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Black hole superradiance of self-interacting scalar fields
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Black hole superradiance is a powerful probe of light, weakly coupled hidden sector particles. Many
candidate particles, such as axions, generically have self-interactions that can influence the evolution of the
superradiant instability. As pointed out in [A. Gruzinov, arXiv:1604.06422.] in the context of a toy model,
much of the existing literature on spin-0 superradiance does not take into account the most important self-
interaction-induced processes. These processes lead to energy exchange between quasi-bound levels and
particle emission to infinity; for large self-couplings, superradiant growth is saturated at a quasi-equilibrium
configuration of reduced level occupation numbers. In this paper, we perform a detailed analysis of the rich
dynamics of spin-O superradiance with self-interactions, and the resulting observational signatures. We
focus on quartic self-interactions, which dominate the evolution for most models of interest. We explore
multiple distinct regimes of parameter space introduced by a nonzero self-interaction, including the
simultaneous population of two or more bound levels; at large coupling, we confirm the basic picture of
quasiequilibrium saturation and provide evidence that the “bosenova” collapse does not occur in most of
the astrophysical parameter space. Compared to gravitational superradiance, we find that gravitational
wave “annihilation” signals and black hole spin-down are parametrically suppressed with increasing
interactions, while new gravitational wave “transition” signals can take place for moderate interactions. The
novel phenomenon of scalar wave emission is less suppressed at large couplings, and if the particle has
Standard Model interactions, then coherent, monochromatic axion wave signals from black hole

superradiance may be detectable in proposed axion dark matter experiments.

DOI: 10.1103/PhysRevD.103.095019

I. INTRODUCTION

As discovered by Penrose [1], it is possible to extract
energy and angular momentum from rotating black holes.
While the Penrose thought experiments were in terms of
mechanical scattering, equivalent processes were devel-
oped by the Zeldovich group for bosonic waves [2—4].
This phenomenon, termed “superradiance,” is expected to
occur in nature and, for certain initial conditions, amplify
photon and graviton waves passing near rotating black
holes. Moreover, if there exists a new bosonic particle
with a small mass, bound states of this particle could be
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exponentially amplified around astrophysical black holes,
forming very high occupation number “clouds” that could
lead to a range of observational signatures.

Black hole (BH) superradiance as a probe of new
ultralight particles was first proposed in [5], which has
given rise to an extensive literature. Superradiance of new
particles, including spin-0 [6-15], spin-1 [16-21], and
spin-2 [22,23] fields, have been investigated, with obser-
vational signatures including black hole spin-down, gravi-
tational wave emission, and modified black hole in-spiral
dynamics; see the above for further references and [14] for
a review.

Gravitational interactions are all that is necessary for BH
superradiance, which makes superradiance a unique win-
dow on new particles that are otherwise inaccessible to
experimental probes. However, many beyond-Standard-
Model particle candidates have other interactions. These
can include self-interactions, interactions with Standard
Model (SM) states, and interactions with other hidden
sector states. For some new particles, including the well-
motivated QCD axion [24-26], both self-interactions
and interactions with the SM are required by the model.
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Therefore, it is important to understand the consequences
of such interactions for the growth and behavior of super-
radiant bound states.

In this paper, we analyze in detail the consequences of a
quartic self-interaction for the superradiance phenomeno-
logy of a light scalar around astrophysical black holes. We
find that over a large range of parameter space of interest to
light axion models, the addition of a quartic coupling leads
to rich dynamics in the evolution of the superradiant
instability, and new observational consequences. These
dynamics include limiting the maximum number of par-
ticles in a bound level, populating levels inaccessible
through gravitational superradiance alone, saturation to
quasiequilibrium configurations of two or more levels,
and emission of nonrelativistic and relativistic scalar waves
to infinity. As we demonstrate, an effective quartic term is
generically the most important effect driving the evolution,
for much of the astrophysically relevant parameter space.

BH superradiance of a self-interacting scalar was first
introduced in Ref. [6], which discussed phenomena includ-
ing relativistic scalar emission, level mixing, and the
possibility of a “bosenova”—a rapid, nonperturbative col-
lapse of the cloud due to attractive self-interactions. The
bosenova process was studied numerically in Ref. [27,28],
and these results were used in subsequent phenomenological
investigations [29,30]. However, as we will discuss, these
previous analyses did not take into account self-interaction-
induced energy transfers between different superradiant
levels. This was pointed out (for a toy model) in [31],
which showed that these energy transfer processes, along
with scalar emission, can result in saturation to a two-level
equilibrium configuration before the cloud has had a chance
to grow large enough for a bosenova. We provide evidence
that during evolution from astrophysical initial conditions, a
“bosenova” does not occur in much of the phenomenologi-
cally relevant parameter space: scalar field values remain
small and the cloud size required for collapse is not reached.

For small enough self-couplings—including much of the
superradiance parameter space for the QCD axion—self-
interaction effects are unimportant. Superradiance proceeds
as in the purely gravitational case: a nonrelativistic bound
state of scalars is populated by extracting energy and
angular momentum from the rotating black hole, and
subsequently annihilates to gravitational radiation.

Slightly larger self-interactions result in nonrelativistic
scalar radiation to infinity. This new energy loss mecha-
nism reduces the power emitted over time in gravitational
wave “annihilation” signals. The interactions also populate
higher angular momentum levels; the simultaneous occu-
pation of several bound states can give rise to gravitational
wave “transition” signals, in which scalars emit lower
frequency gravitational waves by transitioning between two
occupied levels.

Large enough self-interactions, including those typical of
axion dark matter produced through the misalignment

mechanism, significantly reduce the occupation number
of the cloud. Instead of being limited by angular momen-
tum conservation, superradiant growth is cut off early by
self-interactions. The smaller cloud size suppresses the
peak gravitational wave signal strains. For even larger self-
couplings, the occupation of the cloud reaches quasi-
equilibrium at parametrically smaller occupation values,
as found in [31]. In this regime, the self-interactions
parametrically slow the spin-down of the BH compared
to the purely gravitational case.

Throughout, a new phenomenon of almost-monochro-
matic, nonrelativistic scalar wave emission occurs; for large
self-interactions, the signal amplitude is constant on time-
scales up to the age of the universe. If couplings to Standard
Model particles are present in addition to the self-inter-
action, then this scalar radiation may be detectable in
proposed axion dark matter experiments. For a range of
models, the self-interaction and SM interactions are con-
trolled by the same scale; consequently, the signal in Earth-
based detectors can persist for arbitrarily small occupation
numbers, as long as the classical scalar field descrip-
tion holds.

Many of our analyses in this paper use hydrogenic app-
roximations for bound states around BHs. Consequently,
they are valid for scalar Compton wavelengths bigger
than a few times the black hole light-crossing time.
Understanding the behavior of more massive scalars would
require numerical techniques. Since some of the most
dramatic superradiance signatures may occur for slightly
heavier scalars, further investigations of this kind are
strongly motivated.

We review purely gravitational superradiance of scalar
(spin-0) fields in Sec. II, and discuss the new processes
introduced by quartic (and cubic) interactions in Sec. III. In
Sec. IV, we explore in detail the evolution of the super-
radiant cloud in the presence of quartic self-interactions,
which lead to several distinct regions in mass-coupling
parameter space. In Sec. V, we discuss the maximum
amplitude reached by the axion field, and whether this is
large enough to cause nonperturbative behavior such as a
“bosenova.” We study the observable signatures of axion
superradiance in the presence of self-interactions: spin
down of astrophysical black holes (Sec. VI), gravitational
wave annihilations and transitions (Sec. VII), and axion
waves (Sec. VIII). We provide more detailed calculations
related to both self-interactions and gravitational super-
radiance in the Appendixes A—K. We conclude and com-
ment on directions for future investigations in Sec. IX.

I1. SPIN-0 SUPERRADIANCE

In this section, we give a brief review of BH super-
radiance for a scalar with purely gravitational interactions.
There is a broad literature on this topic; for a review, see
[14]. We take our signature to be —+++, and assume
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natural units with ¢ =z = 1 unless otherwise indicated.
We use the convention M, = 1/+/G throughout.

In the Kerr background, the Killing vector tangent to
the horizon, in static (Boyer-Lindquist) coordinates, is

&= 0,+Qy0y. Here, Qy = %’J(H\;ﬁ) is the angular

velocity of the horizon and a, = J/GM? is the dimension-
less spin of the BH, where J is the BH’s angular
momentum, M is its mass, and ry = GM. Consequently,
a wave with frequency w, and angular momentum m about
the BH spin axis, has energy flux o« w(w —mQy) across
the horizon, relative to distant observers (the energy flux is
necessarily ingoing for local observers near the horizon).
For @ < mQp, there is energy and angular momentum
extraction from the BH, as measured at infinity.

Massive bosonic fields have quasibound states around a
BH. In a Schwarzschild background, all of these states are
unstable to decay. However, in a Kerr background, states
with @ < mQy are unstable to growth [8,10,32,33].1
Exponential growth of these superradiant states, starting
either from a preexisting astrophysical population in the
field, or from quantum fluctuations, will occur given
enough time. If we start from the vacuum state, then
ignoring the BH interior gives effectively nonunitary
evolution of the field outside (due to the absorbing
boundary conditions at the horizon), producing a mixed
state. Interactions with external systems will generally
decohere this into an almost-coherent state, with well-
defined phase and amplitude. This process is analogous to
the growth of a large-occupation-number laser field from
quantum fluctuations [34].

The energy flux across the horizon, for a scalar field ¢, is

Ey ~ Aylop|Po(w — mQy), where |py| is the amplitude
of the field at the horizon (in in-going coordinates, for
which ¢ is smooth at the horizon), and A is the area of the
BH horizon. This flux determines the growth rate of a
quasibound state. For a scalar of mass y < r; !, the lowest
energy states are analogous to hydrogenic bound states,
since the effect of the BH at large radii is that of a point
source with a 1/r potential. The hydrogenic level with
principal quantum number 7, total angular momentum /,
and azimuthal angular momentum m (around the BH spin
axis) has frequency w = o, + iw;, where

w,:y(l—za—;+(9(a4)> (1)

with @ = GMy acting as the equivalent of the fine-structure
constant [12,21]. The imaginary part of the frequency is

w0 & d (M —0,)(1+0@).  (2)

'For complex w, as appropriate for an unstable state, the

2
energy flux across the horizon is negative if l'f; |m < mQy [10].

Strictly speaking, for m # 0, the leading-a form of this
expression is simply a**3mQ,. However, if mQy is also
small relative to rgl, then the expression in Eq. (2) is
appropriate (and more generally, changes sign at the correct
w,). The 211 (n =2, I = 1, m = 1) level, which has the
fastest growth rate at small @, has w; = Z—gag,u at leading
order in a. The “superradiance rate,” which is usually
defined as the growth rate of the occupation number, is
I'sg = 2w;. The o**> scaling for the growth rate corre-
sponds to the field amplitude at the BH horizon—for
higher-/ modes, the amplitude is suppressed by the angular
momentum barrier, leading to exponentially smaller growth
rates for higher / modes [6,8,9,21].

While the expansions above were phrased in terms of «
being small, it is actually the case that a/l is a good
expansion parameter. Whenever a level is superradiant, we
must have a < m/2, so a/l <1/2, and the hydrogenic
approximation can be used.

If the Compton wavelength of the particle is very large,
ie., a < 1, then all of the superradiance rates are sup-
pressed by a high power of a, I' x a***u, so are very
small. Conversely, if the Compton wavelength of the
particle is significantly smaller than the size of the BH,
i.e., a> 1, then only modes with m > 1 can be super-
radiant; however, these have exponentially suppressed
growth rates. Consequently, for observationally relevant
superradiance rates, the Compton wavelength of the par-
ticle should approximately match the size of the BH. For
stellar-mass black holes, Mgy ~ 10 M, this corresponds
to u~10"13-10"'1 eV. While the superradiant growth
rates around such BHs are rather slow on particle physics
scales—with e-folding times a few minutes or longer—
they can still be much faster than other astrophysical
processes and timescales, allowing superradiance to occur
in realistic astrophysical environments.

Once a Kerr BH is “born,” e.g., in a binary merger or a
supernova, the superradiant bound states start growing in
amplitude. The fastest-growing level, which usually has the
minimum m satisfying the superradiance condition (except
close to the w, = mQy threshold), is the first to extract a
significant amount of angular momentum from the BH,
spinning it down to Qy ~ w/ m.? For modes with the same
m, the most tightly bound mode is often (for small m) the
one with the largest growth rate, since it has larger
amplitude at the horizon. Consequently, if @ = mQy for
that mode, then @ > mQy for the other modes, and they are
not growing (this is not always true for m > 3; see
Sec. VII).

2Strictly speaking, a, asymptotes toward the Qy = w/m
threshold, since the superradiance rate is o«(mQy — @), so
vanishes at the threshold. However, we will mostly ignore this
small effect in the rest of the paper, and will refer to the BH being
spun down “to the spin threshold.”
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Since the angular momentum of an astrophysical BH is
very large,

M? M \2
J=a,GM?=a,——~ 10", . 3
a M2 “ (10 MO> (3)

it takes ~ log(J/m) ~ 180 e-folds of superradiant growth to
cause O(1) BH spin-down. Correspondingly, the fully
grown superradiant cloud has an extremely high occupation
number ~O(1)J. This corresponds to an energy density
which is significantly higher than astrophysical DM den-
sities (assuming that DM is not in extremely dense clumps),
Appendix K. Consequently, the presence or absence of an
astrophysical scalar field abundance makes little difference
to its superradiant growth.

The oscillating scalar field sources gravitational wave
(GW) radiation, at a frequency ~2u—on a particle level,
this corresponds to scalars annihilating to gravitons in the
black hole background. The emitted power scales as
P « GN*u*a'%*#  where N is the occupation number of
the mode [11-13]. The smallness of G, and the high power
of a, mean that this process is slow; in particular, it is
always too slow to disrupt the initial superradiant growth of
the level [11].

The superradiant growth of higher / levels will also take
place. Once lower-/ modes have grown to saturation,
higher-/ modes can still be superradiant, but their growth
rate is slower, so there is a parametric separation between
the growth times of successive levels. The annihilation
process generally depletes the majority of the scalar cloud
before the next level grows. Once the next level signifi-
cantly spins down the BH, the first mode now has
o > m&y, so is decaying with a rate comparable to its
initial growth rate, and its remaining density falls back into
the BH. Over sufficiently long times, a similar process will
repeat for the next level.

There are a number of observational signatures of purely
gravitational scalar superradiance. The first is a lack of old,
fast-spinning BHs, at masses for which the scalar would
have spun them down in the time available. There have
been ~10 measurements of stellar-mass BH spins in x-ray
binary systems [35]; for high-spin BHs, these measure-
ments can be accurate to a few percent, and have been used
to set constraints the mass of weakly interacting scalars
[12]. LIGO observations of binary BH mergers also enable
spin measurements of the premerger BHs [15,36]. While
most of these measurements are currently too imprecise to
provide evidence for existence of a scalar [15,36,37], initial
bounds are already possible [37] (see Sec. VI for a more
detailed discussion).

Another possibility is the observation of gravitational
radiation from the scalar cloud. For stellar-mass black
holes, this radiation could potentially be observed at LIGO
[12,15,38-40]; for heavier BHs, lower-frequency observa-
tories such as LISA or atom interferometers [41] could have

sensitivity [12,38,39]. The presence of a scalar cloud
during a binary merger could also change inspiral dynam-
ics, yielding further gravitational wave signatures [42—45].
While LIGO only observes the last few periods of BBH
mergers, making such observations difficult, lower-
frequency detectors will observe many more cycles, which
will likely improve their chances of observing such effects.

III. QUARTIC SELF-INTERACTIONS

For a spin-O particle, the simplest nongravitational
interaction is a quartic self-interaction. This is generic in
the sense that, if we expand a potential about a symmetric
minimum, then the quartic is the most important interaction
term for small amplitudes.

More specifically, a naturally small mass for a scalar
field, as required for superradiance around astrophysical
black holes, can be achieved through the breaking of a shift
symmetry at some high energy scale f,. A potential of the
form V() = A*g(@p/f,) can be generated from nonper-
turbative physics, so that A < f,,. For the case of a generic
potential g, expanding around the minimum of the potential
gives a mass scale > = ¢’A*/f2 and a self-interaction
term of order 1 = gWA*/ f2.

A well-known example is the QCD axion; given a

coupling £ D fﬂé; G4,G** of the axion ¢ to the QCD
pseudoscalar field strength, it acquires a potential of the

form [46]

o0/ (2F). ()

Vip) =~ —mifﬁ\/l -

resulting in a mass u~6 x 10712 eV'OleJ, and quartic
self-interaction [46],

4
2032/ 21070 —F 5
o= ( )

For more general axionlike particles, the natural para-
metric value of the quartic coupling is

2 211016 GeV)\ 2
I~ 0 (A ). (e
7 TRERSY fa

where we chose the nominal value of y to be in the range of
interest for stellar-mass BHs, and f, to be around the Grand
Unification (GUT) scale, for illustration. For example, a
motivated target model is an axionlike particle which
makes up O(1) of the dark matter abundance. If it is
produced in the early universe by the misalignment
mechanism, and starts out with a field value that is
~O(1)f,, then the scale for which we obtain the correct
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DM abundance is f,~3x 10 GeV(10~'? eV/u)!/*
(assuming a time-independent potential, unlike the QCD
axion case). This gives a typical quartic coupling of

. 1o\

We will see that even such tiny self-coupling values can
have important consequences for the dynamics and phe-
nomenology of spin-0 superradiance.

The Lagrangian for a scalar field ¢ with a quartic
coupling 1 in a fixed background spacetime is given by

1 1 1
- __ " ) - 4
L 2(D,4</))(D ®) SHQ* + A, (8)

where D* is the covariant derivative and y is the mass of ¢.
This gives the equation of motion

(D* — ) = —8403- 9)

The quartic interaction strength A can have either sign;
A > 0 corresponds to an attractive self-interaction, as is the
case for axionlike particles, while 4 < 0 is repulsive. For
future convenience, we also define an energy scale f such
that the quartic A = y?/f?; for an axionlike particle, we
expect f ~ f,, where f, is the symmetry-breaking scale.

The states that dominate the evolution of superradiance
are generally nonrelativistic, hydrogen-like wave functions;
these have the fastest growth rates and so obtain the largest
amplitudes. Consequently, it is helpful to perform a non-
relativistic reduction, writing

1 ,

@ =—=(we " +c.c). (10)
V2u

Here, the “wave function” y is a complex scalar field, with

JdV|y|* =N the occupation number. The equation of
motion is

. —A , .
(D — ptyyre™! - c.c. = o (e 4 ytyte)
+c.c 11
(

If w changes slowly with time, compared to ,u‘l, then we

can ignore the 92y terms, and extract the e~ part of the
EoM to obtain the Gross-Pitaevskii equation [6],

V2 o« -3,
0, 4~ + e Py 12
(131+2M+r)v/ 24,,2’1””” (12)

The w3 e 3# term in Eq. (11) leads to additional subdomi-
nant processes, such as the emission of relativistic ¢ waves,

that are not captured by Eq. (12) (see Sec. Il A and
Appendix B 4).

As a visual aid for understanding the A-induced
interactions, we can use a diagrammatic notation for the
terms of

p p . .
17 = gga e et (13)

in close analogy to Feynman diagrams. If we expand
w =Y ay,; in some basis {y;}, then legs on the left-
hand side of the diagram will correspond to y; terms in
Eq. (13), while legs on the right-hand side will correspond
to w7 terms. For example, relativistic emission sourced by
the 211 hydrogenic level corresponds to the diagram

211
211 I1=3,m=3
211

in the sense that the relevant terms in the equation of motion
are obtained from terms involving 1;/%11 in the Lagrangian,
which source a [, m = 3, 3 relativistic mode. We will make
use of these diagrams throughout this section.

The (typically tiny) values of 4 introduced in Eq. (6) have
very little effect on processes involving only a few ¢
quanta. In particular, if we start in a vacuum (or near-
vacuum) state, the first process of interest is the super-
radiant growth of the most unstable hydrogenic levels,
exactly as in the purely gravitational case. However, since
the occupation number N of a superradiant level can reach
exponentially large values [Eq. (3)], the large field ampli-
tude can compensate for a small self-interaction, and the
quartic term’s effects can qualitatively alter the dynamics of
superradiance. We investigate these effects below.

Higher-dimensional interactions, corresponding to
higher powers of the field, will be present in general.
However, we will see that, in much of the astrophysically
relevant parameter space, the field never reaches large
enough amplitudes for them to be important, for natural
hierarchies between the mass, quartic, and higher-order
terms (see Sec. VA). The case of an additional cubic
coupling leads to qualitatively similar dynamics as for the
quartic alone, as discussed in Sec. III D.

In the presence of a quartic interaction, three types of
perturbative processes affect the evolution of the levels
(here, perturbative is meant in the sense that dynamics can
be treated as involving approximately hydrogenic modes,
interacting on timescales long compared to their oscillation
times). These are relativistic emission of axions to infinity
(Sec. IIT A), nonrelativistic emission of axions to infinity
(Sec. III B), and bound-state interactions leading to energy
exchange between levels (Sec. III C). We will see in the
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following sections that the latter two processes will be most
important for determining the dynamics of the scalar cloud.

A. Relativistic scalar emission

One of the simplest kinds of process arising from the
equation of motion [Eq. (9)] is the 3 — 1 process in which
bound-state particles “annihilate” into a relativistic ¢. In
terms of the nonrelativistic reduction, the relativistic mode
(P 18 sourced by

~1/6
(2u)*?

(D? — 1) o, =~ yle 3 4 c.c. (14)

This can be solved via Green’s function methods, using the
solution of (D? — u?)p = 0 in the Kerr background. For
small o, when the wavelength ~u~! of the emitted radiation
is much larger than the horizon scale r, we can ignore the
near-horizon structure of the Kerr metric, and consider only
its 1/r behavior. These calculations are discussed in more
detail in Appendix B.

For radiation sourced by the 211 hydrogenic level, which
we write as 211 x 211 x 211 — oo, the emitted power to
infinity is (see Table VII)

P~15x10-8a'"4222N3, . (15)

at leading order in a. The corresponding diagram is
211
211 00

211

In principle, the emitted mode has @ < mQy when the 211
level is superradiant, and so will extract additional energy
from the BH. However, like the SR rate of bound states, this
horizon flux is suppressed by the small overlap between the
BH and the radiation, and is consequently a subleading
effect in the small-a limit.

Equation (15) is ~15 times larger than the estimate
in [6]. The latter effectively solved the equation 9’¢., =
G
radiation as being massless, and propagating on a flat-space
background.

If there is some occupation number in states other than
211, then any combination of three initial states can result
in relativistic radiation. If the bound states have orbital
angular momenta [, /', 1", then the emitted power scales
as P« a2 2NN'N” where N,N',N” are the
respective occupation numbers. In particular, as we will
see below, populations in multiple superradiant levels can
lead to forced oscillations in the /=0, m =0 mode.
This might lead us to wonder whether the less severe a
suppression in the

wl3e 3 + c.c.; thatis, they approximated the emitted

(0,0)
(0,0) 00
(0,0)

process, as compared to 211 x 211 x 211 — oo, can com-
pensate for the smaller amplitude of the 00 mode in
comparison to 211. However, for the 211 and 322 occu-
pation numbers attained in the evolution of the cloud (see
Sec. 1V), the emitted power via 211 x 211 x 211 — oo,
Eq. (15), is suppressed by fewer powers of @, and numeri-
cally always much larger.

B. Nonrelativistic scalar emission

Emission to unbound states can also occur in the non-
relativistic regime. Suppose that we have bound oscillations
w(t) = y;e”"®", where j labels a particular bound state,
with frequencies @; j » < 0 (i.e., the physical frequencies are
o=pu+od<p.lfw,+od;—ay >0, then the y/jz//j/y/;,,
term in the equation of motion will source unbound, non-
relativistic radiation, corresponding to the diagram

-1/

J J

Since the emitted state is also nonrelativistic, we can con-
sistently use the Gross-Pitaevskii equation [Eq. (12)]. Writing
y for the radiated wave, we want to solve

V: o« -3
(5) + 2w + ;) v = Wﬂlﬂﬂ/fﬂ/f}fu (16)
(with the appropriate multiplicity factors). For each of the
different spherical harmonic components in the right-hand
side of Eq. (16), we can write a one-dimensional radial
equation for the part of ¥ with the corresponding angular
dependence. These radial equations can be nondimensional-
ized [31], showing that the power emitted in nonrelativistic
modes is given by P o a*A*N;N ;N ;»pi* atleading orderin a,
where N;, N, N are the occupation numbers of the bound
modes. The constant factors can be found by numerically
solving the radial equations, as reviewed in Appendix B 3.

Considering an example which will, in many circum-
stances, be very important for the cloud’s evolution,
suppose that we have some population in the 211 and
322 modes. Taking y; y = w3y, and yj» =y, wWe have
2@377 — @) “;2—2" > 0, so emission to infinity is possible.
As reviewed in Appendix B 3, this emission is dominantly
sourced at radii r~r,. = rg/az, i.e., where most of the
cloud’s mass sits. Since the dominant part of the BH
potential is ~1/r at large distances, which is spherically
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symmetric, both the bound modes and the emitted
wave will have approximately spherical harmonic
angular dependence. For this particular case, Y3,Y}, =

S5 _ /5
4277 Y33 184872

[=3,m=3and !/ =15, m =3 modes. At leading order in
a, the total emitted power for the

Y53, so the emitted quanta are in the

322 211
(17)
322 (3,3),(5,3)
process is
P~ 1078a* 224> N3, Ny (18)

with the (I, m) = (3,3) radiation dominating the emitted
power,3 This is a factor 4 smaller than the rate given in [31],
due to the hydrogenic wave functions used in the latter
having a normalization that is a factor V2 too large. The
rates for processes involving different bound states are
discussed in Appendix B 3, and tabulated in Table VI.

At larger a, deviations from the nonrelativistic approxi-
mation become more important. However, at small enough
a such that 211 is still superradiant, the y,;; and w35,
wave functions are still well-approximated by the hydro-
genic form, except near the origin. Since the source term
wly,wh,, for the nonrelativistic radiation is largest at the
characteristic radius of the bound states, a ~ r, /a?, where
the potential is dominantly ~1/r, we would expect the
corrections to the nonrelativistic calculation to be small.
This can be confirmed by performing a numerical compu-
tation in the Kerr background, the results of which match
the leading-order formula for the emitted power [Eq. (18)]
at the few percent level.

As well as relativistic effects, there will also be higher-
order effects of A; for example, self-interaction-induced
distortions to the bound state wave functions, and to the
radiated wave. For ¢/ f < 1, these effects will be small. In
much of the astrophysically relevant parameter space, this
condition holds, as we discuss in Sec. V.

C. Bound state interactions

If we have bound oscillations y;  i» for which @ =

0} i+ o = @ i < 0, then the oscillation that they source is

also bound. For example, the y3,,y3,, term has frequency

2 .
2051 — W30 —7‘3’—6” < 0. In general, @ will not be very

close to the frequency of any of the hydrogenic bound

This expression corresponds to the classical wave equation; in
the quantum case, the final state occupation number N,;; should
be replaced by N,;; + 1. We use the classical expression for
brevity in the remainder of the text, though the quantum version is
important in allowing levels to grow from vacuum fluctuations.

levels (with some exceptions that we review below) so the
oscillation that they source will be forced.

Depending on the angular properties of the driving
modes, the forced oscillation may gain or lose energy
from the BH. If it loses energy to the BH, then for a forcing
term 1//.,-1/11-/1//;7,,, this corresponds to energy loss from the
v,y modes, but energy gain for the y;» mode. The
example that will be the most important for us is when

Wi Wy = o, and y = ya:
211 322
(19)

211 m =0

The forced oscillation has m =0, so loses energy
through the BH horizon. Given some amplitude in the
211 and 322 modes, each ~u of energy lost from the forced
oscillation into the BH corresponds to ~2u loss from the
211 mode, and ~u gain in the 322 mode. The energy loss
rate is proportional to the squared amplitude of the forced
oscillation, which is & N3, N3y,. Consequently, if we have
a large initial occupation number in 211, and a small initial
occupation number in 322, then this process will lead to the
exponential growth of N3j,, at the expense of 211.

This picture makes intuitive sense when the amplitudes of
the “forcing” modes (211 and 322 in the above example) are
large. However, if we are interested in e.g., the growth of 322
from quantum fluctuations, we might worry about the
validity of treating it as a forcing for the m = 0 oscillation.
A more systematic approach (reviewed in Appendix A) is to
assume that we have some large-amplitude .., and treat this
as the source for only two of the “legs”, i.e., to solve

24u?

(i0; + M)y = —— (wey* + [w.[*w)  (20)

(here, M represents the other terms in the nonrelativistic
Hamiltonian, including an absorbing term corresponding to
the BH horizon) with y,. acting as a parametric driving term,
rather than a simple forcing. When the amplitude of this
driving term is small, its effects can be described as
perturbations to the usual modes, “mixing” them with
others. The key point is that, if the y2y* term induces a
mixing with a decaying mode, then this contributes a
growing term to the original y mode. In our 211 x 211 —
322 x BH example, if we take /. = 3, then this acts as a
parametric driving, which mixes 322 with decaying modes
such as 100. This results in the same growth rate for 322 as
we would calculate from the forced oscillation picture
above. Quantitatively, the energy flux into the BH is, at
leading order in a,

P~4x 10‘7a7/12(1 +4/1 - 05>M2N511N322 (21)
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More generally, for y; » i such that the forced oscillation
has a m = 0 component, the energy flux through the BH
horizon is P o« a’2*(1 4 /1 — aZ)u>N;NyN .

These calculations are discussed in Appendix B 2, and
rates for different processes are tabulated in Table V. The
listed processes all correspond to forced oscillations with
m = 0. Forced oscillations with larger |m| have smaller
energy fluxes into (or out of) the horizon, corresponding to
bound state interaction rates that are suppressed by higher
powers of a.

At larger a, there will be deviations from the leading
power-law behavior of Eq. (21). Since the energy lost
through the forced oscillation depends on its value at the
horizon, i.e., on the behavior at small distances, we would
expect these deviations to be relatively greater than those
for nonrelativistic radiation in the previous subsection. As
we discuss in Appendix A, the behavior is similar to that of
the 100 level’s decay rate, with the rate a factor few larger
than the leading-order value at a ~ 0.2. While we provide
leading-a expressions in the text, the semianalytic and
numerical results from Appendix A are used for our results.

If all four legs of the interaction are almost on-shell, then
the a scaling of the energy flux can be different from that of
Eq. (21). An example, that will be of interest in Sec. 1V, is

211 322
(22)

311 m =10

Since , = u(1—a?/(2n*) + O(a*)), we have @y, +
W31 — W3pp = Wy + (’)(a4) (whereas fOI' 211 x 211 —
322 x BH, 2w, — w3, is O(a?) away from the frequency
of any quasi-bound level). Consequently, the 200 forced
oscillation dominates the energy flux into the BH, and we
obtain

P~3x 10‘1°a3/12(1 +14/1 —ai)M2N211N311N322 (23)

This parametrically faster rate means that any 311 occu-
pation can be quickly depleted by this process, as we will
see in Sec. IV C2.

D. Cubic couplings

In the above, we assumed that the self-interactions
consist of a quartic 1p* interaction. A generic scalar can
also have a cubic term,

Loy, 9 5, 4 4
— I+ 2t 24
LO=Swe* + 30"+ 5o (24)
If we write A = u?/f2, then a natural value for the cubic is
g= Cu*/f, C~O(1). For example, if we take a cosine
potential and add a slope

Vip) =2 f*(1 —cos(p/f) = Co/f). (25
then the expansion of the potential around its minimum is

2 C 1> 1 2
V(o + 6¢) :%5402 —5”75403 —5%5404 Lo (26
to leading order in small C and d¢.

At leading order in ¢, the only relevant process is
relativistic 2 — 1 emission, in analogy to the relativistic
3 — 1 emission discussed in Sec. III A. For definiteness,
consider again the situation for the level with the fastest
superradiant rate, 211. The leading order cubic process is

211
} 00 (27)
211
with power (see Table VII):

P~ 107*a2C?(u*/ f2)N3);. (28)

More generally, for radiation sourced by quasibound levels
with orbital angular momentum / and 7/, the emitted power
scales as P o o®t2(H) C2(u*/ fA)NN'. Unlike for the case
of relativistic 3 — 1 emission via a quartic coupling
(Sec. IIT A), the leading-a contribution can be obtained
by treating the radiation as propagating in flat space, i.e., by
solving (0% — u?)@., = source.

Similarly to the discussion in Sec. III A, we can ask
whether the smaller o suppression of the

(0,0)
-

(0,0)
process, sourced by forced oscillations in the [ = 0, m = 0
mode, can compensate for its smaller source amplitude
compared to 211 x 211 — oo0. For the 211 and 322
occupation numbers attained (Sec. IV), the power from
the latter process is again parametrically and numerically
larger.

In the next section, we will show that, at the very least for
large parts of parameter space, relativistic processes in
general (from cubic or quartic vertices) are less important
than quartic self-interactions between nonrelativistic states.

As well as these leading-order processes, interactions
between nonrelativistic modes are generated at order g°:

<A

In terms of interactions between nonrelativistic
modes, these are equivalent to a quartic interaction
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Aot = % ,gTz 5%2?, which is always attractive.” It should be
noted that this is only true for nonrelativistic modes; other
processes induced at order g7, such as 3 — 1 emissions, will
not be captured by the same effective quartic. Nevertheless,
as we will discuss in Sec. IV, in many circumstances, only
processes involving nonrelativistic states are important for
the evolution of the field around the BH.

Since the most important behavior can generally be
captured by an effective quartic coupling, we will ignore
the cubic coupling for most of this paper, setting C = 0. For
C # 0, one can use the replacement rule

1 1 5 1
]Tz_)Tff:<l+§C2>]T2 (29)

for processes involving only nonrelativistic states.

E. Summary

In “gravitational” superradiance, there are two generic
ways for bound states to gain or lose energy and thus
particle number: superradiance itself, in which the black
hole acts as an energy and angular momentum source, and
gravitational radiation, which carries energy and angular
momentum to infinity. We have seen that in the presence of
quartic self-interactions, three new classes of processes are
introduced: emission of relativistic axion waves to infinity,
emission of nonrelativistic axion waves to infinity, and
excitation of forced oscillations which typically are ab-
sorbed back into the black hole.

A nonzero cubic self-interaction can act as an additional
source of relativistic emission, as well as contributing to an
effective quartic term. We will see that, unless the cubic
coupling is tuned so as to suppress the effective quartic
coupling, or the cubic is rather large compared to its natural
value (|C| > 1), relativistic emission generally does not
have an important effect on the dynamics.

The first investigation of scalar self-interactions in BH
superradiance was in Ref. [6], which carried out a very
similar analysis to ours; for example, Eq. (50) in Ref. [6]
corresponds to our Eq. (20) describing bound-state inter-
actions. However, in considering whether a perturbation
grows or shrinks, Ref. [6] focused on the energy flux
through the BH horizon, and did not take into account
energy transfer, through the parametric forcing term,
between bound states. Since the BH absorbs energy in
e.g., the 211 x 211 — 322 x BH process, the conclusion
was that interaction between modes suppresses occupation
number growth. This seems to account for the discrepancy
between our analysis and the conclusions of Ref. [6].

The processes outlined in this section create new energy
loss mechanisms for bound states, thereby typically limiting
their occupation numbers below those of gravitational

*We find that the contribution of the cubic coupling to the
effective quartic is greater than the one in [31] by a factor of 5/4.

superradiance. They also create the ability to exchange
particles efficiently between bound states with different
energy and angular momentum, enabling the growth of
high angular momentum states on timescales much faster
than the growth possible through gravitational superradiance
alone. In the following section, we will discuss in detail the
new dynamics for a range of self-interaction strengths.
Finally, similarly to the emission processes discussed
above, there will also be effects that are higher order in 4. In
particular, if the amplitude of the cloud becomes too large,
then the attractive self-interactions will lead to a rapid,
nonperturbative collapse, the “bosenova” [6]. However, we
will see that, for most parts of parameter space, the leading
order in A processes that we have described will prevent the
field from reaching such large amplitudes. We discuss such
nonperturbative behavior in more detail in Sec. V.

IV. PERTURBATIVE EVOLUTION

In this section, we study the evolution of the cloud-BH
system, when the new dynamics introduced by self-
interactions can be treated perturbatively. That is, we treat
the cloud as consisting of approximately hydrogenic levels,
interacting on timescales long compared to their oscillation
timescales. Although the processes are individually simple,
the number of them involved can make the narrative hard to
follow. Accordingly, we have collated some of the most
important information into a number of tables and figures.
Table I lists the most important processes affecting level
evolution, and gives their rates. Figure 3 is an important
guide to how our discussion is structured, showing the four
qualitatively different regimes of parameter space that we
analyze. Table II gives approximate expressions for the
boundaries of these regions, and points to their definitions
in the text. Figure 4 shows examples of the time evolution
of the cloud-BH system, drawn from the four different
regions. Table III summarizes the level occupation num-
bers, observational signatures, and characteristic timescales
associated with each region.

A. Evolution of occupation numbers

The evolution of the scalar field around the BH is driven
by the gravitational processes discussed in Sec. II—
superradiant growth or decay, and GW emission—and by
the interaction-mediated processes discussed in Sec. III. As
we have seen, when these processes can be treated pertur-
batively, they can be viewed as transferring energy to and
from the quasi-bound states of the field (which are them-
selves only slightly perturbed from their hydrogenic forms).
Putting everything together, we can write down a set of
coupled differential equations, governing the evolution of
the occupation numbers of the modes.

Schematically, if we write the occupation number of
level j as N; (where we index the different quasibound
states by a single index j), then
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TABLE 1. Rates for the most important processes involved in the evolution of the 211 and 322 hydrogenic levels, at leading order in a.
The second column shows the rate constants appropriate for occupation numbers N,; etc, as per equations (30) and (31), while the third
column shows the rate constants for normalized occupation numbers &5, = Na;;/(GM3y,) etc, as per Eq. (32).

Process Rate constant (occupation numbers N) Rate constant (normalized occupation numbers ¢€)
211 superradiance SN =4 x107%a%(a, — 2a(1 + /1 —a2)u o =I55

211 >/\ ~o N = 10_2“12(1\4%,)2/4 9t = 1072 p

211

211 >< 322 I ~ 4 % 107a"22(1 + /1= a?)u AT 24 x 107 () (1 + /T=dd)u
211 BH

e P = 107 At = 102 ()

322 00

322 superradiance ISR ~8 x 1075a'%(a, —a(1 4+ /1 - a)u sy =TS

TABLE II. Approximate expressions for the boundaries between different regions in u, f parameter space, as diagrammed in the
bottom-right panel of Fig. 3. The first column identifies the section in the text discussing the particular parameter space region, while the
third column presents the f range (for given p) corresponding to that region, along with references to the relevant equations in the text.
The expressions given are to leading order in small @, and numerical coefficients are approximate; the reader should refer to the text for
more precise expressions.

Coupling strength Fig 3 Boundary in parameter space

Small (IV B 2) A f > fag ~#min[3 x 10'6 GeV(IOIOHyr) (,0 ‘#‘ev) (001)%
8 x 10'8 GeV(O‘”) 1(8)1] (Egs. (41), (42)

Moderate (IV B 3) B Fa > f > foc 22 x 10' GeV/(%9)) min (%)% (;%)%] (Egs. (53), (54), (56)
Large (IV.B 4) ¢ foc > f> fop 3 x 10" Ge V(‘°‘° 100 s 102 s ! 0013 09): (Egs. (62)
No spindown (IV B 5) D fep > f>u

TABLE III. Summary of important quantities in the parameter space regimes A-D (Fig 3, Table II). The second column lists the ratio of
the peak value egﬁk attained in the corresponding region to the maximum value attained through gravitational superradiance €5}7. The
fourth column describes the most important observational signatures of superradiance in each regime. For regions A and B, these are BH
spindown (see Sec. VI), the emission of gravitational radiation (see Sec. VII) from 211 x 211 — GW annihilations and from 322 —
211 x GW transitions (only in region B). For regions C and D, gravitational radiation is suppressed, but nonrelativistic scalar radiation
(“AW?”, for “axion waves”) from the 322 x 322 — 211 x oo process may be detectable, if the scalar field couples to SM states (see
Sec. VIII). The right-most column gives approximate expressions for the relevant dynamical timescales, which also correspond to
typical signal timescales of GW radiation (for A and B) and scalar radiation (for C and D). The expressions given are to leading order in
small a, and numerical coefficients are approximate; the reader should refer to the text for more precise expressions.

Coupling strength K Jemap — e fean Signatures Timescales

Small IV B 2), A 1 ~0 Spindown, GW Tonn & 10° yr(%)14(102eV 2 eV) (Eq. (39)]
Moderate (IV B 3), B 1 107°(5%)° Spindown, GW Toeatar & 107! yr(O 1)14(10 Pe )(1017 GeV) [Eq. (49)]
Large (IVB 4), C (ﬁ)z 107(5%,)°  Slow spindown, AW 7 ~ 107 yr(22 01)5 (10 12 eV) ) (10” GeVy2 [Eq. (60)]
No spindown (IV B 5), D (fL)Z 107 (5%)° No spindown, AW T 2 TBH [Eq (63)]

BC .
Seq ~ 2 x>xR (a,~2aF ) (L)2 —=25x%x 10" (001) (0_)1/2( ) [E (55&)]
211 ¥ 3 a’kBHF My/ T 0.9 1015 GeV 4 ’

5ty AT = 6.9 % 1070 (8) V2 (1l [Eq. (55D).

J=i J_’J J'xj JxJ' JxJ" JxJ'%]

N; =TSRN; 4+ (=elGW 4+ T3, TN )N N +Z (K, — ek —er % — el INN;Ny  (30)

where the cI” notation encodes the appropriate multiplicity factors, and

095019-10



BLACK HOLE SUPERRADIANCE OF SELF-INTERACTING ...

PHYS. REV. D 103, 095019 (2021)

(i) TSR is the growth(/decay) rate corresponding to the
mode’s flux across the BH horizon
(ii) FGV;’, is the annihilation rate of j x j/ to gravita-
tional radiation.
(iii) FGW is the rate of transitions, via gravitational-wave
emlssmn from j' to j.
@iv) FJ,ij,, is the rate of the

-/

e

J

process, where the k leg corresponds to nonrelativ-
istic scalar emission, or to bound forced oscillation
damped by the BH. For emission to infinity, we will

1
sometimes write F’. X.,°° , while for a bound forced

oscillation, we will write F’ 'xBH

) T

S jixjr 1s the rate of the

relativistic emission process. Repeated indices will some-
times be abbreviated using an exponential (i.e., I'7 ;, ; = FJ°§’)
For example, the evolution of the fastest-growing level is

given by

SR
Ny =58 Ny =208 011 N3y =TSN L300No11 Naop + ..
320xBH
_2F211x211N211N%22+F322x322N211N322+-~-

=30 s N3 = 20 N3 N s+ (31)

Some of the key rates, at leading order in «, are listed in
Table I.

While, as we observed above, 1 is often extremely small,
the N; can become extremely large. From Eq. (3), the
M)
To spin it down by O(1), as is necessary to saturate the
superradiant instability, we need N; to be of this order.
Consequently, it is often more convenient to work in terms
of “normalized” occupation numbers, ;=N ;/(GMgy) <1,
and normalized rates y such that

angular momentum of a BHis J=a,GM?*~10"a, (

_ SR YWy GW ye g
=7Y; €J+Z C7m Vit T viseEr

xk 'k <k _ .
+Z, <7§/x,~~ Cljxj ~ Vi =V inpxyp)ei€rey (32)
o

Similarly, it is helpful to write 1 = u?/f?, as motivated
around Eq. (6). In terms of these, the scalings with a and f
of the different y are

(i) For growth (or decay) of a bound oscillation via the

BH horizon yj® o o***

(i) For nonrelativistic scalar emissions to infinity,
yj:;j” xa (Mpl/f>4

(iii) For the absorption of energy from a forced
bound oscillation with angular momentum [/
damped by the BH, y/;} XB? o al (M / f)* (except
in the case of * resonant processes, as discussed in
Sec. 1T C).

(iv) For 3-to-1 relativistic scalar emissions to infinity

2(14+1'+1")+15

yj><] xjr X &

(v) For annihilation to gravitational waves ¢

X
Q1020141 i

(vi) For transitions between bounds states with gravita-
tional wave emission, y ,, see Sec. VIIB.
In addition, a nonzero cubic mteractlon contributes to the
evolution equations (32) as

= _chlx i€+ .. (33)

with rate 7%, o a DA\ C2 (M / f)

The rates that determine the evolutlon in large parts
of the parameter space are listed in Table I, at leading
order in a. As discussed above, for some of these
processes, this approximation can be quite poor at «a
values of interest, and for the computations involved in
producing our plots, we use more accurate numerical or
semianalytic expressions.

When all of the ; are very small, then only the y
important, and evolutlon proceeds as in the purely grav1-
tational case, with the fastest-growing level increasing
exponentially in amplitude. Since the ¢; for this level will
usually dominate exponentially over the other € +, other levels
can only be built up (faster than their superradiance rates)
through5

N2
j><BH

where the BH leg corresponds to a bound oscillation.
If interaction processes are strong enough to significantly

3If the occupied level j is higher-frequency than some other
level j/, then transitions from j to j* via GW emission can also
occur. However, as discussed in Sec. VII, the fastest-growing
superradiant level is also the most tightly bound superradiant
level, for [ < 3. Consequently, transitions from a superradiant
level would have to be to decaying levels. Since the decay rate
through the BH horizon is generally significantly larger than the
growth rate due to GW transitions, this does not give rise to
exponential growth of j'. For example, if we consider 322 —
200 + GW transitions, the evolution equation for the 200 level is
00/ 1 =4 x 1070aBe350 6900 — 0.5 €59, so the 200 level is still
damped even for large &35,.
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211 >< 322
211 7 N BH
211 211
211 % o 211 % 00
211 322
211 211
>/\/ 0 >/\r o0
211 322

FIG. 1.

322 >< 211

322 0

211 322

322 % 0 322 % o0

322 322

322 211
D

322 o0

Processes relevant to the evolution of the 211 and 322 hydrogenic modes. The first row corresponds to the interactions between

nonrelativistic modes (Sec. III B and III C) and the second corresponds to the emission of relativistic scalar radiation (Sec. III A), both
mediated by the quartic self-interaction. The third row corresponds to the emission of gravitational radiation (indicated by wavy legs),

also present in gravitational superradiance.

affect the evolution, then the j' for which this growth rate is
fastest will be the next level to become important.

For small a, the fastest superradiant growth is for the
211 level, and the fastest quartic process, given a 211

amplitude, is
211 >< 322
211 BH

as discussed in Sec. III C. It turns out that, similarly to the
toy model discussed in [31], there is a large parameter space
for which only the (perturbed) 211 and 322 levels are ever
significantly populated. This regime will be the main focus
of our paper.

Situations in which 211 is the first superradiant level
generally lead to the strongest radiative signals, either in
gravitational or scalar waves. However, superradiance into
higher levels can be important for other phenomenological
signatures, such as BH spin-down. In such circumstances,
levels other than 211 and 322 will be important. For
example, if 322 is the first level to grow through super-
radiance, then 544 will generally be the next level to be
built up through self-interactions. Though we do not
investigate such scenarios in detail in this paper, they
represent an important subject for future work.

B. Two-level system

If the (suitably perturbed) 211 and 322 modes are the
only ones with significant occupation numbers, then the
relevant processes are illustrated in Fig. 1. Given this
multitude of processes, the behavior of the system seems
potentially very complicated. However, we will see that,
because the relativistic emission rates are suppressed by
high powers of a (and the gravitational radiation rates have
an additional relative suppression of (f/ Mp1)4, which will
turn out to be small when self-interactions are important),

only the two nonrelativistic processes (along with super-
radiance) are generally significant.

Assuming that 211 is the fastest-growing mode at the
start of the evolution, these give rise to fairly simple
qualitative behavior, for large enough couplings A.
Initially, the 211 mode grows through superradiance.
Once its occupation number is large enough, the growth
rate of the 322 mode, through the 211 x 211 - 322 x BH
process, becomes significant. This stops the growth of the
211 mode. Since 322 is depleted via the 322 x 322 —
211 x oo process, but built up via 211 x 211 — 322 x BH
(and vice versa for 211), the 211 and 322 modes reach a
quasiequilibrium configuration, in which their occupation
numbers are almost constant. This evolution is illustrated
schematically in Fig. 2, and is the regime that was studied
in the toy model of [31].

The above picture holds for the case of large enough self-
couplings; in the opposite limit of very small self-cou-
plings, the evolution will be almost the same as the purely
gravitational case. For intermediate values of /, there can be
more complicated behaviors. In the rest of this section, we
will make all of these statements precise, by investigating in
detail the evolution of the cloud, for different x4 and f.
Figure 3, and Tables II and III, serve as guides to this
discussion. Readers more interested in the observational
effects of superradiance around astrophysical BHs can skip
ahead to Secs. VI and VII, referring back to this section
when necessary.

1. Evolution equations

As discussed above, only the processes in Table I are
generally important in the evolution of the 211/322 system.
We highlight these rates (which are presented outside the
parentheses) in the full evolution equations for the occu-
pation numbers of the 211 and 322, which are (at leading
order in )
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N ‘ S
4
//,
I superradiant S
BH growth iy o—>5 X >(
/ “Q
L] . .
. . . . quasi-equilibrium |
211 322
non-linear pumping t

FIG. 2. Schematic illustration of the effects of a large quartic self-interaction on the growth of scalar fields around a spinning BH. The
left-hand figure shows the energy densities of the 211 (blue) and 322 (red) modes in the (x, z) plane, taking the BH spin to be in the z
direction. The right-hand panel shows the evolution of the 211 (blue) and 322 (red) occupation numbers with time (where the N axis is
taken to be logarithmic). We assume that the initial BH spin is high enough that the first process to occur is superradiant growth of 211.
In the absence of self-interactions, this growth would continue until the BH was spun down to the m = 1 threshold (as indicated by the
dashed blue line). When sufficiently large self-interactions are present, the 322 mode is built up from the 211 mode, via the nonlinear
pumping process described in Sec. III C. This stops the growth of 211, and the levels quickly reach a quasiequilibrium configuration, in
which the processes of 211 superradiance, 211 x 211 — 322 x BH and 322 x 322 — 211 x oo emission (Sec. III B) keep the 211 and

322 occupation numbers almost constant.

211

_ SR _8(, _ .=~ _ ~,322xBH 11 4v 2 211xc0 8 4.2 _~, GW 14,2
u = o100 (@, — 207 )ey1) — 2651155114 (Mpl/f) F1€511€300 1 K3203300 % (Mpl/f) E306211 — 231 1x011 4 €31

GW 16 GW 10 o 21 4.3 o 23 4.0
+ (=K3T1x320@ C€211€322 + K3np 011 X €211€320 — 31<(2“)3a (Mpl/f) &1 = 2’<(211)2X(322>0‘ (Mpl/f) 3118322

25 4 2
_K((gu)x(nz)za (My1/ f) €211€37) (34)
&3 - -
= (0. a7 e+ TS (M )T 1y — 23 (M 1) s
G 2 G G 2 4.3
+ (—2’<32\¥x322a18£322 - ’<21\Yx322‘1168211€322 - K32Vz‘/_>211a10821 1€300 — 3K‘(’§22>3a 7(Mp1/f) €32y
23 4.2 25 4 2
- K?;11)2x(322)a (Mp/f)e311832 = 2’<2’§11>X(322)2a (My/f)*er11€50) (35)

where 7, =r, /r, =1+ /1 — a2, and the x values corre-
spond to the y rates, with the leading «, f and a,, dependence
factored out (e.g., 3115511 = Kaamri@' (Mp/ f) 4 p, etc).
We also need to keep track of the BH’s mass and spin, for
which

a B
— = —Kna’(a. = 2a7 )ea
- 2558 a'%(a, — af ey, (36)
and
M
SR 8 -
el -5 (a, —2aF ey
- K§’§2a12(a* —afy )esn
+ K%ﬁizBHan (Mpl/f)47’+8%118322- (37)

A simplifying assumption at small « is to neglect the change
in the mass of the black hole; we will often use this
approximation in the text. This is equivalent to setting the
maximum 211 fractional occupation value attained through
purely gravitational evolution, €5}, to |Aa,| = a,(t)) —
4a/(1 + 4a?). At larger a, the mass of the BH changes more
significantly and €5} > |Aa,|. Our expressions can still be
used, however, with the correct value of €3}, for which we
derive good analytic approximations in Appendix F.

2. Small self-coupling: Gravitational superradiance

In the limit of very small coupling, f — oo, the system
evolves under purely gravitational dynamics, as summa-
rized in Sec. II. As long as the fastest and second-fastest
growing superradiant levels have sufficiently different
growth rates, the former will grow first, and attain expo-
nentially larger occupation numbers than other modes. For
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FIG. 3. Parameter space for superradiance of a scalar with mass y and quartic coupling 4 = u?/f?, around a BH with Mgy = 10 M,
and a, = 0.9 (initially), given a total evolution time of 10'0 yr. Top-left: parameter space in which the 211 level grows to saturation
through superradiance. Top-right: parameter space in which the 322 level grows faster due to self-interactions than it would have through
superradiance alone. Bottom-left: parameter space in which the BH is spun down to the threshold of 211 superradiance. For u 2
4 x 10712 eV (i.e., past the threshold for 211 superradiance), we show the parameter space region in which 322 superradiance is not cut
off by self-interactions, and we can be confident that the BH is spun down to the threshold of 322 superradiance. The gray hatched region
corresponds to parameter space in which levels other than 211 and 322 are expected to grow; we have not fully analyzed the behavior in
these regimes. The blue dashed line corresponds to the quartic coupling for the QCD axion. The “ALP DM” band corresponds to the
range of quartic couplings that, for an axion with a time-independent cosine potential, allow the observed DM abundance to be produced
by the early universe misalignment mechanism. The darker middle band corresponds to O(1) values of the initial misalignment angle,
while the lighter bands above and below correspond to “tuned” initial values (see Sec. VI A for details). Bottom-right: parameter space
regions discussed in the text. (A) corresponds to the “small self-coupling” regime discussed in Sec. IV B 2, (B) corresponds to the
“moderate self-coupling” regime discussed in Sec. [V B 3, (C) corresponds to the “large self-coupling” regime discussed in Sec. [V B 4,
and (D) corresponds to the “lack of BH spindown” regime discussed in Sec. IV B 5. The “322 SR” region is where 322 superradiance is
not cut off by self-interactions, while the gray parameter space above this is when this does occur, and further analysis would be
required.

most of this paper, we focus on situations where the initially log GM? Mgy 9 hour a=04
fastest-growing mode is the 211 level. This grows to SR~ < ) 6 103 <w)9 <02
maximum size, and spins the BH down to the m = 1 an 10Mo Yila a~
superradiance threshold, in a time (38)
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FIG. 4. Left panel: fractional occupation numbers of 211 (solid lines) and 322 (dashed lines) levels, and Right panel: BH spin, as a
function of time, for a BH of mass 10 M, and initial spin a, = 0.9, given a scalar of mass y = 1.5 x 1012 eV. The different colors
correspond to the different self-interaction strengths indicated in the right-hand plots (see Sec. IV for explanations of the behaviors at

different couplings).

for high spin (a, = 0.99). On a timescale that, for small a,
is parametrically larger, the 211 level is depleted through
gravitational wave annihilations, with a decay time of

1
GW
21—‘21]><211]\/v211,m'c1x

_( Mgy 5 4 hour ;
“\0Mg) " 310 yr(22)

On even longer timescales, the fastest-growing m = 2
level (i.e., 322) spins down the BH via superradiance,

s
Tann ~

a=04,

as02.

Mgy § 4 yr . a=04,
10 Mg 1WIWC%% a <05

log GM? N
8 35}
(40)

By this point, only a small fraction of the initial 211
occupation generally remains (for o large enough that

growth occurs on relevant timescales), so gravitational
wave transition signals from 322 — 211 x GW events
are small. The upper panels of Fig. 4 illustrate this
evolution, for f ~ M. For BHs with long enough lifetimes,
a similar story applies to the growth of higher-m levels.

As we discuss below, the purely gravitational story
describes the evolution well if the self-interaction-induced
211 x 211 — 322 x BH process is always slow compared
to superradiant growth processes. The parameter space for
which this is true is plotted as region (A) in the bottom-right
panel of Fig. 3.

3. Moderate self-coupling: Early growth
of 322 and late equilibrium

If we decrease f, while holding other parameters fixed,
the first significant difference from purely gravitational
evolution that arises is earlier growth of the 322 level. We
label this regime, where 211 still grows to saturation, but
322 grows sooner than it would have if 1 =0, the
“moderate self-coupling” regime. The upper-left panel of
Fig. 4 illustrates the evolution of the 211 and 322
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occupation numbers for an f value in this regime (as well as
for a larger f in the small self-coupling regime).

The parameter space for moderate self-coupling is
plotted as region (B) in the bottom right-hand panel of
Fig. 3, and corresponds to the intersection of the shaded
regions in the upper two panels. In this subsection, we
will focus on the threshold between the small self-coupling
and moderate self-coupling regimes, deferring the small- f
boundary of the moderate regime (i.e., the point at
which 211 no longer grows to saturation) to the next
subsection.

For the 211 x 211 — 322 x BH process to build up 322
within the lifetime of the BH, we need

log(GMZBH)

TBH TBH

final / ,initial
3225BH (gmax)2 > log(e335'/€535")
Yoxenl\ér )" < =

(41)

where 8% ~a,(t)) —a —4/a(l +4a*) is
the occupation number of the saturated 211 level.
Parametrically, if we start from very small fluctuations
in the 322 level, and €53 is not exponentially small, then
glinal /ginitial  GM?. For this growth to be faster than 322
superradiance, we need y377 50 (eiax)2 > 3R |

The condition (41) is necessary for early 322 growth to
occur, but not sufficient, since annihilations to gravitational
waves may deplete 211 before 322 can grow. In order for
this not to happen, we need

ihresh ~a, (IO)

Vot (E357)° o
X
log(ef3s!/eH5™) ™ R 25 en s (42)

Replacing the rates by their small-a expansions, this is
equivalent to

P (My/f)* T o e 3
2 211x2110’
log (GM*)

(43)

The combination of the conditions (41) and (42) is
responsible for the shape of the (A)-(B) boundary in Fig. 3.
At small a, (41) is more constraining, while at larger a, (42)
takes over. The parametric form of this threshold value f g
is given in Table II.

Evolution of levels.—Unlike in the gravitational scenario,
where the growth of 322 via superradiance is accompanied
by a rapid drop in 211 occupation, here both levels
eventually reach roughly comparable occupation numbers.
Subsequently, the joint cloud is slowly depleted by
the combination of nonrelativistic scalar emission
and damping by the BH. Other processes, including
gravitational annihilations and transitions as well as rela-
tivistic scalar emission, are small perturbations to this
overall evolution.

As discussed above, only a few rates drive the dynamics
in the regions of parameter space for which self-interactions
modify the purely gravitational scenario. These are x5k,

322xBH 211x SR ~
K311xa11> and k355,555, (and k355, in some circumstances). To

streamline our notation, we will refer to them as SR, xBH,
and k* respectively.

In the regime of moderate self-coupling, the growth of
the 211 level occurs as in the purely gravitational case; both
the occupation number and the BH angular momentum
change “suddenly,” with almost all of the change happening
in the last few e-folds of superradiant growth. This is
illustrated in the top panels of Fig. 4. The BH spin
decreases to a, ~4a/(1 +4a?), and &), stays at ~ey
for a long time. In the purely gravitational scenario, the
cloud would then slowly self-annihilate to gravitational
waves until ~200 e-folds of 322 superradiance have
passed. Here, however, the quartic process dominates,
and the 322 growth rate is higher:

&
%%KBH +05 ( p]/f) (8211) £322- (44)

Eventually, the 322 occupation number becomes large
enough that the quartic vertex 322 x 322 — 211 X o0
becomes important and a quasiequilibrium is established,
roughly after time

log(GMz)
KBH’" o ( pl/f) (5211)

t,~GM (45)

has passed.

At this point, superradiance to 211 has effectively shut
down, and 322 superradiance is too slow to be significant.
Particles are leaving the combined cloud, going back to
the BH (via 211 x 211 — 322 x BH) and to infinity (via
322 x 322 — 211 x o0). Gravitational and relativistic
scalar processes are suppressed by high powers of a.
Accordingly, the coupled dynamics of the two-level system
simplifies to

11 =
—~ =2kBHF oM (M / f) €3, e3m

H
+ k®a® (My/ f) €361, (46a)
& .
% KBHF o' (M / f) 3,630
— 2k (M / f) €301 (46b)
da
LA 46
S a4 (46c)

Since there are no processes (except for the negligible
superradiance of 322) which contribute particles to the
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cloud, particles are only leaving. Accordingly, the system
has no true equilibrium occupations. However, (46) still
admits a time-independent equilibrium ratio of occupation
numbers, €35,/€,;; = to which the system flows,

BH 3~

1 3
;73:2](’(#"’4X 1073 (“) . @)

For the regime of moderate self-coupling, the scalings in
(47) are only representative at leading orders in a. A more
accurate expression is derived in Appendix D.

When the equilibrium ratio is obtained at time z,, the
occupations evolve as

&1 (1)
\/1 + 25'211( )(l )/Tscalar

i (i)
12 o 4
o) (5 ) (o)

(49)

&1 (1) = ) (48)

where

4
Tscalar = 5 (

and e3,(1) = 511 ()"

The joint cloud continues to deplete until the occupation
of 211 has diminished enough that the superradiance
rate of 322 outcompetes the “stimulated” emission process
322 x 322 — 211 x o0, and the cloud starts growing again.
A large occupation builds up in 322, causing rapid 211
depletion via 211 x 211 — 322 x BH. Moreover, as super-
radiance extracts angular momentum from the BH to 322,
the BH’s spin decreases further, making 211 (and other
m = 1 states) damped. This sequence of events is illus-
trated in the top panels of Fig. 4 (where the green curves
correspond to moderate self-coupling, and the blue to small
self-coupling).

In the 4 = 0 case, m = 2 superradiance must proceed
from zero-point quantum fluctuations, or from a small pre-
existing astrophysical density. Here, superradiance gets to
act on the preexisting occupation &35,, since 322 has
already been populated by self-interaction-mediated proc-
esses. In this way, self-interactions “assist” superradiance,
sometimes leading to more rapid saturation of the m = 2
instability than allowed in the purely gravitational story.
The f = 5 x 10'7 GeV curves in the upper panels of Fig. 4
show an example of this, with 322 spin-down occurring
after only ~few x 10° yr, compared to almost 10% yr in the
purely gravitational case.

The above discussion summarizes the evolution of
the cloud in the moderate self-coupling regime. Before

moving on, we will discuss the effects of processes other
than 211x211-322xBH, 322x322—-211x00, and
superradiance, and review why they are (in most cases)
subdominant.

Annihilations to GWs.—An important point is that, to be in
the moderate self-coupling regime for astrophysical BH
masses, we need f < My (as illustrated in Fig. 3). This is
evident from the form of the threshold f,g given in
Table 11, fxg = min(f}, f>). The first term f; comes from

2
the condition y373BH (ehax)2 > %; to make f > M,
we need to take a = 0.07 [for Mgy = O(10 My)]. Such
large values of @ make the f,, coming from the condition

that GW annihilations are not too fast (42), much less than
M,,;. Consequently, gravitational wave emission processes
suffer a suppression ~(f /M )*, relative to self-interaction-
mediated quartic processes. This means that, once 322 has
reached its equilibrium ratio with 211 [Eq. (47)], even
the fastest GW emission process, 211 x 211 — GW, is
generally slower than 211 x 211 — 322 x BH and 322 x
322 - 211 x oo (at least until the levels have depleted
significantly).

GW transitions.—From Table IV, gravitational wave tran-
sitions 322 — 211 + GW contribute a term &35, ~ —3 X
107%a'%¢5,65, 14 + - - - to the evolution equations. If we
take €35, = 78¢e,; [Eq. (47)], this gives

M\ 4

En /1~ =3aBed, | + 0.4aled, <7p1> +... (50)
where we have also included the 211 x 211 — 322 x BH
term for comparison. While the GW transition term is
suppressed by one less power of a, Fig. 3 illustrates that, as
a decreases, the maximum f for the moderate self-coupling
regime decreases (from Table II, f,5 « a''/* for small ).
Consequently, the relative (M;/f)* enhancement of the
quartic self-interaction terms always wins out.

Even though gravitational wave emission no longer
dominates the evolution compared to the small self-
interactions regime of gravitational superradiance, GW
annihilation signals can still be strong enough for detection
in this regime. In addition, the simultaneous occupation of
the two levels allows for the possibility of GW signals from
transitions. We explore potential signatures in more detail
in Sec. VIL

Relativistic 3 — 1 emission.—As discussed in Sec. IIT A,
quartic self-interactions also lead to processes emitting
relativistic scalar waves, such as 211 x 211 x 211 — oo.
This contributes

: -9 21 My N 3
8211//42—5X10 04 T 8211+... (51)
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Because of the high power of « this is suppressed by, its
effect is small compared to the nonrelativistic quartic
processes.

Relativistic cubic emission.—In Sec. III D, we discussed
how, in addition to a quartic self—interzaction, there may also
be a cubic interaction term, £ D ¢ C%- ¢?, which can lead to
relativistic emission processes suc{- as 211 x 211 - oo.
This contributes

: —4 14|12 Mpl 2 2
8211/,[42—2)(10 a |C| 7 8211+... (52)

Compared to the quartic-induced term in Eq. (50), the
lower power of Mpl /f, and the smaller constant factor,
mean that unless |C| > 1, relativistic emission from the
cubic coupling will be a subdominant effect.

4. Large self-coupling: early equilibrium and halted
extraction of angular momentum

If we further decrease f, we reach a point where 322
grows large enough, early enough, that 211 superradiance
is disrupted, and 211 does not reach its saturation value. We
call this the regime of “large self-coupling”; it corresponds
to regions (C) and (D) in the bottom-right panel of Fig. 3,
and to the bottom panels in Fig. 4.

For the 211 x 211 — 322 x BH process to disrupt 211
superradiance, we need that 2y377:8H e, €39, 2 75K, before
&11 has grown to its saturation value. This does not
necessarily preclude 211 reaching €5} (&, can still grow
after that point, albeit more slowly than it would have
with 1 =0), but it is necessary to have a significant
effect. Parametrically, this condition is approximately
equivalent to

3B ()2 > 2 log (GM?)pSY,, (53)

where we neglect the dependence of the rates on the BH
spin [i.e., set a,(t) = a,(ty)]. A more precise condition is
derived in Appendix E.

The condition (53) can be expressed as a condition on f.
211 superradiance is basically unaffected if f 2 fireshs
where

f Y a3 KBH?Jr(grznlalx)Z 1/4
thresh =P 2 10g(GM?) kSRa, (1)

34 (a, (1) /4
~6x 1015 = SO (54
6 x 10 GeV <0.01> < 0.0 (54)

The scalings in (54) are only representative when
a < a,(ty). For larger values of a, rates obtained numeri-
cally, and a more precise version of (53) (Appendix E), can
be used.

As pointed out in [31], if a, is held fixed, the system
admits equilibrium occupations for which &;;; = &35, = 0:

w1 2 \ex(a, —2ar,) ( i )

&(a,) ~ /3 aBKBH,~,+ M

f 2 max
( &1
eq
001\3/a,\'2/ f \2
—25x10 () (Z) (L),
x < a > (o.9> <1015 GeV>

(55a)
1R (a, — 2a7 2
e (a.) X \/§T+)<M_l>
P

1/2 2
_ 6 4« f
=69x10 (().9) (1015 . > ,  (55b)

pl

where
3 = _ms 1/2
ity ("
2 /kRx®(a, - 2af,)

32 (a,(t,)\ /4
~2 % 1015 GeV [ -2 20)) T (56
% ¢ (o.m) (0.9 (56)

Note that the ratio 7% = &33,/€5], is

ﬂeq ™y ~ (nB)smalla’ (57)

according to the approximation (47) valid for small a. At
larger values of a, n® > 1. See Appendix D for more
details.

We now consider what happens in the physical case,
where a, can change. If €51, is much less than its saturation
value, then the timescale to extract an O(1) fraction
of the BH’s spin is much longer than the characteristic
timescale of the processes maintaining the equilibrium.
Consequently, we expect the quasiequilibrium to be main-
tained to a good approximation, as a, undergoes a slow
descent. The equilibrium occupation numbers €57, (a, ) and
€3,(a,) stay almost constant, with the angular momentum
extracted from the BH via 211 superradiance being emitted
to infinity via the 322 x 322 — 211 X oo process. This is
in contrast to the regimes of small and moderate self-
interactions, where the angular momentum lost from the
BH builds up in the cloud.

Close to the transition from moderate to large self-
interactions, there is a sliver of parameter space for which
the exponential growth of 211 is maintained for some time
and O(1) of the maximum spin extraction occurs, before
getting cut short by the equilibrium. Deep inside the region
of small f, however, the spin of the BH is essentially
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unchanged at the time the equilibrium is established, and
most of the extraction of angular momentum happens
adiabatically.

Although (55) is valid at equilibrium, if « is large enough
then &,;; will “overshoot” its equilibrium value before €35,
has caught up with it. Before equilibrium, if we neglect the
dependence of y5% on the BH spin, &;; « exp(y55 7). In
Appendix E, we derive an estimate for the value of the
exponent y55 7 at the time when 211 x 211 — 322 x BH is
comparable to SR. To a good approximation

thresh ~
&1~

322xBH ~ 211
Ya11x211 S ihresh

where we set a,(f) = a,(fy) in both rates.

Accordingly, the evolution toward equilibrium can
happen in two qualitatively different ways. When
a2 0.04, fiesh < feq and eff$" > £51, . In this case, the
occupation &,;; overshoots its equilibrium value and
subsequently evolves toward it from above. This is illus-
trated in the bottom-left panel of Fig. 4 (for which
a = 0.11). Conversely, when a < 0.04, then elfsh <&3],.
There is no overshoot, and &,;; evolves toward its equi-
librium occupation from below.

Given this, the boundary between the moderate self-
coupling regime, where &, reaches €37}, and large self-
coupling, where it does not, is set by

f 5 fBC = min [fthreshvfeq]- (59)

To review, the evolution of the superradiant cloud, in the

regime of large self-coupling, occurs in different stages:

(1) An initial stage of exponential 211 growth, during
which &35, is too small to significantly affect the
evolution of &5;;.

(2) A “nonequilibrium” stage in which &1, and &3,
evolve toward their equilibrium values. The time-
scale to approach the equilibrium values is at most a
logarithmic multiple of 1 /y%‘l, since the relevant
self-interaction processes are at least as fast as y5y -

(3) Once &,1; and €35, are close to their equilibrium
values, there is a long period of quasi-adiabatic
evolution. The spin-down of the BH due to spin
extraction through 211 superradiance, which changes
a, on a timescale (a,/a,)™' ~ (e5&/e31)/15K,
leads to the slow evolution of the equilibrium
occupation numbers.

(4) If the BH lifetime is long enough that spin-down to
the m = 1 threshold occurs, then similar behavior to
the moderate self-coupling regime will result. The
211 and 322 levels will maintain a quasiequilibrium
ratio, but with decreasing occupation numbers, as
scalars are emitted to infinity. Eventually, the occu-
pation numbers will become small enough that 322

superradiance starts to dominate, at which point the
322 occupation number starts growing again (e.g.,
the f = 10" GeV curves in the bottom-left panel
of Fig. 4).
Consequently, when f is appreciably smaller than fpc, the
first and second stages change a, by only a small amount,
and the majority of the BH’s spin-down to the m = 1
threshold happens during the period of almost adiabatic,
quasiequilibrium evolution.

When the equilibrium occupations (55) are obtained, the
angular momentum of the BH decreases according to (36),
with &), = £51,(a.) (and we can ignore k3%). The time-
scale for spindown is therefore set by

VB (M)
20°u /k® (kKR (a, — 2a7,))>/?

107 v (001 (10712 eV
I~ y . p

0.9\ (10! GeV\
@) @

While in (slowly varying) equilibrium, the cloud emits
nonrelativistic axion waves through the 322 x 322 —
211 x oo process. These could, in the presence of axion-
SM interactions, be detected by experiments on Earth. Even
though the occupation number of the cloud decreases o« f2
for small f, the coupling strength of axion-SM interactions
will generically scale as ~1/f. Consequently, the inter-
action rate of the emitted radiation with a laboratory target
can be independent of f in the small-f regime. This in
contrast to gravitational wave signals, which are suppressed
at small f. We discuss this possibility more fully in
Sec. VIIL.

In the previous subsection on the moderate self-coupling
regime, we discussed how interaction processes, other than
nonrelativistic quartic interactions and superradiance, are
generally subdominant in their effects on the evolution of
the cloud. Very similar calculations apply to the large self-
coupling regime; the equilibrium ratio of &3,,/€,;; is the
same, with the difference being that the equilibrium
occupation numbers are suppressed, scaling « f2.

This scaling only makes a difference to comparisons
between processes with different multiplicities. For anni-
hilation to GWs, the (f/M;)* scaling of the occupation
number is not enough to make up for the (M,/ f )* relative
enhancement of the quartic interaction rates, so GW
annihilation processes are even less important than they
are in the moderate self-coupling regime.

For relativistic cubic emissions, the fastest of which is
211 x 211 — oo, we can compare the contribution to the
evolution rate to that from 211 x 211 — 322 x BH:

Tsd<a*)
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. M\ 2
i /p = =2 x 10" |CP? <—p> &n

f
M 4
-8 x 10_76(11 <7pl> 8%”8322
~ (=2 x 10~*a|CP2 - 107%a)
M\ 2
« () ety (1)

where the second equality applies for the equilibrium occu-
pation numbers (55). Consequently, if |C|<16(0.2/a)¥/?,
then the effect of the cubic emission term is small compared to
that of the nonrelativistic quartic processes.

For a 2 0.04, the equilibrium values of &,1; and &3,, are
smaller than the “overshoot” values at which self-inter-
actions first affect the evolution of 211. Consequently, if the
relativistic cubic processes are unimportant in equilibrium,
then they are always less important than the quartic
211 x 211 — 322 x BH process, whenever the latter has
a significant effect on 211 evolution.

For smaller a, the 2 — 1 process will be relatively most
important around the initial time at which 211 growth is
slowed down, since the equilibrium occupation numbers
are approached from below. Still, even without calculating
the thresholds carefully, we can see that as long as
|C| < 16(0.2/0.04)3/% ~ 180, cubic emission will be insig-
nificant in that regime (since decreasing a decreases the
relative importance of cubic emission). Overall, we can see
that, unless |C| > 1, relativistic emission through the cubic
coupling should always be a subdominant effect on the
evolution of the 211 level (cubic emission for higher-/
levels is suppressed by higher powers of a, so should
generally be less significant again).

5. Large self-coupling: lack of BH spindown

Since €51, o« f2, and the rate of spin extraction from
the BH is « &;;, the spin-down rate for small enough
f will be so slow that the m =1 threshold spin is not
reached within the BH lifetime. The f = 10'> GeV curves
in the bottom panels of Fig. 4 show an example, if we
take the BH lifetime to be <10'° yr. This affects BH
spin-down signatures of superradiance, as we discuss
in Sec. VL

The timescale for spin extraction in the large self-
coupling regime is set by 7y [Eq. (60)]. Setting this
equal to the age Tpy of the BH gives the threshold value
of f

fep =3 x 10 GeV(lOlO yr)%<10_13 eV>%
Ty H

e

i.e.,if f < fcp, then the BH does not have time to fully spin
down. The parameter space in which this is the case is
plotted as region (D) in the bottom-right panel of Fig. 3, and
is illustrated by the smallest-f curve in Fig. 9. For f < fcp,
which gives Ty < 744, the amount of angular momentum
extracted is

~ Ty
|Aa*| B Tsd(a*(t())) . (63)

C. Beyond the two-level system

So far, we have focussed on BH-cloud systems which are
dominated by the 211 and 322 hydrogenic levels. In this
subsection, we consider the effect of other levels on the
dynamics, including higher principal number » and higher
angular momentum numbers [/, m. We continue to assume
that the initial conditions are such that 211 satisfies the
superradiance condition and is the first level to grow; this is
the regime of fastest black hole spindown and the largest
gravitational and scalar emission rates, and is thus the most
relevant from an observational perspective.

We find that, for @ < 0.2, the two-level picture discussed
so far is probably sufficient, with only 211 and 322 growing
to large occupation numbers. For a 2 0.2, we expect that
self-interactions would cause other levels to grow; we leave
a full analysis of this regime to future work.

Our analysis in this section focusses on perturbative
processes, assuming that evolution is well-approximated by
a combination of approximately hydrogenic levels. In
Sec. V, we investigate whether nonperturbative processes,
such as “bosenova,” could change this picture; we find that,
for a < 0.2, this seems rather unlikely.

1. Growth mechanisms in the presence
of self-interactions

As discussed in Sec. IVA, if 211 is initially the only state
with appreciable occupation number, then other states j can
be built up through processes of the form

211 >< J

211 BH
Taking j = 322 gives the fastest growth rate, since the
forced oscillation damped by the BH has m = 0 (maxi-
mizing the damping rate), and the overlap factors are large.

If a 322 and 211 abundance are both present, then other
states can also be built up through

211><j 211><j 322><j

211 BH 322 BH 322 BH
However, as well as these processes building up new states,
there are also processes reducing their abundance;
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322 >< 211 211 >< 322 J >< 211

J o] J BH J %)

To determine whether, starting from very small fluctua-
tions, another level j will start growing, we can look at the
linear-in-¢; evolution terms (i.e., ignore processes such as
the last diagram), and see whether the growth rate is

positive or negative.

2. nl1 levels

For a state j with m = 1, the quartic processes with j in
the final state all have forced oscillations with m > 1,
which are growing rather than decaying (in the parameter
space where 211 is superradiant). Consequently, they
contribute a negative term to j’s growth rate. Hence,
growth of j can only come about through superradiance.

In the large self-coupling regime, a quasiequilibrium
for 211 and 322 can be reached with very little effect
on the BH spin, so the superradiance rates for m = 1 states
are still positive. The fastest such rates are for the nll
states. The linear-order evolution of the occupation number
is set by

é’nll SR 322xBH 211x00
- = Vot — (N1xnl T Vni1x320)€211€32.  (64)
n

Substituting in the equilibrium values for €, and &3,,, we
have

SR ,,322xBH 211xo0
Entl ¢ _ 2V201 Valixnll T Vallx32 (65)
SR, 3,5R 322xBH
Yn11€n11 Va1l Yai1x2ll

It is useful to analyse the large-n behavior of this expres-

. . . . SR IXBH
sion. At leading order in small a, the ratio “L-3ball is

Yat1 V211x211
independent of a and a,; it exceeds 1 for n 2 10, and

approaches 1.27 at large n (see Appendix C2a and
Fig. 22). As discussed in Sec. III C, the most important
finite-a effects on the quartic BH rates arise via the horizon
flux of the associated forced oscillation. Since they are
driven by near-horizon behavior, these do not have large
effects on ratios of rates (Fig. 21). Consequently, the ratio
of analytic superradiance rates should be accurate at the
few-percent level, except close to the superradiance
boundary. SR, 211x00

The ratio 22 21522 scales as o> at small a. For n large, it
approaches nll 7211x211

A (02

SR 322xBH _1/3

3
> , nooo, a<kl (66)
3rn raiten ar

(see Appendix C 2 a and Fig. 23).
The combination of these negative contributions means
that no nl1 level with n 2 6 gets populated, at least for

T

= ‘
— 14
< |
W y
[e=p :
Ne b L !
= S
~ | i
= n =100
< 1 |
‘W n=6--
n=4

s ]
0.4

FIG. 5. Growth rates of nl11 levels once 211/322 quasiequili-
brium has been reached, relative to their superradiance rates. At
a < 0.2 none of the levels have positive growth rates; levels with
n 2 10 have negative growth rates for all a, within our hydro-
genic approximation.

ai. < 0.3.°Forn = 3, the process 211 x 311 — 322 x BH
is resonant, as discussed in Sec. III C; this makes it more
difficult to populate 311. However, for a 2 0.2, we expect
that the 411 level will grow, given enough time. This is
illustrated in Fig. 5.

Since the 411 superradiance rate is O(10) smaller than
that of 211, the evolution of the 211/322 two-level system
should proceed, at first, without modifications. Therefore,
in the moderate and large self-coupling regimes we are
considering, 211 and 322 will reach their two-level
quasiequilibrium occupation numbers, as described in
Sec. IV B. After two-level quasiequilibrium is reached,
we can initially treat 211 and 322 as constant sources while
411 grows (since the BH spin-down timescale is relatively
very long). As a result, 411 grows with an “effective”
superradiance rate which is smaller than its usual super-
radiance rate,

SR—eff _ , SR 322xBH 211xo00 )4 &9
van o =i — (it T 7411x322)€2115322 (67)

where the quasiequilibrium concentrations are given by
Egs. (55a) and (55b).

After O(100) e-folds, the occupation number of 411 will
become comparable to those of 211 and 322, and the three
levels reach a new quasiequilibrium. The most striking
feature of this is that the equilibrium 411 occupation
number is significantly higher than the equilibrium occu-
pation numbers in the two-level 211/322 equilibrium. The
411 evolution equation is

°If & is large enough that we are in the “overshoot” regime,
where the maximum occupation numbers are reached before the
equilibrium phase, the negative contributions to the growth rate
during the overshoot are even larger than in equilibrium.
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&1 SR 322xBH 211x00 322xBH
—84“ =y — (Paliaall T Va11x322)€211€322 = Va1 Txa11€322€411

__ . SR—eff __ ,322xBH
=VYa o T 7a11x4116322€411

Since the numerical coefficient of the y3:7:PH rate is

significantly smaller than e.g., that of p32BH (see
Table V), then unless y5R—°" is significantly smaller than
the components of Eq. (67), we need &, > &5, 55, to
compensate. This is illustrated in Fig. 6, which shows the
growth of 411, and development of a new three-level
equilibrium, for a~0.22. From numerical calculations,
411 grows to be up to ~50 times larger than the benchmark
two-level quasiequilibrium value of 211 [Eq. (55a)].

Given this enhanced occupation number, it is natural
to ask whether higher-order or nonperturbative processes
could occur, even if they do not for the two-level
system. As discussed in Sec. V, the more spread-out wave
function of the 411 level makes this unlikely. The emission
of scalar radiation will also be enhanced, as discussed in
Sec. VIIIL.

This three-level quasiequilibrium is unlikely to be the
full story. As we discuss in the next section, within the two-
level equilibrium, we do not expect n22 levels to grow.
However, the large value of &)}, can change this con-
clusion. For example, the dominant processes building up
and depleting the 422 level, in the presence of equilibrium
211, 322 and 411 occupations, are

411 >< 422 411 >< 211
411 BH 422 00

1078

p=3x10""2eV, f=10"GeV

107}

w %

10-10|
0 — &1

€322

— €411

10711

5 x 10° 107 2 % 107 5 x 107

t(sec)

10° 2 x 10°

FIG. 6. Example of 411 level growth after a period of 211/322
quasiequilibrium. This plot assumes a 10 M BH, with a ~0.22,
and an initial BH spin of 0.9. As discussed in Sec. IV C2, the
three levels reach a new quasiequilibrium state, in which we
expect the 422 level to grow, becoming large at later times than
those shown here.

The first diagram is almost on-shell for a 400 forced
oscillation, so the 411 x411 — 422 x BH process is
“resonant,” like the 211 x 311 — 322 x BH process dis-
cussed in Sec. III C. Consequently, its rate is suppressed by
a lower power of a. Along with the large value of &4
relative to €51, this means that the growth rate of 422 is
positive for the three-level equilibrium occupation num-
bers. As a result, after O(100) e-folds of this new growth
time, the three-level equilibrium would be disrupted by the
growth of the 422 level.

We leave a more detailed analysis of evolution in this
large-a regime to future work (as well as the evolution
being complicated, our hydrogenic approximations are less
reliable here). It is possible that further levels will grow
after 422 does, leading to a complicated, multi-state
superradiant cloud. In particular, is possible that the cloud
could reach large enough field amplitudes that higher-order
or nonperturbative processes become important, as we
discuss in Sec. V.

3. n22 levels

n22 states grow and are depleted similarly to the 322
level, via the processes

211 >< n22 322 >< 211
211 BH n22 00
at linear order in €,,, (the superradiance rate of n22 states is

small enough not to be important, for parameters of
interest). The linear-order growth rate is

y21lxeo

. u22xBH 122x322 2

€n22 = 1211%211 <1 ~ T u22xBH ’7> E311€n225 (68)
Y211x211

where 1 = €35,/

At early times, €37,/€,1; < 1, and n22 is sourced in the
same way as 322. However, since the 322 growth rate is at
least O(1) larger, it has an exponentially larger occupation
number than the other n22 levels by the time quasiequili-
brium is established. For example,

422xBH n22xBH

4 14 _
Boiaoss  Diglan (o)
Y211x211 V211211

(see Appendix C 2 a and Fig. 24 for further details). For the
quasiequilibrium abundances of 211 and 322, the negative
term in Eq. (68) dominates, reaching a value of 1.96 for
n =4 (1.69 for n - ),

211x00 1 x2Llxeo  322xBH

Tn22x322 > 2 Kn22x322 K210011 5 | 69 (70)
n22xBH | ~ 5" 211xe0 722xBH ~ 07"

7211211 322x322 Ka11x211

Including higher order corrections to the equilibrium ratio
of 322 to 211, as well as the superradiance of 322, increases
the ratio further. Thus the time derivative of n22 becomes
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negative at leading order in «, independently of «a, n,
and a,.

4. n33 levels
n33 states grow and are depleted by

211 >< n33 322 >< 211
322 BH n33 00
giving

: _ n33xBH 211x00
€33 = (7211x322 - 7322xn33)8211€322€n33

M\ 4
~ (+133xBH% 11 211xc0 8 pl
= (K xam + @ = K3ppkm33d )< €211€322€,33

f
(71)

at linear order in €,33. Due to the different a scaling, the
grow rate is negative at small enough a. Quantitatively,

U\2 (031 n=4 ™)
Kf’l33><BH - 0 5 n— 0o
211x322 .

so at high spin, where 7, ~ 1, the growth rate is always
negative for @ < 0.3 (see Appendix C2a and Fig. 25).

5. nd4 levels

For n44, we have
322 >< n44 322 >< 211
322 BH n44 o0
giving

E
. _ n44xBH €322 211x00
Engq = <7322x322—€ = Vnaax322 | €211€322€044
211

M
 (n44xBH% 3 211x00 8 pl
= (K30 am T+ 0N = Kpgax 350 ) <f €211€322€044

(73)

at linear order in €,44.

With quasiequilibrium occupations for 211 and 322,
the growth of n44 states occurs when a is large
enough that

Kn44><BH 1 Kn44><BH K.322><BH
320322 5 o3 £ K322 Ko1all 650
2Mixco T+ ’7~2K211ch> 2l Ixoo +
n44x322 nd4x322 K322%322

> 1, (74)

or equivalently

a2 0.3 (75)

where the right-hand side is as large as 0.34 for n =5 (0.3
for n — o) (see Appendix C2a and Fig. 26).

6. Other levels

The n22,n33 and n44 levels considered above are the
only ones which can be built up via quartic processes where
the forced oscillation has [/ = m = 0. To build up other
processes via self-interactions, starting from 211 and 322,
we need to use forced oscillations with / > 0, which have a
parametrically smaller flux through the BH horizon. They
therefore stand even less chance of having positive growth
rates. For [ > 2, we can often rule out these processes being
relevant on astrophysical timescales, simply by estimating
the magnitude of the growth rate. For example, for / = 2,
we have

766xBH(2,~2 L a\°/M _
7322x322< >(5§%2)2 ~10 2(@) (ﬁ) Myr L (76)

where the superscript BH(/,m) indicates the angular
momentum numbers of the damped leg.
Taking an [ = 1 example,

655xBH(1,~1) (1 _

y211><oo €11
. 655%322 2
€655 = V322x322 )83228655- (77)

655xBH(1,-1) ¢
Y322x322 322

The depletion term dominates at equilibrium as long as

1/9 Kessxsn 1\

- o N

arl/? < <—655XBH<1,_1>,7—B> ~0.7. (78)
K320%322

Similar checks can be performed for other processes
involving mixing with an /=1 damped state (see
Appendix C2a). One finds that, for all of them, the
depletion process to infinity dominates over the pumping
process for the entire range of a for which m = 1 states can
be superradiant (a < 0.5).

V. NONPERTURBATIVE BEHAVIOR

So far, our analysis has assumed that the scalar field is
always well-approximated by a combination of approx-
imately hydrogenic bound states, and that quartic inter-
actions result in the slow transfer of energy to and from
these bound states. However, if the field amplitude
becomes large enough, we expect this picture to break
down. Most directly, for a generic potential, higher-order

"This is not strictly true—the Kerr potential breaks spherical
symmetry, so [ is no longer a good quantum number, and e.g.,
n4?2 can also be build up via a m = 0 forced oscillation. However,
in the small-a limit, the overlaps for such processes are sup-
pressed by more powers of a.
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field interactions can become important. In addition, for
large enough amplitudes, attractive interactions would
make hydrogenic bound states unstable to collapse, in a
“bosenova” [6,27,28].

As we explored in Sec. IV, for large self-couplings, the
quartic interactions lead to the saturation of the cloud to a
quasiequilibrium configuration (for much of the parameter
space of interest), with field amplitude « f. For a potential
of the form V(@) « g(¢/f), this means that the relative
importance of higher-dimensional interactions becomes
independent of f (for small enough f). As we will show
below, for small @, the maximum value of @ = ¢/ f is small,
and the quartic-driven behavior we have investigated
should be a good approximation. Similarly, for small a,
the cloud is always far from the nonperturbative “bose-
nova” regime. For a 2 0.2, we expect levels beyond 211
and 322 to grow in the small-f regime, as discussed in the
previous section, so their behavior would need to be
analyzed to draw conclusions about nonperturbative
behavior.

A. Maximum field amplitude

When a single hydrogenic level dominates the energy
stored in the cloud, the dimensionless field amplitude 6 =
@/ f is related to the occupation number of that level by
0] « @*?\/eM/f. In the small and moderate self-
coupling regimes, where 211 reaches its saturation occupa-
tion number, || increases o 1/f as f decreases. However,
once we are in the large-self-coupling regime, the occu-
pation numbers reached are o« £2, so 0 becomes indepen-
dent of f.

If 211 is the dominant level, then the maximum value of
0 is attained at r = 2a, and 0 = x/2, with

M\ [1
|9max|zas/2\/€2ll<fp> ge_l- (79)

As we decrease f, this increases until f ~ fgc [Eq. (59)].
For a 2 0.04, fgc = finresh and

|Omax (fBC) |~ 7/4<log(GM2)KSRa*(t0)>1/4 e
BH 2 \/Eﬂ'

K
7/4
~0.03 (%) . (80)

The scalings in (80) are only representative when
a < a,(ty) (see Appendix E). For a <£0.04, fgc = feq
and the maximum value of € is equal to its value at
equilibrium:

10711 C

1078

10—15 L

GeV/f

10—17 L

107

0.01 0.05 0.1 015 02 025 03 035 04

«

FIG. 7. Maximum value of |0 =|¢/f| attained during the
evolution of the two-level 211/322 system, for a BH with initial
spin a, = 0.99 and initial mass 10 M, (the BH mass only affects
this plot via the number of e-folds ~log(GM?) a level can grow).
The dashed orange line indicates the boundary between the
moderate and large self-coupling regimes (corresponding to fpc
as defined in Sec. IV). |6,,.«| is computed by numerically solving
the evolution equations for the 211 and 322 occupation numbers.

o\ 1/2
|efr(1lax r’U(l( KSRa*(tO)K ) / ! 6‘_1
KBH V24x

~ 0,005 () (@) (81)
<0.01> < 0.99 )

(again, these scalings are valid when a < a,(1)))."

These equations suggest that, for small «, the value of |0]
never becomes large, so we would generically expect
higher-dimensional interactions to remain unimportant.
To see this more quantitatively, Fig. 7 shows the maximum
value of |0| attained during the evolution of the two-level
211/322 system, for different values of a and f. This has
the expected behavior, increasing with decreasing f for
f Z fpc, and reaching a constant value for smaller f (at a
given ).

As discussed in Sec. IV, we expect that, for small f and
a 2 0.2, levels other than 211 and 322 will grow. At these
parameters, the |6,,,.| values in Fig. 7 represent a lower

8Although Eq. (81) is valid at equilibrium, we noted in
Sec. IV B 4 that &,;; can “overshoot” its equilibrium value as
it evolves toward equilibrium. We have determined numerically
that the overshoot estimate of Eq. (ES), or the approximation of
Eq. (58), accurately predicts €5} for @ Z 0.05 with an error less
than 1%, deep in the self-interaction regime. Quantitatively, we
found numerically that there is a thin band around the dashed
boundary line of Fig. 7 [see Eq. (E7)], with a width of less than an
order of magnitude in f, where both the quasiequilibrium and the
overshoot estimates underpredict €577 by Z5%. A significant
discrepancy arises only in the region where |6,,,| reaches its
largest value and is ~20%. These translate to a ~2.5% and ~10%
discrepancy in the analytically predicted |0, |, according to the
scaling of Eq. (79).
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bound (since the initial 211 overshoot value is still set by
211/322 dynamics). For the 411 level, which we expect to
be the first to grow after the 211/322 quasiequilibrium
(Sec. IV C2), the maximum occupation reached is only
around twice the maximum occupation number of 211.
Consequently, the more spread-out wave function of 411
means that it does not attain a larger |6| value. However, a
more careful analysis would be required to determine |6, |
once other levels grow.

B. Bosenova

As well as higher-dimensional interactions becoming
important, another possible issue arising at large occupa-
tion numbers is that the cloud may undergo a sudden
collapse due to attractive self-interactions, known as a
“bosenova” [6]. Here, we estimate the occupation number
threshold for a bosenova to occur, using a variational

approach.
The wave function for the hydrogenic 211 level is
VNau 52 e
=——ua re~"/(2a0)y 0, 82
Yol NG 0 1(0,9) (82)

where ag = 1/(au) is the Bohr radius. As our variational
ansatz, we will take a wave function of this form, but with a
modified radius,

= —\/ﬁ R™2re " /CRY (0, p) (83)

For convenience, we will define a dimension-2 wave
function ¥ = ,/uy. Then, the nonrelativistic action for
W interacting with a gravitational field, sourced both by the
central BH and by itself, is given by

i ~ kO ~ 0 ok 1 ~ ~
Sﬁ/d3rdt(l// O = o) — 5 |V |* — @l
2u 2u
A 1

—— |]* - Vo> — ppy® 84

The gravitational potential ® obeys the Poisson equation,

V2@ = 4zG(pgy + [ [*) (85)
where we take pgy = M&*(r) and M is the mass of the BH.
Using this potential, and integrating the action of Eq. (84)

over space, we obtain an effective potential for R. Ignoring
self-gravity of y, this is

V(R) =

SR> 4R

a4Mp]28 ( 1 1
u

3a’eM,?
DX E . (86)
1638477 /2

where R =R/a,. The first two terms correspond to
kinetic and gravitational energy, and set the radius of

small-amplitude hydrogenic levels—the last terms arises
from attractive self-interactions. The extrema of the poten-
tial V(R) are at

N 1 1 9aeM >
RE =ty 87
extrema 2 4 409 671' fz ( )

If we decrease f, at some point these extrema will coincide,
and the potential will no longer have a stable minimum.
This leads to a bosenova, with the cloud collapsing. The
critical occupation number for this to occur is

10247 f2

=t 88
Ecrit 9023 Mp12 ( )

Incorporating the effects of self-gravity, this becomes

3 2 160
=22 1758407 (<L) 4+ 22507 — —— (89
erit 711a2\/ ”( Pl) +2250 —oagg (89)

which reduces to Eq. (88) for small f, i.e., for small clouds.

Given this, we can ask whether the 211 occupation
number reaches & during its perturbative evolution. If it
does not, then our assumption of perturbative evolution can
be self-consistent. Figure 8 shows the maximum value of
€11/€S attained during the evolution of the two-level
211/322 system. For a small enough that other levels do
not grow (a < 0.2), we can see that this ratio is always
<0.3, so we do not expect a bosenova to occur. This is in

10—11

10—137
=
% 10—157
&}

10—177

1071 Lk ! ! ! ! ! ! ! !

0.01 0.05 0.1 015 02 025 03 035 04
«

FIG. 8. Maximum value of 6211/8§r1i‘1 attained during the

evolution of the two-level 211/322 system, for a BH with initial
spin a, = 0.99. &t is the critical occupation number above
which a rapid collapse of the cloud (a bosenova) is expected to
occur (Sec. V B). The dashed orange line indicates the boundary
between the moderate and large self-coupling regimes (corre-
sponding to fpc as defined in Sec. IV). &, is computed by
numerically solving the evolution equations for the 211 and 322
occupation numbers. The plot is roughly independent of the BH
mass, within the range of astrophysical BHs.
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contrast to the conclusions of much of the existing
literature. As emphasized previously, other papers neglect
the perturbative processes that lead to energy exchange
between hydrogenic levels, causing the cloud to saturate to
a quasiequilibrium configuration before its amplitude
becomes large enough for a bosenova.

For a Z 0.2, we expect that levels other than 211 and 322
will grow. This means that the ¢/e.; values in Fig. 8
represent a lower bound. As we discussed in the previous
subsection, the more spread-out wave function of the 411
level means that it is unlikely to get closer to the critical
occupation number than the 211 level; we leave an analysis
of the situation once other levels have grown to future work.

1. Subleading effects

As discussed in Appendix F, superradiance extracts mass
from the BH in addition to angular momentum. As such,
the cloud can actually grow to be somewhat larger than we
have assumed so far. The modified equations for purely
gravitational superradiance can be found in Appendix F.
In deriving Fig. 7 and 8 we have included the correction
coming from the change of the BH mass or, equivalently,
from the time-dependence of a. As expected, we find
that this correction can become quite large near the
superradiance boundary, as the final spin is slightly
modified (see Eq. (F10). However, for strong self-inter-
actions, where the bosenova might be relevant, there is
practically no significant correction, as the cloud does not
grow appreciably and thus does not extract a significant
amount of spin or mass from the BH.

One might also ask how the inclusion of another level,
say 322, changes the above picture. Assuming that its
fractional occupation number is small compared to our
primary level (e.g., 211), we can treat such a level as a small
perturbation and check whether our results are consistent.
In what follows we will neglect self-gravity for clarity or,
equivalently, we will work in the small f (large self-
interactions) limit, where Eq. (89) coincides with Eq. (88).
We add a contribution from 322 to our variational ansatz

MY 4 r\? r
o2~ (L - )vie.4) (90
Y7 481730 <ao) P < 3a0> :(0.4) (0)

where M, is the mass of the 322 cloud. Note that we treat
322 as rigid, i.e., we do not allow its radius to change.
Following the same procedure as before, we get an effective
potential for 211 with an additional attractive term, stem-
ming from its interaction with 322

V(R)
_a*'Mye ( 1 1 3o eM y? 27R4a362Mp12>
U 8R> 4R 16384zR%f%> 2x(3+2R)°f?
(91)

where ¢, is the fractional occupation number of 322.
Expanding around the critical values as R = % + \/55]?
and e =g, + €,6¢, we find the correction e = 21,/16384,
giving
£,0¢ 21 &

e 16384e 42)
The result is indeed small and, thus, it does not change our
conclusions about the bosenova. In particular, the correc-
tion to €. 1s positive. Since the interaction is attractive, as
seen from the potential in Eq. (91), the 322 cloud attracts
the 211 one and, since it resides at a larger radius, it
effectively dilutes it.

In Fig. 8, we compared the ¢,;; value attained during the
perturbative level evolution to ¢;,. However, the rates of
the different processes involved in the evolution were
calculated for the unperturbed hydrogenic wave functions.
Consequently, we should ask whether self-interaction-
induced perturbations to the wave functions make a
significant difference to the rates, and so the occupation
numbers attained. From Eq. (87), we can see that if
€511/ € 18 always small, then the corrections to the wave
functions will always be small, and our calculations should
be self-consistent. Since &,1/&i only becomes large for
larger a, where (as discussed previously) our perturbative
evolution calculations are already incomplete, we leave a
full analysis to future work.

In plotting |0,,.«|, we have used the field defined using
Eq. (83), that is, by taking into account the corrected radius
of Eq. (87). This amounts to multiplying Eq. (79) by a
factor of (R,)~*/? [Eq. (87)], giving

N2 /M [T
0| ~ a2 ) () et (93
6 ~a /_(R) <f)\/g,f (93)

We have determined numerically that the radius change is
at most 15% and introduces at most a 25% change in the
region where |6| grows to be the largest possible, driving to
a value of ~0.5, whereas the change is much smaller
everywhere else.

Another possible issue with our variational analysis is
that the evolution is not adiabatic during the last few e-folds
before 211 reaches its maximum occupation number. As a
result, the cloud might not trace the minimum of the
potential of Eq. (86) but rather oscillate around it, in the
manner of an “excited state.” In this case, the cloud could
overcome the barrier at R~ [Eq. (87)] and collapse. We note
that oscillations of the radius of the peak seem consistent
with the results of Ref. [47]. The minimum of the potential
would need to be fairly close to critical for this to be an
issue, but we leave detailed investigation of this point to
future work.
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2. Comparison to simulations

While we expect our hydrogenic ansatz to be a good
approximation, properly understanding the dynamics of a
bosenova requires numerical simulations. In [27,28], the
authors numerically simulate the evolution of a self-
interacting scalar field around a high-spin Kerr BH, starting
from a hydrogenic bound state profile with & ~ O(1). These
simulations effectively operate in the large self-coupling
regime, taking the cloud’s mass to be very small compared
to the BH. In simulations with a, = 0.99 and @ = 0.3 [28],
they find that a 211 bound state with initial amplitude such
that |0,,.| = 0.4 does not undergo a bosenova, but one with
|Omax] = 0.45 does.

Comparing these to our variational calculations, we
can convert the critical occupation number (88) to a field
amplitude, giving the leading-a expression |6 | =
%a =~ 0.42%. This is highly compatible with the thresh-
old behavior observed in the simulations.

The simulations in [27,28] were evolved forward for
t = 2000r,. This is much shorter than the timescales for any
of the perturbative processes studied in Sec. IV, including
211 superradiance, and the growth of 322 through self-
interactions. A simulation would have to be run for much
longer times to observe these effects. In particular, the fact
that a bosenova was observed for the initial state |0, | =
0.45 is not evidence that a bosenova would occur around an
astrophysical black hole. In the latter case, the true initial
conditions are at an exponentially smaller amplitude, and
according to our estimates, the maximum 211 amplitude
reached during the evolution is [6,,.] ~0.3 (Fig. 7), at
which point interactions with 322 cut off its growth.

3. Repulsive self-interactions

In [31], it is claimed that if self-interactions are repulsive,
they can completely suppress the growth of 322, by
spreading out the 211 cloud and reducing the rate of the
211 x 211 — 322 x BH process. We can estimate the
effect of repulsive self-interactions by looking at how they
shift the 211 wave function radius in our variational ansatz.
This gives

2 1 11
Rep=7511 1 : 94
’ 2( Y e oY

with &7} from Eq. (88). Since the perturbative evolution

processes from Sec. IV all depend on 42, they are the same
for attractive and repulsive self-interactions. Consequently,
the maximum value of &, attained through perturbative
evolution should be the same. As a result, we expect that,
unless &, /€51 becomes large (which we cannot rule out
for @ 2 0.2 and small f), the effects of repulsion should
be small.

VI. BLACK HOLE SPIN-DOWN

One of the observational signatures of superradiance is
the spin-down of initially fast-spinning BHs [5,6]. In the
absence of nongravitational interactions, if a BH is born with
spin high enough that a mode is superradiant, and the mode’s
growth time is much shorter than the lifetime of the BH, then
a superradiant cloud will form around the BH. This spins
down the BH to the point where the mode is stable, rather
than growing. Consequently, observing a sufficiently old,
sufficiently fast-spinning BH is good evidence against the
existence of a light boson with such properties. Constraints
of this kind have been placed on spin-0 [12,48] and spin-1
[20] particles from measurements of BH spins in x-ray
binaries [35,49] (higher-spin particles have also been
considered [50,51], though such models encounter theo-
retical issues, as we discuss in the conclusions).

In contrast, if self-interactions are large, then as dis-
cussed in Sec. IV, the occupation numbers in the quasie-
quilibrium state are suppressed. Consequently, the rate of
energy and angular momentum extraction from the BH is
suppressed, and the spin-down constraints described in the
previous paragraph will not apply directly.

Instead, for small enough f, the time-averaged spin
extraction rate will be approximately set by the equilibrium
occupation number of the 211 level (at least in the case of
211 superradiance), as discussed in Sec. IV B 4. Since

&l xa Mf—zz [Eq. (55a)], the time taken to fully spin down
pl

the BH (to the point where 211 superradiance is saturated)
scales « f~2. Consequently, as reviewed in Sec. IVB 5,
there is some minimum f below which the BH is not
significantly spun down in the time available.

This behavior is illustrated, for particular initial BH
parameters, in Fig. 9. The figure shows how, for f < fpc
(Table II; fgc ~ 3 x 10'® GeV for the left-hand panel, and
~2 x 10! GeV for the right-hand panel), spin-down to the
m =1 superradiance threshold takes longer as f is
decreased, until it no longer occurs within the lifetime
of the BH for f < fcp. The region of (u, f) parameter
space in which the BH is spun down to the m =1
superradiance threshold is shown in the bottom-left panel
of Fig. 3.

We have only performed a detailed analysis (at all f) of
situations in which 211 is the first superradiant level to
grow, and levels beyond 211 and 322 do not grow. From
Sec. 1V, this corresponds to a < 0.2. Nevertheless, we can
be confident that, when interactions are weak enough that
superradiant growth of the 322 level is unaffected, the black
hole is spun down as in the purely gravitational case. This is
indicated in the bottom right of the lower panels in Fig. 3.

Applying this physics to observations of astrophysical
BHs, Fig. 10 shows the regions in the (u, f) plane for which
sufficient spin-down occurs, so that spin measurements
from BHs in x-ray binaries constrain an axion with that
mass and coupling. For each black hole, the solid line of the
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FIG.9. Black hole spin-down as a function of time for u = 8 x 10~!3 eV (left panel) and u = 2.5 x 107! eV (right panel) for a range
of self-interactions strengths, and a 10 M black hole. These axion masses correspond to a ~0.06 and a ~ 0.19 respectively. The
dashed horizontal lines show the superradiance boundary for levels 211 (upper) and 322 (lower). The dashed vertical lines show the
expected spindown time in the limit of no self-interactions for levels 211 (smaller ) and 322 (larger 1).
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FIG. 10. Constraints on axion parameter space from black hole
spin measurements in x-ray binaries. For each black hole, the
region enclosed by the solid line of the corresponding color (see
key at top left) is the intersection of the m = 1 spin-down regions
for different BH parameters (mass, spin, lifetime, binary period,
and mass of the binary companion) within the observational error
intervals. This corresponds to the parameter space region in
which we can be confident that spin-down occurs, so is con-
strained by observations of that BH. The light shaded regions of
each color are the unions of the spin-down regions for different
BH parameters and could be constrained by improved measure-
ment and analysis of these BHs. Higher axion masses could
potentially be constrained using higher-m levels; we include only
the analog of the small and moderate self-coupling regimes A and
B (for which self-interactions do not affect the extraction of
angular momentum to the level with the largest SR rate) for
m = 2, where the analysis in this work applies. The “ALP DM”
band corresponds to the range of quartic couplings that allow the
observed DM abundance to be produced by the misalignment
mechanism. The darker middle band corresponds to O(1) values
of the initial misalignment angle [0 € (1,7 —1)], while the
lighter bands above and below correspond to “tuned” initial
values [0 € (107", 7 — 1079)].

corresponding color indicates the region in which spin-
down would occur with high confidence, given the uncer-
tainties on the measured BH parameters. The larger shaded
regions are those in which spin-down may occur, given BH
parameter values within the confidence intervals; these
represent the regions of parameter space which may be
constrained by future, better observations of these BHs.
Given the uncertainties in our analyses when @ 2 0.2 and f
is small, the constraints in those parts of parameter space
should be treated as estimates requiring further study.

Figure 10 can be compared to Fig. 11 of [12]. The latter
assumed that the dominant effect of quartic self-interactions
was to cause periodic bosenova events when the cloud
became too large; parametrically, when

4 £2

¢
Nz 161—"5
ap

(95)
for an [, m = ¢ superradiant level, as discussed in [6]. From
the previous section, we know that, at small o and small f,
the critical occupation number for a bosenova to occur has
the same parametric scaling as the equilibrium 211 occu-
pation number, but is numerically larger, &3], /&5t ~ 0.1
(Eq. (89) and Fig. 8). Consequently, we expect the time-
averaged 211 occupation number in our picture to be
parametrically the same as that assumed in [12].
Numerically, since [12] assumes that a bosenova com-
pletely destroys the cloud, which then takes O(100) e-folds
to be rebuilt, our time-averaged 211 occupation number is
actually slightly larger, for the same parameters, resulting
in slightly stronger spin-down constraints.

The age (or accretion timescale) of the BH limits how
small a particle mass ¢ can be constrained by spin-down
measurements—if u is too small, then superradiance is not
fast enough to spin down the BH. A separate effect is that,
for small y, the cloud is more dilute, and can be disrupted
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by tidal forces from the companion star [45]. These
gravitational perturbations mix superradiant levels with
decaying ones (e.g., 211 with 21 — 1), which can inhibit
their growth. We do not attempt a careful analysis of the
effects on the evolution of the cloud, but adopt the
conservative approach of not placing constraints when
the companion is closer than the maximum radius for
the resonant depletion processes identified in [45] (see
Appendix I). This sets the small-4 boundary of the con-
strained region in Fig. 10. We are able to constrain axion
masses a factor ~2 lighter than the limits from [12], which
included an unphysical dipole gravitational potential effect
from the companion.

In most of this paper, we have taken our nominal BH
mass to be O(10 Mg ). However, our analyses can be easily
rescaled to different BH masses; the most important
dimensionless parameter that changes is the ratio of the
BH lifetime to the light-crossing time. Figure 11 shows the
spin-down parameter space for a supermassive BH
(SMBH), with M = 10" M. This parameter space sits
at smaller 4 (due to the larger BH size) and larger f (due to
the smaller Tpyp parameter) than for a stellar-mass BH.
There do exist spin measurements for some SMBHs [52—
54], and these could be used to place constraints on very-
low-mass bosons (see e.g., [30,55,56]). However, the
galactic center environments in which SMBHs live are
rather complicated, and understanding environmental
effects on the evolution of a superradiant cloud (e.g.,
due to the occasional infall of compact objects) would
be necessary to place robust constraints. We leave such an
analysis to future work, but include Fig. 11 as a guide to the
kind of region that might be constrained by these
measurements.

As well as spin measurements for BHs in x-ray binaries,
there are also spin measurements for O(10 M) BHs from
gravitational wave observations of binary BH mergers at
LIGO and Virgo [57-62]. The statistical uncertainty of

10715 ]
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FIG. 11. Parameter space for which the 211 level of a super-

massive BH (Mg = 107 M), withinitial spin a, = 0.9, spins the
BH down to saturation within an Eddington accretion timescale,
tpaa = 4 x 10 yr. The “ALP DM” band is defined as in Fig. 10.

these measurements is generally much greater than the
estimated errors of x-ray binary spin measurements—for
most of the binary BH mergers observed so far, the spins of
the primary BHs could lie in an O(1) range, and are
consistent with zero. However, there were two events in
recent observing runs for which one of the primary BHs
was measured to have high spin (significantly different
from zero); GW190412 and GW190517 [37]. The inferred
masses of these BHs were ~30 M, which is significantly
heavier than the BHs observed in x-ray binary systems.
Consequently, if one assumes that the history of the system
would have allowed a superradiant cloud to grow around
the BH, one can constrain smaller boson masses, in the
range u ~ 1.3 x 10713 eV—2.7 x 10713 eV [37].

Given that we have no reliable information about the
premerger history of these BHs, we do not include them in
Fig. 10. However, with better understanding of such
systems, gravitational wave observations of binary BH
mergers could become a valuable tool for constraining (or
providing evidence for) light bosons. In addition, while
mergers other than the two mentioned above do not provide
strong evidence regarding superradiance [36,37),” future
data from many such mergers may provide statistical
evidence for or against superradiant BH spin-down [15,64].

A. Axion models

Understanding the parameter space in which spin-down
constraints apply is important in determining the conse-
quences for motivated particle physics models. For the
QCD axion, Fig. 10 confirms that, at least for 211 and 322
superradiance, self-interactions are small enough not to
affect spin-down constraints.

Another motivated target model is an axion with a fixed
(rather than temperature-dependent) potential. An initial
“misalignment” axion field value in the early universe will
lead to a dark matter density at late times, depending on the
axion mass, the shape of the potential, and the initial field
value. Consequently, while the mass and self-couplings of a
generic axion can vary independently, imposing that the
misalignment mechanism must generate the observed DM

“This is in contrast to some works which claim that earlier GW
spin measurements can put constraints on BH superradiance (e.g.,
[56]). These claims appears to be based on a misinterpretation of
the spin measurements presented by the LIGO collaboration. For
example, the pre-merger spin of the primary BH in GW 150914 is
given as 0.327057, where the errors correspond to a 90% credible
interval [63]. [56] appears to use the interpretation of spins below
0.32 — 0.29 = 0.03 as being excluded at the 90% level, to place
constraints on superradiant processes that would have reduced the
spin to below this value. However, suppose (for example) that we
had a uniform prior on a, € [0, 1], and that the measurement gave
us no information about a,. Then, [0.05, 0.95] would be a 90%
interval, and spins <0.05 would be excluded at the 90% level,
despite obtaining no new information; to set constraints a more
complete analysis is needed.
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density gives the “ALP DM” band in Fig. 10 (for a cosine
potential V « cos(@/f)).

The darker central part of this band corresponds to
masses and self-couplings for which a “generic,” O(1)
misalignment angle, 0, = a@ipisat/f € (1,7 — 1), gives the
correct dark matter density. For the same p and 6,,;, but
larger f, we would obtain too large a dark matter density.
However, this can be fixed by “tuning” the initial field
value to be close to the bottom of the potential. Since
pom & /202, f> for small Oy, the tuning required is
simply 6;; < 1/f. The lower edge of the band in Fig. 10
corresponds to 6;; = 0.1.

At smaller f, we have the opposite problem of not
producing enough DM. For a cosine-type potential, this can
be solved by tuning the initial field value to be close to the
top of the potential, so that its transition to matterlike
oscillations around the bottom of the potential is delayed.
This “large-misalignment mechanism” [65] can lead to
significant enhancements of dark matter density perturba-
tions, resulting in a range of phenomenological signatures.
In Fig. 10, the top edge of the band corresponds to @;,;; =
7 — 107 (see Appendix K for formulas), illustrating that,
apart from the lower end of the y range, BH spin-down
constraints still apply to such models.

As well as affecting dark matter in the early universe,
self-interactions could have effects at late times, leading to
DM-DM scattering in halos. The associated relaxation rate
is, parametrically [66,67],

2
__Pbm
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where v is the halo’s virial velocity (this should be

2

. 7
compared to the relaxation rate I' ~ —£24
Mp]/l V!

interactions [68—70]). Consequently, unless DM forms very
dense structures, quartic self-interactions will not be
significant in halos, for the parameter space we have been
considering.

for gravitational

VII. GRAVITATIONAL WAVES

Gravitational waves emitted by the superradiant cloud are
a unique signal of ultralight bosons, turning gravitational
wave observatories into indirect particle detectors [5,6].
The superradiant cloud can grow to up to several percent
of the black hole’s mass, and sources gravitational
waves through its oscillating stress-energy tensor. These
are almost-monochromatic, coherent, and long-lasting.
Such emission occurs in two parametrically different fre-
quency ranges; higher-frequency ‘“‘annihilation” signals,

with @ ~ 2u, and lower-frequency “transitions,” with @ =
w; — wj set by the frequency difference between different
bound levels.

Conceptually, annihilation signals are sourced by the
annihilation of two axions into a graviton. Consequently,
they are emitted by any level populated by a single real
scalar field. The timescale over which such emission lasts is
parametrically longer than the superradiant growth time
(Sec. IV B 2), making them promising for detection at
gravitational wave observatories. Up to thousands of
potential annihilation signals could be detectable, from
black holes in the Milky Way, at Advanced LIGO and
Virgo [12,15,38-40]. Such signals, and their detectability,
have been studied in the context of continuous wave
searches [12,15], stochastic searches [38,39,71], directed
searches for clouds around products of binary mergers
[15,72], and directed searches for clouds around BHs in
x-ray binaries [73,74]. Searches with LIGO/Virgo data are
ongoing; so far, no signals have been observed [40,75,76],
though using this nonobservation to constrain superra-
diance relies on poorly measured black hole population
properties, and may suffer from down-weighting of the
signal [40]. Searches at space-based, lower-frequency
gravitational wave detectors such as LISA will be sensitive
to lighter axions [12,38,39], while heavier axions may be
observable with future higher-frequency detectors [77,78].

Transition signals correspond to axions dropping into a
more deeply bound level, emitting gravitational radiation at
the frequency set by the level splitting. Attaining a
significant emission rate requires both levels to have large
occupation numbers simultaneously. For the case of purely
gravitational superradiance, these circumstances only arise
for higher-/ levels and for short times, leading to limited
observational prospects at current gravitational wave
observatories [12].

More specifically, for a given m < 3, the fastest-growing
superradiant level is also the most tightly bound one,
so other modes with the same m have exponentially smaller
occupation numbers. For m > 3, this is not always the
case—for example, at large a, and near-threshold a, the
growth rate of 433 becomes smaller than that of 533 and
higher levels. This can lead to multiple m = 3 levels having
large occupation numbers simultaneously. Similar crossings
happen for m = 4 and higher levels, as illustrated in Fig. 12.

These circumstances allow gravitational wave transition
signals of nonnegligible amplitude to occur around astro-
physical BHs. Even so, compared to annihilation signals,
they offer less promising observational prospects. The total
energy released, if the occupation number of the higher
level transitions entirely to the lower one, is £ = AwN <
a*uN, whereas annihilations can emit the entire energy
stored in a cloud, E ~ uN. In addition, signal durations
for transitions are typically of order a superradiance
time, compared to the parametrically longer annihilation
signals [12]. Nevertheless, transition signals could probe
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FIG. 12. Superradiance rates for the n33 and n44 hydrogenic bound states, computed numerically on the full Kerr background (using
the continued fraction method of [79]). The left-hand plot shows rates for a, = 0.9, and right-hand plot those for a, = 0.99. The red
curves correspond to the levels with smallest n; levels with larger n have cutoffs at progressively smaller a. These plots illustrate how, at
some «a parameters, different hydrogenic levels can have the same superradiance rates. As discussed in Sec. VII, this can give rise to

gravitational wave transition signals.

interesting parts of parameter space, providing sensitivity to
heavier axions than annihilation signals do (for a given
BH mass).

Compared to the purely gravitational behavior summa-
rized in the preceding paragraphs, the presence of self-
interactions can have a significant effect on the gravitational
wave signatures of superradiance. For annihilations, self-
interactions suppress the potential signals due to two main
effects: the gravitational wave power emitted is reduced due
to the smaller cloud size, and the new energy loss mech-
anisms via scalar radiation reduce the total energy emitted in
GWs. On the other hand, self-interactions provide a mecha-
nism to populate multiple levels simultaneously, potentially
increasing the parameter space for transition signals (though
the cloud size and scalar radiation caveats still apply). In the
rest of this section, we discuss annihilation and transition
signals and their observational prospects in more detail. We
focus on continuous wave searches for such signals, which
are well-suited to louder signals from within our galaxy, and
can provide a wealth of information about the detected signal
properties. Stochastic searches to look for excess power in a
narrow frequency range could potentially be performed
more (computationally) cheaply and would also be interest-
ing to study in future work.

A. Annihilations

In this subsection, we focus on the prospects for
observing annihilation signals from the 211 level, for a
range of self-couplings, at current gravitational wave
observatories. We also comment briefly on other types
of annihilation signals, including annihilation signals from
complex scalar fields.

Figure 13 illustrates the effects of self-interactions on
gravitational signatures of 211 superradiance, showing the
peak signal amplitude, signal duration and sensitivity reach

for different axion masses and self-couplings. To estimate
the projected reach, we take the design strain sensitivity of
Advanced LIGO [80], and assume all-sky semi-coherent
continuous wave (CW) search strategies, with coherent
integration times of 240 hours, and sensitivity depth

D¢(f) ~50/+/Hz. The sensitivity depth is defined by
De(f) = /Su(f)/hi(f), where /S;,(f) is the noise spec-

tral density and h§(f) is the strain limit at the desired
confidence level c. It allows comparisons of different
searches, independently of the data used, and depends
on the detailed search technique, coherent integration time,
total integration time, etc. [§1]. The latest searches with O2
data have used coherence times of up to 7., = 60 hrs with
Nge = 64 segments in the first analysis stage [82], and

have reached sensitivity depths of ~30/4/Hz [83] to

~50/+v/Hz [82] for ¢ = 90% exclusion limits. Since the
CW searches assumes a constant signal amplitude over the
entire integration time, while our signals may change on
times shorter than the coherent search time, we conserva-

tively penalize our reach by /74,/Tcon (though the
searches could be improved to take into account the time
dependence of the signal, alleviating this penalty).

While the sensitivity reach is a useful quantity for a
search targeting a specific BH, standard CW searches are
‘blind’, and look for signals from sources anywhere in the
sky. Figure 14 shows the expected number of events in such
a search at Advanced LIGO, given assumptions about
the galactic BH population, for different self—couplings.lo

11 should be noted that for small axion masses, where there
may be multiple long-duration signals from galactic BHs,
stochastic searches for excess power within a frequency range
may be an advantageous approach. We leave a quantitative
comparison of stochastic and CW searches to future work.
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Upper left: peak strain from 211 x 211 — GW annihilations for an observer at 1 kpc from a 10 M, BH, with initial spin 0.9.

Upper right: typical duration 7)., of peak signal, 10g1((7pea/ sec). In the large self-interactions regime, we show the time-scale of the
overshoot regime, corresponding to the peak signal strain. Lower left: sensitivity reach in kpc to a 10 solar mass BH, for continuous
wave searches at Advanced LIGO design sensitivity [80]. Lower right: reach in kpc to a 100 solar mass BH. The dashed orange line
indicates the boundary between the moderate and large self-coupling regimes (corresponding to fgc, Sec. IV), while the dotted black
line indicates the boundary of the regime in which the 322 level grows appreciably (fap).

We assume a power-law BH mass distribution,
dN/dM « M=%, with a minimum black hole mass of
5 Mg, and vary the maximum black hole mass from 20 to
45 M [84]. For the BH spatial distribution, we take a
combination of the disk and bulge distributions as in [40],
with a total number of 10%8 BHs, born at a uniform rate
throughout the age of the galaxy. We vary the BH spin
distribution, with our extreme cases having 10% and 0.2%
of BHs with initial spin a, (zy) > 0.9, respectively. The 10%
figure is consistent with spin measurements from x-ray
binaries [85,86], and 0.2% with models of rare high spin
BHs associated with gamma ray bursts [87,88], making
them reasonable upper and lower bounds.

The shaded bands in Fig 14 correspond to this range of
BH population assumptions. While these unknowns do
give rise to orders of magnitude uncertainty in the expected
event rate, we can see that, for particle masses just below

the spin-down threshold, even the pessimistic distributions
give a promising number of events for purely gravitational
superradiance. Conversely, the very large number of events
(at design sensitivity) predicted by the optimistic distribu-
tions means that some of this parameter space is already
ruled out by existing observations; axions with gravita-
tional interactions and mass between 3-7 x 10713 eV
would yield more than 10 signals in current LIGO data
for all the BH mass and spin distributions considered here;
masses between 2 x 107132 x 107! eV would yield 10 or
more signals for the most optimistic spin distribution
considered here [40]. An analysis of existing data taking
into account the reduced event rates at larger self-
interactions has not been performed and would be very
valuable.

Once we incorporate self-interactions, there are three
different parameter space regimes, with distinct behavior
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FIG. 14. Projections for the number of observable 211 x 211 —
GW annihilation signals, using continuous wave searches at
Advanced LIGO (with design sensitivity), for a range of self-
interaction strengths (see text for details). The width of the bands
results from varying the BH spin distribution and maximum BH
mass as described in the text. The highest number of observable
signals is in the small self-interactions regime, which includes
gravitational superradiance and QCD axion parameter space.
Increasing self-interactions reduces the number of signals ex-
pected. At high masses, the signal frequency falls above the band
of typical CW searches (v 2 2 kHz). The darker (lighter) shaded
regions are disfavored by black hole spin down for initially
superradiating levels with m =1 (m = 2) (see Sec. VI).

(as per Sec. IV). In the small self-coupling regime,
f > fap, the 322 level does not grow through self-
interactions, and the dynamics proceeds as in the purely
gravitational case. Consequently, the annihilation signal
properties are independent of the self-coupling, and
existing analyses of gravitational wave signals will apply
without modification. This regime, which (for stellar mass
BHs) includes f ~ M as well as QCD axion self-cou-
plings, can lead to as many as thousands of signals at
LIGO/Virgo, as shown in Fig. 14.

In the moderate self-coupling regime, fag > f > fgc,
the growth of the 211 level is unaffected, but 322 grows
earlier than it would otherwise have done. The main effect
on the annihilation signal is through the addition of another
energy loss process for the cloud, via 322 X322 — 211 x o0
emission. Consequently, while the peak emission ampli-
tude is unaffected, the signal duration is reduced. This
corresponds to the parameter space region between the
orange and black dashed lines in the upper-right panel of
Fig. 13. More specifically, when 211 is primarily depleted
through gravitational waves, the signal strain as a function
of time is given by,

Ppeax
hGW,ann f) = pe 97
() =357 ©7)
with 7,,, defined in Eq. (39). However, due to the self-
interaction processes, there is additional energy lost from

the cloud, changing the time-evolution to that in Eq. (48),
with

hGW.ann(t> X Tscalar/t (98)

at late times, where 7y,  (f/My;)*, Eq. (49). For f in the
moderate self-coupling regime, 7y, can be significantly
less than z,,,. Given the typical assumptions on black hole
formation rates and distributions, the shortest signals that
are likely to be observable in an all-sky continuous wave
search have signal times on the order of 10* years or
more [40].

Since, for moderate self-couplings, the peak signal strain
is not affected, the sensitivity reach of gravitational wave
detectors for signals observed around the optimum time is
only moderately affected, as illustrated in the bottom panels
of Fig. 13. One effect is that, especially for lighter black
holes, the signal duration can become comparable to the
typical coherent integration times used in continuous wave
searches (e.g., [82]), which degrades the signal to noise.

For blind searches, the faster decrease of signal strain
with time leads to less chance of seeing a signal, as
illustrated in Fig. 14. The expected number of observable
signals at f ~ 10'® GeV, which is in the moderate self-
interactions regime for u ~ 107! eV, is around an order of
magnitude lower than in the purely gravitational case. For
larger and smaller y, this value of f falls back into the weak
self-interactions regime, so the difference is reduced. At
f ~10'7 GeV, which is in the moderate self-interactions
regime for the whole y range, the signal durations are much
shorter, and the expected number of observable signals is
less than 1. As a result, such signals are unlikely to
observed with current detectors, in a blind search. In
addition, the faster time-evolution can lead to larger
frequency drifts, which could degrade search sensitivity
further (see Sec. VII C).

For strong self-couplings, f > fpc, the peak signal
amplitude drops with increasing coupling as (f/fgc)?
(Fig. 13). In particular, this drop-off starts at larger f than
for the suppression of BH spin-down, since fgc > fcp-
Consequently, with current detectors, self-interactions
strong enough to avoid BH spin-down constraints
(Sec. VI) also render GW annihilation signals undetectable,
for any plausible BH spin and mass distributions. For
f < fgpc, ie., f£<10' GeV for stellar-mass BHs, the
expected number of events in a blind search is <1073,
while for f < 10! GeV, where signal durations become
comparable to those in the small self-interaction regime,
signals beyond 10-100 pc are unlikely to be visible at
Advanced LIGO sensitivities.

Nevertheless, it is possible that advanced future detec-
tors, such as the Cosmic Explorer [89,90] or Einstein
Telescope [91-94], may be able to probe this parameter
space. The signal strain in the quasiequilibrium regime is a
factor O(1-5) below the overshoot peak shown in the left
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panel, but the quasiequilibrium regime lasts parametrically
longer than in the moderate self-interaction regime, 7, o
(fec/f)? (see Fig. 18). If smaller strains come within reach
of future detectors, the long-lasting signals would have an
increased chance of being observed in the quasiequilibrium
regime.

1. Additional annihilation channels

In addition to 211 x 211 — GW annihilations, as occur
in the purely gravitational case, the presence of the 322
level allows 211 x322 - GW and 322 x 322 - GW
processes. These GWs will still have frequency @ ~ 24,
but due to the larger angular momentum of the 322 level,
their rates are suppressed by higher powers of «, Pg\;v oS
a'ot2(H) where [ and ' are the angular momentum
numbers of the two levels. These powers are significantly
smaller than the primary 211 x 211 — GW annihilation
channel, and are further suppressed by the smaller occu-
pation number of 322 at small @ (Appendix D). For
example, the 322 x 322 — GW process would lead to
signals strains O(10™*) weaker than the primary signal
at a ~ 0.3. “Cross-annihilation” signals between two levels,
211 x 322 - GW, may be observable for the closest black
holes; further study would require numerical GW power
calculations which have not yet been performed for cross-
annihilation signals.

2. Annihilation signals from complex fields

In this section, and throughout the rest of this paper, we
have considered superradiance of a single, real spin-0 field.
As has been pointed out in a number of papers [95-98], for
the case of two scalar fields of degenerate masses (equiv-
alently, a single complex scalar field), there are cloud
configurations with a time-independent stress-energy ten-
sor, which consequently do not emit any gravitational
radiation. In complex field terms, these correspond to
all-particle or all-antiparticle field configurations, whereas
gravitational waves arise from particle-antiparticle annihi-
lation. This has sometimes been interpreted [99] as indicat-
ing that annihilation radiation, of the type considered in this
section, is not expected from superradiance of complex
fields.

However, as per the discussion in Sec. II, the initial
conditions for the growth of superradiant modes are either
vacuum fluctuations, or whatever preexisting astrophysical
fields are present. In the former case, we can view the
growth of the particle and antiparticle field modes as
effectively separate, and generically, they will obtain
O(1)-similar occupation numbers. For preexisting astro-
physical fields, a generic expectation in many circum-
stances is for O(1)-similar initial conditions for particle and
antiparticle fields. Consequently, unless some mechanism
drives us to an all-particle or all-antiparticle state, we expect
that the particle and antiparticle fields generically attain

roughly comparable occupation numbers. Compared to a
real scalar field, this results in a total GW annihilation
signal energy that is only O(1) smaller.

B. Transitions

For large enough self-interactions (regions B,C,D in
Fig. 3), the 322 level grows earlier than it would have done
otherwise, and both 211 and 322 can have significant
occupation numbers at the same time. This gives rise to
GW transition signals.

The transition quadrupole moment for the 322 —
211 4+ GW process vanishes at leading order, so its rate
is suppressed by a larger power of « than other gravitational
transition processes (such as the 644 — 544 process
considered in [6,12,15]). At leading order in «, the emitted
power, as a function of polar angle 6, is

CLP _ GN32, Ny o
dQ zrt

G
(1 —cos*6)
5 3658

N (27 + 28 cos(20) + 9 cos(46)) sin? 9) (99)

223651072

where the first term corresponds to [, m = 2, 1 emission,
and the second to [, m = 3, 1. This gives a total emitted
power of [6]

28 x 5717 GN3puNyyy o,
a.

35U

(100)

The emitted radiation is at a frequency @ = w3y — Wy =~
2 a’u. In terms of the normalized occupation numbers, it
contributes a term

300 ~ =5 x 10700

82118322+... (101)
to the equations of motion.

Compared to the processes discussed in Sec. IV, which
drive the evolution of the superradiant cloud, the effects of
GW transitions are always subdominant. While this does
reduce the peak signal amplitude, it also means that signal
timescales can be longer compared to the transitions in the
purely gravitational regime, which is helpful for detection.

Figure 15 shows projections for the peak signal strain,
and sensitivity reach, for transition signals from a fairly
light BH, Mgy = 3 M. The signal durations (for a given
BH mass) are the same as those for annihilations (Fig. 13)
in the region where 322 grows, f < fag, as the two levels
evolve together over time. Given the lower frequency
compared to annihilations, the signal strains are typically
larger (Fig. 15 left). However, transition signals only occur
in the moderate and large self-interaction regimes, where
much of the energy loss is through scalar radiation.
Furthermore, for given BH mass, the frequency decreases

o p? with decreasing u, rapidly falling out of the sensitivity
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FIG. 15. Left panel: peak strain of the 322 — 211 + GW transition signal at 1 kpc from a BH of mass 3 M, as a function of the mass
u and self-coupling scale f of the scalar particle. Right panel: sensitivity reach for the detection of such signals, using the Advanced
LIGO detector, or with the MAGIS proposal for a future space-based atom interferometer [41]. The dashed orange and dotted black lines

are the fpc and fap curves, respectively, as in Fig. 13.

band of current detectors such as Advanced LIGO. For
heavier BHs, the frequency of transition signals would
always be too low for ground-based GW detectors, due to
overwhelming seismic and gravity-gradient noise.

For a narrow range of axion masses above 1071 eV,
current detectors could potentially probe signals in the
moderate self-interaction regime (Fig. 15, right). Although
the reach is poor at small f, there is a roughly order-of-
magnitude range in f for which sensitivity to signals from
the galactic center would be possible. The signal times in
this region last on the order of minutes to hours, and the
expected number of signals in a blind search is heavily
dependent on the poorly measured black hole distribution
in the “mass gap” below 5 Mg [100-103] (although
evidence for compact objects in this mass range is emerging
[104-106]). Consequently, blind searches with current
detectors are unlikely to lead to observable signals.

However, future space-based detectors such as LISA
[107,108] and atom interferometer missions [41], could
have promising sensitivity to such signals. For illustration
we show the reach of the MAGIS proposal [41] in the right
panel of Fig. 15, which can achieve a reach of 10 kpc for
axions around 3 M black holes, and up to 10* kpc for
100 M black holes. Some of the more promising signals
fall in the 0.1-10 Hz range, where future proposals such
as DECIGO [109] could improve transition detection
prospects.

C. Frequency drifts

While the frequency of gravitational wave annihilation
signals is almost constant at v,,, =2w/(27) ~2u/(2x)
(we will use frequency rather than angular frequency in this
section, to match the GW literature), the potentially long
signal durations mean that even very small frequency drifts

can be measured. Moreover, the search algorithms
employed in continuous wave detection analyses can be
strongly affected by these small frequency drifts, so it is
important to quantify them to determine the appropriate
search strategy and sensitivity [110].

The self-energy of the cloud, from both gravity and self-
interactions, affects the frequency of the bound axions, and
therefore the frequency of the GWs emitted [12]. As the
occupation numbers of the levels evolve, the self-energy
contribution to the binding energy Aw and thus the emitted
frequency v change over time.

The gravitational and self-interaction contributions to the
energy of axions in level 211 are, respectively, (see
Appendix G and Appendix B I)

Aa)g [l —0.19/4(138211 (102)

M\ 2
Aw; ~—3.5x 107u’ ey, <7p1> . (103)

where the energy is decreased (increased) in the presence of
an attractive (repulsive) self-interaction. These corrections
are always small compared to the axion mass, as well as the
energy splitting between levels (for occupation numbers
below the nonperturbative regime—see Sec. V).

As the cloud is growing through superradiance, the
frequency changes relatively rapidly as « paa on the order
of the superradiance time due to the changing BH mass.
However this period is short, and generally does not
contribute much of the detectable signal. At late times,
the cloud size is depleted over time, and the level’s
frequency drift is positive (assuming negligible or attractive
self-interactions). This is in contrast to standard astrophysi-
cal sources of continuous gravitational radiation, such as
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spinning neutron stars, and may provide a hint that a
detected signal arises from superradiance. We describe the
main contributions to these frequency drifts, at leading
order in @, below. For a more complete discussion of
frequency drifts we refer the reader to Appendix H.

At small self-interactions, the frequency drift is domi-
nated by the depletion of the gravitational self-binding
energy through annihilations, resulting in a frequency drift
of order

Hz / a \17 L 2
o~ 7 x 107 (= — 104
Pamn = 1 5 (0.1) (10—12 eV> (104)

to leading order in a. Throughout the small self-interaction
regime f > fagp (see also Fig. 3), the gravitational
frequency drift dominates any contribution from the self-
interactions.

As self-interactions increase, the frequency drift from the
gravitational binding energy is increased due to the faster
depletion of the cloud from axion emission,

) .o Hz (107 GeV\ * U 2 a\V
v 10 10?( 7 )(m*zeV) (0_1) . (103)

and there is an additional frequency drift from the change of
self-interaction energy,

Hz /107 GeV© U 2/ a\P
10710 =2 2L (106
v 5 < I ) (10—1%\1) <0.1> (106)

The latter dominates when f <8.5 x 10'® GeV(a/0.1).
Finally, in the strong self-interactions regime f < fpc, the
cloud reaches a long-lived quasiequilibrium configuration,
and the dominant source of frequency drifts comes from the
slow spindown of the BH.

Gravitational wave signals from 322 — 211 + GW tran-
sitions have frequency vz, — 151y, so the changing con-
tributions to the 211 and 322 frequencies partially cancel,
making frequency drifts a factor of a few smaller than for
annihilations, and negative in most parts of the parameter
space. Similarly to annihilations, for moderate self-
couplings, self-interactions dominate the frequency drifts
for £ <107 GeV(a/0.1).

At small a, the frequency drift can be small enough so as
to be unobservable. Over a year, the minimum frequency
change that can be measured is ~yr~! ~ 3 x 1078 Hz, so if
the frequency drift is <yr2~10"" Hzs™!, it has no
observational effect. At the other extreme, too large a
frequency drift can be problematic for the search algorithms
employed. Current LIGO/Virgo continuous wave searches
cover a range of positive to negative frequency derivatives
ofe.g.,2 x 107 Hz/s through —1 x 10~® Hz/s [83]. More
sensitive searches, using longer coherent integration times,
may require even smaller frequency drifts [75]. In the small
coupling regime, the drift of the signal becomes larger than

this threshold at @ ~ 0.25. In the moderate self-interactions
regime, both annihilation and transition signals have
drifts large compared to the current search range for
f<5x10'% GeV(a/0.1)"7/*. However, as discussed
above, the observational prospects for GW signals at such
small f are not promising, with current-generation
experiments.

VIII. AXION WAVES

As well as emitting gravitational radiation, the cloud also
emits both relativistic (Sec. III A) and nonrelativistic
(Sec. III B) scalar waves. If the scalar ¢ has nongravita-
tional interactions'' with the SM, such @ radiation could be
detected in laboratory experiments. For an axionlike
particle, a natural assumption is that interactions with
the SM are suppressed by parametrically the same sym-
metry breaking scale f that sets the axion potential. If this is
the case, then we have the unusual feature that, in the large
self-coupling regime f < fgc, the signal does not decou-
ple: while the power in axion radiation decreases as the
quasiequilibrium size of the cloud decreases, this is
compensated for by the increased interaction strength from
the smaller f. In addition, the BH spin-down time increases
with decreasing f, so such signals can last for very long
times, increasing the chance of observing them.
Consequently, axion waves could be a probe of the
small-f regime, in which both GW and spin-down sig-
natures are suppressed.

Quantitatively, if we take the 211 and 322 quasiequili-
brium occupation numbers (55), then the emitted power is
dominated by nonrelativistic 322 x 322 — 211 x oo radi-
ation. At large distances r from the BH, this radiation has
energy density

2,211x00 (.4 \2,.€9
o GM 35, (&30) 6,
2

Prad ~
B Any v

6 /10 kpc 2
~107% GeV/cm? <%> < rpC)

2
N A
<1016 GeV>

where v = a/6 is the velocity of the nonrelativistic axions
emitted. The energy density p,,q depends only on a, and not
on p and Mgy independently. For given f, the emitted
power is maximized when the superradiance rate is largest,
at high a, and a. The corresponding dimensionless
amplitude € of the axion waves is

(107)

"If the scalar ¢’s interactions with the SM are purely gravi-
tational, then its interaction rate with matter is <G> ~ 1/M ",
whereas for gravitational radiation, the interaction rate is
xG ~ I/Mp12' Consequently, such ¢ radiation would be practi-

cally undetectable.
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0:10_19<10 eV) (i) <10 kpc>’ (108)
7 0.1 r

independent of f. This is in contrast to GW signals, for
which the amplitude at Earth decreases as f? in the
quasiequilibrium regime. Relativistic axion radiation from
the 3 — 1 process (Sec. [T A), and 2 — 1 cubic emission,
also have f-independent 6, but are suppressed by higher
powers of @, and are smaller than the nonrelativistic
radiation for the parameter space we are interested in.

As we discussed in Sec. IV C, for @ 2 0.2 and small f we
expect additional hydrogenic levels, other than 211 and
322, to be populated. While we have not performed a full
analysis in this regime, a example of the possible effects
can be seen from the 411 build-up studied in Sec. IV C 2,
which for a not too far above 0.2 is expected to be the first
additional level to grow. The 211, 322, and 411 levels form
a new quasiequilibrium, with the 411 level having
enhanced occupation number relative to those of the
211/322 equilibrium. Consequently, the rate of scalar
radiation during this equilibrium is enhanced; numerically,
we find that pd . ~25p59 . for a=~0.3. While this
equilibrium will be disrupted in turn by the growth of
further levels, this illustrates that, while the parametric
behavior in f should remain the same, additional levels
may change the numerical factors affecting the scalar
radiation power. As discussed in Sec. V, if the growth of
additional levels leads to large enough field amplitudes in
the cloud, then higher-order processes or a nonperturbative
collapse of the cloud may become possible, significantly
altering the behavior.

Since the axion radiation is nonrelativistic and narrow-
bandwidth, its effects on a laboratory system are similar to
those of axion dark matter at the same mass. The masses of
interest correspond to rather low frequencies, e.g.,
10712 eV ~ 27 x 200 Hz. For this parameter space, the
axion-SM couplings most amenable to laboratory detection
experiments are those to nuclear spins and to photons,
which we discuss below.

Searches for axion DM via the axion-gluon coupling
Lin « (@] f)GWG’““ have promising sensitivity reach at
low axion masses [111]. However, if an axionlike particle
has the same GG coupling, but a smaller mass than the
QCD axion (or equivalently, a larger GG coupling for the
same mass), then it is strongly constrained by its behavior
in dense environments such as the early universe and stellar
cores [112,113]. For superradiance-sourced signals, GG
couplings significantly higher than the QCD axion value
(for a given axion mass) are needed to have experimental
sensitivity, and are affected by these constraints.

A. Nucleon spin coupling
The axion coupling to fermion spins is £ D
gN(aﬂ(p)IZ/y”ysy/, where we generically expect gy ~ 1/f,.

For a nonrelativistic fermion, this gives an axion-dependent
term in the fermion Hamiltonian,
H>gyo- (Vo +¢0) (109)
where ¢ is the fermion’s spin, and 7 is its velocity. We will
focus on couplings to nucleons, which for low axion
frequencies are easier to detect than couplings to electrons.

Since the 322 x 322 — 211 x oo axion radiation from
the BH has v ~ a/6 (Sec. III B), while the nucleon velocity
changes associated to low-energy laboratory processes are
much smaller, the “axion wind” term H;,q = gyo - V@
dominates. Due to the ~a/6 velocity being significantly
larger than the virial velocity of DM in the galaxy, ~1073,
and because of the coherent nature of the emitted radiation,
an experiment searching for the axion wind coupling will
have better sensitivity to BH-sourced radiation than it
would for DM for an equivalent axion energy density.

The best-developed experimental proposal aiming to
detect the axion wind coupling is CASPEr-Wind [111],
which employs nuclear magnetic resonance (NMR) tech-
nologies. This uses a liquid xenon target, whose nuclear
spins are polarized in a strong magnetic field. The axion
wind coupling acts on the nuclei like an effective magnetic
field, H ;g = gyo - Vo = B, - Ji,,, where p,, is the nuclear
magnetic moment and B, is the effective axion “magnetic
field.” If this effective magnetic field oscillates at close to
the Larmor frequency of the nucleons in the external
magnetic field, then the resulting spin precession of the
nuclei is resonantly enhanced. This spin precession can
then be picked up by a sensitive magnetometer.

In Appendix J, we review the sensitivity of such
experimental setups to a monochromatic axion oscillation.
If we are uncertain about the axion mass, and want to
experimentally probe an O(1) axion mass range around an
angular frequency ,, then a signal can be detected for

w,
B2 > few X ——0— (110)
¢ ﬂ%NnTtot

where T, is the total experimental running time, and N,, is
the number of aligned spins in our spin-polarized sample.]2
This is a best-case sensitivity estimate, limited by the
fundamental spin-projection noise of the sample—to
achieve it, a well-shielded sample and a sufficiently
sensitive magnetometer would be required. Experiments
capable of sensing nuclear spin projection noise have been
carried out [114], and such sensitivities are a goal for the
CASPEr-Wind experimental program [111].

"This sensitivity estimate is for the detection of a single,
monochromatic signal. As mentioned in Sec. VII, in situations
where many galactic sources are emitting at any given time, it
may be more effective to perform a “stochastic” search, looking
for multiple unresolved signals within a given bandwidth. We
leave analysis of such scenarios to future work.
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A fully polarized liquid '*Xe sample has
~10%2 spins/cm® [111], so the sensitivity limit for a
relatively small target volume is

v 102 yr

B,> 10T —
a~ kHz N, Ty

(111)

For comparison, an axion DM signal at the sensitivity
threshold estimated in [111], for these parameters, has an
effective magnetic field of ~few x 1072° T. The effective
magnetic field from axion radiation emitted by a super-
radiant cloud is

B a \*/1 kpc
Ba23X10 24TXCN<(H) < , ), (112)

for a high-spin BH, where Cy = gy f. Consequently, some
combination of larger experimental volumes (as planned
for CASPEr-Wind phase 11 [111]), larger Cy, larger @ and a
closer BH would enable laboratory experiments to be
sensitive to axion waves.

This is illustrated in Fig. 16, which shows projected
signal strengths for a selection of astrophysical BHs (both
nominal and observed), along with sensitivity thresholds
for different experimental configurations. While Cy ~ O(1)
is the ‘natural” expectation in many models, larger values of
Cy are possible. In particular, it is interesting to consider

10720

i Nk
v =10 (1“36’1/0 """"""""""""

FIG. 16. Projected detectability of nonrelativistic axion radia-
tion, assuming an axion-nucleon coupling. The signal strength is
expressed in terms of the equivalent pseudo-magnetic field felt by
nuclei. The blue dotted lines correspond to sensitivity estimates
for NMR axion-wind detection experiments [111] with the
indicated parameters. The bands correspond to signals from
three astrophysical BHs and two nominal BHs with the indicated
parameters. The widths of the bands correspond to the uncertainty
on the BH parameters (for the nominal BHs, to the distance range
indicated). The darker bands bounded by solid contours corre-
spond to the signal emitted during two-level quasiequilibrium
(Sec. 1IV). The lighter-shaded extensions above represent the
enhanced signal from the three-level equilibrium with 411
(Sec. IV C 2), illustrating the potential range of signals.

how large a reach can be obtained in as-yet-unconstrained
parameter space, below the existing astrophysical limits of
gy < (few x 10® GeV)~! [115-118]. While much of the
axion mass range in Fig. 16 is excluded for large f by BH
spin measurements (Fig. 10), these constraints do not
apply for f <10-10" GeV, where the BH spin-down
is too slow. The astrophysical bounds translate into
|Cy| S 103(f/10'2 GeV); the Cy = 10° line in Fig. 16
illustrates that such couplings can give good detection
prospects for a wide range of BHs and axion masses.

To reflect the uncertain behavior of the superradiant
cloud at a 2 0.2, Fig. 16 displays the signal resulting from
the radiation power during the three-level quasiequilibrium
phrase, as a shaded area above the signal from the two-level
equilibrium. The signal curves illustrate that, with larger-
volume experiments, sensitivity to astrophysical BHs may
be possible for Cy ~ O(1). They also strongly motivate
detailed numerical analyses of the high-a regime, where the
strongest signals would arise.

Figure 17 displays the sensitivity reach to an optimal BH
for a given axion mass. Again, we see that for larger
experimental volumes, astrophysically relevant reaches—
in particular, to the Galactic Center ~8 kpc away—may be
possible for fairly natural Cy values.

If we are interested in the signal from a specific, known
BH, then the sensitivity reach is the most important
parameter. However, as is the case for gravitational wave
searches, many signals are expected to arise from as-yet-
unobserved BHs, and could only be detected via a “blind”,

=V =1lcm? Cy=1

. V =10cm? Cy = 10
103

V=10cm? Cy = 10°

102 —

reach (kpc)

10-13 10*11%

FIG. 17. Projected sensitivity reach (SNR = 1) for the detec-
tion of nonrelativistic axion waves from a BH-cloud system at
large self-interactions, f < fpc, in a NMR-based axion-wind
detection experiment. The bands show the reach to a BH-cloud
system, ranging from a two-level quasiequilibrium with param-
eters a, =0.9 and a=0.2 (lower edge, solid), to that of
a three-level quasiequilibrium system with a, = 0.99 and a =
a°Pimal (0 99) ~ 0.41 (upper edge). The reach for a BH-cloud
system with a, = 0.9 and a = a®i™(0.9) ~ 0.28 is also in-
dicated for a two-level equilibrium (dotted line), and a three-level
equilibrium (dashed line) system.
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all-sky search. In this situation, another important factor is
the typical duration of signals, which affects the probability
that a given BH is still emitting today. Figure 18 shows the
duration of the peak axion signal (which contributes most
of the detectable SNR) from a nominal BH, as a function
of axion mass and coupling. Lower f values lead to slower
BH spin-down, and so to longer durations of quasi-
equilibrium signal emission; this is relevant down to
f ~10"-10'? GeV, below which signals can last longer
than the age of the universe.

Since, in the quasiequilibrium regime, the peak signal
strength at Earth is independent of f for fixed Cy,
decreasing f down to ~10'' GeV increases the expected
number of events in a blind search. This is illustrated in
Fig. 19. If, rather than fixing Cy, we require that gy is
below the astrophysical bounds, then as shown in Fig. 20,
there is a wide range of axion masses over which we might
expect visible signals in an all-sky search (depending on the
mass and spin distribution of astrophysical BHs). In both
the Fig. 19 and Fig. 20 projections we assume the reach to
the axion waves from the two-level equilibrium, not taking
into account the possible enhancements in power from
additional levels; on the other hand, the dynamics of
additional levels could shorten the signal lifetime at large
a values. In the blind search, an analysis similar to the
techniques employed by Continuous Waves searches at
LIGO/Virgo (Sec. VII A) would be required, to make use of
the extremely long signal coherence times while at the same
time taking into account the Doppler shifts from the many
relative motions between the experiment and the unknown
black hole positions.

n/eV

2 x 10712 4x 10712

3 x 10712

logy o (Tsig/seC)

3x 10718 1071
10-11

10—12
10—13
10—14
10715
10716
10717
10—18
10—19

GeV/f

FIG. 18. Typical duration log((7,/ sec) the axion wave signal
for a 10 M, BH with initial spin 0.9. In the large self-interactions
regime, we show the time-scale corresponding to the quasiequi-
librium evolution. For f < 10> GeV the signals can last longer
than the age of the universe (note that 10 Gyr ~ 3 x 107 s). The
dashed orange and dotted black lines are the fgc and f,p curves,
respectively, as in Fig. 13.

10° R R —
—f =10"GeV
0%t .
" — f =10"GeV
E = 108GV
s o -
n
[
s '
>
-
g 107t .
e}
o
10724 .
-3

5x 10741072 x 107 5x 107110722 x 10712 5 x 1072 107!
p/eV

FIG. 19. Number of observable signals expected in an NMR
axion wind experiment with V = 10 cm® and Cy = 100, with
different bands corresponding to different quartic coupling scales
f. We require observable signals to have SNR > 10, given the
blind search strategy required for these events. The width of the
bands results from varying the assumed BH spin distribution and
maximum BH mass (see Sec. VII A). For a fixed Cy, the number
of observable signals increases for smaller f, due to longer signal
durations, saturating at f ~ 10'' GeV.

Unless Cy is extremely large, the effects of the axion
field on spins in the vicinity of the black hole, and the effect
of these spins on the axion field, are always small. The
largest effective magnetic field obtained in the cloud is
~|Cy[107°T 5= which would not have any significant
affect on accretion disk behavior. Similarly, the axion field
sourced by a coherent nuclear spin density, if any exists in

the accretion disk, is tiny compared to the fields of a

103 —
—gN = 1079GeV !

10°F gy =107 19Gev !
gy =107"Gev !

[y
— (@]
T T

Observable Signals
=)
L

1072

5x 107107 2x 1078 5x 10710722 x 10712 5 x 10721071

u/ev

FIG. 20. Number of observable signals expected in an NMR
axion wind experiment with V = 10 cm?, for f = 10> GeV and
different couplings to nuclear spins, as shown. We require
observable signals to have SNR > 10, given the blind search
strategy required for these events. The width of the bands results
from varying the assumed BH distribution as in Fig. 19. For a
fixed self-interaction strength, the highest number of observable
signals is for the largest coupling strength to nuclei.
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superradiant cloud. For any reasonable nuclear spin
response to small magnetic field perturbations, the effect
of spin response on the dynamics of quasibound axion
levels will be extremely small, so the growth of the cloud
will not be affected. Similar considerations apply to the
propagation of scalar waves through interstellar space;
these will be undisturbed to a very good approximation.

B. Photon coupling

The axion coupling to photons is £ D — g”” oF,, v =
JayyPE - B. Generically, we expect the couphng constant to
be g,,, = C, Z“E? where C, ~ O(1) is related to the charged
matter content of the UV theory [119].

An axion oscillation sources EM fields through the
effective current density J,=g,,,(#B+VexE) (and the
corresponding effective charge density p, = —g,,, V¢ - B).
Axion DM, which is nonrelativistic, has |@| > |[Vg|, so
detection experiments use strong magnetic fields to maxi-
mize J,. Searches for low-frequency (~kHz) axions have
been proposed using static background magnetic fields
[120,121], or GHz-frequency fields in superconducting
cavities [122-125]."

If they can be realized in the future, quantum-limited
meter-scale experiments could probe axion DM couplings
as small as g,, ~107" GeV™' at ~kHz frequencies
(unfortunately, this is still far from QCD axion sensitivity).
With a monochromatic signal, as opposed to virialized
axion DM, this would correspond to a sensitivity of
Gayy ~ 1071 GeV7! ()71 2" For nonrelativistic emis-
sion from a superradiant cloud, we would obtain a reach of

E ~ (2% 1073)[C, |< 10-12 eV> (0%)3’

Consequently, signals from an superradiant cloud via the
axion-photon coupling could only be seen for an excep-
tionally close, fast-spinning BH, and/or in models where
C,| is large.

At the small axion masses we are interested in,
SN1987A observations constrain the axion-photon cou-
pling to be |g,,,| <5 x 10712 GeV~' [129]. This translates
to |C,| $500(f/10" GeV), which allows for somewhat

(113)

Experiments using optical-frequency fields have also
been proposed [126—-128], but these have significantly worse
theoretlcal sensitivity.

"“The ideal search strategy for monochromatic signals may be
different from that for a virialized axion signal with non-
negligible bandwidth. For static-field experiments such as those
proposed in [121], an optimal search for monochromatic signals
will overcouple the amplifier even more strongly to the pickup.
However, for ~kHz axion frequencies and practical temperatures,
optimal axion DM experiments would already be strongly over-
coupled (to the point of having almost O(1) fractional sensitivity
bandwidth [121]), so there would not be a significant difference
between the monochromatic and DM search strategies.

smaller expected blind-search event rates than the nucleon-
coupling case shown in Fig. 20.

Similarly to the case of nucleon couplings, the effects
of astrophysical EM fields on the SR cloud will be tiny
unless |C,| > 1. In addition, the naive ¢ — yy decay rate,

3
| I 936’1:: , is much longer than the age of the universe

for couplings of interest. However, in some circumstances it
is possible for parametric resonance to greatly enhance the
photon emission rate [130]. Parametrically, in the limit
where g,,, is arbitrarily small, and taking L to be the
approximate spatial extent of the axion profile, the total
decay rate into a particular mode within the ~L3 volume is
I~ g @*u*L, where ¢ is the typical field amplitude.
Consequently, the number of photons emitted into that
mode, in the light-crossing time ~L, is ~['L ~ g2 ¢*(uL)*.
This tells us that for finite g,,,, if 'L 2 1, then stimulated
emission will become important; for 'L >> 1, the emission
rate will be exponentially enhanced.

This parametric argument agrees with the conclusions
of [130], which analyses the growth of electromagnetic
perturbations using Floquet theory, and finds that para-
metric resonance occurs if

GarypL| % few. (14)
Since g,,,¢ = C, 5-0, the left-hand side (lhs) is maximized
(for given C,) by max1mlzlng 6. For an axion of mass y, this
occurs at f ~ fpc (for the 211 level). Using Eq. (80), we
find that for parametric resonance to occur, we need

|C|><9x102>(°1) ,

for a,(15) = 0.99. Consequently, if |C,| < 10, then photon
emission will be unimportant.

It should be noted that the above is a best-case estimate,
which will only hold if the BH is in a sufficiently pristine
environment. The plasma frequency in the interstellar
medium is @, ~ 10712-10"19eV, which is comparable to
the mass range for a superradiant axion around a stellar-
mass BH. Moreover, one expects the plasma density in the
vicinity of the BH to be greater, due to accretion [131].
Consequently, it is likely that plasma effects suppress the
parametric resonance process, even at large |C,| [132].

(115)

IX. CONCLUSIONS

In this paper, we have investigated some of the most
important consequences of scalar self-interactions for
superradiance around astrophysical BHs. As we have
showed, self-interactions can result in very rich and
complicated dynamics, and there are a number of aspects
which would benefit from further study. In particular,
we have not systematically treated situations in which
the initially fastest-growing level has m > 2. While we
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generally expect gravitational (and scalar) wave signatures
to be dominated by cases where 211 grows first, BH spin-
down constraints for higher-mass axions will depend on
higher-m superradiance.

In addition, even for the 211 case, our calculations have
been at the (semi-)analytic level, and may not be reliable for
large enough a. In particular, we found that for @ = 0.2 and
small f, levels other than 211 and 322 might play an
important role in the dynamics. One route to properly
understanding the high-a regime might be to perform
numerical simulations of the (self-interacting) field equa-
tions themselves, rather than of the occupation numbers of
hydrogenic modes. Such approaches have been used to
study purely gravitational superradiance in a number of
papers [133-137]. As mentioned in Sec. V, numerical
methods were applied to a self-interacting scalar field on
the Kerr background by [27,28], but they did not evolve the
system for long enough to observe the perturbative effects
we have studied. Since the high-a regime is where
observational signatures may be the strongest, and in which
there is the possibility of phenomena such as bosenova, a
fuller treatment would be valuable.

Our analyses focussed on the simplest form of self-
interactions for a spin-0 particle; the lowest-order (renor-
malizable) potential terms. In more complicated hidden
sector models, other forms of interactions, or extra hidden
sector states, could affect the superradiance behavior.
For example, [138] discusses a model in which the QCD
axion couples to a hidden-sector photon, and there are
hidden-sector fermions which interact with this photon.
Such models illustrate that, while the minimal DM models
we considered in Figs. 10 and 11 are often still subject to
BH spin-down constraints, others may not be.

Beyond the spin-0 particle candidates we considered,
superradiance of massive vectors is also of interest. Vector
self-interactions are somewhat more complicated than
those for scalars, since renormalizable interactions
between vectors must take the form of Yang-Mills theory.
For abelian theories, “light-by-light” scattering could lead
to qualitatively similar dynamics to those discussed here,
but has to be investigated in the context of a low cutoff
and potential production of the charged particles which
give rise to the vector self-interaction. Beyond self-
interactions, a simple example of both theoretical
and phenomenological interest is a light vector interacting
with the SM via a kinetic mixing with the SM photon
(though plasma dynamics may make the behavior around
astrophysical black holes very complicated). A vector may
also have interactions with other hidden sector states—
for example, its mass may come from a Higgs mechanism,
or it may mediate interactions between hidden sector
matter. For the purely gravitational story to hold, such
states must be sufficiently heavy, and/or sufficiently
weakly coupled [20]. We leave investigations of such
scenarios to future work.

Superradiance of spin-2 particles has also been inves-
tigated in the literature [22,23]. An issue with such models
is that an effective field theory with a spin-2 particle of
mass p, along with the massless graviton (a “bigravity”
theory), has a cutoff scale at or below Ay = (Mpu?)'/3
[139,140]. Here, Mp ~ min(M, A) is an effective mass
scale set by the mass scales M), which suppresses massless
graviton interactions, and A, which suppresses massive
spin-2 interactions. At the small masses y we are interested
in for BH superradiance, Ay < 10 eV (;r)?* is small
compared to energy scales of interest. For example, the
energy density in a fully occupied superradiant cloud is
p~ (6 MeV)*(5%)* (;5-fr=)* Consequently, it is unclear
whether there are theories for which reliable calculations
can be carried out in the regimes of interest.

Returning to the topic of spin-0 superradiance; as well as
exploring the new observational signatures that may arise
from self-interactions, our analyses clarify when self-
interactions are small enough not to affect the usual
gravitational dynamics of superradiance. As illustrated in
Figs. 10 and 11, this is important for understanding when
constraints and signatures from motivated models, such as
the QCD axion or misalignment DM, can be trusted.

As we have demonstrated, adding a simple quartic
interaction can dramatically change the dynamics of scalar
superradiance. The additional interaction inevitably
reduces the efficiency of black hole spindown as well as
the strength and timescale of gravitational wave annihila-
tion signals. Nevertheless, the new dynamics can lead to
simultaneous population of multiple levels giving rise to
gravitational wave transition signals, a narrow range of
which may be observable at LIGO/Virgo. Given that the
transition signals are at parametrically lower frequencies
corresponding to the energy splitting between different
levels, signals from scalars around stellar mass black holes
generally fall below the LIGO/Virgo sensitivity band in
frequency and present new targets for future mid-band
detectors.

Perhaps the most novel signature is the emission of
particles to infinity: a light, self-coupled axion can extract
the energy of rotating black holes and populate our galaxy
with axion waves, without the need for a cosmological
abundance or a coupling to Standard Model matter. In the
presence of such a coupling, these axion waves could be
detected in the lab. While current experiments are not yet
sensitive to this population of light axions, this mechanism
further motivates the development of light axion direct
detection experiments, as well as numerical work on self-
interactions in superradiance to better characterize the
signal from compact, semirelativistic axion clouds.
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APPENDIX A: PARAMETRIC
OSCILLATOR ANALYSIS

As discussed in Sec. III C, a useful way to analyse the
growth of bound levels is to assume that we have some
large-amplitude ., and to treat this as a parametric forcing
in the Gross-Pitaevskii (GP) equation [Eq. (12)], i.e., to
solve

, ~3) .
(i0, + M)y = == (waw* + lw.['y) (A1)

2442

(here, M represents the terms in the nonrelativistic
Hamiltonian, including an absorbing term corresponding
to the BH horizon). As compared to the forced oscillation
analysis in Sec. III C, we ignore back-action for only two of
the “legs” in diagrams such as Eq. (19), rather than for three
of them.

To simplify our discussion, we will take . o w5y [sO
we are interested in processes such as Eq. (19)]. It is helpful
to extract the time dependence corresponding to the 211
oscillation, and write y = We™'®!, where @, = @,,; (for
simplicity, we will assume that @,;; is real, as it is when
211 has reached its saturation value). Then, if we take a
harmonic ansatz, ¥ = Ae™®" + Be'®’, the GP equation

(i0, + @ + M)¥ = A(¥3,, 9" + o1, P)  (A2)
(where 1= — ﬁ) implies that
(@ + @ + M)A = 2(¥5,,B" + o1 [PA)  (A3)
and
(=0 + @ + M)B = A(¥3,,A* + |¥,11|>B)  (A4)

If we take the complex conjugate of Eq. (A4), then together
with Eq. (A3), we have a linear eigenvalue problem that we
can solve for @. For A =0, the solutions correspond to
usual hydrogenic (quasibound) states.

For non-Hermitian Hamiltonians, the eigenstates are
generally nonorthogonal [141]. However, in our case, we
can write M = My + iM,, and treat M as being diagonal
in the basis of M, eigenstates (that is, we ignore the detailed
dynamics behind the absorption, since this is outside the
regime of the nonrelativistic approximation). In this case, the
(4 = 0) quasibound states ¥, are orthogonal [141], and we
will assume the normalization [ dV¥W;¥ i =0jk-

To linear order in A, if we start with the unperturbed
solution A = ¥;, B =0, then we can write the perturbed
solution as A = W¥; + >, & ¥s, B = >_; f'¥V) (expanding
in the unperturbed basis). Using equations (A3) and (A4),

(&; — ), = A / dV¥; ¥, 2P, (A5)

(i -o0p =1 [ avess (a0
As well as these perturbations to the wave function, we are

interested in finding the perturbation to the frequency @ of
the state. Writing @ = &; + @, we have
(@ + @+ M)A=~30A+A(¥3;,B" + |¥2,[PA) (A7)

If we take A to be normalized so that [ dV¥;A =1 even
for nonzero 4, then this implies that

ot = Z/dVTf(TguB* + 211 *A) (A8)
:Z/deﬂ‘yzlﬂzq’i (A9)
72 1 P2 * 2
—7 Zw s AV, ¥ (A10)
k ]
72 1 * 20\ * 2
+ 7 Z@ | [ AV¥i[¥o [P (A11)
k i~ Wk

The second and fourth lines of this expression give
behavior similar to standard perturbation theory.
However, the —1/(&®} + d@;) factor in the second line gives
rise to qualitatively different effects. If the ¥; mode is
decaying, but the ¥, mode is damped sufficiently strongly
that Im(®; + @) > 0, then Im(ﬁ) > 0. Consequently,
the “mixing” with the ¥, mode contributes a growing term
to the perturbed ¥; mode. In our case, the 211 parametric
forcing gives the 322 mode a “mixing” with the decaying
100 mode (and the n00 modes, etc), contributing a growing
term for 322. The perturbations to the 322 wave function
correspond to the forced oscillation discussed in Sec. III C.
Using Eq. (A11), we obtain the same 322 growth rate as
calculated from the forced-oscillation picture.

095019-42



BLACK HOLE SUPERRADIANCE OF SELF-INTERACTING ...

PHYS. REV. D 103, 095019 (2021)

Similarly, mixing with superradiant (rather than
decaying) modes contributes a negative imaginary part
to ow. This is again as we’d expect from the forced
oscillation picture. Including a growing 211 occupation
number, as is appropriate when 211 is still superradiant,
leads to more complicated expressions. However, since the
superradiant growth timescale is always much longer than
the oscillation period of w,;;, we can separate these
timescales, with 322 growth at a particular time being
driven by the 211 amplitude at that time.

This kind of perturbative analysis can be applied in the
hydrogenic approximation (at leading order in &), or using
numerical wave functions for the bound states, which will
be more accurate at higher a. In Fig. 21, we plot the decay
rate of the 100 level, relative to its leading-a power-law
behavior (the n00 levels have very similar behavior). The
lower panel of the figure also shows a numerical approxi-
mation to the rate of the 211 x 211 — 322 x BH process,
computed by numerically integrating the forced equation of

TBH / (kuooa 1)

0.05 0.10 0.20 0.50

211><211/F1~0~

F322><BH

0.05 0.10 0.20 0.50
a

FIG. 21. Top panel: decay rates of the n00 hydrogenic levels,
for n = 1 to 5, relative to their leading-order power-law behavior
as a function of a (for a BH with a, = 0.9). Bottom panel: rate of
the 211 x 211 — 322 x BH process, for a BH with a, = 0.9,
relative to its leading power-law behavior I'} ; as a function of a
(see Table V). As discussed in Sec. III C, the deviation of this rate
from its leading-order form is mostly driven by the same short-
distance effects that modify the n00 decay rates.

motion in the Kerr background (for practical reasons, over a
restricted range in «). The close correspondence between
the behaviors of these two rates illustrates that, for the
211 x 211 — 322 x BH process, the most significant high-
a corrections come from short-distance effects that affect
the flux across the horizon; at long distances from the BH,
the forcing term, and the forced oscillation, are not strongly
affected (at the a of interest).

The parametric forcing analysis above is not specific to
black hole superradiance. In the simplest case, if we had
two oscillators, with an oscillating coupling between them,

¥+ ojx = fcos(2w.t)y (A12)

V+yy + oly = feosRw.1)x (A13)
then the same kind of analysis would apply. In the absence
of the damping term y, if wy + w; is detuned from 2w,
then the system is not unstable to growth. Introducing y
leads to the exponential growth of x, as per above.

While the above analyses were at the level of classical
equations, a similar analysis could be done in terms of
quantum master equations. The most important physical
difference is that, while the classical ground state is
stationary, quantum fluctuations are amplified by the
instability, so the ground states evolves into a probability
mixture of coherent states. This is precisely analogous to
the amplification of quantum fluctuations by superradiance,
as discussed in Sec. II.

From Eq. (A6), our perturbative treatment breaks down
when

A [ave;¥3, v
f k=211 IZ] (A14)

A
W; + Wy

In terms of the physical mode frequencies, @] + &, =
o] + wy, — 2Rew,;;. For generic hydrogenic modes, this is
O(a?)u, and in this case, the lhs of Eq. (A14) is para-

. M? —
metrically ~a® f—§'£211, similarly to the self-energy correc-

tions [Eq. (Hla)]. As we discuss in Sec. V, the largest value
that &,;; attains decreases as we decrease f, and the
numerical value of this quantity is always small.

In special cases, the source term for the k oscillation can
be almost on resonance, and the denominator can become
smaller. We discuss a specific example in Sec. IIC
[Eq. (22)], where it is O(a*)u for the 211 x 311 — 322 x
BH process. However, in this case, the source term does not
appear to grow large enough for there to be a problem, in
most of the parameter space of interest.

It is also possible to treat emission to infinity, e.g.,
through the 322 x 322 — 211 x oo process discussed in
Sec. III B, in terms of a parametric forcing, with loss to
infinity acting as like a damping term.
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APPENDIX B: PERTURBATIVE CALCULATIONS
OF FREQUENCY SHIFTS AND RATES

In this Appendix, we will provide more detailed deri-
vations of the leading-a rates for quartic self-interaction
processes involving hydrogenic levels.

Up to corrections from self-gravity, the system obeys the
classical equation of motion

A
_*(P3, (Bl)

DZ_ 2 —
( 1) ¢

where D? = D,D" and D, is the covariant derivative of the
Kerr geometry. Expending D? to first order in ry/7, this
becomes

0? 2a N A
__v - K)=- 3. B2
(atz u ) “wr k) =tel (B2)
The term
. 10 , 0P\ L2
G I

is parametrically suppressed relative to u for nonrelativistic
components of ¢, and we drop K except for calculations of
relativistic emissions. Here L denotes the total angular
momentum operator: L2Y?" = (1 + 1)Y}" for the Laplace
spherical harmonics Y}*(0, ¢).

We seek a perturbative solution in the self-interaction
parameter 4,

¢ =90+ + (B4)
At zeroth order,
>’ = 2au\ o)

This equation admits nonrelativistic (quasi)bound states
with hydrogenic waveforms and energies which we identify
with the superradiant cloud:

(B6)

0) — (0) nlm -
) = Z(pnlm Z “nin' Waim + C.C.,

nlm nlm

up to phases, where y,,;,, are the normalized hydrogenic
wave functions [ [y, [*d*F = 1.

To avoid secular terms at the next perturbative order, we
must also introduce a perturbation series for the normal
frequencies:

Dpim = a)nlm + Aa)nlm © <B7)

where
wf’l(l)l)’l’l = Wy, + anlm’ (BS)
o
~ull——=), B9
@, ﬂ( 2n2> (B9)
and Fi}‘m is the superradiance rate. We call the energy

1)

corrections Aw,;,, = ﬂwnlm
At first order in perturbation theory, this gives a driven
massive Coulomb wave equation,

P =, 2au
- _V 2 ) M)
<8t2 T r )(p

(@) +3 2ul o (B10)

nlm

QN =

Plugging (B6) into (B10), and expanding the driving term
as a sum of harmonic driving terms gives

OP ~ N f(FQ)e ™ + e, Q>0 (BI)
Q

Since 9© ~ ag**u='/2 ~ a3y, the source f(7) ~ ()3

scales as ~a”/?u®. The physical intuition behind that
scaling is that a cloud with larger a has a smaller character-
istic size a, and therefore larger densities, enhancing the
rate of many-body processes.

The physical nature of the process associated to each

summand depends on the value of Q:

(1) Q —pu > 0 corresponds to free radiation emitted in
the continuum and travelling to infinity either with
nonrelativistic or relativistic velocities,

2) Q—pu<0 and Q# w, for all n is off-resonant
driving of discrete bound modes, i.e., the production
of off-shell particles trapped in the gravitational
well.

3) Q = w, for some n is resonant driving, which either
corresponds to resonant (on-shell) production of
particles inside the cloud, or to a correction to the
frequencies (one-particle energies) and waveforms
(one-particle states) of the zeroth-order normal
modes.

For clarity, we focus on the source

—iwst

ll/211

e~ 3lyr3, (F) + c.c. (B12)

%ﬁ

for the remainder of this Appendix. The source (B12)
represents the only two levels of the cloud relevant to the
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intra-cloud dynamics at small enough «a, as argued in
Sec. IV C and Appendix C2 a.

1. Frequency corrections

The source term includes components at the frequency
w, of the 211 bound state,

—iwyt 1

1 e 3/2 *
6 () > W (ENZ{I(W211>2W211

+ N3/ N211W322W§22W211)- (B13)

This source contains components in resonance with the
normal mode y,;,e~*>' which would drive ¢(") to very
large amplitudes, preventing a perturbative treatment. The
frequency correction a)<211)1 is therefore determined by
demanding that those resonant components be exactly
cancelled:

1 1 N -
w(21)1 = _4_/42/ <%|‘//211|4 =+ N322l//322|2|ll/211|2> d°F.

(B14)

The two terms in Eq. (B14) correspond to self-energy
corrections of the level 211 from its interaction with itself
and with 322, respectively. The integral can be computed
analytically by using the explicit form of the hydrogenic
waveforms vy, and y3),.

Since bound state wave functions scale as y,, «
1/ay** « (au)¥/* and only depend on 7 through r/aj,

the frequency correction scales with a as wflllzn

denser cloud gives larger frequency corrections.
We calculated the integral of Eq. (B14) and the equiv-
alent for a)g12>2 and we found the corrections:

~au. A

A(l)z]] ad —/la’;//l<12 X 10_4N2]| —+ 3.5 % 10_5N322)
s (Mp)? —4 -5
= —aU T (12X10 521]+3.5X10 8322)
(B15)
Awyy =~ —Aau(3.5 x 107N, + 1.4 X 107 N3y,
s (M g -5 -5
= —aU 7 (35 x 10 11 + 1.4 x 10 8322)

(B16)

2. =0 damped-driven oscillation

When Q —pu <p and Q # w, for any n, the source
generates a forced bound oscillation which is damped by
the BH. For example, when the cloud consists of particles
in the 211 and 322 levels (B12), the frequency of the forced

oscillation is wj,q = 20, — w3 = p(1 = 7a*/36) < u, so
the oscillation is bound.
The bound state (1) > e~n™P(1)(7) 4 c.c. satisfies the

time-independent equation for the complex field ¥,

o2 20\ oy N2V Nap 2 .
<kmd - —T>l}'( '(7) = iw(lﬂzn) V320,
(B17)

where k2, = u? — wiy ~ (7/18)a*u>.
We expand ¥())(7) in the complete basis of the hydro-
genic differential operator —V? — 2au/r,

lIl(l)(;:) = chlml//nlm + Z / dkc(k)l//klnw (BIS)

nlm Im

where the eigenfunctions n/m of the discrete spectrum
satisfy

2ap a‘u
<_v2 - T) Ynim = _k%ll//nlm’ k%l =T 3 >

(B19)

with n a positive integer, and eigenfunctions kl/m of the
continuous spectrum obey

20u k
(—V2 )’I/um = kW ki p” € (0, +o0). (B20)

r

Moreover, the eigenfunctions obey orthonormality
conditions:

[ @i = Sutnsis. (B210)

/d371//zlml//k/,/m/ =216(k" — k)8, 611 (B21b)

[ @it =0 (B21¢)

Explicitly, the states of the discrete spectrum are the usual
bound hydrogenic wave functions,

l//nlm(r’ 0, (ﬂ) = Rnl(r) Y?n (9’ (p)7 (BZZ)

with the radial part

o= @) S

- 2r\! 2
X exp {—r} <—r) L2 {—r} (B23)
n—I—1
na na nag
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where Lﬁ’f[l | (x) is the generalized Laguerre polynomial of

degree n — [ — 1.
The states of the continuous spectrum are stationary
Coulomb waves [142],15

Wiam (7,0, 9) = Ry (r) Y7 (0, $) (B24)
with the radial part
2ke™ ka0 (1 41 — i/ (ka
Ru(r) = (L + 1= i/ (kay))|
(21 +1)!
x (2kr)le= ™\ F\(i/(kag) + [ + 1,21 + 2, 2ikr),
(B25)

where | F; is the confluent hypergeometric function of the
first kind.

To obtain the coefficients c,,;,,, we put (B18) in (B17)
and integrate both sides against y7,, .. We can then use the
Hermiticity of (—=V? — 2au/r) (which in this case amounts
to integrating by parts, so that —V? — 2au/r acts ony%,, ),
along with (B19) and (B21) to find

1
Culm = 75 5
n =R

% /1N211\/N322

3 (B26)

<W211)2W§22W21md3?‘

Similarly, the values of the transform c(k) are obtained by
integrating both sides of (B17) against y;/y,,,. The analogue
procedure then yields

IR
27 kg + K

% / 1]\7211\/1\,322

EW (W211)2W§22W]tlmd3?'

c(k)
(B27)

It is appropriate to do these integrals in units of the Bohr
radius ay = (au)~! to reconstitute the dependence on a.
The prefactors of kiyq, k, and k are naturally in units of a ',
while bound state wave functions are in units of a, 32 and
continuum wave functions are in units of ag'. The c,;,’s
then have dimension aj'y=3/? and c(k) has units of
ag"?u?2. The amplitude of the induced oscillation ¢
therefore has units of ay>/*u~/2 = a2,

These overlap integrals are nonvanishing for / = 0, 2, 4
and m = 0. For [ > 0 however, the angular momentum
barrier suppresses the field amplitude at the horizon, and
therefore the corresponding rates of absorption are smaller.

this is appropriate in the hydrogenic approximation, where
we take into account the Newtonian 1/r gravitational potential.
Corrections from the full Kerr potential will be higher order in a.

This in turn leads to a smaller induced growth rate, as
discussed previously. We therefore focus on / = m = 0 and
ignore the [ = 2, 4 terms.

For [ = O states, the power absorbed at the horizon in
terms of complex field ¥(!) goes as the square of the norm
at the origin:

Pope ~ 402 (1 /1 az),12|111(0)<1>|2. (B28)

In terms of particles in the cloud carrying energy =y, this
contributes

NC 2 _FdampN%11N3225 (B29)

with

P abs

= B30
damp ﬂN%I N3 ( )

3. Nonrelativistic emission

Generally, the source term (¢(®))? will generate some
driving terms oscillating at the frequency w)\RE =
w, + o, —w,. When oNRE >y the driven oscillation
is free. These free emissions are nonrelativistic because
oNRE ~ y + O(a?) for the constituents of the superradiant
cloud. The superscript NRE (“nonrelativistic emissions”)
will be suppressed will be suppressed for the remainder of
this section.

Generically, we seek to solve

0t =, 20U ) .
(G- T 4= 20, = () +een (B3
where e f(7) is a localized source of radiation with

harmonic time-dependence, and ¢, C ¢! is the radiation
part of the field. The time-averaged differential power per
solid angle that such a source emits in the radiation zone at
infinity in the direction (6;, ;) is

w, k|
(4n)2

d(P)

e 2O,

(07 070) =2 (B32)

where k = (1/(w,)? = 4?)# is the momentum at spatial
infinity, 7 is a radial unit vector pointing in the direction

(Ox, @1) and ](1?) is the “Coulomb” transform

Flk) = %:Y?’(Hk,(pk) / d37(4n)(—i)1f(7)y//*<12¢k(?)'
(B33)

This is analogous to the usual Fourier transform that one
would compute for the emission rate in flat spacetime, with
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the regular spherical Bessel functions having been replaced
by the appropriate regular Coulomb waves.

For nonrelativistic emissions, k ~ O(ag'). It was noted
earlier that f(7) ~ a”/?u3. Furthermore, since it is a product
of hydrogenic wave functions, f(7) depends on 7 only
through the combination 7/ay,. On the other hand,
Wiam(7)/2k is dimensionless and depends on 7 only through
the combination kr ~ r/ay, for nonrelativistic k. Therefore,
all the dependence of (B33) on a can be extracted
by evaluating the intgeral in units of the Bohr radius
ap = (au)~1. Thus F(k) ~ ¥/ and d(P)/dQ ~ 2a*/i2.

The total radiated power is determined by integrating
(B32) over solid angles:

d(P)

PYRE — / dQ=—-" (B34)

daQ2

In terms of particles in the cloud, and particles radiated to
infinity with energy , ~ y, we have

Nc ) _FlNREanmNn’l’m’Nn”l”m”’ (B35)

with the rate

PNRE
NRE _ r
| p =

. (B36)
ﬂanmNn’l’m’Nn"l"m"

A particularly important process is 211 x211 - 322 x c0.
This is sourced by

1 )
8<(p(0))3 ») e—z(2w3—(o2)t
1 N3pv/Noiy .
X CEEE (W322)*w3yy +cc. (B37)
By substituting
- 1 N3py/Nojy 2
f(7) — ) (2ﬂ)3/_2 (w322)° W5y (B38)

in the above, we obtain the rate in Table II.

4. Relativistic emission

The source term (¢(?))? will also contain terms oscillat-
ing at the frequency w®f =w, +w,» +w,». When ot > y,
the driven oscillation is free. These free emissions are
relativistic because , ~ 3u + O(a?) for the constituents
of the superradiant cloud. Cubic self-interactions would
also generate relativistic emissions through ((*))? in the
equations of motion. In this case wREF ~2u + o?.

For the remainder of this section, the superscript RE
(“relativistic emissions”) will be suppressed. As is the

case for nonrelativistic emissions, the radiated power is
controlled by the integral (B33) which projects the source
onto the Coulomb scattering state with outgoing momen-
tum k. The source f(7) is a product of hydrogenic wave
functions,

—1/6 -
f(r) EWN;{?W%H

A

_ _3r 3/2
:776871 r~700‘3/2"03(r/610)3€ } /(za")Y33N2{1

(B39)

For nonrelativistic emission, k ~ ag I 50 we need to use the
full form of the Coulomb scattering state. In contrast, for
relativistic emission, k ~u ~a~'ag!, so kag~a™' is a
large parameter. As a result, we can expand the radial part
of the Coulomb wave function around its flat-space,
spherical Bessel function form. .

It turns out that the contributions to f(k) from the sphe-
rical Bessel function, and from the leading-a correction, are
at the same order in . This effectively occurs due to the
contribution from the spherical Bessel function suffering a
“cancellation,” making it higher-order in « than a naive
guess based on the behavior of f(7) near the origin would
have indicated. The integral against the leading-a correc-
tion term does not suffer this kind of cancellation, making
the contributions from both of the same order. This is why
our result for the emitted power [Eq. (15)] has the same «
dependence as that derived in [6] using a flat-space
approximation, but has a larger constant factor ([6] also
treats emission as light-like, taking w? = k> rather than
w? = k> + u?).

Higher-order corrections, and effects from working in
the full Kerr metric instead of just a 1/r potential, all
contribute to the emitted power at higher order in a.

APPENDIX C: MIXING BEYOND 211 AND 322

1. Selection rules for mixing with damped states

As explained in Appendix A, in the presence of
a quartic self-coupling A, one can view a background
SR cloud ¢ (7,1) ~ e lyrp (1) + e sy (1) +c.c as
providing a time-dependent mixing potential Viine ~
Ae P (w11 (1)* + wor (DWan (1) +ysn()?)  between
states. In particular, if the mixing matrix element
W v |V mixing Wiy,,) between a superradiant state y,,,,
and a decaying state y,y,, is nonvanishing, then a forced
oscillation o y,,p,, is sustained and a growth instability is
induced for y,,;,,.

We are therefore interested in the selection rules when
Vmixing ~ W%l] ~ Y%’ Vmixing ~You1¥sn Y%v and Vmixing ~
w3y, ~ Y4 In each case, Vg ~ Y7 can be viewed as
an element of an irreducible tensor operator representation
of the rotation group with angular momentum numbers
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(", m" ).16 Considering further that, v, o« Y;”, then
by the Wigner-Eckart theorem (W, |V mixing W) &
(LU, —m,m"|l'm'), where (Ji» Josmy,mo|J, M) =
(j1s Ja, my,my|j1, jo, J,M) is the Clebsch-Gordon (CG)
coefficient for the addition of two irreducible angular
momentum representations j; and j,. Furthermore, since
the parity of a spherical harmonic Y7 is (—1)’, inserting
parity transformations inside the matrix element yields
<1//n’l’m’|Y;ﬁ”|l//Zlm> = (_1)Z+l,+lﬂ <l//n’l’m’|Y7’1’”|l//;[m>'

From this we get the selection rules for an induced
growth instability to develop:

(1) Mixing with a damped state: m’ <0,

(2) CG coefficient: m” = m' + m,

(3) CG coefficient: || —=1I"| <I' <1+1",

(4) Invariance under parity: [ + ' + 1" = even.
The first rule assumes that the spin in the BH is such that
m > 1 states are SR.

2. Dependence of rates on the quantum numbers
a. Dependence of rates on overtone number n

The sources components y,; and w3y, are peaked
within a few Bohr radii, while hydrogenic wave functions
in general are peaked further and further away from the
origin as the quantum numbers are taken to be larger and
larger. Thus, the interaction of a level ndm with a
combination of 211 and 322 will depend on the behavior
of R,; near the a:

R,,(r~ag)

2 3/2 1 1/2
- ((n, Ty 1)a0> <2(n, iy 1))

" (n,+21+1HN\V2 1 2r /
! Qi+ )\ 111 Dag)

(C1)

where n, =n—1[1—1 is the radial quantum number. If
n, — oo, while [ is held fixed,

1 3/2 1 3/2
Ry (r~ag) ~ (—n a0> ~ <n—ao> .

integral with R,;

(C2)

Thus, any overlap decreases as

ny /% ~ n=3/2_ This is simply saying that as n, is taken
larger, the characteristic volume of the driving wave
function ,,,, gets larger as ~(nay)?, and so the driving
is uniformly diluted by that same factor. A forced

~

16Strictly speaking, since the Kerr metric breaks spherical
symmetry, / is not a good quantum number (though m is, since we
still have axial symmetry). However, since the metric terms
that break spherical symmetry are suppressed at large r/r, they
lead to effects that are suppressed by more powers of a in the
hydrogenic limit.

oscillation with a y,,; component as a source term therefore
suffers the same suppression.

Rates (whether emission rates or rates of absorption into
the BH) depend on the square of the forced oscillation and
therefore behave as « n~> in the limit of large n. This
means that ratios of emissions and absorption processes
become independent of .

The discussion in Sec. IV C relied on the behavior of
various ratios of rates at large n. To assess how fast the
relevant ratios converge to the expected scaling in n, we
plot them for the first 200n (Figs. 22, 23, 24, 25, 26).

b. Mixing with I’ =0 damped states

The analysis of levels that can grow from 211 and 322
mixing with an I = 0 forced oscillation is done in the main
text (IV C).

)
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FIG. 22. Behavior of the first term in the ratio in (65) as n — oo.
As discussed in the paragraph below (65), and as expected from
C2a, the ratio rapidly becomes independent of n and is
>1 for n = 10.
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FIG. 23. Behavior of the ratio in (66) as n — o0. As expected
from C 2 a, the ratio rapidly becomes independent of n.
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FIG. 24. Behavior of the growth ratio 211 x 211 — n22 x BH
normalized to its value at n = 200. As stated in (69), the ratio
scales as n 3.
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FIG. 25. Behavior of the ratio in (72) as n — o. As expected
from C 2 a, the ratio rapidly becomes independent of n.
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FIG. 26. Behavior of the ratio in (74). As expected from C2 a,
the ratio rapidly becomes independent of n.

c. Mixing with / > 0 damped states

We give an exhaustive list of the possible processes
involving mixing with // = 1 and /' = 2 damped states.

For I' =

655xBH(1,-1) , e a\5 /M _
7’322x322( (e 22)7 ~10° <m> (ﬁ) Myr~!,  (C3a)

654xBH(1,0 a\'e/M B

7’322x322< )( ggz) ~ 10 <ﬁ> <ﬁo> Myr~!, (C3b)
543xBH(1,0) e M _

7’211x322( ) 2(}18322 ~10° (0 3> <MO> Myr™!, (C3c)
432xBH(1.0 a\'%/'M _

7211><211< )(8;?1)2 ~ 107 <ﬁ> <ﬁo> Myr ! (C3d)

For I' = 2,

766xBH(2,-2) ; e a _
7322x322( >(5332 ~ 107 (0) ( M > Myr~!, (C4a)
765xBH(2,—1) , e L @ Mg _

7322x322< >( 3q22 ~ 10 3(0_) <7> Myr L (C4b)
764xBH(2,0) , e @ Mg _

7’322x322< )( 322)° ~ 10 4(@) (ﬁ) Myr~!,  (C4c)
653xBH(2,0) e Mg _

7/2]l><322< )83325211 ~ 107 <0 3> (W) Myr n (C4d)
542xBH(2,0 i a\"* (M _

7’211x211< )(83?1)2 ~ 10 4(@) (ﬁ) Myr™! (Cde)

Clearly, rates for processes involving I > 2 are too small to
be relevant on astrophysical timescales. Rates from mixing
with /' =1 states however can become quite large for
a = 0(0.1), but, similarly to processes with /" = 0, they
should be compared to depletion processes of the form
nlm x 322 - 211 x co.

First,

211x

655xBH(1,~1) Vossxsoz €211 o

€655 = V322x322 (1 T 655xBH(1-1) ¢ E3m€ess- (C5)
Y322x322 322

The depletion term dominates as long as

211x00 1/9
i/ < Kessaaze 263555, \ Y ~0.7 (C6)
+ o~ (S55xBH(1.-1) 322-BH(0.0) ~ Yl
K320%x322 Kar1x211
Next,
211x00
654xBH(1,0) 1— Vo54x322 €211\ » (C7)
€654 = V3004322 654xBH(1.0) €320€654-
€322
V322322

The depletion term dominates as long as
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211x00 211x00 1/10
ai/10 < [ _Kesaxan 2655355\ ~0.7
+  ~ | T654xBH(1.0) _322xBH(0.0) ~e

K3oox3n K

(C8)
211x211

Next,

211x00

fo L SABHOL) [ V54330

€543 = V211x322 583xBH(1.-1) | £32286211€543-
V211x322

The depletion term dominates as long as

211x00 1/7
a7 < [ K543x322 /Nl
+ ~ \ 543xBH(1.0) ~

Ka11x322

(C10)

Finally,

21Ixc0
B 432xBH(1,0) 1 — Y432x322 €322 S £
432 = Ya11x211 “B2xBH(10) g, | ) E3262116432-
Va11x211 1
(C11)

The depletion term dominates as long as

211x00 322xBH(0,0)\ 1/4
) ~1. (Cl2)

a<( Kiansa 1Ko
~

432xBH(10) 3 2l xes

Katixatt
Since 211 SR stops for a > 0.5, we conclude that the net
growth rate of all four levels (and their radial overtones) is
negative over the whole range of relevant parameter space.

APPENDIX D: EQUILIBRIUM RATIO FOR
MODERATE SELF-INTERACTIONS

We derive a more precise formula for the value of the
time-independent equilibrium ratio by the system of equa-
tions (46). In terms of the y rates,

. 2llxeo 2
211 = V322x322€211€322 — 27211><211€2118322’ (Dla)
. 320xBH .2
&0 = 213032118, T Bl & (D1b)
Therefore,
1 d (8322)
£11€30 dt \ &1
€
322xBH 322xBH 211x00 322
= Vaiixeil + 2(9’211x211 — 7322x322 (8211
211 €320 2
X 00 ~
— V322%322 . (D2)
€211

The zeros of the right-hand side are

TABLE IV. Rates for gravitational processes involved in the
evolution of the scalar cloud.

Process Rate [y/u, Eq. (32)]

35 4 x1072a%(a, = 2a(1 ++/1 —a?))

35 8 x 105a'(a, — a(l + /1 - a2))

I35 2x107%a'%(a, —3a(l + /1 -d?))
sk 2x1072a®(a, —La(1 +/1-al))
IS 1 x 1072

rg}z\;/ ,ann 3 x 10—8a18

T 5x10~a"

TABLE V. Rates for quartic processes involving nonrelativistic
bound states.

Process Rate [y/u, Eq. (32)]
Tt 43 x107a1 ()4 (1 4+ /T= )
D 15x 107a" ()41 + VT =)
T 25 % 1078 ()" (1 4+ /T a?)
b 9.8 x 10711 11( Myt 1 4 /1 - a2)
Db 9.1 x 1078 (*) ')4( 1-a)
5% 1.9 % 102 ()} (1 + T=a)
[t L1 x 107a" ()" (1 + /T = a2)
e 2.8 x 10710 ”(%4( 1-d)
LRt 3.6 x 1072 ”(MT)“( — )
i85 2.1 x 1070 ()" (1 + /1= a2)
| 1] 52x 10721 () (1 + /1= a?)
| phyier s 1.6 x 1072a! (221 +\/_‘E)
Tidss 5.6 1078al ()} (1 + /1~ a?)
s, 1.1 x 107 (" )4( 1—a)
B _ 1 < 322xBH _ ,211x00
n ixeo | 7211x211 ~ 7322x322

7322%322

322xBH 21 1x0c0

322xBH )2 211xc0 )2
+ \/ (raian)” = raivanrssss T (13255%) )

(D3)

Since the right-hand side is an inverted parabola, the “+4”

solution is dynamically stable (attractive), while the “—”

solution is unstable. Parametrically, 73751 o a!! and

211x00 8. 322xBH 211x00
V33 < @ . Therefore at small a, y3775%57; < V32253220

and so the “—"" root is negative. Moreover, the “+” root is

322xBH eq

Lys1i% €
(a5 AR =52 (D)

eq
Y322x322 8211
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TABLE VI.
istic emission.

Rates for quartic processes leading to nonrelativ-

Process Rate [y/u, Eq. (32)]
0 13 x 1076 (22)"
LT 8.5 x 107 (12)*
39055 1.1 x 1071008 My
IR 3.8 x 107 (1)
3055, 1.1 x 10788 (M)
TR 2.6 x 10708 (M
I8 9.2 x 10~ (M)
LTt 6.1 x 107118 (2*
it 1.9 x 107! a8 (M)
rallxe, 4.2 x 1073q%(2p)*
et 4.4 x107a (3Rt
[ IFEEio 7.8 x 10710 (2
30055 2.3 x 1071048 (@)4
T35 7.3 x 1071308 (?)4
TEis%s 4.6 x 10738 (4p)*
Lo 6.9 x 10714a3 (M)’
| o 11 x 107138 (42)*
Tessxa 3.7 x 1078 ()
22N 1.6 % 10718 (2)*
Taaxess 6.2 x 1073a’(42)*
Taexss 5.6 x 10730 (42)*
TABLE VII. Rates for self-interaction induced relativistic

emission processes.

Process Rate [y/u, Eq. (32)]

373 (cubic) 1.9 x 104 CP (M)
3-1 _ M\ 4

[ 5x 107% (5F)

3 6 x 10—140[27(%)4

APPENDIX E: BOUNDARY OF THE REGIME
OF EARLY EQUILIBRIUM

We derive a more precise formula for the value of f/M,
such that the SR growth of 211 is halted before O(1) of the
spin is extracted. At early times, if we neglect the
dependence of y5X on the BH spin a,,

1
GM

e (1) & ——5 el (E1)

We use this into

f . — ,322xBH 2
€322 = V211x211€2116322+ (E2)
322xBH
where we neglect the dependence of y371%5] on a..
Therefore

e (1) ~ exp riei (e —1)|. (E3)
2T oMm? 23R G2Mm? '

The condition for SR to be impeded is that

o5 = 2rnesti €211 (1€ (1), (E4)

Using the approximations (E1) and (E3), one finds that (E4)
is satisfied at the time 7., such that

R 1 +4Blog p — 25W (% pe'/?)

Va11leq ® 43 , (Es5)
where
2004 7;11{1
p=GM 2, 322xBH ° (E6)
V211x211

and W(z) is the product logarithm (sometimes called the
Lambert W function).

When y58t~1log(GM?Aa,), then SR has happened
completely. So, in order for (E4) to be obtained before
SR has run its course, we must have

1 +4pBlog p — 2pW (L pe'/?)
4p

(E7) implicitly defines f s Note that since M > M,
S > 1 for much of parameter space. One can then approxi-
mate W(z) with the leading terms of its expansion around a
large argument: W(z) — logz — log(log z) as z —» +o0. In
this approximation, the left-hand side of (E7) becomes
~log\/2f log f3, and the condition for SR to be halted early
simplifies to

< log (GM?elfy).  (ET)

2731 log(GM?) S v3ivaaii (e511)° (E8)

APPENDIX F: CLOUD MASS

Here we calculate the mass of the cloud in the case
f — o0, i.e., in the purely gravitational case. We will do the
computation for the 211 level for clarity, but it is straight-
forward to generalize the formalism to any nZm level. To
simplify notation, we drop the level subscripts for the rest
of our discussion here. The cloud parameters are referring
to 211, unless stated otherwise.

Since the BH loses <0.1% of its mass due to SR, we
usually treat its mass to be constant, or, equivalent, that
a is just a parameter. In the case of self-interactions, in
particular, the cloud tends to grow to a smaller occupation
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number, which strengthens this assumption. A further
simplification comes from setting @ ~ u. By noting that
& = —a, in this regime, we get that ¢,,,, = Aa,. The final
a, can be found by setting the SR rate equal to zero.
Eventually, the maximum occupation number one gets is

4a

gmax:a*( )_1+4a2' <F1)
In general, the equations we need to solve are
N = }/SRN (an)
M = —311YsRNV (F2b)
J=—-ysN (F2c)
J
where
o2

60211:#(1—8)- (F2e)

We define the & with respect to the initial BH mass M’,
ie., e = N/G(M')? and Egs. (F2) become:

b= e (F3)
o— _ag<1 _%z)g (F4)
a - -g [Za* _ M} (F5)

where a; = a(t = 0), given by the initial BH mass. The
usual treatment is to expand these equations for small a,
which is equivalent to neglecting terms of order O(a). This
reduces Eq. (F4) to @ = 0. However, the expansion in
Eq. (FS) has to be taken more carefully because the
denominator is also small in this limit. By substituting
Eq. (F4) it becomes evident that the first term is of order
O(a), whereas the second is independent of a. Therefore,
we can neglect the former, which gives the standard
result a, = —é.
Equation (F4) has the following solution

2V2

Now, Eq. (F5) can also be solved analytically. The result is

a, = % [aoa% — 2v/2arctanh (mﬂ . (F7)

-8 + aa;

a = —2v/2tanh E (\/50:%8 - 4arctanh{ i D} (F6)

The final spin of the BH is that which saturates the SR
condition w — m&2y is

B 8(—8ag, + i)
16 + 64az, — 16af, +ab '

fin __
m=

(F8)

where the “fin” superscript denotes final quantities, after
the 211 cloud has been saturated and the BH has spun
down.

Now we can use Eqgs. (F6), (F7) and (F8) to numerically
solve for &, the final occupation number of the cloud.
The mass of the cloud is then M, = £,,,,G(M')’w.

By neglecting the @’ term in Eq. (F2e), ie., by
approximating @ ~ u, we can get a simpler analytic result
for the final BH mass. In this case, the equivalents of
Egs. (F6), (F7) are

a=a;(1 —a;) (F9)
a, = ﬁ (F10)

which can be used along with Eq. (F8), truncated to O(a?),
to give the final occupation number of the cloud. We find
that

1 —8a? +8ajay — \/1 — 16a? + 32apa; — 16a3a}
8(—a} + apat)

8max -

(F11)

where ay = a,(t = 0).
In Fig. 27 we plot the ratio of the final cloud mass over
the initial BH mass. We solve numerically Eq. (F8) with

M,/ My(%)

¢ Numerical

a=0

— Full Analytic — 4 #0,w=p

0 L
0.01  0.05 0.1 0.15 0.2 0.25 0.3 0.35

@

FIG. 27. Ratio of the final mass of the cloud to the initial
BH mass. We plot points from the numerical evolution of
Egs. (F3)—(F5), the full analytic result of Egs. (F6)—(F8), as well
as the @ = 0 approximation of Eq. (F1) and the w,;; ~p,a #0
approximation of (F11). The cloud can grow to have a mass of
up to 7% of the initial BH mass. This plot assumes an initial spin
a*(to) =0.9.
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respect to €,,,x and compare it to the numerical evolution of
Egs. (F3)—(F5). We also plot the results of Eq. (F1) and
Eq. (F11) for comparison. We find that the mass of the
cloud can grow up to 7% of the initial BH mass.

APPENDIX G: SELF-GRAVITY
ENERGY CORRECTIONS

The Poisson equation for the gravitational potential
sourced by the cloud is

V2®Osg = 4aGuly|? (G1)
where y is the wave function of the cloud, i.e.,
= Z anm Yim (GZ)

nlm

where N,,;, are the occupation numbers of the levels and
W the hydrogenic wave functions. Treating ®@gg as a
small perturbation, the energy correction of the (n, I, m)
level is

Aa)nlm = <nlm|luq)SG|nlm>
/\ |2
== [t [ L ever (3

Expanding 1/|r — r'| in spherical harmonics we get

|I‘—r =dn Z Z 21/+1 1/+1 (9/ (b/) (9,¢),
(G4)

where r_(.) is the smallest (largest) of r and r'. We can
perform the integration over 6 and ¢, since y,,;,, « Y'. By
the selection rules of the spherical harmonics we can write

i
mymsx __ 0
YRy = E :Ck,leZk’

Com = / YIRYRAQ.  (GS)
k=0

Therefore, the integral over 0 and ¢ selects m’ = 0 and
I' = 2k, giving

Aw,;, = —4nGu> 24]{]1”'1 /R (r)r?

< [ WP g @ gvar (6o
where R,, are the hydrogenic radial wave functions.
We will now make the simplifying assumption that the
w given by Eq. (G2) is a sum of levels such that
(n,I,m) = (14+1,1,1), which is the case treated in this
work. Since |y|? is integrated against Y9,, only the terms

consisting of products of complex conjugates will survive.
Thus, we can substitute the integrand as follows:

lw () Y5 (0" 4")

1/2 4 «
=3 INYZ R ()P Y0 ) PY S0,
I'=0

(G7)

Then the integral over & and ¢’ is just ¢; y, as defined in
Eq. (G5). Note that this integral is nonzero only for I’ > k.
Thus, we can rewrite the sum > ,_, — > y_. The coef-
ficients c; yy have a simple analytic form

2'+1 20021 + k)!
Ck,l’l’:<_1)k—+ 4k_|_1 ( ) ( ) ( + )

Van (KD +2k+ )N = k)V
fork <1/ (G8)
The energy corrections are then
Ch.im '
Aw,yy = —4nGp? Z4kk—lk 1 ZNI’+1.I’,I’Ck,l’,l’I% (G9)
=k

where the last quantity is the radial integral given by

Ikl’

2%
k= /R%l(r)/R%HJ,( ) ;;1 r?r2drdr,  (G10)

which can be calculated analytically. Assuming a simulta-
neous occupation of just 211 and 322, the corrections are

3

au

Aa)zn ~ _W(OlgNZH + 0.11N322) (Gll)
a3,u

Aa)322 >~ —W (0.11N211 + 0.09N322) (GIZ)

APPENDIX H: FREQUENCY DRIFTS

The corrections to the energy of the 211 and 322 levels
from self-interactions and self-gravity were calculated in
Appendixes B 1 and G respectively. The angular frequency
of a particle occupying 211 or 322 is

a> M\ 2
)11 :M<1 —§> — pad (Tpl> (ktear) + Khesn)

— ua (k¥ ea11 + K5 €300), (Hla)
a? M)\ 2
W30 = | <1 - 36> - pa’ <fp) (Khea + Khesn)
— ua (k5 ea11 + K5 €302), (H1b)
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wherea UMM 5~ Zandkt = 1.2x 1074, k4 =3.5x 1073,
K'l =0.19, Kgf_ou K =35x107, k} = 1.4x 1073,
5 = 0.11 and «§" = 0.09 are numerical coefficients.

In what follows, we define the frequency v as

v

%. (H2)

So the frequency drifts © are given by,

2 , 2
. ua [la M,
i = T {Z——l-az <7p)

X [a(kiéyy) + Khésn) + 5(ktean) + Khesnn)al
+ +la(kf a1 + K5 é300) + 3(kT €211 + K5 €300) 1]

(H3a)

2 . 2
ke [la My
=T Lsa”‘ < 7
X [a(Khéan) + Kiésn) + 5(Khear) + Khesnn)al
+ +Ha(kS ex1y + K5 &300) 4 3(k5 €211 + K5 £320) ]

(H3b)

to leading order in « for every term.
The mass of the BH evolves according to (37), which can
be written equivalently as an equation for a as

a=—a*(r3fie + r3nem — Nivol &) (H4)

As a result, the last terms in the second and third row of
Eqgs. (H3a) and (H3b) are parametrically suppressed by an
additional power of @ and &; compared to the respective first
term and thus will be neglected in what follows. In addition,
all drifts are given to leading order in @ and are the
maximum possible for each individual regime.

In what follows we calculate the frequency drifts of the
GWs coming from annihilations of two 211 particles and
from transitions from 322 to 211. These are given by the
relations Uy, = 2051, and Ly = D35, — 151 We separate the
sources of frequency drifts in the following categories:

(1) Due to the change of the mass of the BH, given by
the first terms of (H3a) and (H3b), denoted as v*.

(2) Due to the change in the self-interaction energy,
given by the second term of (H3a) and (H3Db),
denoted as /.

(3) Due to the change in the self-gravitational energy,
given by the third term of (H3a) and (H3b), denoted
as &

In the regime of small self-interactions we treat the

depletion due to gravitational radiation (annihilations and

transitions) separately for points 2 and 3 above, and we
denote by the superscript “GW”.

We also note that there is an additional source of
frequency drift coming from the change of the radial
velocity of the BH to the observer, but for isolated black
holes it is Upgppler < 107! Hz/s [40], which is negligible.

For reference, LIGO/Virgo continuous wave searches
currently cover a range of positive to negative frequency
derivatives of [83]

2x 107 Hz/s through — 1 x 1078 Hz/s. (HS5)

All drift calculations carried out here are to leading
approximation in a [which is accurate only for a < a,(0)]
but the formalism includes in principle all higher-order
corrections. At higher a the calculations can be carried out
numerically using the full expressions and the numerical
rates, but at @ 2 0.2 the approximation of the two-level
system essentially breaks down. We have verified that,
for our purposes, the leading order approximation gives
accurate results.

1. Small self-coupling

Here we revisit the frequency drifts from purely gravi-
tational interactions, i.e., f — co as described in [12],
which corresponds to region (A) of Fig. 3. There is a clear
separation of times when different levels grow, so whenever
a higher level gets populated, the lower ones have already
fallen back into the BH, as their SR rates have become
negative. In what follows, we will consider only 211, from
which comes the stronger signal.

The interesting region for signatures is when the BH has
spun down, the level has saturated and slowly gets depleted
by radiating GWs. The only source of a frequency drift then
comes from the gravitational self-energy of the cloud, given
by the last line of Egs. (H3a) and (H3b). In particular, the
last term is exactly zero, since @ = 0.

The 211 cloud obeys the equation &=

Zyz?’}’lela“gz“ The maximum drift comes about when
&1 = 5 ~ Aa, (for a better estimate, see Appendix F),
when SR shuts just off. For a,(0) = 0.9 we find the drifts

to be
GV g 1022 HZ Hz [ a Y U 2 /10" GeV\?
sec \0.075 10712eV f

(H6)

Hz / a \U7 2
OV L 8 5 10717 == a H7
Hamn x sec <0.075> (10‘12 eV (H7)

In the small self-interactions regime, the drift coming
from self-interactions is always subdominant to that of self-
gravity in the parameter space of interest.
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The drift can become larger than the range LIGO/Virgo
cover [Eq. (HS5)] only for a around 0.27, taking higher order
a contributions into account.

2. Moderate self-coupling

Here we are interested in the region where both levels are
occupied and they drift away slowly, which corresponds
to region (B) of Fig. 3. In this regime 211 reaches its
maximum occupation Aa, and we can use Eq. (47) to relate
the €35, to &;1;. Note that even though the BH has spun
down due to the growth of 211, & # 0, since particles fall
back into the BH, as described by the last term of Eq. (H4).
The resulting frequency drifts are as follows:

Due to the change of the BH mass:

Y Lo-11 Hz /107 GeV\* u 2/ a \V
P — —
ann sec f 10712 ev/) \0.075

(H8a)
17 4 2 17
yra3xiomz B2 (107 GeVATA k °
sec f 102 ev /) \0.075
(H8b)

The negative sign in Eq. (H8) comes from the fact that
the SR rates are zero, so the BH is actually gaining mass by
the depletion of 211, from the last term of Eq. (H4).

Due to self-interactions:

Hz /10" GeV\® u 2/ a \P
Phn~6x10713 —
ann =0 sec ( f ) (10‘12 eV) (0.075)

(H9a)
Hz /107 GeV\ u 2/ a "

Vo =2x10718 —
=T sec< I ) <10—12 ev> (0.075)
(H9b)

Due to self-gravity:

Lot & 1017 GeV\ 4 u 2 a 17
o sec f 10712 ev) \0.075

(H10a)

Hz /10" GeV\* u 20 a \V
2% 10712 2
Y % sec< f ) (10_126\7) (0.075)

(H10b)

These are calculated for a,(0) = 0.9. Note that a scalings
of Egs. (H8) and (H10) are the same, which comes from
the fact that SR has shut off and the scalings in both @ and ¢;
of Egs. (H4) and of (H3) are set by the same term, i.e.,
y33BH 2 e33,. This is why the numerical coefficients of

both the annihilation and transition drifts are very close. In
particular, for the annihilation drift we find more precisely
that

. . or
Vgnn ~+ Vann

14 10_12 & 1017 GeV\ 4 u 2 a 17
T sec f 1072ev /) \0.075

(HI1)

Within the moderate self-interactions regime, we find
that self-interactions are the dominant source of frequency
drift for f < 8.5 x 10'°(/0.1) GeV. The drift can become
larger than the range LIGO/Virgo cover [Eq. (HS)] for
f<5.6x10'%a/0.1)'7/* GeV. In Fig. 28 we plot the
full annihilation frequency drift stemming from Eq. (H3) in
this regime.

Analogously, for transitions, self-interactions are the dom-
inant source of frequency drift for f < 10'7(a/0.1) GeV. The
drift can become larger than the range LIGO/Virgo cover
[Eq. (H5)] for f <4 x 10'%(a/0.1)"/* GeV. In Fig. 29 we
plot the full annihilation frequency drift stemming from
Egs. (H3a) and (H3b), in this regime.

3. Large self-coupling

We are interested in the part of the evolution where the
levels have reached their equilibrium values, given by
Egs. (55a) and (55b), which corresponds to region (C) in
Fig. 3. These are slowly drifting because of the slow spin-
down of the BH and the change of its mass. Neglecting
the SR of &35,, which is subdominant, the spin evolves
according to

logy, [DZII(HZ/S)]

ann

10—16

= dominate
—17 I ate

% 10

10—18

0.01 0.05 0.1 0.15 0.2 0.25 0.3
(6%

FIG. 28. Frequency drift contours for annihilations of axions to

GWs, given by twice the quantity in Eq. (H3a), in the moderate
self-coupling regime. The gray shaded region above the dashed
black contour is where the drift due to self-interactions [second
line of Eq. (H3a)] dominates. The red contour corresponds to the
largest positive drift covered by LIGO/Virgo continuous
searches, taken here to be 2 x 107 Hz/s [83].
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log;o[[7:] (Hz/5)]

0.01 0.05 0.1 0.15 0.2 0.25 0.3

[0

FIG. 29. Frequency drift contours for GWs sourced by axion
transitions from 322 to 211, given by the difference of Eq. (H3a)
and Eq. (H3b), in the moderate self-coupling regime. The gray
shaded region above the black contour (solid and dashed) is
where the drift due to self-interactions [second line of Egs. (H3)]
dominates. The frequency drift is negative to the right (i.e., to the
large-a side) of the solid black line. Note that here we are plotting
the absolute value of the frequency drift. The red contour
corresponds to the largest negative drift covered by LIGO/Virgo
continuous searches, taken here to be —1 x 1078 Hz/s [83].

a, = —7%{1 5;?1 ) (H12)

and its mass changes according to Eq. (H4). By plugging in
the equilibrium values of Eq. (55) we get

o2 VTS
W3 322xBH

Y211x211

Then, the equilibrium values evolve according to

0e™ Oe™
e=&=—qa, + a
*
Ja

Oa,

(H14)

The second term of Eq. (H14) gives a subdominant
contribution and is further suppressed by another power of
a compared to the first term. The signal is maximum at the
beginning when a, ~a,(0). The resulting drifts are
given below.

Due to the change of the BH mass:

‘ Hz f 2 u 2/ 4 \8
~2x1071 —=
Vi 22X 1075 <1o15 GeV) <1o—12 eV) 0.075

(H15a)
Hz f 2 p 2/ g \8
~—6x 10714 -
Yo =6 1077 o <1015 GeV) <10—12ev> 0.075
(H15b)

Due to self-interactions:

Hz f 2 u 2/ o \7
Vi =3x 10715 =2
a7 (1015 Gev> (10-12ev> 0.075

(H16a)
. Hz f 2 U 2 a 7
U~ —10"18 =
. sec (1015 GeV) (10—12 eV) 0.075
(H16b)
Due to the self-gravity:
Hz f 4 U 2 a \3
8~ 5% 10716
Vann =53¢ sec<1015GeV> (10—1%\1) 0.075
(H17a)
. sec \10" GeV/) \1072eV/) \0.075
(H17b)

These are calculated for a,(0) = 0.9 as well.

In the large self-interactions regime, for a 2 0.1 the
change of the mass of the BH is the dominant source
of frequency drift for annihilations. For a < 0.1 self-
interactions are dominant. The drift can become larger
than the range LIGO/Virgo cover [Eq. (HS)] for f 2=
3 x 10'%(@/0.1)™* GeV, which is relevant above a =~ 0.1.

Analogously for transitions, for @ Z 0.13, the change
of the mass of the BH dominates and for a <0.13
self-interactions are dominant. The drift can become
larger than the range LIGO/Virgo cover [Eq. (HS)] for
f225x10'%a/0.15)~* GeV, which is relevant above
a~0.13.

APPENDIX I: PERTURBATIONS
FROM BH COMPANION

When the primary BH has a companion, the perturbation
in the gravitational potential induces mixing of different
levels. In particular, SR levels can mix with non-SR ones,
resulting in the depletion of the cloud. According to [45],
the perturbation 6V, mixes the levels y; and y; accord-
ing to

aM 4r Y

(0c.¢.)
Rl+1

(wiloVelw) = Il (1)

122 |m|<i

where the subscript M. is the mass of the companion, 6., ¢,
its angular coordinates and R, its distance from the primary
BH of mass M, whereas the constant @ = GuM. We have
also defined
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I, = /oo drr2+1Rn,l,<r)Rnili(r>’ (12)
0

la= [ @@ 0.y 0008 1)

where R,,; is the radial part of the hydrogenic wave function
and Y/, are the spherical harmonics.

Note that the first sum in Eq. (I1) starts from [/ = 2,
which demonstrates the fact that the first nonzero correction
from gravity comes from the quadrupole term, as expected
from the equivalence principle.17

We are interested in the mixing of the 211 level with non-
SR levels of the BH, which can lead, in principle, to the
depletion of our cloud. The dominant contribution comes
from n=2,1=1,m= -1, and it is largest when the
companion lies on the plane perpendicular to the spin of
the primary BH, i.e., when 0, = 7 /2.

The horizon flux becomes positive, i.e., more axions fall
back into the BH than are extracted due to SR [12], when

1/2

r’ 1SV v
dump <W1| C|W1> > 1 (14)
Fi Aa)ﬂ

where “dump” denotes the non-SR level that mixes with the
SR one, T" are the superradiance rates, and Awj; is the
difference of the energies between the two levels, which are
given by [45]

a? o (21-3n+1)a*
O = — et o
nim = 2n*  8n* nt(l+1/2)

2a,mad
AT yEy T 1))

(I5)

The physical quantities measured for BH binaries are the
BH masses, their spins and the orbital period. We assume
that the companion is far away (which is where Eq. (I1) is
valid), so we relate the distance to the orbital period using
Kepler’s 3rd Law: R*/T? = G(M + M.)/(4x?), where
T is the orbital period. Then, the condition (I4) becomes
parametrically:

M, 144723
M a.a’(1+ %) (uT)?> ™

(I6)

where we have omitted an O(1) factor in the a region of
interest.

The cloud may also be depleted by resonances that can
occur when the period of the companion hits the energy
difference between two levels, as shown in [45]. To
estimate when this happens, we can compare the period
to the energy splitting of the two mixing levels. As the
companion spirals closer to the primary BH, its orbital

YIn [12] it was incorrectly assumed that the leading order
contribution came from a dipole term. See [45] for an explanation.

period increases. When it crosses the value Aw7!, we
expect that the cloud will be significantly depleted. A more
careful analysis can be found in [45]. The condition,
therefore, is

1

—a,0’uT ~ 1. (17)

6
In deriving the BH spin bounds in Sec. VI, we take into

account both Egs. (I6) and (I7).

APPENDIX J: AXION WIND
SENSITIVITY PROJECTIONS

As discussed in Sec. VIII A, given an axion coupling to
nucleon spins, an axion oscillation ¢() = ¢, cos wt will act
on nuclei as an effective magnetic field B,(7) = B, cos wt.
For nuclei which are spin-polarized in an external magnetic
field, with Larmor frequency @, ~ , a transverse B, will
induce a transverse magnetic moment
®o

Ha = N, By, (1)

w? — wf + iwy
where p,, is the nuclear magnetic moment, N, is the total
number of nuclei, and y is the damping rate (in terms of the
spin coherence time T, y = 2/T, [114]).

In the absence of an axion forcing, the fluctuation
spectrum for the transverse magnetic momentum is

HaN, 1
Ty 14 T (0 — wyp)?

(J2)

which is related to the response function [Eq. (J1)] by the
fluctuation-dissipation relation [114].

If we read out the transverse magnetic moment using
a sufficiently sensitive magnetometer (e.g., a SQUID
[111,114]), then it is possible to detect fluctuations as
small as the quantum fluctuations from Eq. (J2). With a
sensor that is bounded by the standard quantum limit
[143,144], this is possible over a bandwidth ~1/T,.
Consequently, for an integration time of T 2 T,, we need

2

S”—‘;T z% 2N, B2TT, = few (J3)
Hp

in order to reliably detect an axion signal.

To cover an O(1) axion mass range, we need to operate
in ~w, T, different resonant configurations (we will not be
careful about constant factors). Consequently, if our total
experimental time is T, the time we spend in each
configuration is T ~ T,/(wyT,), and our sensitivity
limit is'®

BIf T < T, then Eq. (J3) will not apply, since the response
signal will not have time to ring up fully (equivalently, we cannot
resolve the bandwidth of the response function). For the exper-
imental parameters of interest, we will not be in this regime.
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__ % (34)

B2 > few x 5
MianTtot

Note that, while this naive form does not depend on T,
the signal amplitude from Eq. (J1) is « T’,; consequently,
achieving a sensitive enough magnetometer may be easier
for larger 7,. As discussed in Sec. VIII A, the CASPEr-
Wind project aims to achieve spin-noise-limited sensitiv-
ities at frequencies in the kHz—30 kHz range [111].

APPENDIX K: DARK MATTER ABUNDANCE

In Sec. VI A, we reviewed models in which an axion
dark matter abundance is generated via the early universe
misalignment mechanism. For attractive potentials, if the
initial value of the axion field is tuned close to the top of its
potential, then the generated dark matter abundance can be
enhanced through the “large-misalignment mechanism”
[65]. In this Appendix, we give formulas for the DM
density obtained in this way.

For a general cosine potential of the form V(p) =
m?f2[1 — cos(@/f)], the enhanced final density for a large
initial misalignment is given by

P 20205 + 4log 1952 (K1)
Pr/2

1 2l/451/2
9% = log | ——— =~ _ K2
=g ()

where p, , is the final density when the initial amplitude of
the field is 6y = ¢o/f = n/2, and #;*° marks the onset of
the oscillation in units of u.

Fixing the final density to be the observed DM abun-
dance today, we arrive at the relation [65]

fom 31/2 ( p )-1/2 <Heq> 1/4 (K3)
My _25/4(:7]43 Pr/2 H

where C,/, >~ 1.15, Hq is the Hubble parameter at matter-
radiation equality and my, is the reduced Planck mass. We
plot Eq. (K3) for different initial misalignments in Fig. 30,
as a function of @ = GMy, for a 10 M BH.

Somewhat separately, we can compare the energy
density in a superradiant cloud to the DM energy density.
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m™— 6 =1 ™~ [fol —12
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FIG. 30. The decay constant f of Eq. (K3) that gives the
observed DM abundance today, as a function of @ = GMu for a
10 M, BH. Note that the vertical axis is reversed. We are
assuming a general cosine potential of the form V() =
w2 f(1 = cos(p/f)) and plot for different large initial misalign-
ments from the top of the potential, following the results of [65].
We also plot for usual misalignment values of [6y| = 1,7 — 1.

The energy density of the cloud is p, ~ 6°f%u?, up to an
O(1) prefactor, which can be found to be

., 1 1 1 u?

_ (Vo) -2t P 4

pe=5¢"+5 (Vo) +5u e
2

a 0
~ <1 +W+Z>62(ﬂl)2 (K4)

where R* is given by Eq. (87). We estimate it to be

GeV/ u N\2f f 2/ 0\2
cm’ (10—12 eV> (1016 GeV> (0.04)
o GeV< M )—2( a )2

em’ \10 Mg/ \0.07

(o) (o)
10'® GeV 0.04

Even for the smallest f and @ we show in our plots, this
density is far larger than astrophysical DM densities. For
example, in the SMBH parameter space shown in
Fig. 11, p, = 10'* GeV cm™.

~

pe ~2 % 1028
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