i) are unbiased;
and more interestingly, (ii) have comparable variabilities. More
precisely, the standard errors of GD and CD estimates are 0.125

and 0.126 for μ1, and 0.258 and 0.261 for μ2, respectively. This
observation implies that although the CD method is nonpara-
metric, it sustains negligible efficiency loss compared to the GD
method which does make use of the parametric assumption.
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Table 1. Empirical distribution of the p-values at the null for the commonmean problem.

Scenario 1. (Normal distribution)

Nominal Probs 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GDmethod 0.05 0.10 0.20 0.30 0.39 0.49 0.60 0.70 0.80 0.90
JK method 0.05 0.10 0.20 0.30 0.39 0.49 0.60 0.70 0.80 0.90
CLT method 0.09 0.15 0.26 0.36 0.46 0.55 0.65 0.74 0.83 0.91
CDmethod 0.04 0.10 0.19 0.29 0.39 0.50 0.60 0.70 0.80 0.90

Scenario 2. (χ2 distribution)

GD method 0.18 0.24 0.33 0.41 0.49 0.58 0.66 0.75 0.84 0.92
JK method 0.18 0.24 0.33 0.41 0.49 0.58 0.66 0.75 0.84 0.92
CLT method 0.25 0.32 0.42 0.50 0.59 0.66 0.73 0.80 0.87 0.94
CDmethod 0.07 0.12 0.23 0.32 0.42 0.52 0.62 0.72 0.82 0.92

Scenario 3. (Cauchy distribution)

GD method 0.01 0.04 0.14 0.26 0.40 0.56 0.70 0.82 0.91 0.97
JK method 0.01 0.04 0.14 0.26 0.40 0.56 0.70 0.82 0.91 0.97
CLT method 0.05 0.12 0.25 0.37 0.49 0.60 0.69 0.78 0.86 0.93
CDmethod 0.06 0.12 0.22 0.32 0.42 0.52 0.61 0.71 0.80 0.90

Note: Boldfaced are those values with notable deviations from the nominal value.

Figure 7. Boxplots of Graybill-Deal estimates and CD estimates for inferring the common mean (or location) vector μ = (μ1 ,μ2)
′ (the upper row for μ1 and the lower

row forμ2). The true valuesμ0 are drawn in the dashed lines. The sample of size n = 30 in each individual study are drawn from Scenario 1 ( bivariate normal), Scenario 2

(χ2), and Scenario 3 (Cauchy).

When the sample distribution is χ2, the second column of
Figure 7 shows that the variabilities of the two estimators are
still comparable, but theGD estimator now shows a notable bias,
whereas the CD estimator remains unbiased. When the sample
distribution is Cauchy, the third column of Figure 7 shows that

both estimators are unbiased, but the CD estimator has much
smaller variability than the GD estimator, which indicates that
the CD method is more efficient. To summarize, in the absence
of normality, the CD estimator outperforms the GD estimator
in terms of both bias and efficiency.
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Figure 8. Boxplots of Graybill-Deal estimates and CD estimates for inferringμ2 in the common mean vectorμ = (μ1 ,μ2)
′ . The underlying distribution of X is bivariate

normal in (a) and χ2 in (b), with the true value ofμ2 being 0 and 4, respectively (drawn in the dashed lines). The sample size in each individual study is 30.

6.1.3. Gain of Efficiency in the Presence of Heterogeneous

Studies

Weconsider a setting of heterogeneous studies by replicating the
two studies in Scenario 1 (bivariate normal) and assuming that
the two replicated studies are irregular, in that only the sum of
the two components of the random vectorX is observed.We are
interested in combining inferences from all four studies. Here,
neither of the two marginal means μ1 and μ2 is estimable in
all studies, but the sum μ1 + μ2 is. The GD estimator μ̂GD can
combine only the two regular studies but discard the other two,
whereas our CD estimator in Equation (20) can incorporate the
two irregular studies as well. This same simulation is repeated
under Scenario 2 (χ2 ). To visualize the gain of efficiency in
combining the inferences from all four studies, we present in
Figure 8 the boxplots of the GD and CD estimates of μ2 (based
on 1000 simulation replications). The boxplots show that in both
normal and nonnormal cases, our CD estimator, by combining
all studies, is less variable and thus achieves a greater efficiency.
Moreover, our CD estimator still remains almost unbiased in
the nonnormal case. This phenomenon highlights again the
flexibility of our fusionmethod in accommodating a broad class
of study heterogeneity.

6.2. Meta-analysis of Correlation Coefficients

In social and behavioral sciences, correlation coefficients, being
invariant to the measuring scale, are often used to represent
the size of an effect. The meta-analysis of such an effect size
has long been used as a tool to draw a more comprehensive
conclusion on the bivariate association; see Schulze (2004) for an
in-depth discussion. Classical meta-analysis inference methods
for correlations, such as Fisher’s z-transformation, assume that
the samples of (Xk,Yk), k = 1, . . . ,K, all follow bivariate normal
distributions. When such an assumption is violated, inference
outcomes could be invalid. Inwhat follows, we show that ourCD
fusion method readily applies to meta-analysis of correlation
coefficients, without requiring any parametric assumptions.

To illustrate the CD fusion method, we use the Pearson
sample correlation r as an estimate of the correlation coefficient

ρ in Equation (12), and apply regular bootstrap (with 2000
replicates) to construct a depth-CD in each study. To combine
depth-CDs, we use half-space depth andBahadur-efficient com-
bination Equation (18). We compare our method with a naive
method and the Hedges-Olkin (HO) method (Schulze 2004).
The naive method merges the datasets as if all the data are from
a single source. It then calculates the sample correlation r and
applies Fisher’s z-transformation z = 1

2 log(
1+r
1−r ), where z fol-

lows approximately a normal distribution withmean 0 and vari-
ance 1/(n− 3). The HOmethod obtains Fisher’s z-transformed
statistic zk from each study, and combines them using z̄ =
∑K

k=1(nk − 3)zk/
∑K

k=1(nk − 3). The inference is based on that

z̄

√

∑K
k=1(nk − 3) follows approximately the N(0, 1) distribu-

tion. Figure 9 compares the threemethods by examining the null
distribution of p-values for testing the hypothesis H0 : ρ = 0.
When the samples of (Xk,Yk) indeed follow a bivariate normal
distribution, the upper row of Figure 9 shows that the distribu-
tion of each p-value approximates the U(0,1) distribution quite
well. This observation indicates that all three methods lead to
valid inference in normal cases. In the absence of normality, we
let Xk = Zk and Yk = Z2

k , where Zk ∼ N(0, 1). The lower row
of Figure 9 shows that the p-value distributions of the naive and
HOmethods deviate substantially from theU(0, 1) distribution.
More specifically, the Type I error rates (α = 0.05) are 0.38 and
0.37, respectively. The results indicate that these two methods
may lead to invalid inference in nonnormal cases. The p-value
distribution of CD method remains very close to the U(0, 1)
distribution, which is indicative of its robustness to changing
distribution assumptions.

7. Case Study: Analysis of Aircraft Landing

Performance

Recall from the Introduction the motivating example from the
FAA project on investigating whether or not aircraft landing
operations generally comply with the FAA recommendation
that the height of the aircraft at the crossing of runway threshold
be around 15.85m and touchdown distance be around 432m
from runway threshold. This question can be addressed by
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Figure 9. The null distributions of p-values for meta-analysis of correlation coefficients. The sample of size n = 200 in each individual study are drawn from a bivariate

normal distribution (upper row) or a bivariate normal-χ2 distribution (lower row).

testing

H0 : μ = (15.85, 432)′ versus H1 : otherwise, (22)

where μ is the mean vector for the height at the runway thresh-
old and touch down distance.

We are given landing records of two fleets of aircraft, 820
from Airbus and 1976 from Boeing. In view of the large sam-
ples, an intuitive approach would be just to apply Hotelling’s
T2 test to the entire sample of 2796 landing records, pooling
together both fleets. This yields a p-value of 0.942, which would
suggest that there is no evidence supporting that the landing
performances do not comply with the FAA recommendation.
This intuitive approach for combining two studies however is
flawed, since it implicitly assumes that the two studies follow
the same distribution and thus fails to account for the difference
underlying the two studies, shown clearly in Figure 1. After
all, it is only natural to expect difference in performance from
different aircraft manufactured by different makers or designs.

To accommodate such potential study heterogeneity, our
fusion learning method can synthesize evidence from the two
studies to provide a valid answer to the question raised. Specif-
ically, this problem setting consists of two independent studies
sharing a common bivariate mean parameter μ, that is, μA =
μB = μ, where μA and μB are the means of the Airbus Study

and the Boeing Study, respectively. We construct a depth-CD
from each study to carry out separately the two tests μA = μ0

and μB = μ0 with μ0 = (15.85, 432)′, and then combine the
two test results using Equation (14) to draw the overall inference
on testing the hypothesis in Equation (22).

Specifically, we obtain a sample mean μ̂
∗
A based on a

bootstrap-t sample ofAirbus Study, and replicate this 2000 times
to obtain a depth-CDHA(μA), in this case, namely the empirical
distribution of {μ̂∗

A,1, μ̂
∗
A,2, . . . , μ̂

∗
A,2000}. A depth-CD HB(μB)

for the Boeing study can be obtained similarly. We then com-
bine HA(μA) and HB(μB) using Equation (14) for testing the
hypothesis in (22). Our fusion method yields a p-value of 0.008,
indicating that the data provide strong evidence against the null
hypothesis that the landings follow the FAA recommendation.
This conclusion is drawn without assuming the sample follow
any particular (say, normal) distribution.

The seemingly contradictory results between the intuitive
method and our fusion method may be best explained visually
by the plots of individual depth-CDs for Airbus (blue circles)
and Boeing (black crosses) in Figure 10. The depth-CDs here
are represented by the empirical distributions of their respective
bootstrap estimates. The red triangle marks the null valueμ0 =
(15.85, 432), which is clearly far from the centers of the two
depth-CDs (which are the point estimates of their two respective
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Figure 10. depth-CDs for each individual study, Airbus (blue circles) and Boeing
(black crosses), and a depth-CD by aggregating data from the two studies as if they
were from the same source (green diamonds). The depth-CDs here are represented
by the empirical distributions of bootstrap estimates. The red triangle indicates the
target valueμ0 in the null hypothesis H0 : μA = μB = μ0 = (15.85, 432)′ .

means). The centrality values at μ0 w.r.t. the two depth-CDs, or
equivalently the two individual p-values, are 0.006 and 0.167.
This finding implies low plausibilities for the assumption μA =
μ0 or μB = μ0. Thus, a small p-value (0.008) from our fusion
method leading to the rejection of H0 should be expected.

We also plot in Figure 10 the depth-CD (green diamonds)
obtained from the pooled data erroneously assuming the same
distribution for the two studies. The red triangle μ0 is near the
center of this depth-CD, which suggests that μ0 as a plausible
target value, as also reflected in a large p-value 0.956. This
example shows that ignoring the heterogeneity of data sources
or blindly aggregating datamaymask important signals and lead
to invalid and misleading conclusions.

Finally, to demonstrate the flexibility of our fusion method
in handling more challenging situations, we suppose that the
recordings of the variable “height” from Airbus aircraft are not
available. In this scenario, traditional methods can make infer-
ence about “height” only based on the landings of Boeing air-
craft. For example, applying Hotelling’s T2 test to Boeing obser-
vations yields a p-value of 0.152. This again yields an incorrect
conclusion. Unlike traditional methods, our fusion method can
efficiently incorporate the information in the incomplete obser-
vations from Airbus Study, as shown in Section 5.2. Combining
the indirect evidence from Airbus with the direct evidence
from Boeing, our method yields a p-value of 0.016. This result
suggests strong evidence against the null hypothesis, which is
consistent with our conclusion drawn from the complete data
from both studies. Our analysis here shows that indirect evi-
dence may contain valuable information (e.g., possibly through
the correlation between “height” and “distance” in this case)
without which incorrect inference outcome may be reached.

8. Discussion

We have used the concept of depth-CD and depth-CV to
develop a new framework for fusion learning for multivariate

parameters, especially in nonparametric settings. This fusion
learning framework imposes no model assumptions on the
data or statistics in individual studies. It has been shown to be
efficient, general and robust by both theoretical properties and
numerical studies. In the nonnormal settings, it can reduce bias
and improve efficiency in inference, as observed from simula-
tion studies. In addition, our fusion framework can easily adapt
to complex heterogeneous studies settings where existing meth-
ods fail. In particular, it can incorporate indirect evidence from
heterogeneous studies for which the target parameter is not
estimable, and achieve an additional gain of efficiency, as illus-
trated in both our simulation and case study. The phenomenon
of incorporating indirect evidence to gain efficiency has also
been observed, though only in the normal or asymptotic normal
settings, in for example, Xie et al. (2013), Yang et al. (2014), Liu,
Liu, and Xie (2015), Hoff (2019), Chen, Chatterjee, and Carroll
(2013), Chatterjee et al. (2016), andGao andCarroll (2017). The
last three combined information from diverse studies through
estimating equations, using large sample central limit theorem
under parametric models.

Our proposed formula for nonparametric fusion learning
is versatile as it permits flexible choices of fusion elements,
namely, the depth functionD(·), the mapping function g(·) and
the weighting scheme wk’s. Unless there are concerns that not
all studies are equally trustworthy, we may use equal weights
(wk = 1) with the mapping function ϕ(·) = log(·) and half-
space or simplicial depth for general implementations. This set
of choices is used in our numerical studies, showing our fusion
formula to compete well with the classical approaches in the
normal case and outperform in nonnormal cases, in gaining
efficiency and reducing bias. This superb performance is rooted
in the theoretical results established in Theorems 4 and 5, which
ensure the fusion recipe to achieve high-order accuracy and the
optimal efficiency in Bahadur’s sense.

Fusion approaches derived from geometric depths such as
half-space or simplicial depth have the desirable property of
being nonparametric, and hence broader applicability. Although
efficient exact algorithms for computing half-space and simpli-
cial depths are available thus far for dimensions not higher than
3, as seen in Rousseeuw and Struyf (1998), the random approxi-
mation algorithm in Cuesta-Albertos and Nieto-Reyes (2008) is
computationally efficient in any dimension. The refined sample
geometric depth constructed in Einmahl, Li, and Liu (2015),
by incorporating the extreme value theory, can help mitigate
the inherent complications in calculating sample depth outside
the data region (which by definition is zero without refine-
ment) or in breaking the increasing number of ties in high-
dimensional settings. As the computing technology continues
its fast advances alongside the competing research effort in the
computational geometry community to develop efficient depth
computing algorithms, we believe that the concern over depth
computational feasibility is likely to lessen gradually.

Similar to a Bayesian posterior distribution, a CD also uses
a (sample-dependent) distribution function on the parameter
space to estimate the target parameter and it contains the infor-
mation for all possible inference. But, different from a Bayesian
method, a CD method does not need to assume any prior
distribution. In most cases when the sample size is sufficiently
large, a Bayesian posterior can be shown to be a CD under
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suitable regularity conditions (see, e.g., Xie and Singh 2013;
Thornton and Xie 2020). In this case, the Bayesian posterior can
be used as a CD to draw inferences and also as an input study
in the CD fusion learning framework. Although the notion of
CD is developed completely within the frequentist framework,
it is shown to provide a common platform for unifying Bayesian,
frequentist and fiducial approaches and also for making direct
comparisons or combinations of inferences across these differ-
ent paradigms. This also shows that Bayesian, frequentist and
fiducial (BFF) inferences are indeedmuchmore congruous than
they have been perceived historically in the scientific commu-
nity; as argued in recent research (Kass 2011; Reid andCox 2015;
Hannig et al. 2016; Shen, Liu, and Xie 2018; Thornton and Xie
2020)

A depth-CV, obtained through depth-CD (see Section 3.2),
incorporates the idea of centrality measure from of data depth
to form nested central regions expanding with growing prob-
ability mass. The capturing of the nested central regions with
their associate probability coverages is key in making depth-
CV such a versatile and effective multivariate inference tool.
This formulation of central regions expanding with growing
probability is akin to those referred to as “quality index” and
“multivariate spacings” considered in Liu and Singh (1993) and
Li and Liu (2008) in the context of assessing the distribution
underlying the data for quality control purpose. The depth-CV
and the fusion learning method developed in this article can
help broaden those two problem settings to make them more
practical in reality, especially in multivariate quality control.

The concept of depth-CD plays a key role in developing our
nonparametricmultivariate fusion framework. As a distribution
function embedded in the parameter space, a depth-CD conveys
the level of “confidence” on each possible parameter value, w.r.t.
the given data. It is an omnibus of all intrinsic inference forms
of any parameter, including the common inferences of point
estimates, confidence intervals/regions and p-values. This all-
inclusive characteristic affords our fusion scheme the desirable
theoretical and numerical properties seen in this article. Given
that depth-CD is a general multivariate extension of CD, many
challenging problems in fusion learning in the scalar or normal
setting that have been solved by combiningCDs can be expected
to be solved by using depth-CD if they arise in nonparametric
multivariate settings. These include robust inference with outly-
ing studies (Xie, Singh, and Strawderman 2011), exact inference
for discrete data (Liu, Liu, and Xie 2014; Yang et al. 2016),
efficient inference for heterogeneous studies or network meta-
analysis (Clagget, Xie, and Tian 2014; Yang et al. 2014; Liu, Liu,
and Xie 2015), or with external data (Xie et al. 2013) scalable
split-conquer-combine approaches for massive data (Chen and
Xie 2014) and individualized inference for a particular study
(Shen, Liu, and Xie 2019). Cheng, Liu, and Xie (2017) gave a
brief review on fusion learning via CDs.

For the ease of presentation, the article has focused on fusion
of independent studies, with iid observations in each study. But
we stress that our fusion framework is quite general and can
remain applicable even if these assumptions are violated. For
example, our fusion extends to possibly non-iid observations
within a study. Specifically, since the fusion is on the inference
for a common parameter shared by the studies, our method is
valid as long as the estimate within each study converges to the

common parameter even if the observations are not identically
distributed. To this end, in our bootstrap implementation of the
method, themethod remains valid as long as bootstrapworks, as
seen in the non-iid setting covered in Liu (1988). Our method
can also be extended in the direction of fusing related studies
seen in Li, Hung, and Xie (2020).

Our approach is shown to enable the fusion of multivariate
inferences from a wide range of data sources, including studies
of irregular, incomplete or heterogeneous of various types. The
development of depth-CV here may be further extended to
cover different data types in the domains of directional data
(data on circles/spheres) (Liu and Singh (1992)) and functional
data (López-Pintado and Romo 2009; Claeskens et al. 2014;
Narisetty and Nair 2016; Fan and Liu 2019), where applications
abound, for example, an efficient fusion of the existing different
climate or weather forecast approaches. Those extensions would
be worth exploring.
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Supplementary materials containing all the technical proofs for this article
are available online.
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