
Generation of Low Distortion Adversarial Attacks
via Convex Programming

Tianyun Zhang
EECS Department
Syracuse University
tzhan120@syr.edu

Sijia Liu
MIT-IBM Watson AI Lab

IBM Research
sijia.liu@ibm.com

Yanzhi Wang
ECE Department

Northeastern University
yanzhi.wang@northeastern.edu

Makan Fardad
EECS Department
Syracuse University

makan@syr.edu

Abstract—As deep neural networks (DNNs) achieve extraordi-
nary performance in a wide range of tasks, testing their robust-
ness under adversarial attacks becomes paramount. Adversarial
attacks, also known as adversarial examples, are used to measure
the robustness of DNNs and are generated by incorporating
imperceptible perturbations into the input data with the intention
of altering a DNN’s classification. In prior work in this area, most
of the proposed optimization based methods employ gradient
descent to find adversarial examples. In this paper, we present
an innovative method which generates adversarial examples via
convex programming. Our experiment results demonstrate that
we can generate adversarial examples with lower distortion and
higher transferability than the C&W attack, which is the current
state-of-the-art adversarial attack method for DNNs. We achieve
100% attack success rate on both the original undefended models
and the adversarially-trained models. Our distortions of the L∞
attack are respectively 31% and 18% lower than the C&W attack
for the best case and average case on the CIFAR-10 data set.

Index Terms—Deep neural networks, adversarial attack, con-
vex programming.

I. INTRODUCTION

Deep neural networks (DNNs) continue to show extraor-
dinary performance in a variety of tasks, such as image
recognition [1]–[3], speech recognition [4], [5], and natural
language processing [6]. However, recent research shows that
DNNs are vulnerable to adversarial attacks [7], [8]. Adversarial
attacks, also known as adversarial examples, are generated by
incorporating imperceptible perturbations into the original input
data in order to mislead the prediction of DNNs [9], [10].

Research on the robustness of DNNs follows two directions
in general. The first is to enhance the robustness of DNNs,
which increases the degree of difficulty for adversarial attacks to
fool DNNs [11]–[14]. The second is to design adversarial attack
methods to test the robustness of DNNs [7], [15]–[18]. These
two aspects reciprocally benefit each other towards hardening
DNNs, and our research in this paper belongs to the latter one.

Adversarial attacks can be either untargeted or targeted. In
untargeted attacks, adversarial examples are generated to fool
DNNs’ prediction towards a label other than the correct one
[19]. In targeted attacks, adversarial examples are designed to
force the DNNs to classify the data with a desired incorrect
target label [7]. In this paper, we focus on the problem of
targeted attack generation, as such attacks are commonly
regarded as being stronger [17].

Despite the fact that the loss functions of DNNs are non-
convex, most adversarial attack generation problems in the
literature are solved by gradient descent; for example [20]
solves the C&W attack problem via ADAM. Recent papers
on certifying the robustness of DNNs employ relaxations to
formulate convex optimization problems [21], [22].

In contrast to these methods, in this paper we first formulate
the adversarial attack generation problem as one with a
convex objective function but non-convex constraints. We then
design an algorithm which iteratively solves a related convex
problem. We prove that upon convergence of our iterative
algorithm, the obtained solution is feasible for the original (non-
convex) problem. We achieve 100% attack success rate on both
the original undefended models and the adversarially-trained
models. Our distortions of the L∞ attack are respectively 31%
and 18% lower than the C&W attack for the best case and
average case on the CIFAR-10 data set.

II. RELATED LITERATURE

A. Gradient Descent Based Attack Methods

L-BFGS Attack [7]: The L-BFGS attack is the first attack
based on optimization. It aims to minimize the cross-entropy
loss of the adversarial example and the target label, while
minimizing the L2 distortion of the adversarial example and
original data.

FGM Attack [15] & IFGM Attack [8]: The fast gradient
method (FGM) attack uses the gradient of the loss function to
find the direction in which the intensity of pixels should be
changed. It is an attack that is designed to be fast rather than
to pursue low distortion in the original data. The iterative fast
gradient method (IFGM) attack is a refinement of the FGM
attack which takes multiple smaller steps instead of a single
step on gradient descent.

C&W Attack [17]: Based on the basic ideas of L-BFGS
attack, C&W attack design their own objective functions
instead of cross-entropy loss, which help them achieve 100%
attack successful rate. Besides on L2 attack, C&W also design
iterative methods for the L0 and L∞ attack, in which the
objective functions are non-differentiable. C&W attack is state-
of-the-art in the adversarial attacks on DNNs.



B. Related Work on Convex Programming and Mixed Integer
Linear Programming

Robustness Certification of DNNs: Recently, convex opti-
mization methods have been used to certify the robustness of
DNNs rather than to generate adversarial attacks. Examples
include the use of linear programming in [21], quadratic
programming in [22], and semidefinite programming in [23].

Binarized Neural Networks Attack: The paper [24]
presents a new method based on mixed integer linear program-
ming to attack binarized neural networks. The generation of low
distortion attacks on binarized neural networks is a non-convex
problem, where the binary nature of the activation functions
is responsible for the lack of convexity. The authors use the
property that the output of every layer is composed of zeros and
ones to translate the lack of convexity into binary constraints.
This presents a special case in which the non-convex problem
can be solved by mixed integer linear programming.

C. Representative Defense Method

Defensive Distillation [16]: Defensive distillation uses
distillation for the purpose of improving the robustness of
a neural network. In the defensive distillation method, we need
to train a teacher network model at “high temperature” at first
and then employ the teacher network to produce soft labels for
the training data set. Later, the created soft labels are used to
train a distilled model. Finally, we reduce the temperature to
low values when we test the accuracy of the distilled model.

Adversarial Training [25]: In adversarial training, adver-
sarial examples with correct labels are mixed into the training
data set. The neural network is then retrained to increase its
robustness.

III. PROPOSED CONVEX PROGRAMMING BASED ATTACK

A. Notation and Definitions

1) Distortion on Different Cases: In general, three different
cases are considered in the measurement of distortion for
targeted adversarial attacks:

- Best case: Select the target class that is the easiest to
attack, which means distortion of the adversarial examples
corresponding to this class is the lowest among all the
incorrect classes.

- Average case: Calculate the average distortion of the
adversarial examples on all the incorrect target classes.

- Worst case: Select the target class that is the most difficult
to attack, which means distortion of the adversarial
examples corresponding to this class is the highest among
all the incorrect classes.

2) Box Constraints and Discretization: In an actual image,
the intensity of each pixel is indicated by an integer between 0
and 255. In an optimization framework, however, we assume
that pixel values belong to the convex interval [0,1]. This is
known as a box constraint. Once the optimization problem is
solved and a solution for the adversarial example is found, we
revert back to an actual image by multiplying the entries of
the solution by 255 and rounding to the closest integer. This

process is known as discretization. It has been demonstrated
in the literature that discretization rarely affects the success
rate of an attack [17].

B. Problem Formulation

Consider an N -layer DNN, where the collection of weights
and biases in the i-th layer are respectively denoted by Wi

and bi, and that all the layers in the DNN are fully connected.
Assume that x0 is a vector representation of an image in the
test set, and that x is an adversarial example that we wish to
generate. The example x has the property that it is a small
perturbation of x0 but is classified as belonging to the incorrect
target class t by the DNN.

The output of the first layer of the DNN to input x is

y1 = σ(W1x+ b1).

Here, y1 and b1 are vectors, and σ(·) is the non-linear
activation function which acts elementwise on its vector
argument. This function is generally chosen to be the ReLU
function [26] in state-of-the-art DNNs, which is defined as

σ(τ) =

{
τ if τ ≥ 0,

0 if τ < 0.

In a DNN the output of one layer is the input to the next, and
thus the output of the i-th layer for i = 2, . . . , N − 1 is

yi = σ(Wiyi−1 + bi).

The output before the softmax function (the collection of logits)
is

z = WNyN−1 + bN .

The logits are input into the softmax function to calculate
the scores of different classes. The class with the highest score
will determine the classification made by the DNN. Since the
softmax function is an increasing function, the class with the
highest logit will achieve the highest score and become the
classification result. For a targeted adversarial attack, the target
class t should have the highest logit, which means

(z)t = max(z),

where (z)t is the t-th element in the vector z. The above
equation can be equivalently rewritten as

z ≤ (z)t1,

where 1 is the column vector of all ones. The above inequality
ensures the success of the targeted attack. To ensure that x
is an imperceptible perturbation of x0 we minimize the Lp

distortion between the adversarial example and the original
data. Namely, we minimize

‖x− x0‖p,

which is a convex function of x for p ≥ 1. Also, to ensure
the adversarial example yields a valid image we impose the
constraint

0 ≤ x ≤ 1.



We can now formulate the adversarial attack problem as

minimize
x, yi, z

‖x− x0‖p

subject to y1 = σ(W1x+ b1)

yi = σ(Wiyi−1 + bi), i = 2, . . . , N − 1

z = WNyN−1 + bN

z ≤ zt1, 0 ≤ x ≤ 1.

(1)

This optimization problem has a convex objective and convex
inequality constraints. However, σ(·) is a nonlinear function
which renders the equality constraints, and therefore the
optimization problem as a whole, non-convex.

C. Solving a Convex Relaxation of (1)

In this section, we propose an algorithm which iteratively
solves a convex relaxation of (1) to obtain an approximate
solution. This approximate solution is feasible in the sense that
it satisfies all the constraints in (1).

Since σ(·) acts elementwise on its argument, we can consider
the effect of σ(·) as an elementwise multiplication of the input
vector with a binary vector ai whose elements are zero/one
based on the sign of the elements of the vectors W1x + b1

and Wiyi−1 + bi,

y1 = a1 ◦ (W1x+ b1),

yi = ai ◦ (Wiyi−1 + bi), i = 2, . . . , N − 1,

where ◦ denotes elementwise vector multiplication.
Due to the dependence of ai on the sign of Wiyi−1+bi, the

equality constraint yi = ai◦(Wiyi−1+bi) is still non-convex.
We break this dependence by using an iterative procedure in
which the sign of Wiyi−1 + bi, computed from the solution
of the previous iteration, is used to form ai in the current
iteration. Concretely, rather than solve the non-convex problem
(1), we solve for k = 0, 1, . . . , T the convex problem

minimize
x, yi, z

‖x− x0‖p + λ‖x− x(k)‖2

subject to y1 = a
(k)
1 ◦ (W1x+ b1)

yi = a
(k)
i ◦ (Wiyi−1 + bi), i = 2, . . . , N − 1

z = WNyN−1 + bN

z ≤ zt1, 0 ≤ x ≤ 1.
(2)

We denote by x(k+1),y
(k+1)
i , z(k+1) the solution of problem

(2) at iteration k, and let x(0) = x0. We set the value of a(k)1

according to

(a
(k)
1 )j =

{
1 if (W1x

(k) + b1)j ≥ 0,

0 if (W1x
(k) + b1)j < 0,

(3)

where (v)j denotes the jth element of the vector v and j
takes all values between one and the dimension of the vector
a1. We employ a special procedure to compute the values
of a(k)i . Rather than use y

(k)
i from the previous iteration, we

propagate forward through the layers the value x(k) of x from
the previous iteration and denote the resulting values by y

[k]
i .

To make this precise, we find a
(k)
1 from (3) and set y[k]

1 =

a
(k)
1 ◦ (W1x

(k) + b1). We then find a
(k)
2 from

(a
(k)
2 )j =

{
1 if (W2y

[k]
1 + b2)j ≥ 0,

0 if (W2y
[k]
1 + b2)j < 0,

and set y[k]
2 = a

(k)
2 ◦(W2y

[k]
1 +b2). We continue this procedure

so that for i = 2, . . . , N − 1,

(a
(k)
i )j =

{
1 if (Wiy

[k]
i−1 + bi)j ≥ 0,

0 if (Wiy
[k]
i−1 + bi)j < 0.

(4)

We emphasize that problem (2) is convex and can therefore be
solved efficiently using convex optimization tools.

This motivates Algorithm 1: We iteratively solve (2), using
(3) and (4) to update a

(k+1)
i , until the condition a

(k+1)
i = a

(k)
i ,

i = 1, . . . , N − 1 is satisfied. We initialize the algorithm by
setting x(0) = x0.

Proposition III.1. If for some k we have

a
(k+1)
i = a

(k)
i , i = 1, . . . , N − 1, (5)

then the solution x of (2), denoted by x(k+1), is a feasible
solution of problem (1).

Proof. We need to demonstrate that when condition (5) holds,
the optimal solution of the convex problem (2) satisfies all the
constraints in problem (1).

Recall that x(k+1), y
(k+1)
i , z(k+1) denote the solution of

(2) at iteration k. Since the solution satisfies the constraints,
in particular we have

y
(k+1)
1 = a

(k)
1 ◦ (W1x

(k+1) + b1),

y
(k+1)
i = a

(k)
i ◦ (Wiy

(k+1)
i−1 + bi), i = 2, . . . , N − 1.

From a
(k+1)
i = a

(k)
i , we conclude that

y
(k+1)
1 = a

(k+1)
1 ◦ (W1x

(k+1) + b1), (6)

y
(k+1)
i = a

(k+1)
i ◦ (Wiy

(k+1)
i−1 + bi), i = 2, . . . , N − 1. (7)

According to (6) and the definition of y
[k]
1 we can derive

that y
(k+1)
1 = y

[k+1]
1 . Similarly, from (7), the definition of

y
[k]
2 , and y

(k+1)
1 = y

[k+1]
1 , we obtain y

(k+1)
2 = y

[k+1]
2 . This

procedure can be continued to show that y(k+1)
i = y

[k+1]
i for

i = 1, 2, . . . , N − 1. Therefore, equation (7) is equivalent to

y
(k+1)
i = a

(k+1)
i ◦ (Wiy

[k+1]
i−1 + bi), i = 2, . . . , N − 1. (8)

Now, replacing k with k+1 in the definition of a(k)i , equations
(6) and (8) are respectively equivalent to

y
(k+1)
1 = σ(W1x

(k+1) + b1),

y
(k+1)
i = σ(Wiy

(k+1)
i−1 + bi), i = 2, . . . , N − 1.

Recalling that the constraints involving z are the same in (1) and
(2), the above argument implies that x(k+1), y

(k+1)
i , z(k+1)

satisfy the constraints in (1) and therefore characterize a feasible
point. This completes the proof of the proposition.



Algorithm 1 Find approximate solution of (1) by iteratively
solving (2)

Input: image x0, weights Wi, biases bi, parameter λ
Set x(0) = x0

Calculate a
(0)
i according to (3) and (4)

Set k = 0
for k ≤ T do

Solve problem (2) to obtain x(k+1)

Update a
(k+1)
i according to (3) and (4)

if Condition (5) is satisfied then
Break for loop

end if
Set k = k + 1

end for

Algorithm 2 Iterative method to guarantee convergence of
Algorithm 1

Input: image x0, weights Wi, biases bi

Set parameter λ
repeat

Apply Algorithm 1
if Condition (5) is not satisfied then

Increase value of λ
end if

until Condition (5) is satisfied
Set x̂ to solution of Algorithm 1
Set λ̂ = λ

The parameter λ characterizes the relative importance of the
two terms in the objective function of (2): A small value of
λ de-emphasizes the second norm, which results in a solution
with lower distortion and therefore better performance; a large
value of λ emphasizes the second norm, which helps achieve
convergence (at the expense of performance) when (2) is solved
iteratively by penalizing the difference of the optimal x between
two consecutive iterations.

This motivates Algorithm 2: We choose a small value of λ
and check the convergence of Algorithm 1. If convergence, as
determined by the satisfaction of condition (5), is not achieved
then we increase the value of λ and apply Algorithm 1 again;
if convergence is achieved then we have found a value of
λ that results in a feasible solution. The advantage of this
process is that when λ is small, the optimization problem (2)
is allowed to explore the x-space for a solution with small
distortion. Therefore, our aim is to find the smallest value of
λ that results in convergence (in our experiments such a value
of λ could always be found); we refer to this value as λ̂, and
refer to the solution of Algorithm 1 with λ = λ̂ as x̂.

Remark: Once λ̂ is obtained, we may explore whether
solutions with lower distortion than x̂ can be found as follows:
We start from λ = λ̂ and apply Algorithm 1 with the important
difference that rather than setting x(0) = x0 we take x(0) = x̂.
We then iteratively reapply Algorithm 1, we decrease λ if
convergence is achieved and otherwise increase λ, each time

setting x(0) to be the solution of Algorithm 1 from the previous
iteration. In our experiments we find that applying this methods
for several iterations usually helps us find a solution with lower
distortion than just applying Algorithms 1 and 2. Moreover,
the runtime for adjusting λ is acceptable and we will further
discuss this in section IV-G.

IV. PERFORMANCE EVALUATION

We compare our proposed method with the IFGM attack [8]
and the C&W attack [8], in which the C&W attack is state-of-
the-art adversarial attack on DNNs. In the C&W attack, the
authors proposed their method for L0, L2 and L∞ attacks,
since L0 norm is non-convex, it is not applicable for convex
programming. Thus we compare our L2 and L∞ attacks with
other two works. Our experimental results demonstrate that
the adversarial examples generated by our method have lower
distortion than the IFGM attack and the C&W attack on the
MNIST [1] and CIFAR-10 [27] data sets.

A. Experiment Setup

We evaluate the performance of different attack methods on
the LeNet-300-100 [1]. In this network, the number of neurons
in the two hidden layers are 300 and 100, respectively. The
activation functions after the hidden layers are chosen to be
ReLU. The test accuracy of LeNet-300-100 on the MNIST and
CIFAR-10 data sets are around 98% and 57%, respectively.
In our proposed algorithm, we solve the convex problem by
CVXPY [28], [29], which is a tool for convex programming
in Python.

B. Success Rate and Distortion for L2 Attack

We test the L2 attack of our proposed method, the IFGM
attack method and the C&W attack method on the first 500
images in the test sets of the MNIST and CIFAR-10 data
sets. For every image we implement targeted attacks on its 9
incorrect labels. In the 4500 adversarial attacks in each data set,
both of the methods achieve 100% attack success rate (ASR),
and the L2 distortion of different attack methods on CIFAR-10
are shown in Table 1.

In both of the data sets, the performance of our method and
the C&W attack are much better than the IFGM attack. In the
MNIST data set, our results are close to the C&W attack. While
in the larger data set CIFAR-10, we achieve lower distortion
than the C&W attack on both of the three cases.

C. Success Rate and Distortion for L∞ Attack

The data sets setup for the L∞ attack test is the same as
the L2 attack. The results of different L∞ attack methods are
shown in Table 2.

On the L∞ attack, we achieve a notable improvement
compared with the results of the C&W attack. In the CIFAR-10
data set, we respectively reduce the L∞ distortion by 31% and
18% for the best case and average case compared with the
C&W attack on the L∞ attack.



TABLE I
COMPARISON OF DIFFERENT L2 ATTACKS FOR CIFAR-10 DATA SETS

Data Set Attack Method Best Case Average Case Worst Case
ASR L2 ASR L2 ASR L2

CIFAR-10
IFGM (L2) 100 0.168 100 0.740 100 1.339
C&W (L2) 100 0.158 100 0.648 100 1.114

Convex Programming (L2) 100 0.154 100 0.645 100 1.112

TABLE II
COMPARISON OF DIFFERENT L∞ ATTACKS FOR MNIST AND CIFAR-10 DATA SETS

Data Set Attack Method Best Case Average Case Worst Case
ASR L∞ ASR L∞ ASR L∞

MNIST
IFGM (L∞) 100 0.081 100 0.134 100 0.197
C&W (L∞) 100 0.076 100 0.117 100 0.156

Convex Programming (L∞) 100 0.074 100 0.114 100 0.152

CIFAR-10
IFGM (L∞) 100 0.0046 100 0.0198 100 0.0379
C&W (L∞) 100 0.0051 100 0.0181 100 0.0299

Convex Programming (L∞) 100 0.0035 100 0.0149 100 0.0256

D. Attack Against Defensive Distillation

We test our L2 attack and L∞ attack against the defensive
distillation [16] on MNIST and CIFAR-10 data sets. In each
data set, we use the first 500 images to implement 4500 attacks
on the DNNs trained by the defensive distillation on different
temperature. Both of our L2 attack and L∞ attack achieve
100% attack success rate on both of the data sets for all the
different temperature set in the defensive distillation.

E. Attack Against Adversarial Training

We test the performance of our method under adversarial
training [25] using data augmentation, where we add 4500
adversarial examples with correct labels into the training data
set. For these adversarially-trained models, we find that the
adversarial examples generated by our L∞ method consistently
have lower distortion compared with the adversarial examples
generated by the C&W method. We elaborate on these results
for the L∞ case below.

In our first group of experiments, we generate adversarial
examples, perform adversarial training, and attack adversarially-
trained models, all using the same method (i.e., our convex
programming method versus the C&W method), and then
compare their distortions against each other. On MNIST, the
average distortion of our method is 0.124, which is lower
than 0.129 for the C&W method. On CIFAR-10, the average
distortion of our method is 0.0231, which is 12% lower than
0.0262 for the C&W method.

In our second group of experiments, we implement adver-
sarial training using adversarial examples generated by IFGM
method, and then attack the adversarially-trained model using
our method and the C&W method. On MNIST, the average
distortion of our method is 0.126, which is lower than 0.132
for the C&W method. On CIFAR-10, the average distortion
of our method is 0.0262, which is 11% lower than 0.0295 for
the C&W method.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Our attack

C&W attack

Parameter k

T
r
a
n
s
f
e
r
a
b
i
l
i
t
y
 
S
u
c
c
e
s
s
 
R
a
t
e

Fig. 1. Comparison of the transferability success rate for our L2 attack and
the C&W L2 attack on MNIST data set

F. Transferability of Our Proposed Attack Method

To test the transferability of our proposed attack method,
we change the constraint z ≤ zt1 in problem (2) to

z+ k1− ket ≤ zt1,

where et is a vector in which the tth element is one and the
other elements are zeros. Here, we incorporate a nonnegative
parameter k to control the confidence of the adversarial
examples. In this case, the logit of the targeted class is higher
than the logits of other classes by k or more. As k increases,
the adversarial examples have higher transferability.

Transferability means that the adversarial examples of one
DNN model could be transferred to be the adversarial examples
of another DNN model [30]. In the transferability success
rate test, we generate 900 adversarial examples using the
first 100 images on the test set of MNIST by our L2 attack
and the C&W L2 attack individually. And then we use the
adversarial examples generated by each method to attack the
model trained by the defensive distillation at temperature



T = 100. Transferability success rate is calculated by the
sum of adversarial examples which can successfully achieve
targeted attack on the model trained by the defensive distillation
divided by 900 (the total number adversarial examples).

The result of the transferability success rate is shown in
Figure 1, which demonstrates that our method achieves higher
transferability success rate than the C&W attack. When the
confidence k = 0, the transferability success rate is low for both
of the methods, but it increases as k increases, the transferability
success rate of our method exceeds 90% when k = 40.

G. Comparison of Runtime and Distortion

To generate adversarial examples with comparable distortion
to the C&W attack, our method requires only a few iterations
and the convex problem in every iteration can be efficiently
solved.

Specifically, for L∞ attacks on the CIFAR-10 data set, the
generation of adversarial examples with comparable distortion
to the C&W attacks consumed only one third the runtime
of the C&W method. If we use the same runtime, our
average distortion is 13% lower than that of the C&W method.
Moreover, if we are allowed twice the runtime of C&W to
adjust λ, we can generate adversarial examples with 18%
lower distortion than the C&W attacks. We performed our
experiments on a machine with an Intel I7-7700K CPU, 16
GB RAM and an NVIDIA GTX 1080 TI GPU.

V. CONCLUSIONS

In this paper we propose an innovative method for generating
adversarial examples via convex programming. Our method
achieves a 100% attack success rate on both the original
undefended models and the adversarially-trained models. We
also decrease the distortion (on both original undefended
models and adversarially-trained models) and increase the
transferability of adversarial examples compared with state-of-
the-art attack methods.

VI. ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under awards CAREER CMMI-1750531, ECCS-
1609916, CNS-1739748, and CNS-1704662.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on audio, speech, and language processing, vol. 20,
no. 1, pp. 30–42, 2012.

[6] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins, “Globally normalized transition-based neural
networks,” arXiv preprint arXiv:1603.06042, 2016.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” ICLR, 2013.

[8] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[9] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 427–436.

[10] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands.” in USENIX Security
Symposium, 2016, pp. 513–530.

[11] S. Gu and L. Rigazio, “Towards deep neural network architectures robust
to adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[12] U. Shaham, Y. Yamada, and S. Negahban, “Understanding adversarial
training: Increasing local stability of neural nets through robust optimiza-
tion,” arXiv preprint arXiv:1511.05432, 2015.

[13] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” arXiv preprint arXiv:1703.00410,
2017.

[14] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi,
A. Khanna, and A. Anandkumar, “Stochastic activation pruning for robust
adversarial defense,” arXiv preprint arXiv:1803.01442, 2018.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” stat, vol. 1050, p. 20, 2015.

[16] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 582–597.

[17] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[18] K. Xu, S. Liu, P. Zhao, P.-Y. Chen, H. Zhang, Q. Fan, D. Erdogmus,
Y. Wang, and X. Lin, “Structured adversarial attack: Towards general
implementation and better interpretability,” in International Conference
on Learning Representations, 2019.

[19] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2574–2582.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[21] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter, “Scaling provable
adversarial defenses,” in Advances in Neural Information Processing
Systems, 2018, pp. 8400–8409.

[22] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
in Advances in Neural Information Processing Systems, 2018, pp. 4939–
4948.

[23] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses
against adversarial examples,” in International Conference on Learning
Representations, 2018.

[24] E. B. Khalil, A. Gupta, and B. Dilkina, “Combinatorial attacks on
binarized neural networks,” in International Conference on Learning
Representations, 2019.

[25] F. Tramr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
in International Conference on Learning Representations, 2018.

[26] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[27] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[28] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[29] S. D. Akshay Agrawal, Robin Verschueren and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[30] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples,”
arXiv preprint arXiv:1605.07277, 2016.


	Introduction
	Related Literature
	Gradient Descent Based Attack Methods
	Related Work on Convex Programming and Mixed Integer Linear Programming
	Representative Defense Method

	Proposed Convex Programming Based Attack
	Notation and Definitions
	Distortion on Different Cases
	Box Constraints and Discretization

	Problem Formulation
	Solving a Convex Relaxation of (1)

	Performance Evaluation
	Experiment Setup
	Success Rate and Distortion for L2 Attack
	Success Rate and Distortion for L Attack
	Attack Against Defensive Distillation
	Attack Against Adversarial Training
	Transferability of Our Proposed Attack Method
	Comparison of Runtime and Distortion

	Conclusions
	Acknowledgments
	References

