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ABSTRACT

Many massive data sets are assembled through collections of information of a large number of individuals in
apopulation. The analysis of such data, especially in the aspect of individualized inferences and solutions, has
the potential to create significant value for practical applications. Traditionally, inference for an individual in
the dataset is either solely relying on the information of the individual or from summarizing the information
about the whole population. However, with the availability of big data, we have the opportunity, as well
as a unique challenge, to make a more effective individualized inference that takes into consideration of
both the population information and the individual discrepancy. To deal with the possible heterogeneity
within the population while providing effective and credible inferences for individuals in a dataset, this
article develops a new approach called the individualized group learning (iGroup). The iGroup approach
uses local nonparametric techniques to generate an individualized group by pooling other entities in the
population which share similar characteristics with the target individual, even when individual estimates
are biased due to limited number of observations. Three general cases of iGroup are discussed, and their
asymptotic performances are investigated. Both theoretical results and empirical simulations reveal that,
by applying iGroup, the performance of statistical inference on the individual level are ensured and can be
substantially improved from inference based on either solely individual information or entire population
information. The method has a broad range of applications. An example in financial statistics is presented.
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1. Introduction

With the massive data sets readily available in the digital and
information era, advanced statistical learning methodologies
for analysis of big data are in high demand. Traditional sta-
tistical methods are often used to discover the general rule
of the population. However, in many applications we are also
interested in an individual entity for personalized solutions or
products. For instance, in precision medicine, each patient has
his/her own traits. Therefore, it is crucial and beneficial to make
individualized treatments and prescribe personalized medicine
(Wang et al. 2007; Qian and Murphy 2011; Zhao et al. 2012;
Yang, Miescke, and McCullagh 2012; Collins and Varmus 2015;
Liu and Meng 2016). In business, the so-called market of one
strategy that makes a customer feel that he or she is exclusive
or preferred by the firm, becomes popular for companies to
design personalized products. Indeed, individualized learning
and inference matters in many applications (Shen, Liu, and Xie
2020).

Since no two patients or two customers are exactly the same,
heterogeneity often exists in a population. It poses a challenge
to combine the data from different individuals, especially for
making improved inferences in individualized learning. A class
of conventional methods is to cluster/group individual entities
into subgroups and, assuming homogeneity within each sub-
group, then use the data in the same subgroup for statistical

analysis (Binder 1978; Ng and Han 1994; Agrawal et al. 1998;
Jain, Murty, and Flynn 1999; Liao 2005; Xu and Wunsch 2005;
Gan, Ma, and Wu 2007; Jain 2010). The clustering and group-
ing in the conventional methods are typically performed in a
priori. Such approaches have several disadvantages. First, the
constitution of subgroups often depends on a predetermined
total number of subgroups, which is a parameter that is either
difficult or not reliable to choose in practice. Second, since
analytic outcomes and inference (e.g., estimated parameters and
testing) are the same for all individuals in the same subgroup,
such a procedure potentially diminishes hidden local structures.
More importantly, in many cases, there may not be clear-cut and
well-divided subgroups in the population. In these situations,
the conventional subgroup analysis may impose an artificial
grouping structure to the population, which can potentially
lead to large biases and invalid inference for many individuals.
Another class of conventional methods is to assume mixture
models, including classical hierarchical models and Bayesian
nonparametric models (Duda and Hart 1973; Ferguson 1973;
Antoniak 1974; Lo 1984; Lindsay 1995; Figueiredo and Jain
2000; Teh et al. 2005). Similar to the clustering method, the
mixture models assume that the population contains several
homogeneous subpopulations, but unlike clustering, there is no
clear boundary between the subpopulations. However, inference
on each individual is not the focus of such a procedure. It is often
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done as an afterthought, by estimating the mixture likelihood.
Furthermore, a mixture model may not be able to explain the
population heterogeneity when the assumed latent structure is
invalid. In addition, when given an observation, it is usually
difficult to tell which subpopulation it belongs to.

In this article, we propose a new method called individual-
ized group learning, abbreviated as iGroup. Instead of grouping
at the population level, the iGroup approach focuses on each
individual and forms an individualized group for the target indi-
vidual, by locating individuals that share similar characteristics
of the target. It sidesteps aforementioned difficulties by forming
an iGroup specifically for the target individual while ignoring
other entities that have little in common with the target.

In this article, two sets of information are used in our pro-
posed framework to define similarity and to form groups. One
is individual level estimator §, which is a direct estimation of 6,
the parameter of interest, for each individual k € {0,1,...,K}
in a parametric model with observation xy, without any group-
ing. The other is some additional information 2, which is not
directly related to 6 but can reveal similarity between the indi-
viduals as well as their parameters. Both 6 and zj can provide
useful information in identifying groups so that closeness in the
space of (ék, zy) implies closeness in the space of 6. Depending
on the feasibility and availability of the two information sets,
iGroup can be constructed based on three different information
sets: {0k}, {2}, 10k 2k ). They will be discussed in detail in later
sections.

To ease our notation, from now on, let us say our goal
is to provide an estimation on 6y for the individual 0. The
estimator is constructed with a specified loss function L, the
observations (xg,zg) on individual 0 and all other available
observations D, = {xk}f:1 and D, = {zk}le. By focusing on
individualized local structures, the proposed iGroup learning
is robust and effective for handling heterogeneity arising from
diverse sources in big data, and it is ideally suited for specific
objective-oriented applications in an individualized inference.
Additionally, in terms of computation, by ignoring a large num-
ber of irrelevant entities and zooming directly to the relevant
individuals, the iGroup learning is parallel in nature and can
scale up better for big data. In this article, we investigate the
validity and theoretical property of iGroup learning and provide
simulation studies and applications to demonstrate the grouping
effectiveness of the proposed methodology.

As all individualized inference is based on borrowing the
information from “other” individuals with similar features or
characteristics as the individual under study, it inevitably resem-
bles nonparametric kernel smoothing methods and k-nearest
neighbor methods in many ways. In a way, the regular nonpara-
metric smoothing methods can be viewed as a special case of
individualized inference. In this article, we focus on a more gen-
eral class of individualized inference problems that are not cov-
ered by the existing standard kernel smoothing methods, even
though our approach remains under the principle of finding
“similar” individuals; hence, resembles nonparametric kernel
smoothing methods. Major differences, including problem set-
ting, objectives, error in features, aggregation of different source
of information, and theoretical foundation, will be pointed out
throughout the article and will be summarized in the Section 6.
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Another closely related to the recent development is the
individualized fusion learning (iFusion) approach proposed in
Shen, Liu, and Xie (2020). The iFusion approach is developed
under the asymptotic settings that n — 00, ng/ Z,K: Mk =
O(1) and K is large but finite, where ny = |xi| is the effective
sample size for individual k. The requirement that ny — oo
ensures the individual studies are not biased, which permits
Shen, Liu, and Xie (2020) to directly extend the standard the-
ory in the kernel smoothing literature to demonstrate that the
iFusion approach is effective with good theoretical properties
(including consistency, oracle efficiency, and asymptotic nor-
mality) under their assumed setting. Furthermore, the target
neighbor, referred to as clique in the iFusion approach, is defined
only through the parameter space using {ék}’s. The iGroup
approach in this article, however, focuses on a different setting
where each individual has only a limited number of observations
with n = O(1) and infinite numbers of individuals are available
as K — oo, under which i-Fusion is not applicable. A key
development of the proposed iGroup method is that we need to
make the efforts to develop new theories to overcome the biases
from individual estimates, a task that is not covered by the stan-
dard kernel smoothing methods and iFusion. Furthermore, in
addition to borrow information through {ék}, we also investigate
how we can effectively borrow strength from other individuals
when the information sets {zx} and {0, z} are available.

The proposed iGroup methodology has a wide range of
applications. In general, the proposed method can be useful in
situations where there are two sources of information: some
limited amount of data on the individual level and some extra
features that provide similarity measures among individuals. For
example, the situation arises in evaluation of risk scores of com-
panies with their own financial data with additional company
features for borrowing information from similar companies; in
prediction sales volume of many products with short histori-
cal time series with additional product features for similarity
measures; in assessment of treatment effects in health research
with temporal measurements and individual characteristics of
patients; and many others. In this article, we demonstrate the
application of iGroup method in financial risk management and
compare iGroup to some existing approaches. The example is
on improve the individualized inference in estimation of value
at risk (VaR) (prediction of a small quantile value of future
stock return distribution). It is a difficult problem due to the
lack of observations in the tail of the distribution; hence, it is
naturally beneficial to borrow information from other stocks
with similar features or behavior of the specific stock (com-
pany) of interest. Features such as industry sectors and various
financial characteristics can be used. In this article we use the
linear relationship (represented by the coefficients of a linear
model) between the stock returns of the company and the three
Fama-French factors common to all stocks. The Fama-French
Model is a popular model commonly used in finance and the
coefficients reflects the riskiness, size and market perceived
growth potential of the underlying company. Empirical study
shows that, by using the estimated coefficients of the Fama-
French model as the additional information zj in the iGroup
approach, we were able to obtain more accurate and robust
estimator of VaR. For more detailed information about Fama-
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French factors and our iGroup approach, see Section 5. The
observed features and estimates with nonignorable errors are
used to form individualized group to improve inference for the
target individuals.

The rest of the article is arranged as below. In Section 2, we
introduce the general framework of iGroup learning. Section 3
focuses on three different information sets with asymptotic anal-
ysis and theoretical results. Section 4 provides three simulated
studies and Section 5 provides a real application on financial risk
management. Section 6 concludes.

2. General Framework
2.1. Problem Setup

Assume for each individual k € {0,1,2,...,K}, we observe
(xk, zk), where observations x; and zj differ in their utilities.
Specifically, x is the observed data that is directly related to the
parameter of interest 0y at the individual level, with a known
distribution xx ~ p(-|0k). The exogenous variable zj serves as
a proxy that reveals the similarity among 6’s in the population
level. Specifically, we assume that zj is related to an unknown
parameter 3, through an unknown distribution g(-;5;), and
the parameter 6 is an unknown continuous function of », that
is, 8 = g(n), where the function g(-) is not necessarily an
one-to-one mapping. The continuity of g(-) guarantees that
closeness in 7 implies closeness in §. The hierarchical structure
and the relationship among the variables are demonstrated
in Figure 1, where 7 (:) is an unknown (prior) population
distribution of 6, which may be heterogeneous in nature.
Although 7 (-) is unknown and unspecified, it appears in the
calculations when we study the theoretical property of the
proposed approach. The distribution p(-;6x) is known except
the parameter 6, but both the function g(-) and the distribution
q(:;-) are unknown. The role of the exogenous variable zj will
be discussed further in later sections. In some cases z; may
not be available. Without further clarification, all uncondi-
tioned expectations E[-] are assumed to take over all random
variables including 6k, which follows the unknown prior 7 (-).
Posterior expectations on 6 conditioned on certain observed
information are explicitly noted with 7 in the subscript such
as Eﬂ [90|90].

In the VaR example in Section 5, we are interested in the 1%
quantile value gg o; of the underlying return distribution of stock
k, with xy being the recent 100 day’s (assumed to follow the same
distribution but not necessarily independent). The parameter 6%
is go.01 of the stock k at time . The parameter 5, and exogenous
variable zj are the underlying true and estimated Fama-French
coefficients of the returns of the stock in the same period.

01@ ~ W(')v

xi |0k ~ p(-;0k),

x model

Figure 1. Hierarchical structure and parameter diagram.

Ok = g(nk),
Zi|k ~ q(; ).

z model

Denote by Co(e) = {k|(;l(9k, 6 < €k = 0,...,K} an
e-neighborhood (or a cligue) of individual 0, where El(~, s a
distance/similarity measure and € is the threshold value. Thus,
the clique Cy(¢) is a set of indexes of individuals that are similar
to individual 0. In our model development, we impose two
regularity assumptions as below.

Assumption 1 (Dense Assumption). There exists a constant d >
1 such that foralli = 1,...,K, |Co(¢)| < Ke? in probability
when K — 00,¢ — 0.

Assumption 2 (Smooth Parameter Assumption). There exists a
positive constant «, such that for all 6,0" € Qg

sup [p(x;6) — p(x;0")| < «l16 — 6|,
X

where || - || is a metric on Qg.

The dense assumption suggests that individual 0 of interest is
not isolated from other individuals, that is, for arbitrarily small
€, there are a sufficiently large number of other individuals in its
neighborhood as K — oco. The smooth parameter assumption
guarantees that whenever 6 and 6’ are close, the distributions of
x and «’ induced from 6 and 6’, respectively, are close to each
other. Under these two assumptions, it is beneficial to aggregate
information from the neighborhood to estimate 6 since one
can always find sufficient number of similar individuals in the
neighborhood of individual 6. A key consideration in this aggre-
gation is the familiar bias-variance tradeoff—aggregation over a
larger group increases the sample size thus reduces estimation
variance, but it also brings bias.

The model setting shown in Figure 1 can be generalized as
follows: Support x follows an underlying distribution ~ py and
O = 0(px) is a known functional of the underlying distribution
Dk- Assumption 2 insures the smoothness of 6(-) as a function
of px. In addition, we also have 6y = f(#,). Hence, for the
estimation of 6y for individual 0, we can use two sources of
information, x, for pg and 2y for ng. Moreover, because of the
smoothness assumptions of the functions of 6(-) and f(-), we can
borrow information from other individuals with p; similar to pg
and 5 similar to n,, through the use of x; and z;. Note that the
objective is not to estimate the function f(-) though some com-
ponents of the proposed estimator is similar to a nonparametric
estimation of it. The objective to use both sets of information
from other individuals to obtain a more efficient estimator of
6o. For clarity of presentation, we express our estimators and
theoretical results under the setting shown in Figure 1, though
they can be easily extended to cover the more general setting,
with careful treatment of any latent parameters in a parametric
formulation of py, or in a nonparametric formulation of py.

O <—— nx

L

L 2k

diagram
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neighbors of bo
i

0o

o

Figure 2. A one-dimension example in which éo is away from 6. If one naively selects individuals according to éo and ék directly, individuals adjacent to éo, but not those

close to 6, are often selected.

2.2. Aggregated Estimation in iGroup

There are two common methods to aggregate information by
creating “pooled” estimators for 6y. The first approach con-
structs a weighted estimator ééc) (%0, 20, Dx, D) for the target

individual 0, directly using the point estimators 6 of other indi-
viduals based on xi. The second approach aggregates objective
functions My(0) = My(6, xx) of other individuals, where the
point estimator Qéc) is obtained by optimizing an aggregated
objective function. Specifically, these two methods can be for-
mulated as

Zszo ékW(k; 0)

Y o Wk 0)
YR 0wk 0)
Xk

K
(Aggregating objective functions)é(gc) = argminy Z M0, x)w(k; 0), (2)
k=0

(Aggregating estlmatorS)H(C)

1

where w(k; 0) is the weight assigned to individual k when con-
structing iGroup estimator for individual 0. In Equation (1),
we point out that ék = 0O(xy) is a given estimator 6(-) of the
observation x, though we will use 6y for simplicity. In practice,
one can choose either ééc) or ééc) based on the availability of the
point estimator 6 and the objective function M. In fact, the
aggregating estimator in Equation (1) is a special case of Equa-
tion (2) when one uses the squared loss function My (0, xx) =
(6(xx) — 6)%. However, the analytical form of Equation (1) is
more intuitive and easier to analyze. Other loss functions such
as the log-likelihood functions or other functions that leads to
M-estimators can be used in Equation (2). As to be shown in
Section 3, both estimators have similar convergence rate, under
certain conditions on the loss function used. Discussion on loss
function is provided in Section 3.1.

The weight w(k; 0) is crucial for the aggregated estimators
as it controls how much information is borrowed from other
individuals. We propose to incorporate both individual level
estimator 6}, and exogenous observation zj into the weight func-
tion as both can provide useful information of 6. Specifically, let

w(k; 0) = w(Bho 213 60, 20) = Wi (21> 20) W2 O fol20, 21). (3)
The weight is decomposed into two parts. The first part

w1 (2x, 20) measures the similarity between zx and 2y, and can
be a kernel function

w1 (Zk,Z()) = ]Cl <@) > (4)

When K; has a finite support, the weight function has a hard
grouping structure—individuals lying far enough from individ-
ual 0 are not considered at all. Otherwise, it has a soft grouping
structure such that dissimilar individuals are assigned with non-
zero but tiny weights.

The second part w; 6k, é0|zo) measures the similarity
between 0’s. Again, O = 0 (xy) is a function of x. One can view
0y as a low-dimensional summary statistic of the high dimen-
sional observation xj, and w, (ék, é0|zo) = wr (0 (xx), 0(x0)|z0)
in fact measures the distance between xj and xp, through the
function 6(-). However, unlike w; (-), using a distance measure
such as Ko ([|0k — é0||/b2) is not a good practice, since it is
directly correlated with 6y in the welghted average operation
in (1) and (2). It ignores the error in 8y and 6 and 6y may
be biased. Note that when K — o0 and b, — 0, the kernel
concentrates on a smaller and smaller area adjacent to 6. In this
area, aggregating individual §; will not improve the estimation
of fy. An example of one-dimensional case is shown in Figure 2.
Vertical bars mark the locations of 6. When 6y is away from its
target value 6y, a small bandwidth b, tends to give large weights
to individuals in a local region around 6. Aggregating these
individual 6y in such a local region will not correct the bias
b0 — 6o

We propose the following weight function that considers the
distribution p(A|0) instead of the point estimator . Specifically,
let

[ p(@k16)p@Bol6)p(O1z0)do
p(Oklzi)p(Bolzo)

Notice that, the posterior distribution of 6y, given (b0, z0), is

(5)

w2 (O, 00120, 2k) =

(60160, 20) = p(6o,b01z0)/p(Oolz0)
= p(60160)p(Bol20)/p(Bo|20).-

If 6, = 6 (hence provides qseful infogmation about ), then
the predictive distribution of 6, given (6, 2o), is

p@llorz0) = / p@l0)p(©160, 20)d8

_J p(ek|e>p<9o|e)p<9|zo>d9
P(90|Zo)

Thus, the weight function w; (0, Oolz0, z) in Equation (5) is the
Radon-Nikodym derivative between the predictive distribution
p(ék|é0, zp) and the sampling distribution p(ék|zk). As a result,
for any measurable function h(-), we have

E 3y 20 hOOw2 B 0120, 201 = By g 60 TR,
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That is, the weighted expectation of h(f;) under the sampling
distribution p(ék|zk) equals to its expectation under the predic-
tive distribution p(6x|6o, z) if 6x = 6p. This property brings
invariance under different sampling distributions. More impor-
tantly, it shows that the weighted averages, such as Equations (1)
and (2), estimates the expectations under the predictive distri-
bution. This gives the iGroup estimators promising asymptotic
properties as we will discuss later in Section 3.

The shape (thin or flat) of the weight w,(-) as a function of O
does not change with the number of individuals K. However,
the shape is influenced by the variation (accuracy) of 6. The
larger the variance of  is, the flatter the weight function tends
to be. If f is estimated without any measurement error, the
weight wy 6k Oolz0, z) is proportional to the indicator function
Iig, —g,)- It reduces to the case in which the individual estimator

~

6o or the individual objective function My (6) is used without
grouping.

2.3. Evaluating the Weight Functions

The weight function w; (zk, z9) in Equation (4) can be directly
evaluated. Similar to a bandwidth selection problem for kernel
smoothing, one can choose the bandwidth b; for w; (2x, z9) in
Equation (4) by either using the plug-in method (Chiu 1991) or
through cross-validation procedure. The plug-in bandwidth is
proportional to K i (see Section 3). Also, the leave-one-out
cross-validation process gives an empirical optimal bandwidth,
as discussed in Section 3.6.

The evaluation of the weight function w2 Ok, 60120, z1) in
Equation (5) is more complicated, since the conditional prob-
ability p(d|z) and the integral [ p(6o|0)p(Okl0)p(O]z0)d6 are
unknown as the relationship between 6 and z is not explicit. We
propose an approximation method to evaluate w; (65> Oolz0, z1)
below.

Denote the estimator of 0y and the observed exogenous
variable zj as the tuple (ék,zk), k = 0,...,K. To calculate the
weight in Equation (5), we treat them as K + 1 samples from the
joint distribution of (é, z). We use the kernel method to estimate
the conditional probability p(f|z) nonparametrically by

X .
Iz — Zj”) 160 — 6l
K| —2 )k | ——2=
pel)e(t
p(6l2) = . ,
Z’Cl(llz—sz)
j=0 o

where K1, K, are two kernel functions with by, b, as the cor-
responding bandwidths. To estimate the integral in (5), we use
the interpretation discussed above that it is the conditional

distribution p(ék|éo,zo) given 6 = 6p. Hence, we need sam-

ples from the joint distribution of (é, é’,z) observed from the
same individual with parameter 6. However, this is infeasible
because in our problem setting, no two individual share the

same true parameter 6 and for each individual only one 6 is
observed. To generate samples from such a distribution, we

consider a bootstrap method. Denote élgl) and é}EZ) as the two
bootstrap estimators for 6k, obtained by resampling x; with
replacement (not applicable when xj has few observations).

Then (é,gl), é,iz),zk), k = 0,...,K is an approximate sample of

(9,0, z), guaranteeing QAIEI), 922), zj are generated from the same

individual k. Therefore, the integral can be estimated by

f p(@010)p(0k10)p(8120)d0

K llzo— 7l 1o — &1 10k =02
> Ka Ka K3
“ by by b3
120
K o (120= 3l
£ b

j=0

> (6)

where K1,K,, and K3 are three kernel functions with
b1, by, and b; as the corresponding bandwidths. The band-
widths can be selected by either minimizing asymptotic
mean integrated squared error (AMISE) or a rule-of-thumb
bandwidth estimator. This estimation of the integral is an
approximation that requires K to be sufficiently large.

3. Theoretical Results

In this section, we consider several model settings for which
we apply the proposed iGroup method and discuss their cor-
responding theoretical properties, especially in terms of their
asymptotic performance. In particular, we first define a target
estimator ® that minimizes the Bayes risk, and then investigate
the asymptotic performance of iGroup estimators in Equations
(1) and (2) in approximating the target estimator ®,. We also
quantify the bias and variance of iGroup estimators as well as
the target estimator ® in term of estimating 6. Throughout
this article, we consider the asymptotic framework that the
number of individuals K goes to infinity, while the number of
observations for each individual # is fixed and finite.

3.1. Risk Decomposition and the Target Estimator

We are interested in making inference about individual 0, with
given data information Dy, D, that may include the observa-
tions x¢ and z¢ plus information from other relevant individuals.
Let 80(Dx, D) be a point estimator for 6y, which is constructed
with information sets Dy and D,. The iGroup estimator ééc)
in (1) is such an estimator. Similarly, §o(Dx) and 8¢(D;) are
point estimators constructed solely based on either D, or D,.
Under squared loss, the overall risk of §y in estimating 6y can be
decomposed into two nonnegative parts: the expected squared
error of §p in estimating the corresponding posterior mean
and the overall risk of the posterior mean itself, as shown in
Proposition 1.

Proposition 1. Suppose 6y has a prior distribution 7 (-). Under
squared loss, we have the following overall risk decomposition:

E[(80(Dx. D2) — 60)*1 = E[(80(Dx> D) — Ex[folx0, 201)%]
+ E[(Ex[60%0, 20] — 60)*1,
E[(80(Dx) — 60)*1 = E[(80(Dx) — Ex[6olx01)*]
+E[(E[60]x0] — 60)*],
E[(80(D2) — 60)*1 = E[(80(D;) — Ex[6ol20])*]
+E[(Ex[60l20] — 60)*],



where E; [6y]x0, 201, Ex [00|x0] and E, [6y|z¢] are the posterior
means under prior 7 (-) and observations (xy,zg), xp and 2z
correspondingly.

The proof is given in the supplemental material.

Proposition 1 reveals that the overall risk is minimized by
setting 8y to the corresponding posterior mean under the prior
7 (-), which is the population-level (unknown) distribution for
6. Throughout this article, we call the estimator that minimizes
the overall risk the target estimator. More specifically, under
squared loss and different information sets, we denote the target
estimators with

Oo(x0; £2) = Ex[0o]x0], ©Oo(z0;£2) = Ex[6plz0] and
Oo(x0, 205 £2) = Ex[0o]x0, 20]. (7)

Here, ¢, refers to the squared loss. For the ease of presen-
tation, we also use a simple notation ®¢ to represent one
of the Bayes estimators in Equation (7) when its meaning is
apparent.

Similarly, for a general loss function L(6, 6), we define the tar-
get estimator as the Bayes estimator that minimizes the expected
loss, given the available observation on individual 0 and the
prior 7 (-) such that

o (x0; L) = argmingE, [L(,60)[x0],
©o(zo; L) = argmingE; [L(8, 6p)|z0], (8)
®o(x0, 20; L) = argmingE; [L(8, 6p)|x0, z0].

A similar risk decomposition is demonstrated in Proposition 2.
Again, for the ease of notation, we simply use ®g to represent
one of the Bayes estimators in Equation (8) when its meaning is
apparent.

Proposition 2. Suppose 6y has a prior distribution 7(-) and
L(é,@) is a loss function, which is the second-order partially
differentiable with respect to 0 such that L/ (é ,0) = 0L/ 90 and
L”(6,6) = 9*L/3H%. Then for estimator 8, constructed based
on information set Dy, D, or (Dy, D), we have

1
E[L(80,00)] = E]E[LN(®O>90)(80 — ©0)?] + E[L(80,60)]
+ o(E[(80 — ©9)*]),

where © is the corresponding Bayes estimator based on the
same information set as §.

The proof is given in the supplemental material.

The target estimator ®g as a function of xp and zg is not
directly available, because neither the population distribution
7(6p) nor the likelihood function p(zy|6p) is explicitly known
or assumed. The iGroup estimator ééc) in (1) constructed based
on observed finite sample Dy, D, is desired to approach the
target estimator ®9 when more and more similar individuals
contribute to the estimator ééc). See Diaconis and Freedman
(1986) for discussions of target point estimators and target
parameters in the Bayesian literature.
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3.2. Case 1: With Exogenous Variable z Only

In the cases when the individual-level estimator 6 is not reliable
to construct the individual groups, iGroup may be constructed
with the exogenous variable z only. In this case, the correspond-
ing target estimator is defined as follows:

O (z0;£2) = Ex[6o]20], 9

where p(6plzo) x p(z0]6p)7 (6p). Although xp is not used for
grouping and thus does not appear in Equation (9), the data D,
are used in iGroup estimators in Equations (1) and (2).
Recall that the relationship between 0y and 75, is given by a
deterministic relationship
Or =g, fork=0,1,...,K, (10)
where g(-) is an unknown continuous function. Furthermore, zj
is a noisy observation of 1. Since n is a conceptual parameter,
we may simply assume that

Zk =N+ € fork=0,...,K,
where the error satisfies E(¢x) = 0, var(e;) = O'ZZZZ with
Iz =1

Suppose 6 is an unbiased estimator of . Then, the aggre-
gated estimator in Equation (1) with w(0,k) = wi(zo,2k)
becomes
K lzx — zoll '\ 5
Ry (T O
6'9 = (11)

K lzk — 2ol
Zk:OK:< b )

In this specific case, the iGroup estimator is exactly a standard
kernel smoothing estimator, except that zx —z is a noisy version
of the ideal distance measure 5, — 1. As a result, the target
estimator here is ®¢ in Equation (9) which may not be identical
to 6p. The discussion of the variance and bias of ®¢ with respect
to 6y is provided below in Theorem 3.

The boundary and asymptotic conditions/assumptions on
the weight function K and the bandwidth b are summarized in
Assumption 3.

Assumption 3 (Boundary and asymptotic conditions). The kernel
function /C(-) satisfies

K >0, f |[KC(u)|du < oo, | llim ulkC(u) — 0.
uj—0o0

And, in addition, when K — o0, b satisfies b — 0,
K — oo.

Theorem 1. Under the conditions in Assumptions 1-3, we have
é(gc) — O(z0;¢2) in probability.

The optimal choice of the bandwidth is b =< K~/(@+4 such that
the optimal MSE is E[(ééc) — ©g)%] x K~ #/@+9,
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Theorem 1 follows immediately from consistency theorem
on a standard multivariate kernel smoothing estimator (Wasser-
man 2010). When the number of individuals K goes to infinity,
the bias of . with bandwidth b is of order b* and the variance
is of order (b’K)~!, where d is the dimension of z as defined
in Assumption 1. In such case, the asymptotic optimal choice
of bandwidth that minimizes the mean squared error, b* +
(bK)~ 1, is of order K—1/(@+49 same as a d-dimensional kernel
smoothing problem.

Another way of combining individuals is aggregating the
objective functions as shown in Equation (2). A combined esti-
mator with respect to kernel C(-) is defined by

K
~(0) . llzx — zoll
0, = E K| —— | Mr(0).
o arg min, Z < b (@)

The estimator is consistent and has a similar asymptotic perfor-
mance to a d-dimensional kernel smoothing estimator as stated
in Theorem 2. This approach is useful especially when 6y is not
available, such as in the cases that the number of observations
for each individual is less than the number of parameters.

Theorem 2. Suppose the conditions in Assumption 3 hold and
in addition,

1. My () is convex and second order partial differentiable with
respect to 6,
M (0)

29 ] as a function of z is continu-

2. for any given 6, Ey ;[
ous,

3. Eyjz,[Mx(0)] has a unique minimum at 6 = ©¢(zo; £2).

Then

ééc) — ©p in probability.

The optimal choice of bandwidth b is b =< K~Y/@+9 and the
optimized mean squared error is E[(ééc) — ©))?] x K~ ¥+,

The proof is given in the supplemental material.

The above theorems suggest that the individualized com-
bined estimator by aggregating either individual estimators 6
or objective functions My (6) would result in an improvement
in mean squared error and it shares a similar asymptotic perfor-
mance as a d-dimensional kernel smoothing estimator.

When o, = 0, O¢(zp;¢2) = E,[6|z0] = 6y. Hence,
estimating ©( becomes estimating the unknown function g(-)
evaluated at zg. When o, > 0, ® and 6 are in general different.
Let By and V) be the bias and variance of the target estimator
®0(20; £2) in estimating 6y such that

Bo(60) := Egy[O0(20;€2)] — 6o, Vo(6o) = varg,[Oo(zo; £2)].

(12)

The above bias and variance are defined with respect to a
fixed 6y with random zj.

Theorem 3. The asymptotic bias and variance of ééc)

ing a fixed 6, are given by

in estimat-

Eo[671 — 6 = Bo(6o) + Op(b),

o 1
varg, [Géc)] = VO(GO) + op (W) 5

where the intrinsic bias By and the intrinsic variance V{ are
defined in (12).

The proof is given in the supplemental material. In the con-
ditional probabilities, ®y = E,[0y|z0], as a function of zy, is
considered random under a given 6.

The bias and variance of ééc) in terms of estimating a fixed 6
can therefore be decomposed into two parts. The first part (the
intrinsic part) comes from the bias and variance of estimating
®olzo] itself to 6y and the second part comes from estimating ®g
nonparametrically. Since z is observed with error, this is similar
to error in variable problem where certain intrinsic bias cannot
be avoided (Carroll, Ruppert, and Stefanski 1995; Wansbeek and
Meijer 2000; Bound, Brown, and Mathiowetz 2001; Fuller 2009).
Such intrinsic bias and variance are asymptotically linear of o2,
which is the noise level of zx, as shown in Theorem 4. Especially,
when o2 is exactly zero, all intrinsic terms vanish, and it reduces
to the exact case when ®g = 0.

Theorem 4. Suppose g(-) is second-order differentiable and the
distribution of € has finite higher moments. Then, for a fixed
6o, when azz — 0,

The proof is given in the supplemental material.

Research in nonparametric regression with error in variable
shows a slower convergence rate to recover the function 6y =
g(n) atany given 5 (Stefanski and Carroll 1990; Fan and Truong
1993). Our problem is different. We focus on providing a point
estimator of 6y = g(n,) without knowing 75,, but its noisy
version zg. Even if we know the function g(-) precisely, 6y is
not known as we do not observe 9. When considering an
individual with fixed but unobserved (6o, 1), it is difficult to
choose an optimal bandwidth by bias-variance optimization
with the nonzero intrinsic terms in Theorem 3, because in this
case the asymptotic mean squared error (By + Op(b*)* +
Vo + Op((Kbd)_l) may not have a local minimum. However,
if we assume the target individual 0 is randomly chosen from
the population, the target estimator ®g is the estimator that
minimizes the overall risk under squared loss, that is, a Bayes
estimator, because it minimizes the squared loss pointwise for
any zo. Furthermore, immediately from Theorem 1, ééc) is a

consistent estimator for ®¢. The overall performance of ééc) for
all individuals of the population could be optimized by choosing
a proper bandwidth b as stated in the following Theorem 5. It
provides a way to optimize the bandwidth globally.

Theorem 5. Assume Assumptions 1-3 hold, then the estimator
ééc) has the following Bayes risk under squared loss:

o 1
E[(B," — 60)"] = Ro + Op(b") + O, (@) ,
where

R() = Var[®0 — 90]

is the risk of the Bayes estimator ®9 = E;[0|z¢], and all
above expectations is taken over all random variables assuming
an empirical population distribution 7 (-) for 6y. The optimal



choice of the bandwidth b is b < K!/@+4) with the correspond-
ing overall risk Ry + O 1 ( K4 (d+4)).

The proof is given in the supplemental material.

The magnitude of the measurement error of zx, measured
by o2, compared to that of the individual estimation error is
crucial for the performance of the iGroup method. The bias and
variance of iGroup estimator increase when 022 increases (see
Theorem 4). And the asymptotic Bayes risk Ry also depends on
2. When iGroup is based on unreliable z, it could result in
a worse estimator compared to the one without any grouping.

This phenomenon will be demonstrated in Section 4.

Remark: Results in Theorems 3-5 can be generalized to the
iGroup estimator ééc), which combines the objective functions,
except that the target estimator changes from E;[6|zo] to
arg miny[E; [M(6)|z]. As shown in (A.1) in the supplemental
material, ééc) is asymptotically a kernel smoothing estimator
with the same bias and variance rates.

3.3. Case 2: Without Exogenous Variables

In this case, we assume the exogenous variable z is not available.
Our target estimator is ®g(x;£2) = Ex[6p|xo] under squared
loss and is ®¢ (xp; L) = argmin,E; [L(6, 6))|xo] under a general
loss function L. The iGroup estimation depends solely on 8. The
weight function (5) used in Equations (1) and (2) now reduces
to

J p©0rl0)p(Bo)0)7 (6)do
[ p@l6) 6)d6 [ p(6ol6)7(6)d6’

w1 (O, o) =

where 7 (0) corresponds to the unknown distribution of 6 in the
whole population. As discussed in Section 2.3, an estimation of
this weight function can be achieved by kernel density estima-
tion on the bootstrapped samples (é,ﬁl), OA,EZ)).

The weight function (13) is used to aggregated individual
unbiased estimators to the posterior mean, and to aggregate
objective functions M : Qg x 2y — R to the corresponding
Bayes estimator under certain loss function, as shown in Theo-
rems 6 and 7.

TheoArem 6. Suppose w; (ék, éo) is defined as in Equation (13)
and 0 is a sufficient and unbiased estimator of 6 for all k, then
as K — oc:

é(gf) — O(xp;€2) in probability.

Furthermore, if E@O [w%(ék,éo)] < oo for any fixed éo and
E,[6%] < oo, then

VK@ — ©9) = 0p(1).
The proof is given in the supplemental material.

For the aggregated estimator (2), suppose the objective func-
tion M : Qg x Q¢ — R used satisfies

/ M@©,0)p@10")db = L(6,6") + C©'), (14)
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where L is nonnegative and L(0,6) = 0 for all 8, and C is con-
stant with respect to 6. Then L is the loss function corresponding
to M, under which the target estimator is

@0(x0;L) = arg min9 /L(@,eo)p(éo|90)ﬂ(90)d9().

For example, if the objective function M is the negative log-
likelihood function M(0,0) = — log p(é |6), then the corre-
sponding loss function L(6,6’) is the Kullback-Leibler diver-
gence of the given parameters.

Theorem 7. If for any given 6, M(6,60) as a function of 6 is
convex and the second-order differentiable, then the combined
estimator ééc) using the objective function M converges in prob-
ability to the target estimator under the loss function L as K —
00:
K
ééc) = argmin, Z wz(ék,éo)M(Q,ék) i) Oo(x0;L).
k=0

Furthermore, if Eéo[wz(ék,éo)Mé(Go,é)]z < oo for any
fixed 6y,
VK@ — ©9) = 0p(1).

The proof is given in the supplemental material.

The finite second moment conditions in Theorems 6 and 7
are satisfied in most cases. Both Theorems 6 and 7 assume an
accurate estimation of the weight w» (ék, o) (with an error rate
smaller than O, (K~'/2). With the accurate weights w 0, 00),
both iGroup estimators have faster convergence rates to the
target estimator ® than the nonparametric one in Theorems 1.

When no accurate estimations for w; (ék, éo) are feasible, we
proposed an approximate estimator for w» (Ok» Bo) in Section 2.3,
using a set of bootstrap samples (é,gl),élgz)) fork = 0,...,K.
When z is not available, the integral [ p(8x|0)p(0o|60)7 (8)d6
can be estimated by a kernel density estimator in a lower dimen-
sional space:

.
1 & (18 -y
K+14&™ by
j=0

102 — ol
b ’

2

where K1 and K, are two kernel functions with by, b, the
corresponding bandwidths. The bootstrap estimation of the
weight w (01, 0o) hasa nonparametric error rate O, (K - (d/+2))
where d’ is the dimension of 6. This inaccuracy gives rise to the
final error rate in Theorem 6 and 7 such that for ééc) (or é(gc))
constructed based on #; (6, Op) with error rate Op(K™Y @+2)),
059 — @o(x0;£2) = Op(K™Y/@+2) and 610 — Op(xp;L) =
Op (K~1/@+2)) Both are slower than O,(K™1/2).

The performance of the target estimator ®g(xp;€3) in
estimating 6y strongly depends on the accuracy of individual
level 6. Define the bias and variance of the target estimator
O (x0; £2) = Exr [6o]60] by

Bo(60) = Eg,[®0(x05 £2)] — 60,

Vo(6o) = varg,[®o(x0; £2)]. (15)

Suppose 0o = 6 + Zo with E[Zg] = 0 and IE[;OZ] = 092. Similar

to Theorem 4, By and V| are of order 092 when %2 — 0.
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Theorem 8. Suppose o has finite higher moments. Then, when
092 — 0, the bias and variance of the target estimator ®g(xo; £2)
with respect to a fixed 6 are

where By and V) are defined in Equation (15).

The proof is provided in the supplemental material.

When 6 is exact such that oy = 0, the target estimator equals
to the true parameter 6 as the weight function w; (ék, 0o) assigns
zero weight for all other individuals except individual 0. Similar
results hold for the target estimator ®g(x; L).

3.4. Case 3: The Complete Case

When both § and z are available and reasonably accurate,
we should use both information to improve the inference via
grouping. Assuming 0 is sufficient for 6y, the target estimator
is Og(x0,20;42) = Eg [90|éo,zo] under squared loss and
®o(xp,20;L) = argmingE, [L(9,00)|éo,z0] under other loss
function L. The following results are based on a combination of
both information.

Theorem 9. Suppose y is a sufficient and unbiased estimator
for 0y, and ééc) is a combined estimator as in Equation (1) with
the weight functions (3)-(5), where /C(-) is a kernel function
satisfying Assumption 3. Then under Assumptions (1) and (2)

é(gc) — ©g(x0,20;£2) in probability.

With the optimal bandwidth b chosen to be b < K!/(@+9  the
optimal mean squared error is E[ééc) — O x K~¥@+),

The proof is given in the supplemental material.

Let M(6,6) be the corresponding objective function as
defined in Equation (14). We have that the aggregated estimator
(2) based on the objective function M(6,6) converges to
the target estimator ®g(xp,zo; L) as shown in the following
Theorem 10.

Theorem 10. If for any given 6, M(6,0) as a function of 6 is
convex and second-order differentiable, then under Assump-

tions (1) and (2), the combined estimator 69 using the objective
function M satisfying (14) converges to the target estimator:

K
ééc) = argminy Z w(ék,zk;éo,zo)M(Q,ék) i) Oo(x0,205L).
k=1

With the optimal bandwidth b chosen to be b = K!/@+49) the
optimal mean squared error is E[ééc) — O] x K~¥@+h,

The proof is given in the supplemental material.
Define the bias and variance of the target estimator
Oo (0 205 £2) as
By(6o) = g, [O0(x0, 205 £2)] — 6o,
Vo(6o) = varg,[®o(x0, 205 £2)]. (16)
The asymptotic rate of By and Vj as o or o2 approaches zero is
shown in Theorem 11.

Theorem 11. Suppose g(-) is the second-order differentiable and
€k and ¢i have finite higher moments. If By and V) are as defined
in Equation (16), then

(i) for afixed 022, when 0‘6% — 0,

The proof is provided in the supplemental material. The bias
and variance of the target estimator is of the order of the more
accurate one between zo and 6. Especially, when either is exact
such that > = 0 or 07 = 0, the target estimator equals the true
parameter 6.

3.5. Further Results on Risk Decomposition

Let ééc) be an iGroup estimator as defined in Equation (1) based
on information sets {z}, {#}, or {0, z} as in Sections 3.2, 3.3, and
3.4, respectively. Let ®¢ be the target estimator in any of the
three cases: ®(xo; £2), ©¢(20; £2), or B¢ (xp, z0; £2), depending
on the information set used in é(gc) . We have ééc) — g in
probability. When both 6 and z are available for all individuals,
the overall risk of ééc) under the prior 7 (0) can be decomposed
into three components as shown in Proposition 3 as an extension
to Proposition 1.

Proposition 3. Suppose ééc) is an iGroup estimator as defined in
Equation (1) with the target estimator ®¢. Then

R(é(gC)) = Rnp (é(gC)) + Rtarget(®0)>

where R(ééc)) = E[(ééc) — 6)?] is the overall risk of ééc) under
squared loss and prior 7 (), and

Rup(05) = EI(B° — ©0)?],
Riarget (©9) = E[(©g — 6)*]

are the risk components from the nonparametric estimation and
the target estimator itself, respectively.

Furthermore, assuming both x and z are available, for ® =
®p(x0; £2) or ®g = Og(zp; £2), which only uses partial infor-
mation, we have

Rtarget(®0) = Rinf(®o) + Ry,

where Rins(®9) = E[(©g — Og(x0,20; £2))?] is the risk pre-
mium resulting from using partial information, and Ry =
E[(O¢(x0, 20; £2) — 6)?] is the overall risk of ®¢(xg, zo; £2).

The proof is provided in the supplemental material.

The decomposition in Proposition 3 reveals a guideline to
optimize the iGroup estimator. The overall risk of iGroup esti-
mator ééc) can be decomposed into two parts: one from the
nonparametric estimation of the target estimator and the other
from the risk of the target estimator itself. The risk component
Ry involves the bandwidth b in the nonparametric estimation.



The corresponding optimal bandwidth is chosen as in a high-
dimensional kernel smoothing problem (see Theorems 1, 5, and
9), since the bandwidth does not appear in the other risk terms.

The risk component Riyger evaluates the performance of
the target estimator. Different choices in constructing iGroup
weight correspond to different ®¢’s. Such difference is revealed
by decomposing Riarget into two parts: Ry is the risk term aris-
ing from using partial information and Ry is the risk of the target
estimator ®g(xo, 20; £2), which incorporates the full informa-
tion set. Since Rj,¢ obtains its minimum at ®¢ = O (xg, zo; £2),
it is always (asymptotically) optimal to use the full information
set {#,z} in grouping, if both are available as in the complete
case. On the other hand, if § (or z) is extremely noisy such that
O9 = Exlbolzo] ~ Ex[60l60,20] (or ©®g = Ex[6h]60] ~
E[60160,z0], respectively), it is more practical to use z only
(or @ only, respectively) for grouping, since it will have similar
performance but less computational cost, and finite sample vari-
ation.

The last risk component Ry is the minimum overall risk
one can achieve. In our approach, such a minimum risk can
be asymptotically reached when both § and z are included in
grouping and the number of individuals K approaches infinity.
When 8 or z is exact, ®o(x0,205¢2) = E, [90|é0, zo] = 6pand Ry
is 0. In this case, all iGroup estimators in Equation (1) converges
to 6p. The three risk components of different iGroup models are
compared in Table 1. Note that the rate of R;;, for Case 2 assumes

an accurate evaluation of the weight function w, (b1, 60).
Similar to Proposition 3, the risk decomposition for the

iGroup estimator ééc) in Equation (2) is provided in Proposi-
tion 4 as an extension to Proposition 2.

Proposition 4. Suppose the loss function L is as defined in
Equation (14). The iGroup estimator ééc) is defined in Equation
(2) with the target estimator ®g. If L(é, 0) is the second-order
partially differentiable with respect to 6 such that L'(9,0) =
dL/30 and L"(9,6) = 9%L/062, then

RO?) = Rup(B5?) + Ruarget (B0) + 0BG — ©9)?]),

where ﬁ(ééc)) = E[L(ééc), 09)] is the overall risk of ééc) under
loss L and prior (), and

~ ~ 1 ~
Rup(By”) = SEIL" (€0, 60) (6 — ©0)*],
Riarget (©0) = E[L(®o, 00)),
are the risk components from the nonparametric estimation of

the target estimator and the target estimator itself, respectively.
Furthermore, assuming both x and z are available, for any

Table 1. Comparison of the three risk components in different iGroup cases.

iGroup Set Rnp Rtarget
Rin Ro
Case 1 (2} = K—4/d+4) >0
Case 2 {6} = K1 >0 same value
Case3 {0,2) = K—4/(d+4) =0
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@0 = ®O(ZO;L) or @0 =
information, we have

®o(x0; L), which only uses partial

Rtarget(@)o) = Rinf(®0) + RO,

where Ry = E[L(O0(x0, 205 L), )] is the oyerall risk of
O (x9,z0; L) and Riyr(®g) = E[L(®g,6y)] — Ry is the risk
premium resulting from using partial information.

The proof is given in the supplemental material.

3.6. Bandwidth Selection and Other Practical Guide

For real applications, the bandwidth b in the weight function
(4) remains to be tuned. Ideally one would perform bandwidth
selection to the target individual 6,. However, cross-validation
cannot be implemented to determine b with only one estimator
ééc) for a single individual. Instead, we consider a set Q( around
target individual 0 such that the bandwidth b is tuned to mini-
mize the averaged risk over Q.

When € is chosen as the full set {1,2, . .., K}, it is the global
bandwidth selection scheme that usually used in kernel smooth-
ing and machine learning. However, the bandwidth selected by
such global optimization is not optimal for the particular target
individual 0. A cross-validation set ¢ localized to individual 0
is more appreciated to tune this individualized local bandwidth.
When tuning the bandwidth in w; over zx’s, such a set g can be
constructed based on zy such as Q¢(zg,¢) = {k € {1,...,K} :
llzo — zkll < €}.

Suppose 6y’s are available and the individual estimators are
aggregated to form an iGroup estimator as described in Equa-
tion (1). The goal is to choose a bandwidth b that minimizes the
local risk function over €2 (under squared loss) around 6

1 ~
Ray(®) =E | 1o >0 - a)*
0 kEQo

The cross-validation error we use is computed as
2
A(C) ~
(9(—10 B 9k> ’

where é((i)k) is the leave-one-out estimator defined by

1
CVgq (b)) = —
Q0 (b) |Q°|kego

6O  _ Zl;ek Orw(ls k)
(=k) Zl;ék w(l; k)

It is worth to point out that although the cross-validation set
Qo islocalized/individualized, the leave-one-out estimators (17)
still use all individuals instead of limited to 2.

It is seen in Proposition 5 that the leave-one-out cross-
validation can estimate the local risk over ¢ up to a constant
and hence be useful.

17)

Proposition 5. Suppose 6k is an unbiased estimator for 6y for all
k=1,...,K and the weight function w(l; k) satisfies

w(k; k) ( 1)
= =0|—=]). 18
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Then
1
E[CVgq,(b)] = Rq,(b) + Cq, + O <E> ,

where Cgq is related to ¢ but is a constant with respect to b.

The proof is given in the supplemental material.

Remark I: A sufficient condition for the weight function to sat-
isfy (18) is that the function is bounded. With bounded weights,

we have
— Wk k) =0 i .
KEw(-; k) K

Common kernels such as the boxed, Gaussian and Epanech-
nikov kernels satisfy this condition. Our choice of weight func-
tion (5) with a bounded kernel K satisfies the condition as well.

w(k; k)
217&]( w(l; k)

Remark II: Similar results hold for aggregating objective func-
tions (2) as long as the objective function is convex and second-
order differentiable, and a Taylor series expansion is available.

Beside the theoretical discussions on iGroup’s asymptotic
performance, there are many other factors that may affect the
accuracy in real applications with finite number of individu-
als. First of all, the weight component w;(-) is estimated from
bootstrapped samples. It lowers the convergence rate since boot-
strapped samples from finite population are usually correlated.
Second, computing the full weight function requires a kernel
density estimation in a high dimensional space. When K is finite,
aggregating individuals with weights evaluated directly from a
high dimensional space suffers from the lack of sample size. It
often requires some feature selection procedures to reduce the
dimension.

Therefore, when the weight estimation is not accurate and
when the sample size is limited, the complete case may not
be the best choice. In real application, we suggest using (local)
cross-validation to tune the bandwidth and to choose the most
appropriate weight formulation.

4. Simulations

4.1. iGroup With Noisy Exogenous Variables (Case 1 in
Section 3.2)

In this example, the performance of using an exogenous variable
z in iGroup is studied. Suppose, for each individual, the true
parameter 0 is a quadratic function of #:

O = g(nk) = (e + D%

The relationship is set to a quadratic form because a continuous
function of z can be approximated by a quadratic function
within a small enough neighborhood of zy. A population of size
K = 1000 is generated with their n;’s following a Gaussian
distribution N (0.2, 1). For each individual k, let ék be a suffi-
cient unbiased estimator of 9 using xx such that Oy is directly
generated with error € ~ N(0,72 = 1) and there is no need to
generate xi explicitly. zx is a noisy observation of 7 such that
zk ~ N(ng,0%).

More specifically, the dataset is generated by the following
hierarchical structure:

O = (nx + 1?2,
zx ~ N(pp, %),

Nk ~ N(0.2,1),
Ok ~ N6, 1),

for k = 1,...,K. The estimator in Equation (11) is used by
setting /C(-) to the Gaussian kernel.

The parameter o2 controls the noise level in the observed z.
Both individualized performance at 8y = 1 and the overall per-
formance over the population are studied at six choices of noise
levels 0 = 0,0.2,0.4,0.6,0.8, and 1.0 with 1000 replications
each.

The in-sample performance of the iGroup estimators are
demonstrated in Figure 3. The first row shows the bias, variance
and mean squared error for the individual at 6y = 1, while the
second row plots the overall performance by averaging individ-
ual performance over the population. Every curve represents a
performance measure (bias, variance or MSE) as a function of
the bandwidth b used in weight calculation in Equation (4) and
six different curves distinguish different noise levels o-2.

From Figure 3, it is seen that an increase in the noise level in
zj increases both the bias and variance of the iGroup estimator.
When o > 0, an intrinsic bias is observed for individual 0
when the bandwidth shrinks to zero, while at the population
level, the average bias vanishes when the bandwidth shrinks to
zero as the iGroup estimator converges to the target estimator
®o(z0;£2) = Ex[6p|zo], whose expectation is E;[6y]. Recall
that the individual estimate 6 without grouping has a risk 72 =
1.0 by the simulation design. It is marked on the right panels
by the horizontal line. When the noise level o exceeds 0.4,
both the individual- and population-level risk are worse than
using 6 directly without grouping. Smaller noise in z; would
significantly reduce the risk of the iGroup estimator.

In real applications, the performance plots such as Figure 3
are not available without knowing the true parameter. As
suggested in Section 3.6, an optimal bandwidth can be selected
by leave-one-out cross-validation. We simply use the global set
Qo = {1,...,K} to tune the bandwidth. Figure 4 compares the
mean square errors of three different estimators under different
noise-level settings for 2. The individual-level estimator uses
6k, which achieves a constant MSE at 72 = 1. The population-
level estimator uses the averaged estimator (D ;_, ) /K,
assuming population homogeneity. The iGroup estimator
uses the estimator (11) and selects the optimal bandwidth
by leave-one-out cross-validation over a grid of bandwidths.
The population-level estimator is always the worst because
the homogeneity population assumption is invalid in this
simulation. The overall MSE of the iGroup estimator is a
monotone increasing function of the noise level o, because
the intrinsic bias and variance increase with o. The iGroup
estimator outperforms the individual estimator when o is below
the threshold o = 0.35. It also suggests that the iGroup method
works better when more accurate exogenous variable z is used.

4.2. Short Time Series (Case 2 in Section 3.3)

In this simulation study, the individualized grouping learning
method is applied to a set of short time series without any
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Figure 3. Bias, variance, and mean squared error as a function of bandwidth under different noise levels for individual 0 (top) and the population (bottom)
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Figure 4. Overall MSE of three estimators: individual level, iGroup with cross-
validation, and population level.

exogenous information. It is a simulation study for Case 2 in
Section 3.3. Suppose we have K = 200 time series following
an AR(1) model. Their AR coefficients 0y, .. .,0,90 are drawn
randomly from a beta-shaped distribution on [—1, 1] such that

O+ 1
ket k=1,...

~ Beta(4,4), ,200. (19)
The length of each time series is 10. They are generated from

their stationary distributions

02

w0~ N [0, —2—
k0 1-02

>

Xkt = Okxpp—1 +€ky, k=1,...,200, t=1,...,10,

where €, ; ~ N(0,02) and o = 3.

Four estimators are used and their mean squared errors aver-
aged over the 200 individual time series are compared. The indi-
vidual level estimator is based on each time series of 10 observa-
tions and does not borrow any information from the others. It is
an unbiased estimator for each individual. The iGroupl estima-
tor aggregates the log-likelihood functions according to Equa-
tion (2), where the weight function used in Equation (13), which
is estimated by bootstrap samples. The bootstrap estimates are
obtained based on multinomial samples of (x;—1,x;) pairs for
each individual. The bandwidth used in estimating w» (0, 0o) in
Equation (13) is chosen by cross-validation as in a kernel density
estimation problem. The iGroup2 estimator aggregates individ-
ual level estimators by the weight function in Equation (13),
the same weight function as in the iGroupl estimator. These
three methods do not use the true prior distribution. The fourth
estimator, the oracle one, uses the posterior mean as the estima-
tor with the true population prior (19) as the prior. The oracle
estimator, which is the best point estimator for 6 given the prior
information 7 (-), is the target estimator ®g(xp; £2) for iGroup
methods.

The simulation (including generating the data) is repeated
100 times. The boxplots of the mean squared errors of the
four estimators are reported in the left panel of Figure 5. On
average, the iGroupl and iGroup2 estimators achieve smaller
mean squared errors and smaller variances compared with
the individual one. The oracle estimator is the best among
those four with the smallest average error and variation.
The iGroup estimators are quite close to the oracle one. The
slight worse performance is due to the approximation error
when constructing the weight functions. Between the two
iGroup estimators, iGroup2 is slightly better than iGroupl
because the loss function used in iGroup2 is the squared
loss, whose overall risk is minimized by aggregating 6; (See
Theorem 6).
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Figure 5. Comparison of the averaged MSE over 200 individuals on 100 replications for four estimators
Table 2. Mean squared error for the experiment in Section 4.3 in different configurations.
Configuration n 2= aXZ/n o iGroup() iGroup(é) iGroup(z) iGroup(z, é)
1 5 0.20 0.10 0.200 0.163 0.044 0.154
2 5 0.20 0.15 0.200 0.163 0.090 0.163
3 5 0.20 0.20 0.200 0.163 0.137 0.170
4 5 0.20 0.30 0.200 0.163 0.200 0.179
5 10 0.10 0.10 0.100 0.089 0.048 0.059
6 10 0.10 0.15 0.100 0.089 0.089 0.070
7 10 0.10 0.20 0.100 0.089 0.099 0.077
8 10 0.10 0.30 0.100 0.089 0.100 0.084
9 20 0.05 0.10 0.050 0.046 0.044 0.040
10 20 0.05 0.15 0.050 0.046 0.050 0.044
1" 20 0.05 0.20 0.050 0.046 0.050 0.045
12 20 0.05 0.30 0.050 0.046 0.050 0.047

The right panel in Figure 5 plots the improvement (dif-
ference) of the mean square errors of the iGroup estimators
and the oracle estimator over the individual estimator for the
100 replications. It shows that in all experiment replications,
the mean square errors of the iGroup estimators are uniformly
better than the individual one. Estimation does benefit from
individualized grouping in this case.

4.3. A Combined Case (Case 3 in Section 3.4)

In this simulation, we compare the performance of different
iGroup estimators constructed on different information sets
when both 6 and z are available as in Case 3 discussed in
Section 3.4. Consider a population with n = 1024 individuals
as follows:

nk ~ N(0, 1),
zk ~ N(p, o),

O = sin(wnk),

2
xk,1>xk,2) .. ’xk,}’l ~ N(eka Gx))

for k = 1,...,1024. 0 is the parameter of interest. Individual
estimator used is

R
O = ;Z;xk,iforkz 1,...,1024.
i=

Four approaches are investigated here as special cases of the
iGroup method. iGroup(#) is the individual estimation without
grouping, that is, using 6 as the estimator. iGroup(z) uses
the exogenous observation z only for grouping and an iGroup
estimator is obtained by aggregating s using w) (2, zo) in
Equation (4), where the bandwidth b is selected by leave-one-
out cross-validation. iGroup(d) uses 6y only for grouping, using

wy(6,0) in Equation (5) as the weight function. The weight is
approximated by kernel density estimation on the bootstrapped
samples with bandwidth selected by cross-validation. And lastly,
iGroup(z, §) uses both z and @ for calculating the weight func-
tion w(zk, Ok; 20, 0o) in Equation (3) as discussed in Section 3.4,
with the bandwidth selected by leave-one-out cross-validation.

Several different (n,0,0y) configurations are studied. The
mean square errors are reported in Table 2. The smallest MSE
across the different methods is shown in bold face for each
configuration. From Table 2, it is seen that in Configurations 6
to 11, using both z and 0 outperforms the other three methods.
However, it is worth to point out that it is not always the best.
When z is relatively accurate and 8 is not so as in Configurations
1, 2, 3 and 5, using z alone is better than involving 0 in the
grouping. The reason is that the weight function used in the
estimation is an approximation based on bootstrap sampling,
which is not accurate when the sample size 7 is too small (as dis-
cussed in Section 3.6). It is also intuitive since using inaccurate
6 for grouping may reduce the grouping quality. When z is quite
noisy as in Scenarios 4 and 12, using 6 only is better than using
the complete information set. Note that when the bandwidth in
w1 (2k, 20) shrinks to zero, iGroup(z) reduces to the individual
estimator and the complete estimator iGroup(z, #) reduces to
iGroup(é). However, due to the randomness from finite sample
size and possible overfitting, iGroup(é) or iGroup(z) sometimes
performs better.

In conclusion, we suggest the following brief guideline in
choosing iGroup models. When 6 is relatively inaccurate and
the bootstrap method has unignorable error, it is better not to
use 6 in grouping. When z is relatively inaccurate, it is better to



either use 6 only or use the full model. But when using the full
model, the bandwidth needs to be tuned carefully around zero.
When both 6 and z are considerably accurate, it is beneficial to
consider both in grouping.

5. VaR Analysis Based on Fama-French factors

In this example we use iGroup to improve the estimation of
VaR in stock returns. Denote the return of stock k in day ¢ as
1t k. The one-day VaR of r.x, denoted as VaR(t, k), is defined
as the smallest quantity v such that the probability of the event
rey1k < —visno greater than a predetermined confidence level
o (for example, 1%). Statistically, —v is the o quantile of 741 .
VaR is widely used in quantitative finance and risk management
to estimate the possible losses in worse cases (e.g., 1% lower
quantile) due to adverse market moves. Typically VaR(t, k) is
estimated (predicted) based on all observations from t — S + 1
to t (the look-back period). When a parametric (time series)
model is used, VaR(¢, k) is often estimated as the a-quantile of
the one-step ahead predictive distribution. It requires a strong
model assumption. Nonparametrically, VaR(t, k) is often esti-
mated as the o-quantile of the marginal distribution, assuming
the distribution does not change within the look-back period.
The nonparametric approach is usually difficult to use because
it requires a large sample size to estimate small quantiles accu-
rately, but the market conditions change over time hence one
cannot use a long look-back period.

We compare the three iGroup approaches with three baseline
approaches.

5.1. iGroup Estimation

The three Fama-French factors (MKT, SMB, and HML) are
widely used to describe the behavior of stock returns (Fama
and French 1993), extending the celebrated capital asset pricing
model of Markowitz (1952). Here, MKT is the excess market
return, the average return of all stocks in the market; SMB is
the size factor, measured by the difference of returns of the
portfolios consisting of the smallest 30% and the largest 30% of
stocks in the market, respectively, in terms of their market value;
and HML is the book-to-market ratio factor or value risk factor,
measured by the difference of returns of the portfolios consisting
of the highest 30% and the lowest 30% of stocks, respectively, in
terms of the ratio of their book value to market value. Book value
is the total accounting value of all assets of the company, while
the market value is the total outstanding share of stock times its
current market price.

The Fama-French three-factor model (Fama and French
1993) assumes

Ttk = Qpk + 1f + bork(MKT; — r¢) + by 1 xSMB;
+ by HML; + €1k,
et,k ~ N(O) 01(2)1
where 7y is the risk-free interest rate. The Fama-French model
links the return of individual stock to the three factors. The
corresponding coefficients reflect certain characteristics of the

behavior of the stock. For example, if by is large, then the
return of stock k tends to amplify the market return (both
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positive and negative returns). If by ; x is positive, then the stock
k tend to have positive return when the current condition favors
small stocks (when SMB is positive, or small stocks outperforms
large stocks). Although typically large stocks have positive by ¢k,
it is not always true. Hence the b, ¢ provides a more direct link
between the size factor and the return of the stock than the
size of the stock itself. Similarly, b, provides a link between
the book-to-market ratio and the return of the stock. If by,
is positive, then the stock tends to do worst when the market
favors growth stock (when HML is negative, or growth stocks
with small book value but large market value outperforms the
value stocks). The daily Fama-French factor data can be found
at Professor French’s publicly available data library.

Here we assume the Fama-French coeflicients by, b1, and b,
vary over time slowly and can be estimated using data in the
look-back window (t — S + 1,t). Corresponding to iGroup
framework demonstrated in Figure 1, we view the true Fama-
French coefficients as 5 and view the estimated ones (with error)
as the exogenous variable z since we assume that the one-day
VaR is related to the Fama-French coefficients but the exact
relationship is yet known. A misspecification of the relationship
between Fama-French coefficients and the one-day VaR may
lead to unsatisfactory results as we will show later with a typical
quantile regression model. We use the empirical ¢-quantile of
the returns in the look-back window (t — S+ 1, ¢) as 6 such that

S—1
ét,k = Qqu (U{rt—s,k}> >

s=0

(20)

where Qu(-) is the empirical @ quantile given a set of
observations.

We consider three iGroup estimators: iGroup(z), iGroup(é),
and iGroup(z, ), as specified and discussed in Section 3. All of
them take the general formulation of

K S§-1
QY (U e wits k)})

I=1 s=0

VaR(t, k)

K
= argmeinZMk(@; Hw(l k), (21)

I=1

where Q&W)(o) is the empirical « quantile estimator from a
weighted sample and

S—1

M (051) = Z Iri—sk — 01 (@1gr,_ >0y + (1 — ) 1gr,_,<6})
s=0

is the quantile estimation equation. Depending on the informa-
tion set used, different weight functions w(l; k) are used, either
based on solely on z, solely on § or on both as discussed in
Section 3.1. We need two weight functions w; and w;.

Using the Fama-French coefficients as z, the weight function
w1 (+) here is chosen to be a Gaussian kernel

2
_ lze; — Zt,k||2>

Wi (241 Z1k) X exp < 22

where the features z;x = (bo k> b1,14 b2, k) are the estimated
Fama-French coefficients of stock k using the returns in the S
days before day t. The bandwidth b is the parameter to be tuned.
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For the weight function wy(-), the stochastic distance
between 6, ;s are computed using a slightly modified version
of the bootstrap method proposed in Section 2.3, since the
bootstrap samples of the extreme values are not stable. Instead
of using the standard bootstrap samples, we obtain two values
of the quantiles é,,k and ét/)k from the same stock, but with
two different time frames. Specifically, for stock k at time t,
in addition to one quantile value as in Equation (20) using
data {r;_sx,s = 0,...,8 — 1}, another quantile value o' is
obtained using data {ri_s,s = 0.5S,...,1.558}. The time
frame in calculating 6 has 0.5S days overlap with 6 for

stability purpose. With two samples 6, and ét’ i the weight

w, (01, Ok) can be obtained with Equation (5) in association with
Equation (6).

The three iGroup estimators: iGroup(z), iGroup(é), and
iGroup(z,) are then constructed using Equation (21) with
w(k,l) being wi(zk,21), w2(0k,0)), and wi(zk, z)w2 (6, 0)),
respectively.

5.2. Baseline Methods

We compare the iGroup methods with the following three based
methods. The quantile regression method is built upon the same
Fama-French model and it is used compare with iGroup(6) and
iGroup(z, 6 ). The other two methods, individual VaR estimation
and Market level VaR approach, are compared with iGroup(z).

Quantile Regression: For comparison, we use a quantile
regression version of the Fama-French model to obtain the VaR
prediction. Assume on each day ¢ and stock k, the «-quantile of
the excess return r;x — 7 follows

Qu(k,t) = arj + bot k(MKT;—y — 1f)

+ b1,k SMB;_1 + by HML;_;.
In the above we use the Fama-French factors at t — 1 in order
to perform one-day prediction of the quantile. By assuming the
quantile regression model changes slowly over the past S days,
the quantile regression can be estimated (Koenker and Bassett
1978; Koenker 2005). The estimated one-day VaR (for day t+1)
at day ¢ is given by

VaR(t,k) = —x{ Brse
where x; = (1, MKT; — r, SMB;, HML;) contains the constant
1 and the three Fama-French factors at day t.

Individual VaR estimation using empirical quantiles: A naive
method to estimate VaR is to use the empirical quantile of
Ttk -« > Tt—s+1k- When o is set to be 1% and § = 100, we
have VaR(t,k) = min{rik, 7t—1k> .. Tt—99,k}. Such a quantile
estimation is not very accurate. On one hand, when § is small
and there is not enough observations, the empirical quantile
is not defined. On the other hand, S cannot be very large as
the market changes over time and so does the distribution of
returns. The individual estimator is an extreme version of igroup
when the bandwidth b shrinks to 0.

Market-level VaR: Another approach assumes homogeneity
among all stocks. The VaR could then be estimated by pooling
historical returns of all stocks. In this case, the estimator is

- K $—1
VaR(t, k) = Qq (U U{rt—s,l}> >

=1 s=0

Table 3. Prediction errors for the individual estimation, market level estimation,
quantile regression estimation and iGroup estimations. The right three methods use
Fama-French factors, while the left three do not.

Method Individual Market iGroup(é) Quantile Reg iGroup(z) iGroup(z, 9)

RMSE (x1073) 9,61 13.4 6.63 29.8 5.75 5.54

where Qq (A) is the empirical o quantile estimator given a set of
observations A. Pooling observations from other stocks bring
a significant bias if the homogeneity assumption is not valid.It
can be viewed as an extreme case of iGroup estimation when the
bandwidth b approaches oc.

5.3. Performance Comparison

In this study, we use « = 0.01, S = 100, and K = 491 stocks
in the S&P 500 index with new additions and drop-offs during
the year removed. The prediction error is measured over 250
trading days in the year 2016 for 491 stocks using

| s 20 2172
RMSE= | - ) (2—50 D V<)~ 0-01) ’
= t=1
where @(t, k) is based on returns {ri,...,"—g9jk =

1,...,491).

The RMSEs of six aforementioned models are shown in
Table 3. The bandwidth used in the weight function wy(-) is
tuned to achieve minimum RMSE. Specifically, iGroup(z) uses
b = 0.05 and iGroup(z,é) uses b = 0.08. In the kernel den-
sity estimation involved in approximating the distance between
ét,k’s to obtain the weight function w,(-), both iGroup(é) and
iGroup(z, ) choose the bandwidth according to Scott’s rule of
thumb (Scott 2015).

Among the three methods that do not use Fama-French fac-
tors (Individual estimation, market estimation and iGroup(é ),
iGroup(8) achieves the minimum RMSE. Among the methods
that use Fama-French factors, both iGroup(z) and iGroup(z, §)
have a substantial decrease in RMSE compared to the quantile
regression method. It shows that using the Fama—-French factors
directly and linearly to estimate the quantile is not sufficient.
The iGroup estimator uses these factors indirectly and non-
parametrically. Both z and @ helps in identifying the cliques
of the stocks as iGroup(z, é) outperforms both iGroup(z) and
iGroup(é ).

6. Conclusion and Discussion

In conclusion, the proposed iGroup method provides an effec-
tive tool for efficient inference in a heterogeneous population.
The approach is essentially nonparametric. It has several spe-
cial features: (i) The grouping idea can facilitate and answer
some inference questions that are otherwise difficult or impos-
sible to address such as estimating variance/quantile when each
individual has only one observation. (ii) It reduces the stan-
dard error of the estimator by pooling together individuals
with similar characteristics. (iii) The grouping can take a non-
standard exogenous variable z into consideration, as long as



a similarity/distance measure is defined. (iv) Noisy exogenous
variable z can contribute to grouping as well. (v) A useful
weight function measuring similarity between 6’s is designed
with statistical interpretation. (vi) The method can be extended
to a wide range of estimating methods, which optimizes an
objective function, such as regularized least-square estimation,
generalized moment estimation, etc. (vii) The bandwidth can
be tuned by leave-one-out cross-validation either globally or
locally.

In addition, we showed the asymptotic performance and
theoretical properties of the method, which assess the accu-
racy and efficiency of iGroup and provide practical guidance
in implementation. More specifically, when the loss function
is given and weight function is properly constructed by our
approach, the iGroup estimator converges to the Bayes estimator
that minimizes the overall risk without knowing the prior. Com-
putationally, as the group construction and inference procedure
are identical for all individuals, the iGroup method can be easily
parallelized for large dataset.

In Theorems 2, 7, and 10, we assumed a quite strong sufficient
condition on the objective functions My (0) or M (6, 0 ) such that
the minimum point of the aggregated objective function will
converge to the true value. Instead of assuming the second-order
differentiability and convexity, other sufficient conditions can
also guarantee the convergence of the minimum point (Van der
Vaart 2000). But most of them depends on the explicit formula
of kernel /C and the objective function M (6).

As an individualized inference method, the iGroup approach
is closely related to kernel methods, since they follow the same
principle of borrowing the information from other individuals
with similar features. In this article, we focus on a more general
class of individualized inference problems, though our approach
remains under the principle of finding “similar” individuals.
However, the setting, the goal and theoretic support needed in
our development are quite different and they are not a straight
forward extension of the standard kernel smoothing method.
First, our goal is to obtain individualized inference of a set of
parameters based on two sets of distinct information: the obser-
vations x directly linked to the parameters and the other fea-
tures zi of the individual that are indirectly related to the param-
eters, a problem that is significantly different from nonparamet-
ric regression and has a much wider range of applications. When
using zj only, our estimator is similar to kernel smoothing,
though its theoretical properties are different due to the noise in
zk. More importantly, using ék = 6(x) requires a completely
different new weight function, even though the estimator is
in a weighted average form. To our best knowledge, the idea
has not been explored in the literature. Second, our approach
is more flexible. We can either pool the estimators directly, as
in Equation (1), or pool the estimation equations or objective
functions, as in Equation (2). Third, the variables inside the
kernel function may have errors (“measurement errors,” some-
times large and nonignorable), and these errors could greatly
impact the performance of the kernel method. We need new
theory to support our development. As illustrated in Figure 2,
when éo is away from 6y, a direct use of the standard kernel
method results in pooling a wrong set of “neighbors” and thus
biased estimation. Unlike recent articles that assume éo — 6
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(e.g., Shen, Liu, and Xie 2020), we face a more difficult problem
allowing the bias 160 — 6ol 4 0. We use the distribution of
éo|90 (instead of the point estimator fo), and the techniques of
an empirical Bayes method to help pool the correct information
to improve inference. We also investigate the cases when exoge-
nous variables are available and study how the information in
exogenous variables can help us in the inference.

The iGroup approach has its connection to the empirical
Bayes approach (Robbins 1956), where the prior is unknown,
but a Bayes estimator is constructed. Although an unknown
population distribution for 6 is assumed to be 7 (6) viewed as
the prior, it does not appear explicitly in either ééc) or é(gc) in
our approach. And we showed in Section 3 that under mild
conditions, the iGroup estimators converge to certain Bayes
estimators under the unknown prior. In the empirical Bayes,
the prior is usually estimated by either discretization or decon-
volution. But the iGroup approach is different. The unknown
7(0) is not directly estimated and it is not needed. The prior
information is taken into consideration by taking a (weighted)
average of sample estimators or sample objective functions.
And the weight function w;(-), which is related to 7(6) in
close form, is approximated using the bootstrap method in
Section 2.3.

One of the proposed weight functions w; () in Equation (4)
is kernel-based. It is well known that a direct use of a kernel
method suffers “curse of dimensionality” in the presence of
many predictors and especially in high dimensional situations
can be problematic (see, e.g., Wasserman 2010). In such situa-
tions, we may need to consider dimension reduction techniques
in such situations, including feature selection, construction of
linear combinations of features as in single-index and multiple-
index models, and the use of principle component analysis of
the features, and many others. As a method using the kernel
function, the approach is also sensitive to the choice of the met-
ric defining the neighborhood. Unfortunately, the choices of the
metric and dimensional reduction techniques also depend on
specific application at hand. Data-driven selection criteria such
as cross-validation measures and various regularized methods
can be used for determining the optimal choices of the difference
components in iGroup. The needed research is out of the scope
of this article.

We note that the VaR example is fundamentally different
from standard kernel smoothing and k-NN, though some pool-
ing operations appear to be similar. First, the proposed frame-
work inspired us to consider the construction and use of exoge-
nous variable z;. In the VaR example, we assumed Sj being
the Fama-French coefficients and z; be an estimate of these
coeflicients. We want to mention that although estimation of
VaR has been studied extensively in finance and risk manage-
ment, we have not seen any similar pooling estimator. Second,
all the exogenous varjables used for pooling in the example
are estimated with errors, while in standard kernel smoothing
and k-NN, the grouping variables used are typically assumed
to be observed without errors. Third, the VaR example is an
estimating problem by writing down the objective function
(or the estimating function) My (6;t). The iGroup estimator is
equivalent to optimize the aggregated objective function as in
Equation (2). In standard kernel smoothing, only the observed



638 (&) C.CAIR.CHEN, AND M.-GE XIE

responses or the estimates, instead of objective functions, are
smoothed.
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