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The gravitational coupling of nearby massive bodies to test masses in a gravitational wave (GW) detector
cannot be shielded and gives rise to “gravity gradient noise” (GGN) in the detector. In this paper we show
that for any GW detector using local test masses in the inner Solar System, the GGN from the motion of the
field of ∼105 inner Solar System asteroids presents an irreducible noise floor for the detection of GW that
rises exponentially at low frequencies. This severely limits prospects for GW detection using local test
masses for frequencies fGW ≲ ðfewÞ × 10−7 Hz. At higher frequencies, we find that the asteroid GGN falls
rapidly enough that detection may be possible; however, the incompleteness of existing asteroid catalogs
with regard to small bodies makes this an open question around fGW ∼ μHz, and further study is warranted.
We show that a detector network placed in the outer Solar System would not be overwhelmed by this noise
above ∼10 nHz, and make comments on alternative approaches that could overcome the limitations of
local test masses for GW detection in the ∼10 nHz–μHz band.
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I. INTRODUCTION

The historic discovery of gravitational waves from
multiple types of compact object mergers by the LIGO/
Virgo Collaborations [1–4] has opened a new window into
the Universe. These instruments, along with the newly
commissioned KAGRA [5], are sensitive to gravitational
waves in the frequency band above 10 Hz. Much like in
electromagnetism, there is an exceptionally strong case to
probe other parts of the gravitational wave (GW) spectrum,
since it is likely that the Universe has interesting secrets
across the whole spectrum. This case is particularly robust
at lower frequencies where there are a number of expected
astrophysical sources, such as white dwarf and neutron star
binaries, as well as merging massive and supermassive
black holes (see, e.g., Refs. [6–9]). A number of
experiments are currently underway or proposed to inves-
tigate various parts of this spectrum. In addition to LIGO/
Virgo/KAGRA, this includes pulsar timing arrays (e.g.,
EPTA/LEAP, PPTA, NANOGrav, IPTA) that operate
around 1–10 nHz [10–13]; the LISA constellation [14–17]
around 1–100 mHz and TianQin [18,19] around
0.01–1 Hz; “midband” proposals such as MAGIS/
MIGA/AION [20–26], and SAGE [27] around 1 Hz; the
Big Bang Observer (BBO) [28,29], which would bridge the
LISA band and midband; the DECIGO mission [30–32]
in the 0.1–10 Hz range; and the Einstein Telescope (ET)
around 10–ðfew × 102Þ Hz [33].

At present, there are no well-established techniques to
probe gravitational waves in the 10 nHz–0.1 mHz band.
A preliminary investigation was performed in Ref. [6],
leading to the μAres mission concept. The science case
discussed therein estimated that characteristic strain sensi-
tivities ∼10−16 − 10−19 were necessary in this band (at
100 nHz–0.1 mHz, respectively). It is an open question as
to what the optimal technology is to achieve this strain
sensitivity.
A gravitational wave detector fundamentally measures

the disturbance in the space-time between two inertial test
masses. These test masses could either be distant astro-
physical objects such as the neutron stars used in pulsar
timing arrays, or environmentally isolated local proof
masses as is the case in all the other experiments. What
kind of proof mass is necessary to probe 10 nHz–0.1 mHz
gravitational waves? The answer to this question is deter-
mined in part by the fundamental sources of noise that such
a proof mass has to overcome.
Gravity gradient noise (GGN),1 which arises due to the

gravitational force exerted by moving bodies on a test mass,
is an irreducible form of noise in gravitational wave
detection. This noise cannot be shielded and it forces
terrestrial gravitational wave detectors that use local proof
masses to operate above ∼1 Hz [34–38].2 In this paper, we
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1Also known as “Newtonian noise” [34].
2Actual low-frequency sensitivity is in practice more typically

limited by other noise sources; see, e.g., Ref. [38]. GGN does
however constitute a fundamental limitation for ground-based
experiments.
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show that in the frequency band below ∼ðfewÞ × 10−7 Hz,
detectors that use local proof masses (e.g., in a LISA-style
constellation) and that are located within the inner Solar
System will be swamped by GGN arising from the motion
of asteroids in the asteroid belt.
This conclusion is robust: it can be calculated using the

measured properties of large asteroids in the belt. As we
will see, there are a significant (≫50) number of asteroids
that contribute above the required noise floor. This number
is too large to permit the identification, resolution, and
removal of every asteroid that contributes to this noise.
Consequently, gravitational wave detection in this band
either requires the placement of detectors well into the outer
parts of the Solar System, multiconstellation correlation
techniques, or the use of distant astrophysical objects
(which are not subject to this source of asteroid-induced
GGN) as proof masses.
The GGN from the asteroid belt drops rapidly at higher

frequencies and is negligible above ∼μHz. In this case, the
noise is dominated by close encounters (well within
0.5 AU) of asteroids with the proof masses. We estimate
this noise from the properties of detected and measured
asteroids, and find it to be just small enough to permit
detection. However, this part of our detailed analysis is
incomplete, since it is possible that a significant contribu-
tion to this noise could arise from asteroids that are either
thus-far undetected, or whose properties are not presently
well measured. While this contribution is known to be
sufficiently small at frequencies of interest to LISA [39], its
effects around μHz are less clear. We defer detailed analysis
of this point to future work, but we make some comments
on the possible size of the effect, and highlight the need for
the resolution of this point in order to establish the viability
of using local test masses to search for gravitational waves
around μHz.
The rest of this paper is organized as follows. In Sec. II,

we present an analytic estimate of the size and spectral
features of the asteroid GGN. In Sec. III, we show the
results of a numerical simulation that uses the measured
properties of detected asteroids from the JPL Small-Body
Database (JPL-SBD) [40] to calculate the gravity gradient
noise on a single-baseline LISA-style constellation located
in the inner Solar System. We also give an estimate in
Sec. III E for the contribution from unmodeled close passes
by asteroids that are either in the JPL-SBD but have
incomplete physical information, or are not captured in
the JPL-SBD. We conclude in section Sec. IV. A number of
Appendixes give additional details: in Appendix A we
discuss technical aspects of our simulation, including the
assumed detector orbits, the asteroid-induced accelerations
on the detectors, and the asteroid orbits. Also in
Appendix A and continuing in Appendix B, we give a
longer technical discussion of the analytic estimate pre-
sented in Sec. II. Appendix C gives our conventions for the
discrete Fourier transform (DFT), while Appendix D gives

a brief pedagogical introduction to the concept of window-
ing (apodization) of signals and its applicability to the
computations presented in this work.

II. ANALYTIC ESTIMATE

The qualitative features of the GGN expected from the
asteroid belt can be understood by considering the follow-
ing simplified model. Assume that we have N asteroids,
with each asteroid in a circular heliocentric orbit that lies in
the plane of the ecliptic. LetMi and Ri denote the mass and
radius, respectively, of the ith asteroid (i ¼ 1;…; N). This
asteroid orbits the Sun with a frequencyωi¼ðGM⊙=R3

i Þ1=2.
Consider a LISA-style GW detector consisting of a single
baseline spanning between two orbiting proof masses that,
when unperturbed, are separated by a fixed angle around a
common heliocentric orbit in the plane of the ecliptic. Let
the orbital radius of the proof masses be r < mini½Ri� so
that the baseline is contained fully within the asteroid belt,
and let the unperturbed baseline length be L≲ r; see
Appendix A for further details. The orbital frequency Ω
of the proof masses in the constellation around the Sun is
thus greater than ωi; let ϖi ≡Ω − ωi be the relative
asteroid-detector orbital frequency.
We consider this simplified model in detail in

Appendixes A and B, where we arrive at an algebraically
complicated expression for the differential acceleration
across the baseline due to the ith asteroid, Δai, that is
shown at Eq. (A15) and which is expanded in various limits
in Appendix B. The reader interested in fine details should
thus refer to those Appendixes. For the purposes of the
present discussion however, we only intend to highlight
certain qualitative features of these results, and supply an
intuitive argument for their origin. As such, it is useful to
consider an approximate expression for Δai which elides
some detailed geometric baseline-projection and orienta-
tion effects. Δai can easily be understood to take the
approximate form of a leading-order tidal acceleration:
Δai ∼ GMiL=½RiðtÞ�3, whereRiðtÞ is the distance from the
asteroid to the middle of the detector baseline, which varies
as a function of time owing to the orbital kinematics of the
asteroid and baseline: R2

i ðtÞ∼R2
i þr2þ2rRicosðϖitþαiÞ,

where αi is the angular phase offset of asteroid i around its
circular orbit at time t ¼ 0. That is, we consider here the
following approximate schematic form for Δai

3:

3We emphasize that the baseline-projected differential accel-
eration is actually the difference of two vector acceleration terms,
projected onto the rotating baseline vector, and takes a form
somewhat more algebraically complicated than that shown in
Eq. (1); see Appendix A and Eq. (A15). Most of the qualitative
features of the full result that are important for the argument here
are however captured schematically by Eq. (1); see Appendix B,
and Eq. (B6) and the surrounding discussion.
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Δai ∼
GMiL

½R2
i þ r2 − 2rRi cos ðϖitþ αiÞ�3=2

ð1Þ

¼ GMiL
R3
i

�
1þ

X∞
j¼1

cj

�
r
Ri

�
j
cosjðϖitþ αiÞ

�
; ð2Þ

where the cj are numerical coefficients that can be
computed from a multipole expansion of Eq. (1).4

The crucial property of the expansion at Eq. (2) that is
relevant is that the Fourier amplitude of the harmonic ωq ≡
qϖi is suppressed rapidly

5 as ðr=RiÞq ≪ 1whenq ≫ 1 (i.e.,
at high frequencies), while we expect unsuppressed Fourier
power at frequencies in the vicinity6 of ω ∼ϖi. For a
detector in the inner Solar System, we thus expect the noise
from the asteroid belt to be most important in the vicinity of
the corresponding orbital frequencies ∼10–100 nHz,
becoming smaller rapidly at higher frequencies.
In the ∼10–100 nHz band, the limit on the detectable

characteristic strain hc of a gravitational wave imposed by
this asteroid GGN can be estimated as follows. Suppose
there are Ni asteroids of massMi, and that they are located
at random phase offsets αi around the circular orbit, with
uniform probability. Since the bulk of the belt asteroids are
all roughly at the same radius Ri ∼ R from the Sun [within
Oð1Þ factors], the total acceleration noise in this frequency
band from these Ni asteroids is, for a typical random
configuration, Δa ∼ ðGMiL=R3Þ · ffiffiffiffiffi

Ni
p

, where this scaling
with asteroid number arises owing to the randomness of the
asteroid locations around the orbit; see also Appendix B.7

Comparing this noise to the differential acceleration
ΔaGW ∼ hcLω2 produced by the gravitational wave, we
get a strainhc ∼ ðGMi

ffiffiffiffiffi
Ni

p Þ=ðω2R3Þ. The data from the JPL-
SBD indicate that the number of asteroids with a diameter
d≳ km is roughly approximated as NðdÞ ∼ ð1000 km=dÞ2.
Since the mass of an asteroid is Mi ∝ d3i , the magnitude of
this acceleration noise is dominated by the heaviest asteroids.
But this magnitude does not set the noise floor since there are
only a small number of heavy asteroids, and thus it should be
possible to independently resolve and remove them from the
data-stream. The limit is instead set by the smallest value of
Ni that is too large to be individually resolvable; i.e., the
highest-mass asteroids that are also sufficiently numerous so
as to be unresolvable. In a gravitational wave mission
operating for ∼10 years in the frequency band 10–
100 nHz, it will be hard to resolve more than∼10 asteroids.8

Conservatively taking this number to beNi ∼ 50, we find that
asteroids with a diameter d ≳ 170 km will be the dominant
source of this noise. Assuming a mean asteroid mass-density
of ρ ∼ 3 g=cm3 and placing the asteroid belt at R ∼ 3 AU,
this yields a limiting characteristic strain hc ∼ 10−12. This is
about 4 orders of magnitude larger than minimum strain
sensitivity estimated to be necessary to see interesting
gravitational wave sources in this band [6].
This noise is clearly a limiting factor at 100 nHz, while it

will fall rapidly at higher frequencies as long as the detector
constellation is well within (or, indeed, well outside) the
asteroid belt. To map the precise limit across all these
frequencies, taking into account a realistic asteroid belt
population, it is necessary to perform a numerical simu-
lation based on the objects contained in the JPL-SBD; such
a simulation is presented and discussed in the next section.
While the asteroids in the asteroid belt cause suppressed

noise at frequencies above ∼μHz, a detector also experi-
ences accelerations from closer encounters with asteroids.
If these close passes are sufficiently numerous as to be
unresolvable, this will be an additional source of noise. We
also consider these kinds of encounters in the simulation
discussed below using the objects that are cataloged in the
JPL-SBD, but our results are incomplete as the JPL-SBD is
not an exhaustive catalog for objects of this class (owing
either to missing physical data, or to catalog incomplete-
ness). Although we defer detailed consideration of this

4A multipole expansion of the full result Eq. (A15) yields the
significantly more algebraically complicated result at Eq. (B2)
but, again, Eq. (2) schematically captures the qualitative features
relevant to the argument here; see Appendix B.

5This observation follows immediately from Eq. (2) by noting
that a term ∼ cos ½qðϖitþ αiÞ� occurs in the expansion of
cosk ðϖitþ αiÞ for k ¼ q (and for all k > q that have the same
parity as q), but does not appear for any k < q. This conclusion
holds, with some minor modifications, for the expansion of the
full result Eq. (A15); see Appendix B.

6For r < Ri, the full results in Appendix B 1 show that the
peak acceleration Fourier power is actually at ω ≈ 2ϖi; while we
note this for completeness, this detail is not relevant at the level of
the present discussion.

7More precisely, this is the parametric scaling of the ensemble
average over asteroid configurations of the amplitude of Δa at the
dominant frequency; however, when viewed as a function of the
random asteroid configuration, Δa is a random variable which is
distributed proportional to a χ2 distribution. It thus has a variance
of the same order as the mean; in any one random asteroid
configuration then, the result for the amplitude of the acceleration
at the dominant frequencies could be smaller or larger by a factor
that is generically, although not necessarily, Oð1Þ. We also note
that in the unphysical case where the asteroids are exactly
periodically spaced around their orbit, the scaling with Ni is
faster: Δa ∝ Ni; however, this scaling is only realized at certain
specific frequencies in such cases, owing to phase cancellations.

8This is on the basis of the acceleration data alone. It is
possible that with independent electromagnetic-spectrum (opti-
cal, radar, etc.) observations of asteroid locations, more of these
objects’ waveforms could be removed from the data. However, in
order to avoid floating a large number of free asteroid mass
parameters in some sort of fit to remove those objects from the
acceleration waveform (which could lead to possible degener-
acies between a sum of asteroid waveforms of unknown nor-
malization and a real gravitational wave signal), precise and
accurate independent asteroid mass determinations would be
required. Unfortunately, such independent asteroid mass deter-
minations are difficult to obtain and are only available for a small
number of asteroids, limiting the utility of such an approach.
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point to future work, we supply a rough argument as to the
possible size of the noise generated by such unmodeled
asteroids in Sec. III E.

III. SIMULATION AND RESULTS

While the simplified model discussed in Sec. II (and
developed in more detail in Appendix B) yields a useful
qualitative understanding of the frequency content of the
GGN from a beltlike population of asteroids, obtaining a
quantitative estimate of the actual asteroid GGN from the
real asteroid belt population requires numerical simulation.
We detail our approach to such a numerical simulation in
this section.
A numerical approach is required because the simplified

model so far discussed does not consider the effects of
elliptical,9 or out-of-the-plane-of-the-ecliptic, asteroid
orbits; additionally, we must take into account the realistic
distribution, and the correlations between, the physical
(diameter and mass) and orbital (semimajor axis, eccen-
tricity, orbital orientation, and time of perihelion passage)
parameters of the asteroids in the belt.

A. Simulation description

At a high level, the simulation we perform is straightfor-
ward to describe. We begin by setting up a detector network
of two test masses that are assumed to be on exactly circular
heliocentric orbits that lie exactly in the plane of the ecliptic
of the Solar System (i.e., orbital inclination ι̂det : ¼ 0),
with a fixed baseline distance L separating them; see
Appendix A 1. We assume throughout the simulation that
perturbations to the locations of the detectors are small
enough to be neglected in computing accelerations on the
test masses due to asteroids (i.e., all accelerations on the test
masses are computed assuming the unperturbed positions
of the test masses).
For each asteroid or comet (hereinafter, “object”) i in the

JPL-SBD for which a diameter measurement di is reported,
we estimate the asteroid mass10 as Mi ¼ ðπ=6Þρd3i , assum-
ing (1) that even though most objects are nonspherical, the
JPL-SBD diameters11 can be used in this way to obtain an
acceptably accurate approximation to the volume of the

object, and (2) that all objects have the same uniform mass-
density of ρ ¼ 2.5 g=cm3, which is approximately the
density of large asteroids such as Ceres for which direct
mass and volume measurements are available.12

We then place object i on an exactly elliptical heliocentric
orbit using the (osculating) orbital parameters (semimajor
axis, ellipticity, orbital orientation angles, and time of
perihelion passage) that are reported in the JPL-SBD; see
Appendix A 4. Our simulation ignores any perturbations to
these orbits that might arise from other bodies; that is, we do
not perform a computationally expensive N-body simula-
tion using the JPL-SBD objects, but instead assume that the
dynamics of each object is governed by (Newtonian) two-
body Sun-asteroid gravitation.13

Once the position and mass of object i are thus
determined, we can then straightforwardly compute the
contribution of object i to the component of the differential
acceleration on the detectors that lies along the instanta-
neous detector baseline direction, which we denote by Δai,
and refer to as the “baseline-projected differential accel-
eration”; see Appendix A 2 for the exact definitions and
further technical details. The simulation is performed so as
to reflect a mission of total duration T ¼ 10 years starting
(somewhat arbitrarily) from the epoch of most recent Earth
perihelion passage.14 Within this duration, Δai is sampled
at some large number (N i ¼ 3000) of discrete points that
are taken to be equally spaced in time by Δt ¼ T=N i,
yielding the discrete time series of baseline-projected
differential acceleration contributions Δaiðtj ¼ jΔtÞ.15
We repeat this process for all N ¼ 140299 objects in the
JPL-SBD for which diameter data di are available [such
that a mass estimate MiðdiÞ can be obtained]; while this
represents only ∼15% of the total of ∼106 JPL-SBD
objects, diameter data are not available for the remainder

9Indeed, analytical understanding of the frequency content of
the acceleration induced by even a single asteroid on an orbit with
nonzero eccentricity is intractable because the temporal evolution
of the radius and angular displacement of a body in an elliptical
orbit under the action of (even Newtonian) gravity cannot be
expressed in closed form in terms of elementary functions
amenable to analytical Fourier analysis.

10Direct mass measurements (or, more specifically, the product
GMi) are only available for a very small number of objects.

11The diameters of most objects in the JPL-SBD are not
directly measured but are inferred either from the absolute visual
magnitude and geometric albedo of the object [41], or using other
physical data (see, e.g., Ref. [42] for one example). Some of the
larger objects do however have directly measured diameters [41].

12Although we acknowledge that the densities of individual
objects may be quite different, this is the best one can do absent
additional data.

13We of course acknowledge that this is known to yield
inaccurate ephemerides (i.e., the exact asteroid position in the
orbit at any given time) when considered over long time periods
(with the errors growing in time as one moves away from the
epoch at which the two-body elliptical orbital parameters were
determined), even if the orbital shape and orientation are not
strongly perturbed. Nevertheless, given our other approxima-
tions, we feel that the result summed over all asteroids will still
yield an acceptable estimate for the differential acceleration on
the test masses.

14Specifically, we select the time t0 defined at footnote 28 to be
within a few minutes of 8AM UT on January 5, 2020 [43].

15These parameters are sufficient to access the frequency range
of interest: we remind the reader that in the analysis of discrete
time series, the discrete Fourier transform (DFT) yields results for
the frequency content that are spaced by Δf ¼ 1=T, and that are
without aliasing effects up to the Nyquist frequency fNyquist ¼
1=ð2ΔtÞ ¼ N i=ð2TÞ ¼ ðN i=2ÞΔf. To access the 10 nHz–μHz
regime then, we minimally require T ≳ 108 s ∼ 3 years, and
N i ≳ 102.
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of these objects, so we cannot include them in the
simulation (the mass of the object of course serves as
the normalization of Δai). The total baseline-projected
differential acceleration on the detectors, ΔaðtjÞ, is then
obtained by summing the contributions over all N aste-
roids; see Appendix A 2. Further data processing is dis-
cussed in the next few sections.

1. Objects omitted from the simulation

Before proceeding however, some further comments are
in order regarding our choice to exclude the remaining
∼85% of objects in the JPL-SBD catalog that are without
explicit diameter determinations di. While it is the case that
(nearly) all of these objects do have an absolute magnitude
Hi supplied in the catalog, their (geometric) albedos αi are
not supplied. Armed with both, we could have made
an estimate of their diameter as dH;i ≡ dHðHi; αiÞ∼
ð1329 km=

ffiffiffiffi
αi

p Þ exp½−0.2Hi�; see, e.g., Refs. [44,45].
While it is possible to replace αi in this estimate with
the average geometric albedo ᾱ ≈ 0.1 of the objects in the
JPL-SBD for which such data are available (i.e., the objects
we simulated) in order to obtain a rough idea of the
diameters of these objects as d̄H;i ≡ dHðHi; ᾱÞ, the albedo
distributions for asteroids are broad enough that d̄H;i can
easily be incorrect by a factor>1.16 Because the diameter of
course enters raised to the third power in the mass estimate
for any one asteroid, and because this class of asteroids is
more numerous than the simulated class for which reliable
diameter data are provided, following such an approach to
include these objects in the simulation could give rise to
large systematic effects in certain of our results. We thus
follow the conservative approach of simply omitting this
class of objects; in the worst case, this would mean that our
results would thus represent a conservative noise floor,
which could be subject to upward revision if better diameter
determinations for the class of objects that we do not
simulate in this work become available. However, the
extent to which we expect our results would be sensitive
to corrections by these unmodeled objects is frequency
dependent, and depends on the mass and orbital distribu-
tions of these objects.
It is thus important to roughly characterize the unsimu-

lated population of JPL-SBD objects. The foregoing
caveats about using d̄H;i as a diameter estimate in the
context of a detailed simulation notwithstanding, it does

allow such a rough characterization. We find that objects in
the unmodeled class that are in the inner Solar System
(semimajor axis ai ≲ 10 AU) typically have d̄H;i ≲ 30 km,
with the vast majority of these objects having diameters of a
d̄H;i ∼ few km. The larger of these tend to have semimajor
axes ai which are indicative of being part of the main
asteroid belt (or further out), while the smaller of these tend
to have semimajor axes which would indicate closer
passage to the vicinity of a detector baseline at
r ∼ 1 AU. Studying the distributions in the ðai; d̄H;iÞ plane
of the unsimulated objects as compared to the distributions
in the ðai; diÞ plane of the objects we do simulate, we
estimate that, as a general rule, the JPL-SBD objects that
we have omitted from the simulation are smaller, and pass
closer to the detectors, than those objects we have included
in the simulation. Moreover, for objects in the inner Solar
System (semimajor axis ai ≲ 10 AU), the simulated
objects with di ≳ 4 km are more numerous than the
unsimulated objects with d̄H;i ≳ 4 km, indicating that
our simulation accurately captures the effect of all relevant
asteroids with diameters larger than a few km. As our
discussion later in this paper will make clear, the fact the
simulated objects can thus be estimated to capture most of
the larger objects that do not pass very close to the baseline
will generally mean that our lower-frequency results should
be completely insensitive to the absence of the unmodeled
objects; on the other hand, the absence of the smaller,
closer-passing objects implies that our higher frequency
results may be more sensitive to them, and we give an
estimate of this sensitivity in Sec. III E.
We also note that there is a not insignificant population

of trans-Neptunian objects with d̄H;i ∼ few × 102 km that
are also in the unsimulated class of objects. However, since
their semimajor axes ai ≳ 35 AU, their exclusion will not
substantially impact our results. To estimate their contri-
bution to Δa, note that there are Nincl:

5 ≈ 650 objects with
diameters di in the range 50–500 km that we did simulate
that have ai < 5 AU, and we estimate that there areNexcl:

35 ≈
3200 trans-Neptunian objects with ai > 35 AU that have
estimated diameters d̄H;i in the same 50–500 km range.17

Because we expect contribution to Δa ∝
ffiffiffiffi
N

p
=R3 (see

Sec. II) and because all asteroids with R ≫ 1 AU contrib-
ute in roughly the same frequency range to the acceleration
(at least for inner Solar System detector orbits, since ϖi ∼
ωi in this case; see Sec. II), we estimate that the impact of
the omitted trans-Neptunian objects would be at the level of

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nexcl:

35 =Nincl:
5

q
ð5=35Þ3 ∼ 6 × 10−3 of that of the closer

objects in the same diameter class that we did include.

16For the simulated asteroids in the JPL-SBD for which an
actual diameter di as well as absolute magnitudeHi and albedo αi
are all available, the estimate dH;i is highly correlated with di.
However, specific asteroids, particularly those in the di ∼
1–100 km class, still exhibit differences between di and dH;i
of up to half an order of magnitude, although typically the
difference is smaller. Additional systematic effects at the level of
Oð1Þ factors on the diameter determinations are also clear when
comparing d̄H;i to di for this class.

17For completeness, note that there are only four objects with
50 ≤ d̄H;i=km ≤ 500 and ai < 5 AU that are in the unsimulated
class; we capture more than 99% of these larger asteroids that are
in the belt in our simulation.
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Finally, note also that we separately completely neglect
the effect of the planets (and Pluto) on the detectors, on the
assumption that their positions and masses are known well
enough to enable them to be efficiently removed during
preliminary data processing. For our purposes, this is also a
conservative assumption, as the inability to remove such
effects completely can only act to increase the GGN
noise level.

B. Fourier analysis and windowing

In order to obtain a baseline-projected differential
acceleration noise spectrum that we can use to compare
to the baseline-projected differential acceleration that
would be induced by a gravitational wave in a matched
filter search, the obvious next steps would be to simply take
the discrete Fourier transform (DFT) of the time series
ΔaðtnÞ, and find the power spectral density (PSD) of the
noise; see Appendix C for our DFT conventions.
While we will ultimately proceed in this general fashion,

we must first exercise some caution: it is well-known in
signal processing that when applying the DFT to a dataset of
duration T that is the sum ofmultiple frequency components
that have disparate power levels, the presence of lower-
power components can be masked if there are higher-power
components present that have a noninteger number of cycles
within the analysis duration T,18 which is of course the
generic case. This is the phenomenon of “spectral leakage”;
see Appendix D for a pedagogical discussion.
Based on the simple analytical model of Sec. II (see also

Appendix B), we expect to find ourselves in precisely this
scenario: the Fourier power at higher harmonics of the
fundamental frequencyϖi, which are still quite close to the
fundamental, is expected to be (exponentially) suppressed
compared to the Fourier power near the fundamental, at
least when r ≁ Ri. Therefore, in order to map out the true
underlying noise power spectrum, and not just recover the
leakage power spectrum of the dominant noise sources, we
proceed by “windowing” (or “apodizing”), the asteroid-
GGN-induced baseline-projected differential acceleration
time series ΔaðtÞ prior to taking the DFT; see Appendix D
or Ref. [46] for a pedagogical discussion. In particular, we
define

ΔawðtÞ≡ wðtÞ · ΔaðtÞ; ð3Þ

wðtÞ≡ sin8ðπt=TÞ; ð4Þ

where wðtÞ is the window function discussed in
Appendix D [see also Eq. (D3)]. Working with the
windowed ΔawðtÞ allows us to extract the baseline-pro-
jected differential acceleration spectrum of the asteroid
GGN over a much larger dynamic range than would be
possible for the unwindowed ΔaðtÞ; the cost is that the
result must be interpreted with some care in the comparison
to a GW signal because the windowing would be applied
also to a signal and would modify the normalization, as we
discuss below in Sec. III D.
Because windowing is a multiplication in the time

domain, it is a convolution in the frequency domain
[cf. Eq. (C4)],

fΔawðfkÞ ¼ 1

T

XN−1

n¼0

fΔaðfnÞ · w̃ðfðk−nÞmodN Þ;

k ¼ 0;…;N − 1; ð5Þ

where fk ≡ kΔf ≡ k=T.
Therefore, we straightforwardly compute the DFT of the

baseline-projected differential acceleration, convolve it
with the DFT of the window function to obtain the DFT
of the windowed baseline-projected differential accelera-
tion, and then finally compute the one-sided PSD [see
Eq. (C7)] of the latter, SGGNk ½Δaw�≡ SGGN½Δaw�ðfkÞ, as the
measure of the spectrum of the asteroid GGN.

C. Results

The results for the one-sided PSD of the windowed
baseline-projected differential acceleration, SGGN½Δaw� are
shown in Fig. 1 for a variety of detector parameters, as listed
in Table I. Two sets of detector parameters (simulationsNo. 1
andNo. 2)were chosen to approximate different baselines for
detectors located in the inner Solar System, and one
(simulation No. 3) was chosen to simulate an outer Solar
System mission at approximately the orbit of Neptune (with
an optimistic estimate for the baseline). In all cases, we
assumed a mission duration of T ¼ 10 years. A number of
different results are shown in Fig. 1 for each detector
parameter set, allowing identification of the dominant con-
tributions to the noise at various frequencies: the total noise
(solid red), the noise absent the 50 most massive asteroids
(dash-dotted blue), and the noise absent all asteroids that pass
within 0.5AUof either end of the detector baseline during the
mission duration (dashed green).
The results for simulations No. 1 and No. 2 are largely

insensitive to the assumed start time of the simulation
because the detectors complete ∼10 orbits during the
simulation; however, the results of simulation No. 3 are
sensitive to the exact start time because a detector orbit at
r ∼ 30 AU takes Torbit ∼ 165 years. Therefore, our outer
Solar System results are only representative within anOð1Þ

18Another way to phrase this is that if the frequency f of a
signal component does not lie at exactly one of the discrete
frequencies accessed by the DFT, fj ¼ jΔf ¼ j=T for j ¼
0;…;N − 1 (or, indeed, any higher frequency that differs from
one of these DFT frequencies by an amount of exactly N =T),
then the number of cycles in the analysis duration,
Ncycles ¼ fT ∉ Z, is noninteger, and it is easy to show that a
signal component at frequency f will contribute power in every
DFT frequency bin.
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factor of what a mission with a different assumed start time
would experience as the asteroid GGN noise spectrum.
We emphasize also that the frequency at which

SGGN½Δaw� is evaluated should not be immediately asso-
ciated with the frequency of a gravitational waves passing
through the Solar System: because we consider the differ-
ential acceleration component projected into a rotating
baseline direction, a monochromatic GW passing through
the Solar System would contribute an effective acceleration
to ΔawðtÞ that has its frequency modulated by the detector
orbital frequency, as we discuss in detail in Sec. III D. We
account for this effect in Sec. III D in giving limits on how
this GGN acceleration noise impacts the detectability of a
GW signal; for the moment, we content ourselves with a
discussion of SGGN½Δaw� with the frequency content as
presented in Fig. 1.

1. Inner Solar System

The results of the two simulations in the inner Solar
System (No. 1 and No. 2) are broadly similar [up to an
amplitude rescaling by the detector baseline; cf. Eq. (B2)]
and can thus be discussed together.
The noise is most severe in the band between few ×

10−8 Hz and 10−7 Hz, drops exponentially quickly by
some 10 orders of magnitude between 10−7 Hz and
few × 10−7 Hz, and then hits a much more slowly falling
plateau above few × 10−7 Hz, falling only another 3
(simulation No. 1) to 6 (simulation No. 2) orders of
magnitude by few × 10−6 Hz.
As can immediately be seen from the results absent the

50 most massive JPL-SBD objects (masses ranging from
∼1019 kg to ∼1021 kg), the dominant noise contribution
below few × 10−7 Hz are large asteroids that happen to
orbit mostly in the plane of the ecliptic (i.e., small
inclination) and at heliocentric orbital radii of a few AU.
There is some resolution, given the 10 year simulated
mission duration, to resolve effects of individual asteroids
in this mass and frequency range (hence the existence of
some isolated “bumps” in the PSD). The ability of remove
these 50 asteroids from the acceleration noise (using
independently known accurate ephemeris and mass data)
would allow some 2–3 orders of magnitude improvement in

TABLE I. Parameters of the single-baseline detector pair
utilized in the numerical simulation discussed in Sec. III, and
whose results are shown in Figs. 1 and 2. The unperturbed
detector baseline is L, and the detectors are assumed to orbit in
the plane of the ecliptic in exactly circular heliocentric orbits at
radius r; see Eq. (A1).

Sim. No. Baseline L [AU] Orbital radius r [AU]

1 6.7 × 10−3½¼109 m� 1.0
2 1.0 1.0
3 30.0 30.0

FIG. 1. Windowed baseline-projected differential acceleration
PSD due to gravity gradient noise induced by asteroids and comets
in the JPL-SBD on a pair of detectors at heliocentric orbital radius r
with a baseline L, as annotated. The solid red lines show the PSD
SGGN½Δaw� ofΔaw as defined at Eqs. (3) and (A7), computed per the
numerical simulation procedures outlined in Secs. III A and III B.
These results account only for those objects in the JPL-SBDwith an
explicitlysupplieddiameter(seeSec. III Afordiscussion), andfor the
inner Solar System baselines they may thus represent an under-
estimateof thenoiseathigher frequencies (f≳few×10−7Hz);see the
detailed discussion around Fig. 5 in Sec. III E.We assume amission
duration of T ¼ 10 years and N ¼ 3000 sampling points in
the simulation, and results are displayed for frequencies
f ∈ ½Δf; fNyquist�. Note that the frequency f shown here is simply
the frequency at which the PSD is evaluated; owing to modulation
effects of the detector orbits, care must be taken in relating this
frequency to the frequency at which a gravitational wave would
contribute toΔawðtÞ; see Sec. III D. The dashed green (respectively,
dot-dashed blue) lines show the same PSD quantity, but with all
objects thatpasswithin0.5AUof either endof thedetectorwithin the
missionduration(respectively, the50mostmassivesimulatedobjects
in the JPL-SBD) removed fromΔawðtÞ prior to computing the PSD.
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the noise at these frequencies, as evidenced by the blue
dash-dot lines in Fig. 1; however, removal of as large or
larger a number of asteroids rapidly becomes challenging,
as already discussed in Sec. II.
Nevertheless, this class of large objects in the asteroid

belt is unambiguously completely cataloged in the JPL-
SBD, and the results in this frequency range are thus highly
robust against the addition of the unknown asteroids to the
simulation: such new objects simply cannot be in this class,
or they would easily already have been discovered. We also
note that because the dominant contribution in this fre-
quency range arises from this specific class of massive,
distant, largely in-the-plane, approximately circular-orbit
objects, the peak of the noise between few × 10−8 Hz and
10−7 Hz, and the rapid exponential drop in the noise
between 10−7 Hz and few × 10−7 Hz are both completely
expected and in line with the features of the simplified
model discussion above in Sec. II, and the more detailed
discussion in Appendix B. Indeed, because the detectors
are inside the belt, we would expect [cf. Eq. (2) or, more
specifically, Eq. (B4)] the dominant noise to appear around
f ∼ 2fdet : ∼ 6 × 10−8 Hz, and be suppressed exponentially
above this frequency, as higher harmonics are suppressed
by powers ∼ð1 AU=few AUÞj; this is observed.
On the other hand, at higher frequencies, above

few × 10−7 Hz, the dramatic decrease in the noise PSD
that occurs when the objects that pass closer than 0.5 AU to
either end of the detector baseline at any point during the
simulation (862 objects in simulation No. 1; 1062 objects in
simulationNo. 2) are removed, indicates that the noise above
few × 10−7 Hz is dominated by these much less massive
asteroids (masses ranging from ∼107 kg to ∼1016 kg, with
typical masses around∼109 kg to∼1013 kg) that pass much
closer to the detectors. This of course stands to reason, as
typical closer-approaching objects will be close flybys19 that
exert peak acceleration for a shorter time, leading to higher
frequency noise. However, this class of close-approaching,
small objects is not necessarily completely cataloged in the
JPL-SBD, and the asteroid GGN result in this frequency
range is thusmuch less robust to the effects of the addition of
new, unidentified objects outside the catalog (or, indeed,
those that are in the catalog but lack diametermeasurements;
see Sec. III A). It is thus an open question whether the noise
presented in this frequency range is a complete characteri-
zation of the full asteroidGGN, ormerely a lower bound; we
defer detailed investigation of this question to future work
(but see Sec. III E for an estimate of the size of the effect).

2. Outer Solar System

The results of the outer Solar System simulation differ
from those of the inner Solar System in important ways.

The noise is now most severe below 10−8 Hz, dropping
exponentially quickly by some 18 orders of magnitude by
10−7 Hz; above ∼10−7 Hz, the noise is negligibly small.
In other words, the GGN noise here has shifted down in
frequency considerably as compared to the inner Solar
System simulations.
As can immediately be seen again from the results absent

the 50 most massive JPL-SBD objects, the dominant noise
contribution below ∼10−7 Hz arises from large asteroids that
happen to lie in the plane of the ecliptic at heliocentric orbital
radii of a few AU. Removal of these 50 asteroids from the
acceleration noise would again allow some 1–2 orders of
magnitude improvement in the noise at these frequencies;
however, similar comments apply to this procedure as for the
inner Solar System.Once again, results in this frequency range
are robust to the addition of more asteroids to the simulation.
We again note that because the dominant contribution in

this frequency range arises from the same specific class of
objects of the inner Solar System, the peak of the noise
below 10−8 Hz, and the rapid exponential drop in the noise
between 10−8 Hz and 10−7 Hz are both completely
expected and in line with the features of the simplified
model discussion above in Sec. II and the more detailed
discussion in Appendix B. Indeed, because the detectors
are now outside the belt, we would expect [cf. Eq. (2) or,
more specifically, Eq. (B9)] the dominant noise to appear
around f ∼ fast ∼ 6 × 10−9 Hz [for an assumed 3 AU
asteroid orbit], and to be suppressed exponentially above
this frequency, as higher harmonics are suppressed by
powers ∼ðfew AU=30 AUÞj [actually, with a marginally
more severe suppression for the same harmonic as com-
pared to the inner Solar System case; see discussion in
Appendix B 3]. These features are again observed.
No objects in this simulation were identified as passing

with 0.5 AU of either end of the detector in the simulation
duration of 10 years, but on the same general grounds as for
the inner Solar System results, we again believe the asteroid
GGN at frequencies above ∼10−7 Hz to be dominated by
much less massive asteroids that pass much closer to the
detectors. This noise is negligibly small in this case, but it
again remains an open question whether unmodeled close-
encounters could increase thenoise in this frequency range, as
it is highly unlikely that the JPL-SBD captures all small (and
thus faint) asteroids at distances of tens of AU from the Sun.
While the acceleration asteroid GGN PSDs presented

and discussed in this section fully capture the results of our
simulation, an additional level of analysis is required to
translate these results to limits on the detectable strain
amplitude spectral density for a gravitational wave, as a
function of the GW frequency. We discuss this topic in the
next section.

D. A monochromatic gravitational wave signal

In order to utilize the asteroid GGN baseline-projected
differential acceleration power spectrum we have thus far

19As opposed to some special close-approaching objects which
could be approximately co-orbiting with the detector.
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computed to set limits on the detectable GWamplitude, we
must compute how a gravitational wave would give rise to
such an acceleration. We must also take care to apply the
same windowing procedure to this signal as to the aste-
roid GGN.
In the GW frequency range in which we are

interested, fGW ∼ 10−8–10−6 Hz, the GW wavelengths
are Oð103–105 AUÞ, which is much larger than the size
of the Solar System, and any orbit or baseline distance of
interest to us; cf. Table I. We can thus analyze the passage
of a gravitational wave through the Solar System in the
local Lorentz frame of the Sun to a high degree of accuracy
(i.e., the ωGWL ≪ 1 expansion is justified).

To be maximally optimistic in terms of signal detection
(i.e., conservative in excluding GWas detectable above the
asteroid GGN level), consider a plane gravitational wave
incident on the Solar System from the direction exactly
perpendicular to the plane of the elliptic, such that the
ecliptic plane coincides with a GW phase front; any other
direction of incidence will result in a smaller GW-induced
test-mass acceleration for a given fixed GW amplitude.
Suppose a test mass is located at x≡ xx̂þ yŷ in the local
Lorentz frame of the Sun (chosen such that the elliptic is in
the x-y plane). The GW has the effect of inducing the
following effective Newtonian acceleration on the test
mass [47]:

�  x
 y

�
¼ 1

2

�  hþ  h×
 h× −  hþ

��
x

y

�
; ð6Þ

with no acceleration in the z direction (i.e., direction of the
GW motion, perpendicular to the ecliptic), and where

_X ≡ ∂tX, and hþ;×ðtÞ are the gravitational-wave strain
waveforms in the þ;× polarizations, respectively.
Assuming that hþ;× are small, we can expand the GW-
induced displacement of a test mass as a perturbation
around an unperturbed test-mass location as x ¼ x0 þ δx
(and similarly for y), assuming that jδxj=jx0j ∼Oðhþ;×Þ ≪
1 (and similarly for y), which gives the following leading
equations that govern the perturbations:

�  δx
 δy

�
¼ 1

2

�  hþ  h×
 h× −  hþ

��
x0
y0

�
; ð7Þ

neglecting terms at Oðh2þ;×Þ.
Considering the action of this GW on the two detectors

A, B whose unperturbed positions are given by the circular
orbits shown at Eq. (A1), and computing the baseline-
projected differential acceleration ΔaGW [as defined at
Eq. (A7)] induced by the GW, we find that

ΔaGWðtÞ ≈ −
L
2
½  hþ cosð2ΩtÞ þ  h× sinð2ΩtÞ�; ð8Þ

where we remind the reader that Ω is the detector orbital
angular frequency (see Sec. II and Appendix A).
For monochromatic plane gravitational waves,

hþ;×ðt; z ¼ 0Þ≡ hð0Þþ;× cosðωGWtþ αþ;×Þ; ð9Þ

where hð0Þþ;× are amplitudes, αþ;× are phases, and ωGW ¼
2πfGW, we thus have

ΔaGWðtÞ ≈ 1

2
Lω2

GWh
ð0Þ
þ cosðωGWtþ αþÞ cosð2ΩtÞ þ

1

2
Lω2

GWh
ð0Þ
× cosðωGWtþ α×Þ sinð2ΩtÞ ð10Þ

¼ 1

4
Lω2

GWh
ð0Þ
þ
n
cos

h
ðωGW þ 2ΩÞtþ αþ

i
þ cos

h
ðωGW − 2ΩÞtþ αþ

io
þ 1

4
Lω2

GWh
ð0Þ
×

n
sin

h
ðωGW þ 2ΩÞtþ α×

i
− sin½ðωGW − 2ΩÞtþ α×

io
. ð11Þ

We thus see that the GW frequency is modulated by the
orbital frequency of the detector pair, as we noted in the
previous subsection.
In order to make an apples-to-apples comparison to the

asteroid GGN spectrum whose computation we detailed in
the previous two subsections, we apply the same window
function wðtÞ to this signal as to the noise,

ΔaGWw ðtÞ≡ wðtÞ · ΔaGWðtÞ; ð12Þ

where wðtÞ is defined at Eq. (4). We can then
sample ΔaGWw ðtÞ at the same times tn ¼ nΔt ¼ nT=N

(n ¼ 0;…;N − 1) as for the asteroid GGN and compute

the (windowed) DFT, gΔaGWw ðfkÞ.
It is then straightforward to show that the signal-to-noise

ratio (SNR) ρ for the detection of this GW signal above the
asteroid GGN noise floor in a standard matched-filter
search is given by [48,49]

ρ2 ¼ 1

T
j gΔaGWw ðf0Þj2
SGGN0 ½Δaw�

þ 1

T

j gΔaGWw ðfN =2Þj2
SGGNN =2 ½Δaw�

δ0;Nmod2

þ 4

T

XbðN−1Þ=2c

k¼1

j gΔaGWw ðfkÞj2
SGGNk ½Δaw�

; ð13Þ
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where the term at k ¼ N =2 exists only for even N , as
indicated by the Kronecker delta, and where we have
adapted the continuous results of Refs. [48,49] to the
discrete-sampling case at hand.
Treating each of the þ and × polarization cases in turn

(assuming in each case that the other polarization is absent),
at each GW frequency we use Eq. (13) to find the values of

hð0Þþ;× such that ρ ¼ 1; we denote these values of the

detectable strain amplitude by ĥð0Þþ;×ðfGWÞ. We convert each
of these results to an effective GGN strain amplitude

spectral density
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGNþ;× ½h�

q
; i.e., the strain amplitude

spectral density that, given the signal size already found
to yield an SNR of 1 in the matched-filter search as applied
to Δaw (note: windowed), would result in an SNR of 1 in a
matched-filter search on the GW strain, h (note: unwin-
dowed). Since the monochromatic signal is narrow-band,
the appropriate conversion [assuming a nonedge case;
cf. Eq. (13)] is

1 ∼
4

T
jh̃þ;×½fGW; ĥð0Þþ;×ðfGWÞ�j2

SGGNþ;× ½h�ðfGWÞ
∼
T · jĥð0Þþ;×ðfGWÞj2
SGGNþ;× ½h�ðfGWÞ

ð14Þ

⇒
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGNþ;× ½h�ðfGWÞ

q
≡ ffiffiffiffi

T
p

· ĥð0Þþ;×ðfGWÞ; ð15Þ

where h̃þ;×½fGW; ĥð0Þþ;×ðfGWÞ� ∼ ðT=2Þĥð0Þþ;×ðfGWÞ is the
unwindowed, single-signal-bin DFT result for the signal

Eq. (9) with hð0Þþ;× ¼ ĥð0Þþ;×ðfGWÞ; cf. Eq. (C9).20
We note that this somewhat convoluted procedure is

designed to appropriately fold in both the effects of the GW
signal modulation that is shown at Eq. (8) and the effects of
the windowing. Absent the modulation effects, we would

obtain the (mostly) expected result
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGNþ;× ½h�ðfGWÞ

q
∼

2.3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGN½Δaw�ðfGWÞ=ðω2

GWL=2Þ2
p

. The numerical con-
stant ∼2.3 arises because of windowing: there is a mis-
match between SGGN½Δaw� being defined in terms of the
windowed Δaw, and SGGNþ;× ½h� being defined without regard
to a window function on the signal at Eq. (14); this was
done so that the latter result is more easily interpretable as
the usual effective strain noise to employ in deciding
whether a signal is detectable without having to be
concerned with any technicalities of our analysis that arise
from windowing. This numerical constant of ∼2.3 would

instead be exactly 1 if no windowing was necessary
anywhere.21

We show the results for the effective GGN strain
amplitude spectral density, SGGNþ;× ½h�, in Fig. 2, for the same
three sets of detector parameters outlined in Table I.

1. Discussion of strain results

As for the acceleration results discussed previously, the
inner Solar System simulations (No. 1 and No. 2) yield
broadlysimilar resultsat lowfrequencies,althoughthelonger
baseline result yields improved detection performance at
higher frequencies by up to 2 orders of magnitude.We again
note however that the high-frequency (f ≳ few × 10−7 Hz)
portion of these results may constitute only a lower bound
on the noise floor and is sensitive to undetected, close-
approaching objects not captured in the JPL-SBD.
Nevertheless, taking these results at face-value, compari-

son22 of the inner Solar System results to the limiting strain
ASD noise curves for the proposed μAres detector array [6],
which are shownas solid (respectively, dashed) black lines in
Fig. 2 taking into account only expected instrumental
(respectively, both instrumental and astrophysical) noise
for that proposed mission concept, indicates that asteroid
GGN becomes a noise source comparable to instrumental
and astrophysical noise for frequencies fGW ∼ ðfewÞ ×
10−7 Hz and—by orders of magnitude—the dominant
(and therefore limiting) noise source at lower frequencies.23

It is important to note that even the removal ofOð50Þ of the
most massive objects in the JPL-SBD would not substan-
tially alter these qualitative low-frequency conclusions.
However, at higher frequencies, the amplitude of the asteroid
GGN presented here appears to be (marginally, in the short-
baseline case of simulation No. 1) small enough to not cut
into interesting parameter space, subject to the caveat noted
above regarding undetected, close-approaching objects.
On the other hand, the results for the outer Solar System

simulation (No. 3) show that the asteroid GGN floor is a
much less severe problem for such a mission. While the
μAres noise curves are only given for fGW ≳ 10−7 Hz in

20This is of course only strictly speaking correct if the
frequency of the GW is at an exact DFT frequency. To the
extent that there are any approximations interposed in this
motivating derivation, we consider Eq. (15) as the exact definition
of SGGNþ;× ½h�ðfGWÞ, with ĥð0Þþ;×ðfGWÞ defined so as to make ρ ¼ 1 in
Eq. (13). This removes any ambiguity or approximation in this
discussion.

21We also note that the conversion at Eq. (15) yields the
usual rule for the detectable broadband GW characteristic strain
that is obtained for a monochromatic signal with a detectable
strain amplitude ĥð0Þþ;×: h

2
c∼fGW ·SGGNþ;× ½h�ðfGWÞ∼Ncycles · ½ĥð0Þþ;×�2,

where Ncycles ¼ fGWT is the number of GW cycles observed
during a time T.

22We note that the μAres noise curves are obtained in Ref. [6]
using an assumed three-detector configuration of detectors with
∼3 AU baselines. The comparison of our results to the μAres
curves in Fig. 2 should not be understood as being numerically
precise. Our r ¼ L ¼ 1.0 AU baseline results are the most
comparable, but the comparison should be understood to be
valid only up to an Oð1Þ factor.

23The μAres noise curves in Ref. [6] are given in terms of the
characteristic strain hc; we have converted to strain ASD usingffiffiffiffiffiffiffiffi

S½h�p ¼ hc=
ffiffiffi
f

p
.
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FIG. 2. Gravitational wave strain amplitude spectral density sensitivity corresponding to a signal-to-noise ratio of one in Eq. (13) for a
gravitational wave of frequency fGW, incident on the Solar System from perpendicular to the plane of the ecliptic, for a pair of detectors
at heliocentric radius rwith a baseline L, and subject to the GGN acceleration induced by objects in the JPL-SBD that is shown in Fig. 1.
The solid red24 lines show the strain ASD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGN½h�

p
as defined at Eq. (15) and computed per the procedures outlined in Sec. III D. These

results account only for those objects in the JPL-SBD with an explicitly supplied diameter (see Sec. III A for discussion), and for the
inner Solar System baselines they may thus represent an underestimate of the noise at higher frequencies (f ≳ few × 10−7 Hz); see
the detailed discussion around Fig. 5 in Sec. III E. We assume a mission duration of T ¼ 10 years andN ¼ 3000 sampling points in the
numerical simulation, and results are displayed for frequencies f ∈ ½Δf; fNyquist�. The dashed green (respectively, dot-dashed blue) lines
show the same strain ASD quantity, but for the cases where the asteroid GGN noise contributions from all objects that pass within
0.5 AU of either end of the detector within the mission duration (respectively, the 50 most massive simulated objects in the JPL-SBD) are
all removed from the GGN noise prior to computing the SNR. Also shown in the middle panel by the solid (respectively, dashed) black
lines are the μAres sensitivity curves given the expected instrumental (respectively, instrumental plus astrophysical) noise for that
proposed mission concept [6]. Note that the μAres curves assume a three-detector configuration with baselines of ∼3 AU [6], and so are
not directly comparable to any of our scenarios absent some Oð1Þ-factor adjustment. Nevertheless, we show these curves exactly as
extracted from Ref. [6] for the closest approximant that we simulated: r ¼ L ¼ 1.0 AU (note that we also show the same curves as solid
or dashed grey lines on the other two panels; this however is purely for comparative visual reference).

24The results for r ¼ L ¼ 30.0 AU are presented separately for the þ (solid red) and × (dashed red) polarizations; see text for
discussion.

GRAVITY GRADIENT NOISE FROM ASTEROIDS PHYS. REV. D 103, 103017 (2021)

103017-11



Ref. [6], naïvely extrapolating those noise curves to lower
frequencies indicates that asteroid GGN would only
become a problematic noise source for detection of GW
with fGW ≲ 1–2 × 10−8 Hz.
As we noted in Sec. III C, because the detectors complete

only a fraction ∼1=16 of a full r ¼ 30 AU orbit in the
simulated 10 year mission duration, the outer Solar System
results we present here are somewhat sensitive to the exact
start time of the simulation, and also to the exact assumed
polarization of the GW at the start time of the simulation
and its relation to the orbital phase offset of the detectors at
that time. For instance, taking into account the qualification
about the start time of the simulation in footnote 28, the
result at Eq. (8), and the effect of our chosen window
function [Eq. (4)] to emphasize the relative importance of
the signal in the middle of the simulation duration as
opposed to near the start and end, it is the case that the þ
polarization has, for the same amplitude GW signal, a
smaller detector response by roughly a factor of 10 as
compared to the × polarization over the particular duration
of the 10 year assumed mission lifetime simulated (effec-
tively, for the þ case, the window function happens to
localize a region of the signal response which is near a node
in the modulation of the GW by the orbital motion of the
detectors). Of course, modifying the simulation start time
or assumed mission duration would modify the relative
limits on the two different polarizations; the difference
between the þ and × results in the lower panel of Fig. 2 is
representative of the magnitude of the changes one might
expect by varying such parameters. Such dependence is of
course absent for the inner Solar System results, as the
detectors in that case complete ten full orbits during the
simulation, which effectively reduces the dependence of
the results on the temporal location of nodes in the detector
response, etc.
For completeness, we note that we have assumed in all

cases (both inner and outer Solar System) that αþ;× ¼ 0 at
the start of the simulation.

E. Discussion of unmodeled close passes

We have already noted that the JPL-SBD is likely incom-
plete for small asteroids that pass close to thedetector network
and that such close passes are likely to contribute additional
high-frequency noise above ∼ðfewÞ × 10−7 Hz. In this sub-
section, we give a preliminary estimate for the size of
that noise.
Consider that a close pass of an asteroid to the detector

network can be approximated for the relevant portion of the
motion during which it exerts peak acceleration on one or
both of the detectors as moving in a straight line, with
v ∼ 30 km=s being a typical relative speed between the
asteroid and the detector at either end of the baseline,
provided we consider an inner Solar System detector
network. As shown in, e.g., Ref. [39], such motion
contributes to accelerations dominantly at frequencies such

that ωb=v ∼ 1, or f ∼ v=ð2πbÞ where b is the impact
parameter for the fly-by. As we will see, we are most
concerned about this close-encounter noise for frequencies
f ∼ μHz, which yields b ∼ v=ð2πfÞ ∼ 5 × 109 m∼
3.1 × 10−2 AU. Throughout this subsection, we take f ∼
μHz as an example to estimate how much our calculation
could be underestimating the effect of close passes.
First we estimate how many asteroids may be missing

from the JPL-SBD (or, at least, those objects in the
JPL-SBD for which a diameter di is available to allow a
mass determination to be made), and hence from our
simulation; see also the discussion in Sec. III A 1. Data
from Lunar impact craters [50] can be used [39] to estimate
an upper bound on the flux of asteroids in the vicinity of a
∼1 AU orbit in the inner Solar System, averaged over the
age of the Lunar surface. Fig. 3 provides a comparison of
this flux to the flux in our simulation of the JPL-SBD
objects. Note that for large asteroids with mass above
∼1011 kg, the Lunar impact estimate appears to match
closely to 5 times that from those JPL-SBD objects we
simulate. Below this mass, the gap between the Lunar
impact estimate and our simulation of the JPL-SBD objects
grows larger. For example at an asteroid mass of
3 × 1010 kg, the ratio of fluxes is about a factor of ∼10.
It is generally expected that our current observations

could miss significant numbers of asteroids with diameters
below about 1 km (mass very roughly around 1012 kg), but
should find most of the asteroids above this size. For
example, both the diameter (di) distribution for the objects
in the JPL-SBD that we do model and the estimated
diameter (d̄H;i) distribution for the objects in the JPL-
SBD that we do not model exhibit a decrease in the number
of objects with (estimated) diameters smaller than 1 km, as

FIG. 3. The integrated flux of asteroids with masses greater
than or equal to massMast passing near the Earth, as a function of
the asteroid mass. The solid black line shows the results from our
simulation of the JPL-SBD objects. For reference we have also
plotted 5 times that line (black dashed). The solid red line shows
the estimate from Lunar impact craters [39,50], while the dashed
green curve is an extrapolation of those data to higher mass.
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compared to those with (estimated) diameters around 1 km.
The most likely explanation then for the above observations
about the low-mass discrepancy in flux between our
simulation and the Lunar impact estimate in Fig. 3 is that
the JPL-SBD as a whole is simply missing significant
numbers of asteroids with masses below about ∼1011 kg.
Two possible reasons suggest themselves for the factor-

of-5 discrepancy that exists at higher asteroid masses
between the flux estimate based on the objects in our
simulation of the JPL-SBD objects, and the Lunar impact
estimate: (1) this could be reflective of the roughly 5-to-1
ratio of unsimulated-to-simulated JPL-SBD objects in this
work; indeed, as our discussion in Sec. III A 1 makes clear,
the unsimulated population is generally a population of
closer-passing asteroids that are typically in the d̄H;i ∼
1–10 km class. Their omission from the simulated near-
Earth asteroid flux could thus easily account for the
discrepancy; however, a detailed quantitative accounting
for this extra flux would require detailed orbital tracking for
the unmodeled class, would be most appropriate in the
follow-up simulation work discussed below; and/or (2) the
JPL-SBD is based on actual observations of asteroids at
the present epoch, whereas the Lunar data are averaged over
the age of the Lunar surface. But the true number of asteroids
in the Solar System may be changing in time (as could the
mass distribution, owing to asteroid dynamics), so that the
flux at the present epoch could be smaller than the average
flux measured over the age of the Lunar surface. To address
case (1), we make the conservative guess (i.e., worst-case
scenario), that we are actually missing from our results the
entire difference between the Lunar impact estimate for the
flux and the flux estimated from our simulation of JPL-SBD
objects (i.e., the entire gap between the solid black line and
the red/green line in Fig. 3). To address case (2), wemake the
optimistic guess that at the present epoch we are simply
missing a flux equal to the residual difference between the
Lunar impact estimate and 5 times the JPL-SBD object flux
in our simulation (i.e., the gap between the black dashed line
and red/green line in Fig. 3). We give estimates for both of
these scenarios in this section.
Next we estimate how much these missing asteroids

could increase the noise from close passes, which are the
dominant contribution to the higher frequency end of the
curves in Fig. 2. Since we have an estimate of the factor by
which we may be undercounting asteroids, we attempt to
estimate parametrically how the close-pass noise will scale
with this number.
First we estimate how much noise each piece of the

asteroid mass distribution contributes by itself (we consider
slices of the asteroid mass distribution half an order of
magnitude in width); see Fig. 4. For this estimate, we use
the asteroid number distribution implied by the Lunar
impact data. Because the asteroids contribute stochastically
to the acceleration noise, we might expect that the effective
acceleration noise contribution exerted on either proof mass

in the detector by asteroids in any slice can be estimated by
multiplying the acceleration noise from the average aste-
roid (mass Mavg) in that slice by the square root of the
number of asteroids in that slice,

ffiffiffiffiffiffiffiffi
Nast

p
.25 The acceleration

from an asteroid of mass Mavg at a typical distance
∼b would contribute an acceleration on either detector
in the baseline of order a ∼ GNMavg=b2. We will assume a
worst-case scenario by doubling this estimate to account
for acceleration on the proof masses at both ends
of the baseline (note that this intentionally omits any
accounting for orientation effects); however, if L < b,
we take a (tidal) baseline suppression by a factor
of L=b. That is, we estimate the baseline-projected differ-
ential acceleration noise from each slice to be Δa∼
ð2GNMavg

ffiffiffiffiffiffiffiffi
Nast

p
=b2Þ × min½1; L=b�.

Roughly, and conservatively, we can assume that this
will give rise to a strain contribution of

FIG. 4. A rough analytic estimate of the contribution of close
passes to the GW strain ASD noise at f ∼ μHz (red solid and
green dashed lines, for the two inner Solar System baselines as
indicated in the legend). The quantity Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGNclose ½h�

p
is the

contribution to the strain ASD noise from each half-decade-wide
mass bin indicated, per the estimate outlined in the text. Also
shown are lightly shaded, horizontal, red and green colored bands
that give the approximate noise levels in our simulation of the
JPL-SBD objects (cf. Fig. 2), for the respective baselines; the
vertical width of these bands gives an indication of the amount by
which the noise level in the simulations varies in the vicinity of
fGW ∼ μHz (note that the horizontal positioning of these bands on
this plot is for visualization purposes only and is not intended to
convey any information about a mass range; these colored bands
convey information only about the strain ASD). The vertical gray
shaded band indicates the “cutoff” mass bin for these estimates
(see discussion in the text), while the vertical dashed gray line is
the average asteroid mass Mavg in this bin.

25That is, we can consider each slice in the mass distribution to
exert the same acceleration as a single object with an effective
massMeff: ≡Mavg

ffiffiffiffiffiffiffiffi
Nast

p ≡Mslice=
ffiffiffiffiffiffiffiffi
Nast

p
, whereMslice is the total

asteroid mass in the relevant slice.
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hc ∼
ΔL
L

∼
1

2

ðΔaÞT2

L
ð16Þ

∼
4π2GNMavg

ffiffiffiffiffiffiffiffi
Nast

p

Lv2
× min

�
1;
2πL
vT

�
ð17Þ

∼
4π2GNMslice

v2L
ffiffiffiffiffiffiffiffi
Nast

p × min

�
1;
2πL
vT

�
; ð18Þ

where we took T ¼ 1=f ¼ 2πb=v ∼ 106 s as the relevant
timescale. From this hc estimate, we extract the strain ASD

contribution as Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGNclose ½h�

q
∼ hc=

ffiffiffi
f

p
. The results of this

calculation are shown in Fig. 4 as a function of the asteroid
mass, for both of our inner Solar System baselines. The
vertical shaded gray band shows the asteroid mass slice
for which roughly one asteroid passes within a distance b
in time T ∼ 1=f (we call this the “cutoff” mass); the
vertical dashed line gives the average asteroid mass for
this slice.
Figure 4 demonstrates that the close pass noise is

dominated by the largest asteroids. The noise curves in
Fig. 4 do not apply for masses much greater than the
vertical dashed line that marks the average mass of the
asteroids in the slice for which on average approximately
one asteroid passes within a distance b in a time T, because
such asteroids pass near the detector only rarely and thus
are not the same kind of continuous noise as would be
confounding for a GW at frequency fGW ∼ 1=T (i.e., the
curves in Fig. 4 do not apply above the “cutoff” mentioned
above). So, as an analytic estimate for the noise, we take the
level of the strain ASD noise curve in Fig. 4, evaluated at
the cutoff mass. Of course in reality the answer should be
some integral up to (and possibly somewhat above) the
cutoff mass. Nevertheless, comparing to the shaded hori-
zontal colored bands in Fig. 4 we see that our analytic
estimate in the dominant mass slice is within about an order
of magnitude of our simulation results, but that the former
underestimates the latter. The underestimate would be
partially compensated by taking an integral; we will not
be concerned with this because we are actually only
looking for the parametric dependence of this noise level
on the asteroid flux.
We thus see from Fig. 4 that the noise is dominated by

the largest asteroids below the cutoff, with masses around
∼3 × 109 kg. This is important, because it means we
only have to estimate by how much asteroids in this
mass class are being undercounted in our numerical
simulation as compared to the Lunar impact flux estimate,
and the impact of increasing the flux of asteroids in this
mass class by the factor required to match the Lunar impact
flux estimate, in order to understand the possible range of
factors by which we could be underestimating the strain
ASD noise.

To make an estimate of how the close-pass noise would
increase if we increased26 the asteroid number flux by a
factor x, we perform the same calculation as in Fig. 4 but
with an increased asteroid number flux. This moves the
strain ASD curves up vertically by

ffiffiffiffiffiffiffiffi
S½h�p

∝ x0.5, but also
increases the cutoff mass (i.e., the heaviest asteroid passing
within a distance b within time T). Taking all this into
account, we find for example that if the overall number of
asteroids is increased by a factor of 10 then the cutoff mass
increases by roughly a factor of ∼10 (i.e., the vertical
dashed gray band in Fig. 4 moves to the right by a factor of
10, or 2 bins on that plot), and we find that the overall high-
frequency close-pass strain ASD noise level should thus be
taken to increase27 by a factor of ∼10. Recalling the earlier
discussion that in the worst case scenario we called (1), the
number of relevant-mass asteroids may actually be larger
than the JPL-SBD objects in our simulation by a factor of at
most ∼10 (cf. Fig. 3 in the vicinity of Mast ∼ 3 × 1010 kg),
our worst-case estimate is that the high-frequency close-
pass noise may be larger than our simulation answer by a
factor of at most ∼10 around fGW ∼ μHz. However, in the
optimistic scenario we called (2), the number of asteroids
aroundMast ∼ 3 × 1010 kg increases by only a factor of ∼2
when comparing our simulation flux to the Lunar impact
flux estimate because a factor of ∼5 in the difference would
be due to a mismatch between present-day and historical
fluxes of asteroids near the Earth (see the discussion
around Fig. 3 above); in this case, we find that the strain
ASD noise would only increase by a factor of ∼3 around
fGW ∼ μHz. Assuming these multiplicative factor increases
to be uniform across the decade of frequencies fGW ∼
ðfewÞ × 10−7 Hz–ðfewÞ × 10−6 Hz, we sketch this level of
additional strain ASD noise (i.e., a factor of 3–10 larger
than our simulation result) as the shaded purple band
in Fig. 5.
While we have attempted to conservatively estimate the

range in which the high-frequency close-pass noise may lie,

26The reader may question why we are increasing by a factor
of x the result in Fig. 4 that is based on the Lunar impact flux
data, which already exceeds the flux of JPL-SBD objects in our
simulation. Here we are only asking for the parametric scaling of
this strain estimate with changing flux normalization under the
assumption that the number of asteroids in each slice scales with
mass as in the Lunar impact data flux estimate. For the purposes
of obtaining this parametric scaling, the starting point from which
the overall flux is rescaled upward is not relevant (at least in the
asteroid mass range relevant to us for these estimates). We use
this parametric scaling to extract a “correction factor” under the
assumption of a flux increase by a factor of x that we then apply
to increase our simulation strain ASD noise results; this pro-
cedure is consistent with the relative flux normalizations in Fig. 4.

27That this should be the scaling is clear from our estimate
above that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGN½h�

p
∝ Δa ∝ Mavg

ffiffiffiffiffiffiffiffi
Nast

p
. Since we are fixing

Mavg to be the average asteroid mass in the bin for whichNast ∼ 1,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SGGN½h�

p
∝ Mavg, so if the average mass in the cutoff bin goes

up by a factor of 10, so too does the strain ASD noise.

FEDDERKE, GRAHAM, and RAJENDRAN PHYS. REV. D 103, 103017 (2021)

103017-14



we note that there is significant uncertainty in our estimate,
as indicated by the shaded band in Fig. 5. More generally,
our estimates in this subsection for the how much the true
high-frequency close-pass strain ASD noise exceeds the
level in our simulation results should be considered to be an
informed, but rough, order-of-magnitude guess. The salient
point to draw from this discussion is that an accurate
calculation of this high-frequency noise from close passes
of less massive asteroids may be relevant for experimental
concepts aiming at the μHz frequency range, such as
μAres [6]. One approach to improve understanding on this
point would be to perform a simulation of the class of
smaller, closer-passing asteroids that we left unmodeled in
this work, by making mass estimates for those asteroids
based on the diameter estimates d̄H;i obtained from
individual asteroid absolute magnitudes and the average
asteroid geometric albedo, as discussed in Sec. III A. We
defer such calculation to future work.

IV. CONCLUSIONS

In this paper, we calculated the acceleration noise on a
gravitational wave detector employing local proof masses
that arises from the gravitational influence of asteroids in

the Solar System. Our main results are shown in Figs. 2
and 5. Figure 2 shows the conservative minimum noise
floor arising only from asteroids whose properties are well-
measured and reported in the JPL-SBD catalog. Figure 5
attempts to estimate the full noise including all asteroids in
the Solar System, and in particular how the high-frequency
tail of the results depends on unmodeled, smaller asteroids
passing closer to the detector.
Our analysis shows that gravity gradient noise from

asteroids in the asteroid belt will severely limit the
sensitivity of any gravitational wave detector that uses
local proof masses in the frequency band below ∼ðfewÞ ×
10−7 Hz as long as the detector baseline is located in the
inner Solar System; see Fig. 2.
At higher frequencies, the noise is dominated by close

encounters between asteroids and the detector. With the
objects in the JPL-SBD that we have simulated, we find this
effect to be sufficiently small to permit gravitational wave
detection above ∼μHz; see Fig. 2. However, this analysis is
incomplete as the JPL-SBD objects we have utilized in our
simulations likely do not represent a complete sampling of
objects that are smaller than ∼km. Using a near-
Earth asteroid flux estimate obtained from Lunar impact
data [39,50] we found reasonable estimates for the con-
tribution of these objects to the asteroid GGN yielded an
increase in the high-frequency noise around ∼μHz by a
factor of ∼3–10 as compared to the high-frequency noise
we have explicitly computed from JPL-SBD objects; see
Fig. 5. This noise contribution thus warrants further detailed
study, especially to establish the viability of proposed detec-
tors in this frequency band. We leave this for future work.
We also note that while asteroid gravitational influences

on a GW detector constitute noise from the perspective of a
GW detection, these effects can also be viewed as a positive
signal from the point of view of studies of asteroids. There
are potentially interesting questions regarding the dynamics
of asteroids, and their mass and spatial distributions that
could be addressed by such low-frequency measurements.
The results of this paper in the frequency band below

∼ðfewÞ × 10−7 Hz raise an interesting question: given that
one cannot straightforwardly use local test masses in the
inner Solar System, how could gravitational waves in this
frequency band be detected? We have shown that placing a
detector network in the outer Solar System would mas-
sively mitigate the impact of asteroid GGN above
∼10 nHz; we expect that to be quite technically challeng-
ing however. Another available strategy, albeit at possibly
prohibitive increased cost and/or technical complexity,
could involve flying a multiconstellation inner Solar
System mission with AU baselines, and operating it in
the style of the BBO proposal [28,29] such that correlation
of the signals between the different constellations is
possible. We would however expect a noise reduction of
only ∼½Nconstellations�−1=2 in such an approach; see also the
discussion in Ref. [51].

FIG. 5. Schematic estimate of the possible additional high-
frequency noise from close-passing objects not contained in our
simulation. The solid red and green dashed lines are our
simulation results from the middle panel of Fig. 2, with or
without asteroids that pass with 0.5 AU of either end of the
detector included, respectively. The black solid and dashed
curves are the μAres curves described in the caption of Fig. 2 [6].
To indicate the additional high-frequency close-pass strain ASD
noise estimate discussed in the text, we plot the strain noise ASD
from simulation increased by a factor of 3–10 for fGW ≳ 3 ×
10−7 Hz (lower and upper edges of the shaded purple band,
respectively). We stress that this purple band is a rough estimate
for this additional noise, and is not a final answer; this noise
contribution warrants further study in future work. Note also that,
in this plot, we have assumed a simple (functionally smoothed)
turn-on of this additional noise around fGW ∼ 3 × 10−7 Hz; the
exact shape of the curve around this frequency would also need to
be more carefully computed.
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Another option that is worth investigating further is the
use of distant astronomical bodies as test masses. Indeed,
this option is currently being pursued by terrestrial pulsar
timing arrays (of course, terrestrial detectors using local
proof masses are severely limited below ∼Hz by terrestrial
gravity gradient noise, but this is not a concern when using
distant objects as the test masses). The sensitivity of pulsar
timing arrays however decreases above 10 nHz (see, e.g.,
Ref. [52]). To achieve the necessary sensitivity at higher
frequencies it may thus be desirable to consider different
approaches.
A third tantalizing possibility is offered by astrometry;

see, e.g., Refs. [53–55]. A gravitational wave will cause
fluctuations in the observed angle between two distant
stars. By precisely mapping these angular fluctuations, it
might be possible to overcome the limitation imposed by
asteroid gravity gradient noise in this frequency band. In a
forthcoming paper, we investigate the technical require-
ments to realise this possibility to the required levels of
strain sensitivity at low frequencies.
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APPENDIX A: TECHNICAL DETAILS

In this Appendix, we give various technical details
relevant both to the analytical estimate described in
Sec. II, and to the numerical simulation described in
Sec. III.

1. Detectors

Consider a pair of detectors I ¼ A, B on circular orbits
around the Sun at radius r, with orbital angular frequency
Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM⊙=r3

p
, and separated by a fixed angular sepa-

ration of 2ϕ around the circular orbit, which subtends a
fixed baseline distance L ¼ 2r sinϕ. In a reference system
with the origin located at the Sun28 and orientation fixed

with respect to the average locations of a distant set of stars,
the detectors are located at29

xIðtÞ ¼ r cos ðΩt ∓ ϕÞx̂þ r sin ðΩt ∓ ϕÞŷ; ðA1Þ

with the − (þ) sign for I ¼ AðBÞ. The baseline separation
vector between the detectors is

rABðtÞ≡ xAðtÞ − xBðtÞ ¼ Lr̂ABðtÞ; ðA2Þ

r̂ABðtÞ≡ sin ðΩtÞx̂ − cos ðΩtÞŷ: ðA3Þ

2. Differential acceleration for general
asteroid/comet orbits

Consider an asteroid or comet (“object”) i in the
JPL-SBD, with mass Mi and with a time-dependent
location XiðtÞ.
The vectors pointing from each detector I toward object i

are ri;IðtÞ≡ XiðtÞ − xIðtÞ and the object-detector separa-
tions are di;IðtÞ≡ jri;IðtÞj.
The vector acceleration of object i on detector I is30

ai;IðtÞ≡GMi
ri;IðtÞ

½di;IðtÞ�3
; i¼ 1;…;N; I¼A;B: ðA4Þ

The total vector acceleration from all objects on
detector I is

aIðtÞ≡
XN
i¼1

ai;IðtÞ; I ¼ A;B: ðA5Þ

Note that aI is not the total acceleration on detector I, which
would of course include the effect of the Sun and planets
(and Pluto): that is, the total acceleration on detector I
would be atot:I ¼ aI þ

P
i a

planet i
I þ aSunI ; we neglect the

28Technically, this should be the Solar System barycenter, and
we should also be using reduced masses throughout; we neglect
these technicalities here as they are small or could be handled
reasonably straightforwardly in a refinement of this model.

29Note that when written in this way, our numerical simulation
actually measures time t from a common temporal offset t0 ¼
−ϕ=Ω (i.e., we arbitrarily located detector A on the x-axis at the
start time of the simulation). Therefore, the shift t → t − t0 ¼
tþ ϕ=Ω should be understood in every equation where relevant
throughout the paper (of course, the window function is still taken
to taper to zero at the start and end of the simulation). Although
this temporal offset makes no qualitative difference to our results,
we have consistently taken this into account, particularly when
considering the signals in Sec. III D and their comparison to
our noise simulations, because it is relevant to the results for
simulation No. 3, specifically to the question of the relative
sensitivity to the þ and × polarizations given the phasing of the
modulation of the detector response. Of course, the temporal
offset of the start of any possible mission would have an equal-
sized impact.

30Note that the accelerations are computed assuming that the
positions of the detectors are not disturbed from their circular
orbit locations; this is of course an approximation, equivalent to
assuming that the asteroid GGN effects are small, as expected.
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effect of the planets (and Pluto) on the assumption that they
can be removed from the data accurately.
The net relative acceleration on the detector pair from

object i projected onto the detector baseline separation
vector (“baseline-projected differential acceleration”) is

ΔaiðtÞ≡ ½ai;AðtÞ − ai;BðtÞ� · r̂ABðtÞ ðA6Þ

and the total baseline-projected differential acceleration is

ΔaðtÞ≡ ½aAðtÞ − aBðtÞ� · r̂ABðtÞ ðA7Þ

¼
�XN
i¼1

ai;AðtÞ −
XN
i¼1

ai;BðtÞ
�
· r̂ABðtÞ ðA8Þ

¼
XN
i¼1

f½ai;AðtÞ − ai;BðtÞ� · r̂ABðtÞg ðA9Þ

¼
XN
i¼1

ΔaiðtÞ: ðA10Þ

We note that we have treated the detector locations as
unperturbed from their circular orbital positions [Eq. (A1)]
for the purposes of computing accelerations [Eq. (A4)] and
for computing the detector baseline as a fixed rotating
vector [Eq. (A2)]; we are thus implicitly neglecting second-
order-small contributions to ΔaiðtÞ.

3. Circular coplanar object orbits

Consider now the special case of object i with mass Mi
on a circular orbit around the Sun (coplanar with the
detectors) at radius Ri, with orbital angular frequency
ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM⊙=R3

i

p
, and with a phase offset αi from some

fixed zero-reference (with the zero-reference common for
all i). Object i is then at the location,

XiðtÞ ¼ Ri cos ðωitþ αiÞx̂þ Ri sin ðωitþ αiÞŷ: ðA11Þ

In this case, it is possible to make analytical progress in
simplifying the baseline-projected differential acceleration.
The vectors pointing from each detector I toward
object i are

ri;IðtÞ ¼ ½Ri cos ðωitþ αiÞ − r cos ðΩt ∓ ϕÞ�x̂
þ ½Ri sinðωitþ αiÞ − r sin ðΩt ∓ ϕÞ�ŷ; ðA12Þ

where the − (þ) sign is for I ¼ AðBÞ; and the object–
detector separations are

di;IðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i þ r2 − 2rRi cos ðϖit − αi ∓ ϕÞ

q
; ðA13Þ

with the same sign convention, and where ϖi ≡Ω − ωi.
The baseline-projected differential acceleration contri-

bution from object i is thus [cf. Eq. (1) and footnote 3]

ΔaiðtÞ ¼ GMifRi sinðϖit − αiÞ½d−3i;A − d−3i;B� − r sinϕ½d−3i;A þ d−3i;B�g ðA14Þ

¼ GMiRi sinðϖit − αiÞf½R2
i þ r2 − 2rRi cos ðϖit − αi − ϕÞ�−3=2 − ½R2

i þ r2 − 2rRi cos ðϖit − αi þ ϕÞ�−3=2g
− GMir sinϕf½R2

i þ r2 − 2rRi cos ðϖit − αi − ϕÞ�−3=2 þ ½R2
i þ r2 − 2rRi cos ðϖit − αi þ ϕÞ�−3=2g: ðA15Þ

4. Elliptical object orbits

Finally, consider an object i with mass Mi on an
elliptical orbit around the Sun with semimajor axis ai,
eccentricity ei, argument of perihelion ω̂i, longitude of the
ascending node Ω̂i, and orbital inclination ι̂i.

31 The angular
frequency of the orbit is ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM⊙=a3i

p
, and the orbital

period is Ti ¼ 2π=ωi. Let the time of perihelion passage
be τi.

32

Let x ∈ ½0; 1� be a nondimensionalized time variable
related to true time by xðt; τ; aÞ≡ ðt − τÞ=TðaÞmod1,
where τ and TðaÞ are, respectively, the time of perihelion
passage and the orbital period (the latter of which is
fixed by the semi-major axis a by Kepler’s third law);
perihelion passage occurs at x ¼ 0. Let θðx; eÞ be the
angular position of a body subject to (Newtonian) gravity
on an elliptical orbit with eccentricity e, evaluated at time x.
The function θðx; eÞ must be determined numerically by
solving33

31We write the orbital element angles with hats to avoid
notational conflicts.

32Of course, there is no single time of perihelion passage, so
one must select one such time. For best accuracy, the specific time
chosen should be the epoch of perihelion passage that is nearest in
time to the time at which the orbital parameters for a body were
determined.

33Equation (A16) follows most directly from Kepler’s
second law: _A ¼ ð1=2Þr2 _θ ¼ c ¼ const. Integrating both sides
fixes c ¼ πab=T where a and b ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
are the semimajor

and semiminor axes of the orbit ellipse, respectively. Substituting
r ¼ að1 − e2Þ=ð1þ e cos θÞ for an ellipse and changing variables
to x completes the derivation.
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dθðx; eÞ
dx

¼ 2π

ð1 − e2Þ3=2 ð1þ e cos½θðx; eÞ�Þ2; ðA16Þ

θð0; eÞ ¼ 0; ðA17Þ

an accurate solution should of course attain θð1; eÞ ¼ 2π in
order for the orbit to be periodic.
Object i is then at the location,

XiðtÞ≡ riðtÞ · RzðΩ̂iÞ · Rxðι̂iÞ · Rzðω̂iÞ ·

0
B@

cos½θiðtÞ�
sin½θiðtÞ�

0

1
CA;

ðA18Þ

where θiðtÞ≡ θðxðt; τi; aiÞ; eiÞ, riðtÞ≡ aið1 − e2i Þ=ð1þ
ei cos½θiðtÞ�Þ, and RjðαÞ is the SOð3Þ rotation matrix

describing a clockwise rotation around axis j by an
angle α.

APPENDIX B: MULTIPOLE EXPANSION
OF DIFFERENTIAL ACCELERATION:

COPLANAR, CIRCULAR ORBITS

Assuming either that r ≪ mini Ri (detectors inside the
asteroid belt) or that r ≫ maxi Ri (detectors outside the
asteroid belt), the result Eq. (A15) for coplanar circular
object and detector orbits is amenable to an analytical
multipole expansion.

1. Detectors inside the asteroid belt

Take a fixed i, and assume that r≡ ϵRi with ϵ ≪ 1.
Additionally, noting that the first f� � �g-bracket in
Eq. (A15) vanishes if either r ¼ 0 or ϕ ¼ 0, and recalling
that L ¼ 2r sinϕ ¼ 2ϵRi sinϕ is the detector baseline, we
can write Eq. (A15) as

Δa<i ×

�
GMiL
2R3

i

�
−1

¼ sinðϖit − αiÞ
ϵ sinϕ

f½1þ ϵ2 − 2ϵ cos ðϖit − αi − ϕÞ�−3=2 − ½1þ ϵ2 − 2ϵ cos ðϖit − αi þ ϕÞ�−3=2g

− f½1þ ϵ2 − 2ϵ cos ðϖit − αi − ϕÞ�−3=2 þ ½1þ ϵ2 − 2ϵ cos ðϖit − αi þ ϕÞ�−3=2g: ðB1Þ

It is now straightforward, if tedious, to perform a (multipole)34 expansion of the two f� � �g-brackets in powers of ϵ. While
the resulting expressions are algebraically complicated, and we do not show them here in full, it is reasonably
straightforward to read off the leading multipole contribution to Δa<i at each harmonic ωq ≡ qϖi,

Δa<i ×

�
GMiL
R3
i

�
−1

⊃
r
Ri

3

4
cosϕ cos ðϖit − αiÞ þ

X∞
q¼2

�
r
Ri

�
q−2

�
−2

Γðqþ 1=2Þ
Γð1=2ÞΓðqÞ

sin ½ðq − 1Þϕ�
sinϕ

�
cos ½qϖit − qαi�; ðB2Þ

where we have omitted static terms that are present at
multipole orders beyond the monopole owing to the non-
symmetric distribution of the asteroids outside the detector
orbit (the monopole is missing as there is no mass
monopole interior to the detector orbit).
In the additional special case where all the masses

Mi ¼ M are the same and the asteroids are all at the same
radius Ri ¼ R (so that ϖi ¼ ϖ are all the same), one can
make further progress to understand the total Δa<, at least
in a statistical sense. Consider that, in this special case,

every leading multipole term in Δa at every harmonic
contains a term of the form (q ∈ Z),

Σq ≡
XN
i¼1

cos ½qϖt − qαi�≡ Xq cos ðqϖt − ξqÞ;

Xq ≡
����XN
i¼1

e−iqαi
����; ξq ≡ arg

�XN
i¼1

e−iqαi
�
: ðB3Þ

Assuming that the asteroids are randomly distributed
around the circular orbit with uniform probability, such
that αi ∼ U½0; 2πÞ where U½a; bÞ is the uniform distribution
on the half-closed interval ½a; bÞ, it follows from the central

limit theorem that
ffiffiffiffiffiffiffiffiffi
2=N

p
Xq ∼N→∞

χ2, where χν is the χ
distribution with ν degrees of freedom. While it is less

relevant, we also have ξq ∼N→∞U½0; 2πÞ. Therefore, for any
particular asteroid distribution, the leading multipole terms
for each harmonic that appear in Δa< will take the form
[cf. the discussion in Sec. II]

34Each term ∼½� � ��−3=2 takes the form of the generating
function for the derivative of a Legendre polynomial,

½1þ ϵ2 − 2ϵx�−3=2 ¼
X∞
n¼0

P0
nþ1ðxÞϵn:

Writing out the Legendre polynomials explicitly and applying
trigonometric identities to reduce powers of trigonometric func-
tions to sums of trigonometric functions of various (higher)
frequencies completes the derivation, albeit at the cost of lengthy
algebraic manipulations.
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Δa< ∼ c0
3

ffiffiffi
π

p
8

�
GML

ffiffiffiffi
N

p

R3

��
r
R

�
cosϕ cos ðϖt − ξ0Þ

−
ffiffiffi
π

p �
GML

ffiffiffiffi
N

p

R3

�X∞
q¼2

cq

�
r
R

�
q−2

�
Γðqþ 1=2Þ
Γð1=2ÞΓðqÞ

sin ½ðq − 1Þϕ�
sinϕ

�
cos ½qϖt − ξq�; ðspecial caseÞ ðB4Þ

where cq are genericallyOð1Þ numbers (respectively, ξq are
phases) which depend on the exact asteroid distribution. As
the mean of a variable Z ∼ χ2 is hZi ¼ ffiffiffi

π
p

=2, these cq
satisfy hcqi ¼ 1, where the ensemble average is taken over
random asteroid distributions.
We have checked Eq. (B4) against the computation and

analysis pipeline described in Sec. III, with only the
minimal changes required to constrain the objects to lie
in the requisite equal-radius coplanar circular orbits, and all
have the same mass; we find excellent agreement at a wide
variety of parameter points (we varied the number of
objects, the temporal duration of the numerical simulation,
the number of discrete points at which the accelerations are
computed in the simulation, and the radius of the circular
orbit for the objects). This agreement between the analyti-
cal special case and the general numerical pipeline provides
strong validation of the results of the latter and provides
increased confidence that the numerical results computed
for the general case are correct.
Finally, we make connection with the simplified approxi-

mate treatment advanced in Sec. II, at least in the short-
baseline limit which is implicitly assumed in that section.
This limit is obtained by sending ϕ → 0 on the rhs of
Eq. (B1) with L held fixed on the lhs. The result for Δa<i
from Eq. (B1) in this limit is that given by Eq. (1), but with
the rhs multiplied by an additional overall factor of

−
�
1 −

3R2
i sin

2ðϖtþ αiÞ
R2
i þ r2 − 2rRi cosðϖtþ αiÞ

�
ðB5Þ

¼ −
�
1 −

3

2

R2
i ½1 − cosð2ðϖtþ αiÞÞ�

R2
i þ r2 − 2rRi cosðϖtþ αiÞ

�
; ðB6Þ

where the ½� � ��-bracket accounts for geometrical projection
and inverse-square force law effects, and the overall sign
reflects a difference between the convention choices for the
rough arguments advanced in Sec. II, and the specific
convention choices in the definition of Δai at Eq. (A7); as
the latter were consistently applied in all the detailed
computations in this paper, and the overall sign of the

result in Sec. II was not relevant to any of the rough
arguments made there, this sign difference is not important.
Because the cosð2ðϖtþ αiÞÞ term in this correction factor
is unsuppressed in an r=Ri ≪ 1 expansion, if it were taken
into account in the discussion in Sec. II, it would have been
clear that the peak in the Fourier spectrum of the accel-
eration is at ω ∼ 2ϖi, that this dominant Fourier mode has
the parametric size GMiL=R3

i , and that the high-frequency
tail behaves as ðr=RiÞq−2; all of which results more closely
match those that are clear directly from our more generally
applicable result at Eq. (B2). However, none of these
detailed points modifies any of the qualitative discussion
we advanced in Sec. II in a significant way. We do however
note that an unsuppressed correction factor for Eq. (1) that
is ∝ cosð2ðϖtþ αiÞÞ could have been included had we
advanced a slightly more careful tidal acceleration argu-
ment in Sec. II: geometrical considerations and arguments
about the magnitude of 1=r2 forces on the proof-masses in
various asteroid-baseline orientations, make it clear that
Δai should not only take the form of a tidal acceleration,
but also that it should change sign 4 times per complete
relative asteroid-detector orbit, with the sign being þσ in
either fully colinear orientation of the asteroid and baseline,
and −σ when the asteroid is located at an angular offset of
�π=2 to the baseline direction (here, σ ¼ � depending on
sign conventions chosen to define Δai). Clearly, Eq. (1)
does not have this sign-changing property [although we
emphasize that Eqs. (A15) and (B1) both do]; however,
multiplying the rhs of Eq. (1) by cosð2ðϖtþ αiÞÞ would
have given it that property (with the correct phasing), and
would have brought the detailed properties of Eq. (1) more
closely in line with those of Eq. (B1). However, since the
qualitative features of Eq. (1) already suffice for the
discussion in Sec. II, we elected to omit this correction
factor for the sake of simplicity of presentation.

2. Detectors outside the asteroid belt

Take a fixed i, and assume that Ri ≡ ϵr with ϵ ≪ 1. In
this case we can write Eq. (A15) as

Δa>i ×

�
GMiL
2r3

�
−1

¼ ϵ
sinðϖit − αiÞ

sinϕ
f½1þ ϵ2 − 2ϵ cos ðϖit − αi − ϕÞ�−3=2 − ½1þ ϵ2 − 2ϵ cos ðϖit − αi þ ϕÞ�−3=2g

− f½1þ ϵ2 − 2ϵ cos ðϖit − αi − ϕÞ�−3=2 þ ½1þ ϵ2 − 2ϵ cos ðϖit − αi þ ϕÞ�−3=2g: ðB7Þ
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A similar multipole expansion to that for the “inside the asteroid belt” case yields a slightly different result owing to the
rearrangement of the order in ϵ at which various terms appear in Eq. (B7) as compared to Eq. (B1); the leading multipole
contributions to Δa>i at each harmonic ωq ≡ qϖi are

Δa>i ⊃
�
GMiL
r3

�X∞
q¼1

�
Ri

r

�
q
�
−2

Γ½qþ 1=2�
Γ½1=2�Γ½q�

sin ½ðq − 1Þϕ�
sinϕ

− 4
Γ½qþ 3=2�

Γ½1=2�Γ½qþ 1� cos ðqϕÞ
�
cos½qϖit − qαi�; ðB8Þ

where we have dropped a leading unsuppressed static term which is present owing to the existence of a nonzero mass
monopole interior to the detector orbits.
Once again, in the additional special case where all the massesMi ¼ M are the same and the asteroids are all at the same

radius Ri ¼ R (so that ϖi ¼ ϖ are all the same), a generic random asteroid distribution (with uniform probability for the
asteroids to be distributed around their circular orbit at any fixed moment in time) will have

Δa> ∼ −
ffiffiffi
π

p �
GML

ffiffiffiffi
N

p

r3

�X∞
q¼1

cq

�
R
r

�
q

2
4 Γ½qþ1=2�

Γ½1=2�Γ½q�
sin ½ðq−1Þϕ�

sinϕ

þ2
Γ½qþ3=2�

Γ½1=2�Γ½qþ1� cos ðqϕÞ

3
5 cos½qϖt − ξq�; ðspecial caseÞ ðB9Þ

where the cq are generically again Oð1Þ numbers (respec-
tively, ξq are phases) that depend on the detailed asteroid
distribution and which satisfy the ensemble average
hcqi ¼ 1. We have again dropped a static term.
As for the “inside the belt” case, we have also checked

Eq. (B9) against the computation and analysis pipeline
described in Sec. III, again with only the minimal changes
required to constrain the objects to lie in the requisite equal-
radius coplanar circular orbits and all have the same mass;
we again find excellent agreement at a wide variety of
parameter points [we varied the same parameters as
discussed in Appendix B 1 below Eq. (B4)]. This provides
further strong validation of the numerical pipeline for
computations involving the general case.

3. Observations on the special case

An harmonic appearing in Eq. (B9) is two orders higher in
themultipole expansion as compared to the same harmonic in
Eq. (B4).Moreover, for the “outside the belt” case inEq. (B9),

ϖ →
r→∞

Ω (i.e., as the detector radius increases larger than
the belt radius, the fundamental frequency approaches the

asteroid orbital period); by contrast, ϖ →
r→0

ω for the “inside
the belt” case in Eq. (B4) (i.e., as the detector orbital radius
decreases inside the belt, the fundamental frequency
approaches the detector orbital period). These observations
imply that the noise from asteroids when the detector is
located outside the asteroid belt is at lower frequency than the
noise when the detector is located inside the asteroid belt.
Also note that if the asteroids were instead exactly

periodically distributed around the orbit, which is obvi-
ously unphysical, we would obtain instead the deterministic
result Xq ¼ NδqmodN;0, where δa;b is the Kronecker delta,
for both the cases of the detectors inside or outside the belt:
there is a parametrically larger acceleration amplitude, by a
factor of ∼

ffiffiffiffi
N

p
, at every N-th harmonic as compared to the

ensemble average of the randomly distributed case, but the
acceleration at all other harmonics is exactly zero owing to
phase cancellations.

APPENDIX C: DISCRETE FOURIER
TRANSFORM CONVENTIONS

Consider a signal in the time domain FðtÞ that is sampled
atN discrete points tn ≡ nΔt where n ¼ 0;…;N − 1 over
a duration T ≡NΔt.
Throughout this paper our conventions for the discrete

Fourier transform (DFT) of this signal are

F̃ðfkÞ ¼
T
N

XN−1

n¼0

FðtnÞeþ2πikn=N ; ðC1Þ

where fk ≡ kΔf ≡ k=T for k ¼ 0;…;N − 1, and where
we defined the DFT frequency spacing Δf ≡ 1=T; the
inverse DFT (IDFT) is then given by

FðtnÞ ¼
1

T

XN−1

k¼0

F̃ðfkÞe−2πikn=N : ðC2Þ

Under these conventions, the standard multiplication–
convolution relationship exists between the time- and
frequency-domains, in the form,

Cn ≡ An · Bn ðC3Þ

⇒ C̃k ¼
1

T

XN−1

j¼0

ÃjB̃ðk−jÞmodN ; ðC4Þ

where we introduced and used the notational shorthand
Xn ≡ XðtnÞ and X̃k ≡ X̃ðfkÞ.
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Both the DFT and IDFT have shift symmetry properties:
Fn ¼ FnþN and F̃k ¼ F̃kþN . Moreover, for a real signal
FðtnÞ ∈ R, we have the following DFT reflection sym-
metry property: F̃�

k ¼ F̃N−k (real Fn).
We define the two-sided power spectral density,

Sð2Þk ½F�≡ Sð2ÞðfkÞ½F�, by

hjFnj2iT ≡ XN−1

k¼0

Δf × Sð2Þk ½F� ¼ 1

T

XN−1

k¼0

Sð2Þk ½F� ðC5Þ

Sð2Þk ½F� ¼ 1

T
jF̃kj2; ðC6Þ

where hXniT ≡ ð1=N ÞPN−1
n¼0 Xn is the average value of

Xn, and where we wrote one factor of ð1=TÞ as Δf in the
first line to make the Riemann sum nature of this result,
which is really just the discrete analog of Parseval’s
theorem, manifest.
Equivalently, we can define the one-sided power spectral

density (PSD), Sk½F�≡ S½F�ðfkÞ, as

Sk½F�≡

8>>><
>>>:

1
T ½jF̃kj2 þ jF̃N−kj2� k ¼ 1;…;

j
N−1
2

k
1
T jF̃0j2 k ¼ 0

1
T jF̃N =2j2 k ¼ N

2
;N even

; ðC7Þ

in terms of which we have

hjFnj2iT ≡ X⌈N−1
2
⌉

k¼0

Δf × Sk ¼
1

T

X⌈N−1
2
⌉

k¼0

Sk: ðC8Þ

Note also that for real Fn, we have Sk½F� ¼ 2
T jF̃kj2 for

k ¼ 1;…; bN−1
2
c by the reflection symmetry property dis-

cussed above.
Whenever we refer to the PSD without qualification as to

whether we mean the one-sided or two-sided version, we
implicitly mean the one-sided version. Note also that the
existence of the Nyquist frequency fNyq: ≡N =ð2TÞ is
clear in these results.
For a monochromatic cosine signal with frequency f ¼

fq ¼ qΔf and amplitude A, FðtnÞ ¼ A cos ð2πqn=N Þ, we
have

F̃k ¼ T
A
2
½δk;q þ δk;ðN−qÞmodN �; ðC9Þ

where δa;b is the Kronecker delta; it follows that

S̃k½F� ¼ T
jAj2
2

δk;q½1þ δq;0 þ δq;N =2�: ðC10Þ

APPENDIX D: A BRIEF PEDAGOGICAL
INTRODUCTION TO WINDOWING

In this Appendix we give a brief pedagogical introduc-
tion to windowing based on the comprehensive discussion
in Ref. [46].
Consider a real, exact cosine signal sðtÞ ¼ s0 cosð2πftÞ

of duration T, sampled N times with cadence Δt, and with
a frequency f ¼ ðnþ xÞΔf where Δf ¼ 1=T is the DFT
frequency spacing, n ∈ f0;…; ⌈ðN − 1Þ=2⌉g is an integer,
and x ∈ ½0; 1Þ is a real number. There are fT ¼ nþ x
periods of the signal in the total duration T.
Therefore, if x ¼ 0, there are an exact integer number of

periods in the signal duration, and it is straightforward to
show, as we did at Eq. (C9), that the DFT of the signal will
return Fourier power at exactly one DFT frequency
between zero frequency and the Nyquist frequency, inclu-
sive: fn ¼ nΔf.
On the other hand, for x ≠ 0, a noninteger number of

periods of the signal is present in the total signal duration;
although the DFT will in this case return the most Fourier
power at the DFT frequencies nearest the true signal
frequency, it is easy to show that Fourier power will appear
at every DFT frequency between zero frequency and the
Nyquist frequency, inclusive. The phenomenon is known as
“spectral leakage.”
Spectral leakage can be understood intuitively in the

following way. Consider a signal sðtÞ in the time domain
(and assume the signal is defined on a time period longer
thanT) that is analyzed into the frequency domain byDFTas
s̃ðfÞ using only a duration T of time-domain data.
Now reconstruct the signal into the time domain from only
those frequency-domain data via the IDFT, as ŝðtÞ. Because
of the IDFT discrete shift symmetry discussed in
Appendix C, when ŝðtÞ is considered on durations longer
than T, it will automatically exhibit a periodicity with
period T. By contrast, a signal that does not have an exact
integer number of periods within a duration T cannot
have periodicity with period T: i.e., sðt0Þ ≠ sðTN Þ. This
mismatch between the imposed periodicity of the IDFT,
ŝðt0Þ ¼ ŝðtN Þ, and the true signal behavior, sðt0Þ ≠ sðTN Þ,
implies that the IDFT-reconstructed signal is forced to
exhibit discontinuities when viewed on timescales longer
than T; see Fig. 6 for an example. Intuitively, this leads to
spectral leakage because the Fourier transform of a dis-
continuity exhibits power at every frequency.
The salient issue that arises as a result of the spectral

leakage phenomenon is that low-power generic (i.e., not at
an exact DFT frequency) signals that appear in the vicinity
(in the frequency domain) of high-power generic signals
can get swamped by the spectral leakage from the higher-
power signal, making their extraction difficult; see lower
panel of Fig. 7. The classical resolution of this problem is to
“window” (or “apodize,” or “taper”) the data: that is, to
multiply the original time-domain data by a continuous
(and usually smooth) function wðtÞ that is symmetric
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wðtÞ ¼ wðT − tÞ, satisfies wðT=2Þ ¼ 1, and typically
satisfies wð0Þ ¼ wðTÞ ¼ 0 [or, at the very least,
decays significantly at the end points: wð0Þ ¼ wðTÞ ≪
wðT=2Þ ¼ 1], before taking the DFT: sðtÞ → s0ðtÞ≡
sðtÞwðtÞ. While there are an infinity of possible choices
for the exact form for wðtÞ, the goal in all cases is the same:
to modify the nature of the spectral leakage by de-
emphasizing the importance of the edges of the signal
duration, so as to minimize the discontinuity effects
discussed above that intuitively give rise to the leakage.
Windowing is a multiplication in the time domain, so it is

a convolution in the frequency domain; cf. Eq. (C4). This
observation allows one to understand the fundamental
trade-off that arises when choosing a window function:
dynamic range vs resolution. Suppose the goal is to
minimize spectral leakage as much as possible: intuitively,
one would guess (correctly) that the appropriate window
function to choose would be one that approaches wðtÞ → 0
at the end points of the duration-T interval as smoothly as
possible, in order to suppress any of the discontinuity

effects discussed above as the intuitive reason for the
leakage. However, a time-domain window function that
approaches the end points very smoothly will, when viewed
in the frequency domain, necessarily contain more fre-
quency components than a time-domain window function
that, e.g., simply goes to zero but with a discontinuous first
derivative at the end points. That is, a more smoothly
tapered window function will be broader and have lower
peak power in the frequency domain than a less smoothly
tapered window function. Because the frequency-domain
representation of the window function gets convolved with
the frequency-domain representation of the true signal to
obtain the frequency-domain representation of the win-
dowed monochromatic signal, the latter will be more
smeared out and have lower peak power when a smoother
window is used as compared to a less smooth window.
Therefore, improved ability to resolve signals of more
disparate power that are not very closely spaced in
frequency (i.e., higher dynamic range) comes at the cost
of impaired ability to resolve signals of similar power that
are closely spaced in frequency (i.e., worse resolution), and
vice versa. These effects are clearly evident in Fig. 7.
In this paper, we utilize throughout a simple window

function consisting of a sum of five exact cosine terms that
respect the reflection symmetry wðtÞ ¼ wðT − tÞ, with
coefficients chosen to zero the window at the end points,
wð0Þ ¼ 0; zero as many of the derivatives as possible at the
end points, wðnÞð0Þ ¼ 0 for n ¼ 1;…; 6 (some identically,
as there would otherwise be insufficiently many free
parameters in the definition below); and maintain the
normalization wðT=2Þ ¼ 1,

wðtÞ ¼
X4
n¼0

an cos

�
2πn

�
t
T
−
1

2

��
; ðD1Þ

with

fa0; a1; a2; a3; a4g ¼
�
35

128
;
7

16
;
7

32
;
1

16
;
1

128

	
: ðD2Þ

This simplifies to

wðtÞ ¼ sin8 ðπt=TÞ: ðD3Þ
Because windowing is a convolution in the frequency

domain, the peak DFT amplitude of a windowed mono-
chromatic signal that lies at an exact DFT frequency would
simply be the DFT amplitude of the unwindowed signal
multiplied by the coefficient of the zero-frequency compo-
nent of thewindow function; i.e., a factor of a0 ≈ 0.28 in the
DFT, or a factor of ða0Þ2 ≈ 7.5 × 10−2 in the one-sided PSD.
To recover the correct peak power, we could thus renorm-
alize the PSD of the windowed result by ða0Þ−2 ≈ 13; see
the blue dot-dashed lines in Fig. 7. Also note that we
have

R
T
0 wðtÞdt ¼ a0 ¼ 35=128≈ 0.28, and 1

T

R
T
0 ½wðtÞ�2 ¼

a0 þ ð1=2ÞP4
i¼1 a

2
i ¼ 6435=32768 ≈ 0.2.

FIG. 6. TOP PANEL: An example of the discontinuity in the time-
domain that appears in an IDFT-reconstructed signal when the
original signal (solid blue)—here a cosine with frequency f ¼
5=ð2TÞ defined on the interval ½0; 2T]—is analyzed by DFT over
a duration—here, ½0; T�—that does not contain an integer number
of full periods and is then reconstructed into the time domain by
IDFT (dashed red) and examined outside the interval ½0; T�
[formally, by allowing n in Eq. (C2) to run over integers outside
the range n ¼ 0;…;N − 1]. It is clear that the original and
reconstructed signals agree on the interval ½0; T� over which the
DFTwas performed, but that they disagree on the next duration-T
interval. BOTTOM PANEL: Displayed on a log-linear scale in the
frequency domain, the one-sided PSD of the signal considered
over the temporal duration ½0; T� (black dots; grey solid line joins
points to guide the eye) clearly shows spectral leakage. This
leakage can be thought of as arising from the discontinuity in the
reconstructed signal at time T. For comparison, we also show the
PSD of the original signal considered over the temporal duration
½0; 2T� (green cross; values at all other frequencies are exactly
zero), on which it is exactly periodic; this does not display any
spectral leakage, as expected.
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FIG. 7. In both panels, the red line shows the one-sided Fourier PSD of an unwindowed signal; the green dashed line shows the PSD of
the windowed signal (see text); the blue dash-dot line shows the PSD of the windowed signal renormalized by a factor of ða0Þ−2 [see
text] to obtain the correct expected peak PSD values at the injected frequencies; and the fuchsia crosses show the expected PSD values
for the true signal at the true frequencies given the true signal amplitudes and the signal duration T. Note that the DFT, and hence PSD, is
only defined at discrete frequency values fk ¼ kΔf ¼ k=T for k ¼ 0;…;N − 1 (marked with solid dots on all lines); for clarity, we
have joined these points with straight lines in these plots. TOP PANEL: The signal is a sum of three exact cosine terms with vastly different
amplitudes, with the frequencies of the three terms all being exact multiples ofΔf. As indicated by vertical gray dotted lines, the spacing
between successive frequency components is 10 × Δf. Here, the window function shows no advantages: it smears out the Fourier power
from the expected frequencies to neighboring frequencies, lowering peak power and decreasing resolving power for signals of similar
amplitude that lie within the width of the Fourier representation of the window function. The renormalized windowed PSD recovers the
expected signal power at the expected signal frequencies; see inset for detail. BOTTOM PANEL: The same signal as in the top panel, with
the exception that all three of the signal components have been shifted up in frequency by a (common) irrational fraction of the DFT
frequency spacing Δf so that they all lie between successive DFT frequencies, as shown by the vertical gray dotted lines. Here, the
spectral leakage from the dominant term largely masks the presence of the other two signal components in the unwindowed PSD. A
feature corresponding to the middle signal component is noticeable (see upper inset); it is however distorted, as the signal power from
that component is similar in magnitude to the leakage power from the dominant component in the vicinity of the frequency of the middle
component. On the other hand, the windowed result clearly reveals the presence of all three signal components without any of these
issues, albeit at the expense of smearing out the Fourier power from the expected frequencies to neighboring frequencies, and reducing
peak power. This resolution–dynamic-range trade-off is a generic feature of windowing, as discussed in the text. As shown in the lower
inset axes, the renormalized windowed PSD again recovers quite well the expected signal power, and importantly does a better job at
locating the expected signal frequencies as compared to the unwindowed result; cf. the unwindowed PSD peak for the highest-power
component is shifted from the injected frequency.
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