
On Removing Algorithmic Priority Inversion from
Mission-critical Machine Inference Pipelines

Shengzhong Liu†, Shuochao Yao†, Xinzhe Fu‡, Rohan Tabish†, Simon Yu†, Ayoosh Bansal†,
Heechul Yun§, Lui Sha†, Tarek Abdelzaher†

†University of Illinois at Urbana-Champaign, †Massachusetts Institute of Technology, §University of Kansas
Email: {sl29, syao9}@illinois.edu, xinzhe@mit.edu, {rtabish, jundayu2, ayooshb2}@illinois.edu,

heechul.yun@ku.edu, {lrs, zaher}@illinois.edu

Abstract—The paper discusses algorithmic priority inversion
in mission-critical machine inference pipelines used in modern
neural-network-based cyber-physical applications, and develops
a scheduling solution to mitigate its effect. In general, priority
inversion occurs in real-time systems when computations that
are of lower priority are performed together with or ahead of
those that are of higher priority.1 In current machine intelligence
software, significant priority inversion occurs on the path from
perception to decision-making, where the execution of underlying
neural network algorithms does not differentiate between critical
and less critical data. We describe a scheduling framework
to resolve this problem, and demonstrate that it improves the
system’s ability to react to critical inputs, while at the same time
reducing platform cost.

Index Terms—Algorithmic Priority Inversion, Cyber-Physical
Systems (CPS), Machine Inference.

I. INTRODUCTION

This paper introduces the notion of algorithmic priority
inversion that plagues modern mission-critical machine infer-
ence pipelines. We describe an initial solution towards remov-
ing such priority inversion from neural-network-based systems
to support real-time intelligent cyber-physical applications.
As a running application, we consider autonomous driving,
although we expect the design principles described in this
paper to remain applicable in other contexts.

Importantly, to set the scope, we distinguish between safety-
critical and mission-critical design requirements of cyber-
physical systems. A safety-critical requirement might be to
guarantee collision-avoidance. A mission-critical requirement
might be to do valid path planning, taking into account an-
ticipated future mobility of other agents. On the surface there
may appear to be overlap; the computed path must still avoid
running into other objects. The distinguishing property is that
the mission-critical subsystem has lower reliability require-
ments. Hence, it may speculatively use less certain data (e.g.,
an anticipated future trajectory of neighboring objects), and
is allowed to occasionally err. The safety-critical subsystem
should be able to override and restore safety when needed. For
example, if the mission-critical subsystem mispredicts another

1Technically, there are two competing requirements that inform task priori-
tization, namely, criticality and urgency. Inversion occurs if priorities derived
from these requirements are not obeyed.

object’s future path, leading to a possible collision, the safety-
critical subsystem should eventually detect the imminent threat
and perform emergency collision-avoidance.

The application of artificial intelligence to cyber-physical
systems poses different challenges in the different subsystems.
One challenge is to continue to meet safety-critical design re-
quirements by the safety-critical subsystem. General machine
learning solutions that offer such strong safety assurances
are notoriously difficult in practice and are out of scope
for this paper. In fact, for the purposes of this paper, we
can imagine the safety-critical subsystem to be AI-free (e.g.,
reliable ranging sensors that detect dangerous proximity of
other objects and invoke emergency intervention).

This paper, instead, focuses on the mission-critical subsys-
tem. The challenge addressed is to optimize the schedulability
of mission-critical real-time perception tasks in this subsystem
to remove priority inversion. Perception is one of the key
components that enable system autonomy. It is also a major
efficiency bottleneck that accounts for a considerable fraction
of resource consumption [1], [2]. In general, priority inversion
occurs in real-time systems when computations that are less
critical (or that have longer deadlines) are performed together
with or ahead of those that are more critical (or that have
shorter deadlines). Current neural-network-based machine in-
telligence software suffers from a significant form of priority
inversion on the path from perception to decision-making,
because current algorithms process input data sequentially,
as opposed to processing important parts of a scene first.
This limitation may result in inferior system responsiveness
to critical events, or (equivalently) increased cost of hardware
to meet mission needs. By resolving this problem, we sig-
nificantly improve system ability to react to critical inputs at
a lower platform cost. The work applies to intelligent cyber-
physical systems that perceive their environment in real time
(using neural networks), such as self-driving vehicles [3],
autonomous delivery drones [4], military defense systems [5],
and socially-assistive robotics [6].

To understand the present gap, observe that current
perception-related neural networks perform many layers of
manipulation of large multidimensional matrices (called ten-
sors). Yet, the current state of the art in designing the underly-
ing neural network libraries (e.g., TensorFlow) is reminiscent



of what used to be called the cyclic executive [7] in early
operating system literature. Cyclic executives, in contrast to
priority-based real-time scheduling [8], processed all pieces
of incoming computation at the same priority and quality
(e.g., as nested loops). Similarly, given incoming data frames
(e.g., multi-color images or 3D LiDAR point clouds), modern
neural network algorithms process all data rows and columns
at the same priority and quality, with no regard to cues from
the physical environment that impact time-constraints and
criticality of different parts of the data scene.

This flat processing is in sharp contrast to the way humans
process information. Humans have an innate ability to not only
perceive their environment, but also make critical and timely
attention allocation decisions that help us expend limited
cognitive resources where they are most needed in a critical
dynamic situation. For example, given a complex scene, such
as a freeway where one of the nearby vehicles appears to have
temporarily lost control of steering, human drivers are good at
understanding what to focus on to plan a valid path forward
amidst the resulting confusion.2 This capability is substantially
different from, say, attention mechanisms used in machine
inference [9], [10], where attention is related to logical com-
putational weights assigned to different inputs as opposed to
prioritized allocation of actual processing resources.

The lack of prioritized allocation of processing resources to
different parts of an input data stream (e.g., from a camera)
creates what we henceforth call algorithmic priority inversion.
In the above example, all pixels of the entire freeway scene
are processed by the same algorithm at the same priority, as
opposed to giving the runaway vehicle more attention while
possibly temporarily ignoring other less important elements of
the scene (e.g., far-away objects).

We develop an architecture for separating input data (to
be processed by the neural-network) into regions of different
criticality, and assigning different deadline-driven priorities to
the processing of these regions. We then introduce a utility-
optimizing scheduling algorithm for the resulting real-time
workload to meet deadlines while maximizing a notion of
global utility (to the mission). We implement the architec-
ture on an NVIDIA Jetson AGX Xavier platform, and do a
performance evaluation on the platform using real video traces
collected from autonomous vehicles. The results show that the
new algorithms significantly improve the average quality of
machine inference, while nearly eliminating deadline misses,
compared a set of state-of-the-art baselines executed on the
same hardware under the same frame rate.

The rest of this paper is organized as follows. Section II
introduces related work. Section III is a conceptual overview of
the proposed architecture. Section IV describes the scheduling
algorithms developed. An evaluation of the system using real
video traces and representative autonomous driving hardware

2Note that, by planning a path that continues to make forward progress, we
are talking about a mission-critical function (assuming the mission involves
making progress towards a destination). In contrast, a safety-critical override
might simply stop the vehicle to avoid a collision. Clearly stopping the vehicle
will stop progress towards mission objectives, but may ensure safety.

is presented in Section VI. The paper concludes with Sec-
tion VII.

II. RELATED WORK

The work is motivated by the large expansion of modern
cyber-physical systems (CPS) research into areas of machine
intelligence [11]–[13] and autonomy to enable progressively
broader categories of tomorrow’s mission-critical applica-
tions [14]. Current machine learning software has been very
successful at producing run-time inference algorithms that
approach or exceed capabilities of human perception [15]. Of
particular promise have been recent advances in neural net-
works [16], [17]. However, mainstream deep neural network
inference algorithms are not designed explicitly with timing
and criticality constraints of cyber-physical systems in mind,
generating a need to refactor modern neural network software.

In the broader neural network research literature, much
work was done on model compression and acceleration [18]–
[20]. Examples include parameter quantization [21], edge
pruning [22], node pruning [23], and dimensionality reduction
(e.g., factorization [24], sparsification [25], low-rank projec-
tion [26], or domain transform [27]), as well as combinations
thereof [22]. We complement that work by introducing the
notion of prioritization into the AI workflow. We exploit
physical aspects of the platform and the application to enable
additional reductions in cost while improving predictability,
and timeliness. We expect that this improvement will signif-
icantly alter the price-capability trade-off of intelligent real-
time embedded systems, making a new range of applications
possible with increased autonomy at a lower cost.

Recent efforts on AI-empowered real-time systems ad-
dressed CPU/GPU scheduling for pipelined machine infer-
ence [28]–[34], machine-learning library optimization [35],
resource and energy management [36]–[38], and communi-
cation and collaboration protocol design [39]–[45]. Several
novel cyber-physical applications with deep learning were
introduced [46]–[51]. Autonomous driving emerged as a flag-
ship application motivating AI-empowered real-time system
design [52]. Extensive hardware and software evaluations have
been performed to understand its real time performance [1],
[53]–[55]. Recent papers refactored deep neural networks
to satisfy dynamic execution-time constraints during infer-
ence [35], [56]–[59]. For example, Bateni et al. [56] applied
a combination of different layer-wise network approximation
techniques to meet target deadlines. Lee et al. [58] introduced
dynamic subnetwork construction for DNNs (where the sub-
network with best performance that meets time constraints is
selected at runtime). Heo et al. [59] proposed multi-path neural
networks for real-time object detection systems. Similarly,
they dynamically change the DNN’s execution path to meet
deadlines. However, all these efforts are limited to configuring
neural network execution for frame by frame processing.
In contrast, we break-up individual frames into regions of
different degree of criticality and process such regions in
priority order, as opposed to the strict frame arrival (FIFO)
order to mitigate algorithmic priority inversion.



Fig. 1. Real-time Machine Inference Pipeline Architecture.

III. SYSTEM ARCHITECTURE

Consider an intelligent cyber-physical system equipped with
a camera that observes its physical environment, a neural
network that processes the observations, and a control unit
that must react in real time. As mentioned earlier, we fo-
cus on scheduling of perception tasks in the mission-critical
subsystem. For example, the neural network might identify
the types of objects present in the field of view so that
subsequent path planning can be done accordingly. Figure 1
contrasts the traditional design of machine inference pipelines
in such systems to the proposed architecture. In the traditional
design, input data frames captured by sensors are processed
sequentially by the neural network. Network execution is
typically non-preemptive. It considers one frame at a time,
producing an output on each frame before the next frame is
handled.

Unfortunately, the multi-dimensional data frames captured
by modern sensors (e.g., colored camera images and 3D
LiDAR point clouds) carry information of different degrees
of criticality in every frame.3 Data of different degrees of crit-
icality may require a different processing latency. For example,
processing parts of the image that represent far away objects
does not need to happen every frame, whereas processing
nearby objects, such as a vehicle in front, needs to be done
immediately because the nature of nearby objects (e.g., car
versus pedestrian) has impact on immediate path planning.
To accommodate these differences in input data criticality, we
propose a novel mission-critical subsystem architecture that
breaks the path from perception to decision-making into four
components:
• The data slicing and priority allocation module: This

module breaks up newly arriving frames into smaller
regions of different degrees of criticalty based on simple
heuristics (e.g., closer objects need to be attended to first).

3By different degrees of criticality, we are referring to different levels
of importance within the mission-critical subsystem. For example, far-away
objects are less relevant to path planning than nearby objects. We are not
refering to a distinction between safety-critical and mission-critical data.

• The deduplication module: This module drops redundant
regions (i.e., ones that refer to the same physical objects)
across successive arriving frames.

• The “anytime” neural network: This neural network
implements an imprecise computation model that allows
execution to be preempted, while yielding partial utility
from the partially completed computation. The approach
allows newly arriving critical data to preempt the pro-
cessing of less critical data from older frames.

• The batching and utility maximization module: This
module sits between the data slicing and deduplication
modules on one end and the neural network on the other.
With data regions broken by priority, it decides which
regions to pass to the neural network for processing. Since
multiple regions may be queued for processing, it also
decides how best to benefit from batching (that improves
processing efficiency). A utility maximizing algorithm
controls the produced schedule to maximize a quality
metric.

Since our purpose is to mitigate priority inversion on the
path from perception to decision-making, we shall refer to
the subsystem shown in Figure 1 as the observer. The goal is
to allow the observer to respond to more urgent stimuli ahead
of less urgent ones. The main contribution of this paper lies
in the design of the batching and utility maximization module
that maximizes the quality of inference while meeting response
deadlines. For completeness, below we first describe all of the
above components of the observer, respectively. We then detail
the batching and utility maximization algorithm used.

A. Data Slicing and Priority Allocation

This module breaks up input data frames into regions that
require different degrees of attention. Objects with a smaller
time-to-collision [60] should receive attention more urgently.
We further assume that the observer is equipped with a ranging
sensor. For example, in autonomous driving systems, a LiDAR
sensor measures distances between the vehicle and other ob-
jects. LiDAR point cloud based object localization techniques



have been proposed in recent literature [61]. They provide a
fast (i.e., over 200 Hz) and accurate ranging and object local-
ization capability. The computed object locations can then be
projected onto the image obtained from the camera, allowing
the extraction of regions (subareas of the image) that represent
these localized objects, sorted by distance from the observer.
The extraction of such subareas is the main function of the data
slicing module. In this paper, for simplicity, we restrict those
subareas to rectangular regions. We call them bounding boxes.
The other function of the module is prioritization (of bounding
boxes) by time-to-collision, given the trajectory of the observer
and the location of the object. Computing the time-to-collision
is a well-studied topic and is not our contribution [60]. We list
it as one of our future directions to integrate more complex
and practical object priority designs into our framework.

B. Deduplication

The function of the deduplication module is very simple. It
elimiates redundant bounding boxes. Since the same objects
will generally persist across many LiDAR and camera frames,
the same bounding boxes will be identified in multiple frames.
The set of bounding boxes pertaining to the same object in
different frames is called a tubelet. In real-time systems, in
general, the best information is the most recent. Thus, only
the most recent bounding box in a tubelet needs to be acted
on. Boxes with significant location overlap from frame to
frame are considered redundant. The deduplication module
identifies boxes with large overlap and stores the most recent
box only. For efficiency reasons described later, we quantize
the used bounding box sizes. The deduplication module uses
the same box size for the same object throughout the entire
tubelet. If the underlying object changes location enough
for the bounding box to jump to another size category, the
overlap between the two boxes (of different size) will be
small enough that the module will fail to recognize them as
the same object. This creates a minor loss of deduplication
efficiency but simplifies the forecasting of execution time (used
by the scheduler) associated with processing what the module
recognizes as the same object (since the size of its bounding
box does not change).

Note that, in a traditional neural network processing
pipeline, each frame is processed in its entirety before the
next one arrives. Thus, no deduplication module is used. The
option to add this time-saving module in our architecture arises
because our pipeline can postpone processing of some objects
until a later time. By that time, updated images of the same
object may arrive. This enables savings by looking at the latest
image only, when the neural network eventually gets around
to processing the object.

C. The Anytime Neural Network

A perfect anytime algorithm is one that can be terminated
at any point, yielding utility that monotonically increases
with the amount of processing performed. Our neural net-
work approximates that model. Specifically, it implements an
imprecise computation model [64]–[66] that provides usable

and approximate partial results. In an imprecise computation
model, processing consists of two parts: a mandatory part
and an optional part. The optional part, or a portion thereof,
can be skipped to conserve resources. When the optional part
is skipped, the task is called to produce an imprecise (i.e.,
approximate) result.

Deep neural networks (e.g., image recognition models [62])
are a concatenation of a large number of layers that can be
divided into several stages, as we show in Figure 2. Ordinarily,
an output layer is used at the end to convert features computed
by earlier layers into the output value (e.g., an object classifica-
tion). Prior work has shown, however, that other output layers
can be forked off of intermediate stages producing meaningful
albeit imprecise outputs based on features computed up to
that point [67]. Figure 3 shows the accuracy of ResNet-
based classification applied to the ImageNet [63] dataset at
intermediate stages of neural network processing. It shows that
neural network inference can be divided into a mandatory part
and optional parts. The quality of outputs increases when the
network executes more optional parts. Thus, network execution
can be aborted (e.g., in favor of a new more important task)
short of executing all its optional parts, yielding partial utility
as described in recent work [67].

An essential component in this model is the choice of task
utility, which lays the foundation for time assignment to the
processing of different objects/tasks. In this paper, we set
utility (from the task’s output) proportionally to confidence
in result; a low confidence output is less useful than a high
confidence output. The proportionality factor itself can be
set depending on task criticality, such that uncertainty in
output of more critical tasks is penalized more. We adopt
the algorithm proposed by Yao et al. in RDeepSense [68]
to estimate expected confidence in outputs of future neural
network stages. This allows us to compute the expected utility
of each stage before it is executed.

D. Batching and Utility Maximization

This module decides the schedule of processing of all
regions identified by the data slicing and prioritization module
and that pass de-duplication. As discussed above, utilizing
LiDAR point clouds to efficiently localize objects in each
frame [61], [69], the data slicing module computes bounding
boxes for objects detected. These boxes constitute regions
that require attention, each assigned a degree of criticality.
The deduplication module groups boxes related to the same
object into a tubelet. Only the latest box in the tubelet is kept.
The remaining boxes need not be processed. Each physical
object gives rise to a separate neural network task to be
scheduled. The input of that task is the bounding box for the
corresponding object (cropped from the full scene). Below, we
describe how the batching and utility maximization module
schedules the tasks that process the different bounding boxes.

IV. THE SCHEDULING PROBLEM

In this section, we describe our task execution model and
formulate the scheduling problem studied in this paper. We
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Fig. 3. ResNet stage accuracy change on ImageNet [63] dataset.

then derive a near-optimal solution.

A. The Execution Model

As alluded to earlier, the scheduled tasks in our system
constitute the execution of multi-layer deep neural networks
(e.g., ResNet [62], as shown in Figure 2), each processing
a different input data region (a bounding box). As shown in
Figure 2, tasks are broken into stages. Each stage includes
multiple neural network layers. The unit of scheduling is a
single stage. Neural network execution of a single stage is non-
preemptive, but tasks can be preempted on stage boundaries.
A task arrives when a new object is detected by the ranging
sensor (e.g., LiDAR) giving rise to a corresponding new
bounding box in the camera scene. Let the arrival time of task
τi be denoted by ai. A deadline di > ai, is assigned by the
data slicing and priority assignment module denoting the time
by which the task must be processed (e.g., the corresponding
object classified). The data slicing and priority assignment
module is invoked at frame arrival time. Therefore, both ai
and di are a multiple of frame inter-arrival time, H . Since
new objects can appear in the field of view at any time, we do
not pose periodicity assumptions on object arrival times and
deadlines. No task can be executed after its deadline. Future
object sizes, arrival times, and deadlines are unknown, which
makes the scheduling problem an online decision problem. A
combination of two aspects make this real-time scheduling
problem interesting:

1) Batching: Stages of the neural networks are executed
on a GPU. We are particularly interested in lower-priced
GPUs. While such GPUs feature parallel execution, one way
of exploiting their computation capabilities is to execute the
same kernel on all GPU cores. This means that we can run
different tasks concurrently on the GPU as long as we run
the same kernel on all GPU cores. We call the assembly of

TABLE I
TABLE OF NOTATIONS.

Symbol Meaning

H Camera sampling period.
h Time index within a period.
δ Minimum time unit. All times are multiples of δ.
i Object index.
j Neural network stage index.
P Batch of tasks.
S Available image size set, |S| = K.
k Image size index, which refers to the k-th image size in S.
b Batch size.
t Index for scheduling period, counted in multiples of H .
τi The task related to the i-th object.
si Image size for the i-th object.
li Number of execution stages for the i-th object.

ai, di Arrival time and deadline for the i-th object.
e
(k)
j,b Exec. time of stage j when batching b images of size k.
L(k) Neural network stage number for image size k.
Li Available neural network stage number of tasks τi.
L Max stage number among all image sizes.
E Ratio between the max stage time and the min stage time.
B(k) Batching constraint of image size k.
B Max batch size among all image sizes.
Ri,j Aggregated utility for executing the i-th task for j stages.
T (t) Available task set at t-th scheduling period.

such concurrently executable task sets, batching. Running the
same kernel on all GPU cores means that we can only batch
tasks if both of the following applies: (i) they are executing
the same neural network stage and (ii) they run on the same
size inputs. The latter condition is because the processing of
different bounding box sizes requires instantiating different
GPU kernels. Batching that satisfies the above two conditions
ensures that the same kernel is executed on all cores. Batching
is advantageous because it allows us to better utilitize the
GPU, so we want to take advantage of it in scheduling. To
increase batching opportunities, we limit the size of possible
bounding boxes used by the data slicing module to a finite
set of of options. For a given bounding box size k, at most
B(k) tasks (processing inputs) can be batched together before
overloading GPU capacity. We call it the batching limit for
the corresponding input size.

2) Imprecise Computations: Let the number of stages in
the neural network for task τi be denoted by Li (normally,
this is the same number of all tasks, but it may depend on the
size on the input object). We call the first stage mandatory



and call the remaining stages optional. Following a recently
developed neural network implementation as imprecise com-
putations [70], tasks are written such that they can return
an object classification result once the mandatory stage is
executed. This result then improves with the execution of
each optional stage. Earlier work presented an approach to
estimate the expected confidence in correctness of results
of future stages, ahead of executing these stages [68]. This
estimation offers a basis for assessing utility of future task
stage execution. We denote the utility of task τi after executing
j ≤ Li stages by Ri,j , where Ri,j is set proportionately to the
predicted confidence in correctness at the conclusion of stage
j, computed as proposed by Yao et al. [68]. Note that, the
expected utility can be different among tasks (depending in
part on input size), but it is computable, non-decreasing, and
concave with respect to the network stage [68].

We denote by T (t) the set of current tasks at scheduling
period t. A task, τi, is called current at period t, if ai ≤ t < di,
and the task has not yet completed its last stage, Li. For task τi
of input size, k, the execution time of the j-th stage is denoted
by e

(k)
j,b , where b is the number of tasks that are batched

together during the execution of that stage. Since batched tasks
execute concurrently, in principle, e(k)j,b should not depend on
b. In reality, however, there is a data copying cost in and out
of the GPU that depends on the total number of batched tasks,
leading to a slight increase in concurrent execution time with
batching. Later in the evaluation section, we profile this effect.
With the above description of our execution model, we are
now ready to formulate the new scheduling problem, which
we call the Batched Online Object-recognition Scheduling with
Imprecise Computation (BOOSIC) problem, below.

B. Problem Formulation

The problem addressed in this paper is simply to decide
on the number of stages li ≤ Li to execute for each task τi
and to schedule the batched execution of those task stages
on the GPU such that the total utility,

∑
iRi,li , of executed

tasks is maximized, and batching constraints are met (i.e.,
all used GPU cores execute the same kernel at any given
time, and that the batching limit is not exceeded). While
the deadlines do not appear as explicit constraints in this
formulation, the deadline miss ratio can be made arbitrarily
small by associating deadline misses with an arbitrary large
negative utility. Equivalently, one can raise the utility of timely
stage execution by the same offset (and set the utility from
missing a deadline to zero). In summary:

The BOOSIC problem: With online task arrivals, the ob-
jective of the BOOSIC problem is to derive a schedule x to
maximize the aggregate system utility. The schedule decides
three outputs: task stage execution order on the GPU, task
execution depth (i.e., number of stages to execute of each task),
and task batching (which tasks to execute together). Specifi-
cally, for each scheduling period t, we use xt(i, j) ∈ {0, 1}
as an indicator variable to denote whether the j-th stage of
task τi is executed. Besides, we use P to denote a batch of

tasks, where |P | denotes the number of tasks being batched.
The mathematical formulation of the optimization problem is:

BOOSIC : max
x

∑
t

∑
i

xt(i, j) (Ri,j −Ri,j−1)

s.t. xt(i, j) ∈ {0, 1},
T∑

t=1

xt(i, j) ≤ 1, ∀i, j

(1)
xt(i, j) = 0, ∀t /∈ [ai, di), ∀i, j (2)
t−1∑
t′=1

xt′(i, j − 1)− xt(i, j) ≥ 0,

∀i, j > 1, t > 1 (3)
si = si′ = k, li = li′ , |P | ≤ bk,
∀i ∈ P, i′ ∈ P, ∃k ∈ S (4)

The following set of constraints have to be satisfied: (1)
Each network stage for each task can only be executed once;
(2) No task can be executed after its deadline; (3) The
execution of different stages of the same task must satisfy their
precedence constraints; (4) Only tasks with the same (image
size, network stage) can be batched, and the number of batched
tasks can not exceed the batching constraint of their image
size.

Only one batch (kernel) can be executed on the GPU at any
time. However, multiple batches can be executed sequentially
in one scheduling period, as long as the sum of their execution
times does not exceed the period length, H .

Next, we present an online scheduling framework for rea-
soning about our BOOSIC problem, and propose a set of
scheduling algorithms that offer different trade-off between
optimality and execution overhead.

C. An Online Scheduling Framework

We derive an optimal dynamic-programming-based solu-
tion for the BOOSIC scheduling problem and express its
competitive ratio relative to a clairvoyant scheduler (that has
full knowledge of all future task arrivals). We then derive a
more efficient greedy algorithm that approximates the dynamic
programming schedule. We define the clairvoyant scheduling
problem as follows:

Definition 1 (The Clairvoyant Scheduling Problem). Given
information of all future tasks that will arrive, the clairvoyant
scheduling problem seeks to maximize the aggregate utility
obtained from (stages of) tasks that are completed before their
deadlines. The maximum aggregate utility is defined as OPT .

With no knowledge of the future, an online scheduling
algorithm that achieves a competitive ratio of c (i.e., a utility
greater than or equal to 1

c · OPT ) is called c-competitive. A
lower bound on the competitive ratio for online scheduling
algorithms was shown to be 1.618 [71].

Our scheduler is invoked upon frame arrivals, which is once
every H units of time. We thus call H the scheduling period.



We assume that all task stage execution times are multiples of
some basic time unit, thereby allowing ourselves us to express
H by an integer value (i.e., an integer multiple of the basic
time unit δ). We further call the problem of scheduling current
tasks within the period between successive frame arrivals, the
local scheduling problem:

Definition 2 (The Local BOOSIC Scheduling Problem). Given
the set of current tasks, T (t), within scheduling period, t, the
local BOOSIC scheduling problem seeks to maximize the total
utility gained within this scheduling period only.

We proceed to show that an online scheduling algorithm
that optimally solves the local scheduling problem within
each period will have a good competitive ratio. Let L be the
maximum number of stages in any task, and let B be the
maximum batching size:

Theorem 1. If during each scheduling period, the local
BOOSIC scheduling problem for that period is solved op-
timally, then the resulting online scheduling algorithm is
min{2+L, 2B+1}-competitive (with respect to a clairvoyant
algorithm).

Proof. The proof is provided in Appendix A.

Corollary 1. If each task is only one stage long, and if
the online scheduling algorithm solved the local BOOSIC
scheduling problem in each scheduling period optimally, then
the online scheduling algorithm is 3-competitive (with respect
to a clairvoyant algorithm).

Proof. This result trivially follows by substituting with L = 1
in the result of Theorem 1.

D. Local Scheduling Algorithms

It remains to demonstrate how to solve the local BOOSIC
scheduling problem optimally. In this section, we propose two
algorithms to solve this scheduling problem. The first is a
dynamic programming-based algorithm that optimally solves
it but may have a higher computational overhead. The second
is a greedy algorithm that is computationally efficient but may
not optimally solve the problem.

1) Local Dynamic Programming Scheduling Algorithm:
The resource being scheduled is the GPU. Since we only
consider batching together on the GPU tasks that execute the
same kernel (i.e., same stage on the same size input), we need
to partition the scheduling interval, H , into sub-intervals where
the above constraint is met. The challenge is to find an optimal
partitioning. This question is broken into three steps:
• Step 1: Given an amount of time, Tj,k ≤ H , what is

the maximum utility attainable by scheduling the same
stage, j, of tasks that process an input of size k? The
answer here simply depends on the maximum number
of tasks that we can batch during Tj,k without violating
the batching limit. If the time allows for more than one
batch, dynamic programming is used to optimally size the
batches. Let the maximum attainable utility thus found be
denoted by U∗j,k.

• Step 2: Given an amount of time, Tk ≤ H , what is the
maximum utility attainable by scheduling (any number
of stages of) tasks that process an input of size k? Let
us call this maximum utility U∗k . Dynamic programming
is used to find the best way to break interval Tk into
non-overlapping intervals Tj,k, for which the total sum
of utilities, U∗j,k, is maximum.

• Step 3: Given the scheduling interval, H , what is the
maximum utility attainable by scheduling tasks of dif-
ferent input sizes? Let us call this maximum utility U∗.
Dynamic programming is used to find the best way to
break interval H into non-overlapping intervals Tk, for
which the total sum of utilities, U∗k , is maximum.

The resulting utility, U∗, as well as the corresponding break-
down of the scheduling interval constitute the optimal solution.
In essence, the solution breaks down the overall utility max-
imization problem into a utility maximization problem over
time sub-intervals, where tasks process only a given input size.
These sub-intervals are in turn broken into sub-intervals that
process the same stage (and input size). The intuition why
this division works is because the sub-intervals in question do
not overlap. We pose an order preserving assumption on task
marginal utilities with the same image size.

Assumption 1 (Order Preserving Assumption on Marginal
Utility). For two tasks τi1 and τi2 with the same size, if for
one neural network stage j, we have Ri1,j−Ri1,j−1 ≥ Ri2,j−
Ri2,j−1, then it also holds Ri1,j+1−Ri1,j ≥ Ri2,j+1−Ri2,j .

Thus, the choice of best subset of tasks to execute remains
the same regardless of which stage is considered. Below, we
describe the algorithm in more detail.

Step 1: For each object size k and stage j, we can use
a dynamic programming algorithm to decide the maximum
number of tasks M that can execute stage j in time Tj,k ≤ H .
Time Tj,k is changed between 0 and H . Observe that this
computation can be done offline. The details are shown in
Algorithm 1. (To simplify the notations, we ignore the object
size and stage information here.) With the optimal number,
M , computed for each, Tj,k, the corresponding utility, U∗j,k, is
simply the sum of utilities of the M highest-utility tasks that
are ready to execute stage j on an input of size k.

Step 2: We solve this problem by a two-dimensional
dynamic programming, where the two dimensions are the
considered network stages and the time respectively. Given
a time budget Tk, (for 0 ≤ Tk ≤ H), Step 1 (above) already
computed the optimal utility from assigning that time to only
one stage. The recursive (induction) step takes as input the
optimal utility from assigning some fraction of Tk to the first
j − 1 stages and the remainder to stage j, and computes the
best possible sum of the two, for each Tk. Once all stages are
considered, the result is the optimal utility, U∗k, from running
tasks of input size k for a period Tk. The details are explained
in Algorithm 2.

Step 3: Similarly to Step 2, we perform a standard dynamic
programming procedure to decide the optimal time partitioning
among tasks processing different input sizes. The details of this



Algorithm 1: Batching
Input: Image size index k, stage j, execution time eb when

batching b images together, batching constraint B,
period H .

Output: Maximum achievable tasks M(h), and optimal
batch sequence P (h), ∀h ≤ H .

1 M(h) = 0, P (h) = ∅, ∀0 ≤ h ≤ H ;
2 for b = 1, . . . , B do
3 if b > M(eb) then
4 M(eb) := b, P (eb) := {(k, j, b)};
5 end
6 end
7 for h = 2, . . . , H do
8 h′ = arg max0≤h′≤h M(h′) +M(h− h′) ;
9 M(h) := M(h′) +M(h− h′) ;

10 P (h) := P (h′) ∪ P (h− h′) ;
11 end
12 return M,P .

Algorithm 2: Stage Assignment.
Input: Maximum tasks M , optimal batch sequence P ,

available task set Tj for each stage j, stage count L,
period H .

Output: Maximum achievable utilities UOPT , and optimal
batch sequence POPT , ∀h ≤ H .

1 UOPT (j, h) = 0, POPT (j, h) = ∅, ∀j, h ;
2 Transitted object buffer T (j, h) = ∅, ∀j, h ;
3 for j = 1, . . . , L do
4 for h = 1, . . . , H do
5 if j = 1 then
6 n := min(M(j, h), |Tj |);
7 T (j, h) := n tasks with max utility in Tj ;
8 UOPT (j, h) := total utility of T (j, h);
9 POPT (j, h) := P (j, h);

10 end
11 else
12 h′ :=

arg maxh′≤h UOPT (j − 1, h′) + Ũ(j, h− h′),
where Ũ(j, h− h′) := max utility achievable
with Tj ∪ T (j − 1, h′) in time h− h′;

13 T (j, h) := executed tasks in Ũ(j, h− h′) ;
14 UOPT (j, h) := UOPT (j − 1, h′) + Ũ(j, h− h′);
15 POPT (j, h) := POPT (j − 1, h′) ∪ P (j, h);
16 end
17 end
18 end
19 return UOPT (L, h), POPT (L, h), ∀h.

procedure, along with the integrated local dynamic program-
ming scheduling algorithm is presented in Algorithm 3. With
this result computed, the optimal schedule is complete.

The optimality of Algorithm 3 follows from the optimality
of dynamic programming. Hence, the competitive ratio of the
dynamic programming scheduling algorithm is 3 for single-
stage task scheduling and min{L + 2, 2B + 1} for multi-
stage task scheduling, according to Corollary 1 and Theorem
1, respectively. However, this algorithm may has a high
computational overhead since Algorithms 2 and 3 that need to
be executed each scheduling period, are O(KLH3). Next, we
present a simpler local greedy algorithm, which has a better

Algorithm 3: Local DP Scheduling Algorithm

Input: Available task set T (k)(t) for each size, maximum
tasks M , optimal batch sequence P , period H .

Output: Local task schedule xt

1 for k = 1, . . . ,K do
2 U

(k)
OPT , P

(k)

(OPT ) :=Algorithm 2(M,P, T (k)(t), H).
3 end
4 UOPT (k, h) := U

(1)
OPT (h), ∀k, h;

5 POPT (k, h) := P(OPT )(h)
(1), ∀k, h;

6 for k = 2, . . . ,K do
7 for h = 1, . . . , H do
8 h′ :=

arg max0≤h′≤h UOPT (k−1, h′)+U
(k)
OPT (h−h′);

9 UOPT (k, h) := UOPT (k − 1, h′) + U
(k)
OPT (h− h′);

10 POPT (k, h) := POPT (k − 1, h′) ∪ P
(k)
OPT (h− h′);

11 end
12 end
13 return The schedule xt according to POPT (K,T ).

Algorithm 4: Local Greedy Scheduling Algorithm
Input: Available task set T (t), the limitation of

non-overloading batch size B(k) for each image
index k.

Output: Local task schedule xt

1 while until the end of the period do
2 for k = 1, . . . ,K do
3 Tk(t) := set of available tasks of size k.
4 if |Tk(t)| ≤ B(k) then
5 Uk(t) := total utility of tasks in Tk(t).
6 T̃k(t) := Tk(t)
7 end
8 else
9 T̃k(t):=B(k) tasks with the maximum utility in

Tk(t), Uk(t) := total utility of tasks in T̂k(t).
10 end
11 end
12 Execute the tasks in T̃k(t) with the maximum value of

Uk(t).
13 end
14 return xt

time efficiency.
2) Local Greedy Scheduling Algorithm: The greedy online

scheduling algorithm solves the local BOOSIC scheduling
problem following a simple greedy selection rule: execute
the (eligible) batch with the maximum utility next. The
pseudo-code of the greedy scheduling algorithm is shown in
Algorithm 4. The greedy scheduling algorithm is simple to
implement and has a very low computational overhead. We
show that it achieves a comparable performance to the optimal
algorithm in practice.

V. IMPLEMENTATION

In this section, we briefly introduce the implementation
details of the proposed scheduling framework. An overview
of the proposed scheduling framework implementation is
demonstrated in Figure 4.
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Fig. 4. System architecture for the proposed scheduling framework. All
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images is submitted as a single GPU request.

The scheduled task is defined as the recognition of individ-
ual objects by a state-of-the-art convolutional neural network
(CNN), namely the residual neural network (ResNet), which is
implemented in TensorFlow [72]. To store the arrived but not
finished tasks, we define a feature buffer for each (image size,
network stage) pair. For a given image size, the buffer for each
stage is intrinsically a priority queue to store the tasks waiting
to execute this stage. The priority of each task is defined as its
predicted marginal utility for the stage to execute. When two
tasks have the same marginal utility, the one with an earlier
deadline will be prioritized. When a new frame arrives, it first
goes through a data slicing step, assisted by the LIDAR input,
to extract the partial frames. The useless background area is
removed. After filtered by the deduplication module, partial
frames are padded to their closest target sizes with black
borders. Finally, we push tasks into the stage-1 queues for
their corresponding buffers. Similarly, when the tasks finish
one stage of execution, they will be pushed into the next
stage queue unless they are finished or overdue. Besides, we
periodically clean up outdated tasks from each buffer to save
the memory space.

Scheduling within NVIDIA GPU drivers are quite restric-
tive, so we follow the idea by Yao et al. in [70] to implement
the scheduler as a middleware service in user space. It first
collects the status from task buffer for each (image size,
network stage) pair, which is then used as the input to our
scheduling algorithm. The scheduling output tells us which
image size and network stage to execute next, as well as the
number of tasks to batch. Then it collects feature maps from
the corresponding task buffer, and submit the batch as a single
GPU request (kernel). This operation would lead to an extra
memory swap between CPU and GPU on desktop machines.
However, the integrated GPU of NVIDIA Jetson Xavier SoC
shares the same memory with the CPU, so that the extra time
delay is acceptable here.
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Fig. 5. Waymo object bounding box size distribution.

VI. EVALUATION

In this section, we verify the effectiveness and efficiency
of our proposed scheduling framework by comparing it with
several state-of-the-art baselines on a large-scale self-driving
dataset, Waymo Open Dataset.

A. Experimental Setup

1) Hardware Platform: All experiments are conducted on
an NVIDIA Jetson AGX Xavier SoC, which is specifically
designed for automotive platforms. It’s equipped with an 8-
core Carmel Arm v8.2 64-bit CPU, a 512-core Volta GPU,
and 32 GB memory. Xavier delivers over 30 TOPS for deep
learning applications while consuming less than 30 Watts [35].
Its mode is set as MAXN with maximum CPU/GPU/memory
frequency budget, and all CPU cores are online.

2) Dataset: Our experiment is performed on the Waymo
Open Dataset [73], which is a large-scale autonomous driving
dataset collected by Waymo self-driving cars in diverse ge-
ographies and conditions. It includes driving video segments
of 20s each, collected by LiDARs and cameras at 10 Hz. All
LiDAR and camera data are synchronized. The object classes
are limited to 4 classes: vehicle, pedestrian, cyclist, and sign.
Only the front camera data is used in our experiment. We show
the distribution of object (bounding box) sizes in Figure 5. The
figure depicts the length of the longer side, rounded up to the
preset bins: 32, 64, 128, 256, and 512. This also reflects the
practical object size distribution from the driver’s vision. Since
we do not need the added resolution for identification, in our
experiment, objects with size larger than 256 are down-scaled
to 256 while preserving its aspect ratio. All remaining images
are padded to the target size bins.

3) Neural Network Training: We use ResNet proposed by
He et al. [62] for object classification. The network is trained
on a general-purpose object detection dataset, COCO [74]. It
contains 80 object classes that include those of the Waymo
dataset.

4) Scheduling Load and Evaluation Metrics: We extract
the distance between objects and the autonomous vehicle (AV)
from the projected LiDAR point cloud. The deadlines of object
classification tasks are set as the time to collision (TTC)
with the AV. To simulate different loads for the scheduling
algorithms, we manually change the sampling period (i.e.,
frame rate) from 40ms to 160ms. Since actual frame capture
was done at 100ms intervals, the above corresponds to re-
playing the world in “slow motion” to “fast-forward” mode to
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Fig. 6. Per-image latency of ResNet on NVIDIA Jetson Xavier SoC, with
respect to different image sizes and batch sizes.

understand the impact of speed on the ability of the perception
subsystem to keep up. We consider a task to miss its deadline
if the scheduler fails to run the mandatory part of the task by
the deadline. Otherwise, we consider the task to return a timely
but possibly imprecise result. In the following evaluation, we
present both the normalized accuracy and deadline miss rate
for different algorithms. The normalized accuracy is defined
as the ratio between achieved accuracy and the maximum
accuracy when all neural network stages are finished for every
object.

B. Compared Scheduling Algorithms

The following scheduling algorithms are compared.
• OnlineDP: the online scheduling algorithm we proposed

in Section IV. The local scheduling in each period
is conducted by the hierarchical dynamic programming
algorithm.

• Greedy: the online scheduling algorithm we proposed,
with the local scheduling conducted by greedy batching
algorithm.

• Greedy-NoBatch: It always execute the object with max-
imal marginal utility. No batching is performed for this
algorithm.

• EDF: It always chooses the task stage with the earliest
deadline (without considering task utility).

• Non-Preemptive EDF (NP-EDF): Unlike regular EDF,
this algorithm does not allow preemption. Once a task
starts executing, it continues until it is finished or its dead-
line is reached. It is included to understand the impact of
allowing preemption on stage boundaries compared to not
allowing it.

• FIFO: It runs the task with the earliest arrival time first.
All stages are performed as long as the deadline is not
violated.

• RR: Round-robin scheduling algorithm. Runs one stage
of each task in a round-robin fashion.

C. Neural Network Time Profiling

We first profile the inference time of ResNet on the NVIDIA
Jetson Xavier SoC, for varying image sizes and batch sizes.
The result is shown in Figure 6. We can observe that when the
image size is small (e.g., 32× 32 or 64× 64), increasing the
batch size is always beneficial and leads to a lower per-image
latency. When the image size becomes larger (128 × 128 or
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Fig. 7. Cumulative distribution of end-to-end latency on full frames with three
methods. The execution time for frame slicing, deduplication (if applicable),
batching, and neural network inference are all counted.

256×256), the benefit of parallelism gradually decreases. This
is because the GPU is fully utilized at maximum parallelism,
so increasing batch size increases execution time proportion-
ally. Accordingly, we set the batching limit for each image
size to be the batch size beyond which the per-image inference
time stops decreasing. This size is 128, 128, 32, 8 for the four
image sizes 32, 64, 128, and 256, respectively. The execution
time for each valid batch is below 100ms.

D. Slicing and Batching

Next, we compare the inference time for full frames and
batched partial frames with/out deduplication. In full frame
processing, we directly run the neural network on image-
captured full images, whose size is 1920 × 1280. In batched
partial frames, we do the slicing into bounding boxes within
one frame first, then perform the deduplication (if applicable),
and finally batch execution of objects with same size. Each
frame is evaluated independently. No imprecise computation is
considered. The end-to-end latency for each full frame, includ-
ing both preprocessing and network inference time, is reported
here. Our results show that the average latency for full frames
is 350 ms, while the average latency for (the sum of) batched
partial frames is 105 ms without deduplication, and 83 ms with
deduplication. Besides, the cumulative distributions of frame
latencies for the three methods are shown in Figure 7. We can
see that by batched partial frames (no deduplication), most
cases have a latency below 200 ms, while deduplication further
decreases the latency for most cases below 150 ms. Data
slicing, batching, and deduplication steps, although induce
extra processing delays, can effectively reduce the end-to-end
latency. However, neither approach is fast enough compared
to 100 ms sampling period, so that the imprecise computation
model and prioritization are needed.

E. Scheduling Policy Comparisons

Next, we evaluate the scheduling algorithms in terms of
achieved classification accuracy and deadline miss rate. We
change the replayed camera frame rate to vary the load.
To isolate the effect of real-time prioritization from that of
object deduplication, we turn off the latter in this part. The
scheduling results are presented in Figure 8. The two proposed
algorithms, OnlineDP and Greedy, clearly outperform all the
baselines with a large margin in all metrics. The improvement
comes for two reasons: First, the integration of the imprecise



computation model into neural networks makes the scheduler
more flexible. It makes the neural network partially preemptive
at the stage level, and gives the scheduler an extra degree
of freedom (namely, deciding how much of each task to
execute). Among stage-level scheduling algorithms, Greedy-
NoBatch shows a similar deadline miss rate to EDF, but has
a better accuracy. Since Greedy-NoBatch is unable to predict
confidence in (i.e., utility of) future stages until it has executed
one, it has no inherent way of deciding which task to start first.
Thus, we select the task with the earliest deadline to execute
first without violating the maximum utility rule. Second, the
involvement of batching mechanism simultaneously improves
the model performance and alleviate deadline misses. The
batching mechanism enables the GPU to be utilized at its
highest parallel capability. The deadline miss rates of both
OnlineDP and Greedy are pretty close to 0 under any task
load. We can also see that Greedy shows similar performance
as OnlineDP, though they possess different theoretical results.
One practical reason is that the utility prediction function can
not perfectly predict the utility for all future stages, where
the OnlineDP scheduling can be negatively impacted. Instead,
Greedy only relies on the utility prediction for the next stage
to make the decision.

NP-EDF and FIFO have similar performance in this experi-
ment, which might seem like a “bug”. Upon closer inspection,
we realize that this is because the objects in the vehicle’s
field of view have similar deadlines most of the time, making
FIFO similar to EDF. This is expected because most of the
time, when driving, no abnormal events occur that require an
abrupt preemption of attention to a more critical object. While
less common, such instances, however, are very important.
Response to such instances is precisely what distinguishes
good driving from bad driving.

To evaluate scheduling performance in driving scenarios
involving the aforementioned important subcases, we compare
the metrics of different algorithms for the subset of “critical
objects”. Critical objects are defined as objects whose time-to-
collision (and hence processing deadline) fall within 1s from
when they first appear in the scene. Results are shown in
Figure 9. We notice that the accuracy and deadline miss rate of
FIFO and RR are much worse in this case (because severe pri-
ority inversion occurs in these two algorithms). The deadline-
driven algorithms (NP-EDF and EDF) can effectively resolve
this issue because objects with earlier deadlines are always
executed first. However, their general performance is limited
for lack of utility optimization. The utility-based scheduling
algorithms (Greedy, Greedy-NoBatch, and OnlineDP) are also
effective in removing priority inversion, while at the same
time achieving better confidence in results. These algorithms
multiply a weight factor α > 1 to increase the utility of
handling critical objects, so that they are preferred by the
algorithm over non-critical ones. We empirically found that
α = 10 gives good results. A more detailed exploration of
this hyper-parameter will be presented in an extended report
(but removed here for space limitations).
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Fig. 8. Accuracy and deadline miss rate comparisons on all objects.
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Fig. 9. Accuracy and deadline miss rate comparisons on critical objects.
Critical objects are defined as objects that have a deadline less than 1s.

F. Impact of Deduplication

In this part, we report results of the deduplication module.
The overlap between bounding boxes from consecutive frames
is evaluated by computing their area intersection over union
(IoU) score, which is defined as the ratio between their
intersection area and union area. We seek to explore the best
threshold for deduplication (i.e., for considering two bounding
boxes to be referring to the same object). To do so, we change
the IoU threshold from 0.1 to 0.9 and compute deduplication
precision, define as the percentage of time the box considered
to be a duplicate was indeed an image of the same object.
The results are shown in Figure 10. We can precisely identify
99.5% bounding boxes belonging to the same object using a
threshold of 0.7; while 99.95% of removed bounding boxes
refer to the same object when the threshold is 0.9. We also
report the ratio of saved workload (i.e., removed objects) in
Figure 10(b). When the threshold is 0.9, we can reduce the
total workload by 34.6%, while using a threshold of 0.7 can
lead to 66.7% bounding boxes being removed.

G. Scheduling Algorithm Execution Time

In this part we evaluate the execution time of our proposed
scheduling algorithm. Note that while the scheduled tasks run
on the GPU, the scheduler runs on a single CPU core. As we
mentioned in a previous statement, the OnlineDP scheduling
algorithm is too slow to be applied in real time scenarios, and
no computation is needed for FIFO and RR in addition to a
queue. Thus, we only compare the Greedy, Greedy-NoBatch,
and EDF. Specifically, we record the execution time of the
scheduler on the CPU core as a percentage of the execution
time of the neural networks on the GPU. Figure 11 shows the
results. We can see that when the sampling period is large
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Fig. 10. Scheduling results of Greedy algorithm after applying deduplication.
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Fig. 11. Scheduling algorithm execution time comparisons.

(i.e., inverse of frame rate), all three algorithms show similar
latency (around 2%), likely attributed to other CPU overheads.
When the task load becomes larger, Greedy shows a better
time efficiency than Greedy-NoBatch and EDF. The reason
is that the batching mechanism effectively consumes more
objects in the given time, so that the size of object buffer
in Greedy is much smaller than Greedy-NoBatch and EDF.
The execution time of our Greedy algorithm is within 5%
in all evaluated workloads. Since the scheduling algorithm is
executed on single CPU core, we can find that CPUs are idle
most of the time. The bottleneck is indeed the GPU.

VII. CONCLUSIONS

We discussed algorithmic priority inversion in mission-
critical real-time machine inference pipelines, which is found
to be prevalent in conventional FIFO-based AI pipelines. To
mitigate its impact, a novel online scheduling architecture was
proposed with two core designs: 1) Prioritize parts of the
incoming sensor data to enable more timely response to more
critical stimuli; 2) Explore the maximum parallel capacity on
GPU by a novel task batching algorithm to improve both the
response speed and quality. We proved that through exploring
optimal batching decisions within each local period, the perfor-
mance of global online algorithm is also guaranteed. Extensive
evaluations on a large-scale real-world driving dataset (i.e.,
the Waymo Open Dataset) not only validates the existence of
priority inversion phenomenons, but also empirically demon-
strate the effectiveness of our framework in resolving priority
inversion, meeting task deadlines, and achieving better model
performance. Our next steps include extending to broader
scope of real-time AI pipelines (e.g., object tracking and
path planning in autonomous driving), optimizing the current
architecture from system implementation level (e.g., further

improve the scheduler efficiency), and moving towards the
safety-critical subsystems. Besides, we are also interested in
applying the proposed scheduling framework to the practical
autonomous driving applications.

APPENDIX

A. Proof of Theorem 1

We prove the theorem using charging arguments. Through-
out the proof, we will refer to stages of tasks also as “tasks”.
We define {T ∗(t)}t=1,...,T as the set of tasks executed under
an optimal Clairvoyant scheduling algorithm during each
scheduling period t. Define {Talg(t)}t=1,...,T as the set of
tasks executed under an arbitrary online scheduling algorithm
that satisfies the condition of Theorem 1 during each schedul-
ing period. We will charge the utility of {T ∗(t)}t=1,...,T to
that of {Talg(t)}t=1,...,T using two schemes. We will show
that each task in {Talg(t)}t=1,...,T is charged no more than
2 + L times in the first scheme and no more than 2B + 1
times in the second scheme.

Consider a generic period t. In the first scheme, for each task
in T ∗(t), if its first stage is executed by the online scheduling
algorithm, then we charge the utility of the task to its first
stage in {Talg(t)}t=1,...,T . Each task is charged for at most
L times in this process. Let T̂ ∗(t) ⊆ T ∗(t) be the tasks
that are executed under the optimal Clairvoyant scheduling
algorithm whose first stage are never executed under the online
scheduling algorithm. Let T̂ ∗1 (t) be the set of tasks in T̂ ∗(t)
that completely lie in period t under the schedule of the
optimal Clairvoyant algorithm and let T̂ ∗2 (t) be the set of
tasks in T̂ ∗(t) that span period t and t + 1. By definition
T̂ ∗1 (t)∪T̂ ∗2 (t) = T̂ ∗(t). Since the first stages of tasks in T̂ ∗1 (t)
and T̂ ∗2 (t) are all available at the beginning of period t, by the
concavity of the utilities of tasks, we have that the total utility
of tasks in T̂ ∗1 (t) and the total utility of those in T̂ ∗2 (t) are
both smaller than or equal to the local optimal utility. Since the
considered online scheduling algorithm achieves local optimal,
we can charge the utility of T̂ ∗1 (t) to that of Talg(t) with each
task in the latter set being charged no more than 1 time. The
same can be done for tasks in T̂ ∗2 (t). Following this charging
scheme for all t, we charge the utilities of all the tasks executed
under the offline optimal to that of the online algorithm, with
each task of the latter being charged no more than 2+L times.

In the second charging scheme, we use the same set of
definitions. For each task in T ∗(t), if it (the current stage) is
executed by the online scheduling algorithm, then we charge
the utility of the task to itself (the corresponding stage) in
{Talg(t)}t=1,...,T . For each set of batched tasks in T̂ ∗1 (t), we
select the one in the batch with the maximum utility and form
a subset. Observe that, the total utility of the subset is at
most OPT . Hence, the total utility of jobs in T̂ ∗1 (t) is at
most B ·OPT . The same can be applied to T̂ ∗2 (t). Following
this scheme for all t, we charge the utilities of all the tasks
executed under the offline optimal, with each task executed by
the online scheduling algorithm being charged no more than
2B + 1 times.
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