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Abstract. The established bounds on the round-complexity of (black-box) concurrent zero-knowledge
(cZK) consider adversarial verifiers with complete control over the scheduling of messages of di↵erent
sessions. Consequently, such bounds only represent a worst case study of concurrent schedules, forcing
e⌦(log n) rounds for all protocol sessions. What happens in “average” cases against random schedules?
Must all sessions still su↵er large number of rounds?
Rosen and Shelat first considered such possibility, and constructed a cZK protocol that adjusts its
round-complexity based on existing network conditions. While they provide experimental evidence for
its average-case performance, no provable guarantees are known.
In general, a proper framework for studying and understanding the average-case schedules for cZK
is missing. We present the first theoretical framework for performing such average-case studies. Our
framework models the network as a stochastic process where a new session is opened with probability p
or an existing session receives the next message with probability 1�p; the existing session can be chosen
either in a first-in-first-out (FIFO) or last-in-first-out (LIFO) order. These two orders are fundamental
and serve as good upper and lower bounds for other simple variations.
We also develop methods for establishing provable average-case bounds for cZK in these models. The
bounds in these models turn out to be intimately connected to various properties of one-dimensional
random walks that reflect at the origin. Consequently, we establish new and tight asymptotic bounds for
such random walks, including: expected rate of return-to-origin, changes of direction, and concentration
of “positive” movements. These results may be of independent interest.
Our analysis shows that the Rosen-Shelat protocol is highly sensitive to even moderate network con-
ditions, resulting in a large fraction of non-optimal sessions. We construct a more robust protocol by
generalizing the “footer-free” condition of Rosen-Shelat which leads to significant improvements for
both FIFO and LIFO models.
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1 Introduction

Concurrent zero-knowledge (cZK) [DNS98] protocols are a generalization of the standard notion of
zero-knowledge (ZK) [GMR85]. In settings where many protocol instances may be running simul-
taneously, cZK-protocols maintain their security whereas ZK protocols may become completely
insecure [FS90, GK90].

The adversarial model for cZK considers the “worst-case” situation where an adversarial verifier
interacts with many provers and has complete control over the scheduling of messages of di↵erent
sessions. The round complexity of cZK in the worst-case is now largely understood — e⇥(log n)
rounds are necessary and su�cient for black-box simulation [CKPR01, PRS02] and constant rounds
for non-black-box simulation (though current constructions for the latter require non-standard
assumptions [CLP13b, PPS15, CLP15]).

? Research supported in part by NSF grant 1907908, the MITRE Innovation Program, and a Cisco Research Award.
The views expressed are those of the authors and do not reflect the o�cial policy or position of the funding
agencies.



In contrast, the average-case complexity of cZK has not received su�cient attention. Is it
possible for cZK sessions to terminate quickly in the average case? This question was first considered
by Rosen and Shelat [RS10] who formulate an appropriate model for studying such protocols. They
consider protocols that are aware of existing network conditions, and exploit them to adjust their
round complexity. Two protocol sessions may thus have di↵erent number of rounds depending upon
the network conditions at the time of their execution.

More specifically, the Rosen-Shelat model provides the prover algorithm full information about
the scheduling of messages on the network so that it can decide to terminate early (if doing so will
not harm the zero-knowledge property). If the conditions are not favorable, some sessions may still
need as many rounds as the worst case solution. Such protocols are called optimistic, following the
terminology of [Lam06]. Such prover models in cZK were first considered by Persiano and Visconti
[PV05], and a constant round solution was first given by Canetti et al. [CJP14]). However, all of
these works require large communication that depends on the number of concurrent sessions. In
contrast, Rosen and Shelat seek solutions where rounds and communication are both independent
of the number of concurrent sessions.

Rosen and Shelat demonstrated that in the average-case, it is indeed possible for some sessions
to terminate early while provably maintaining the cZK property. More specifically, they construct
a cZK protocol that has the same canonical structure as [RK99, KP01, PRS02] — it consists of
a preamble stage with many “slots” and a proof stage. The prover of each sessions examines the
schedule to check for a critical condition called footer-free slot; if the condition is satisfied, the
prover can terminate the session early by directly moving to the proof stage. In particular, it does
not have to execute any remaining slots of the preamble stage.

While Rosen-Shelat do not provide any provable bounds, they include experimental evidence
in [RS10] to demonstrate the e↵ectiveness of their protocol. They implement the 1-Slot version

of their protocol over their local network, and find that of the 122681 TCP sessions, only 26579
did not satisfy the footer-free condition; i.e., over 79% sessions terminated after only 1 slot despite
high degree of concurrency where there were 57161 or 46.5% instances of one session overlapping
with another.

This work. The experiments in [RS10] demonstrate that the average-case schedules for cZK
are qualitatively di↵erent from the worst-case schedule. It seems that the worst-case situations
that require large number of slots in the preamble occur only occasionally in the experiments.
However, a proper framework for studying the average-case schedules for cZK and developing
e↵ective strategies for them with provable bounds, is lacking.

This work initiates a rigorous study of average-case schedules for cZK by first laying the frame-
work to formally capture the “average-case network” as a stochastic process and then developing
methods to prove rigorous performance bounds for candidate cZK protocols in this framework. We
demonstrate our approach by developing provable bounds for the Rosen-Shelat protocol.

A central observation emerging from our approach is that complexity of average-case schedules is
inherently connected to properties of one-dimensional random walks that have a reflection boundary
at the origin. As a result, we also establish new and tight asymptotic bounds on various properties
of such random walks. This includes: the expected rate of return-to-origin as a function of walk
length, changes of direction (a.k.a. “peak points”), and concentration of “positive” movements. To
the best of our knowledge, these bounds are not known or follow from known results, and may be
of independent interest.
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Our analysis shows that the Rosen-Shelat protocol is too sensitive to the parameters of the
stochastic process; in particular, it becomes almost completely ine↵ective even for reasonably small
parameters (details provided shortly). This leads us to look for alternative protocols that are more
robust to minor changes in average-case schedules. By generalizing the “footer-free” condition
of Rosen-Shelat, we construct a new protocol which performs strictly better, and in some cases,
optimally. We now discuss our contribution in more detail.

1.1 Our Contribution

Modeling the Network. To measure the average-case performance, the first non-trivial task is to
formulate reasonable network conditions. It may be quite non-trivial – and not the subject of this
work – to come up with stochastic models for networks of interest to us. We take a slightly di↵erent
approach and focus on stochastic processes which are simple enough to analyze but provide useful
insights into average-case schedules for cZK.

Towards this goal, we start with a stochastic network analogous to the binary symmetric channel
in coding theory. More specifically, for p 2 [0, 1], the process opens a new session with probability
p and sends the next message of an existing session s with probability q = 1� p (unless there are
no active sessions, in which case it simply opens a new session). Depending upon how s is chosen
leads to models with di↵erent properties. As a starting point, the following, two fundamental cases
attract our attention:

– p-FIFO: choose s on a first-in first-out basis.
– p-LIFO: choose s on a last-in first-out basis.

Despite their simple definition, proving bounds in these models already turns out to be highly
non-trivial. The models reveal many important characteristics of the Rosen-Shelat protocol and its
sensitivity to the parameter p. Other models for choosing s can be viewed as a simple combination
of these two fundamental cases; in particular, bounds for these models serve as good lower and
upper bounds for other selection models.

Analyzing Rosen-Shelat Protocol. We proceed to prove rigorous bounds on the e↵ectiveness of
Rosen-Shelat under these models. First, we consider a simpler setting where the protocol is stopped
after exactly 1-slot. This allows us to do away with some unnecessary details; note that this is also
the model used by Rosen-Shelat for their empirical study. We also show that the bounds for the
1-slot model serve as a lower bound for the full protocol where all slots are allowed to continue
if necessary. Our analysis proves that, in expectation, the fraction of sessions that terminate after
1-slot for Rosen-Shelat protocol after t steps in the p-FIFO model is at most:

8
<
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1�2p
1�p +O

⇣
1

t1/4

⌘
0 < p < 0.5

0 +O
⇣

1
t1/4

⌘
0.5  p < 1

except with negligible probability in t. Exploiting the same approach, we can derive that the fraction
for p-LIFO model is at most:

1� p+O

✓
1

t1/4

◆
p 2 (0, 1)

This is pretty bad news since, for example, the fraction for p-FIFOmodel approaches 99% quickly
as p increases; for p = 0.5 almost all sessions are already sub-optimal, i.e., require more than one
slot (see Section 5).
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Connection to Random Walks. As mentioned above, we prove these bounds by establishing
a connection between the number of optimal sessions in 1-slot p-FIFO with the number of returns
to origin in a one-dimensional biased random walk with parameter p. In fact, we need a slightly
modified version of the standard random walk where the walk always stays on the positive side
of the number line (or equivalently, contains a reflection boundary at the origin). Likewise, the
bounds for the p-LIFO model are shown to be connected to the number of times the walk changes
direction (a.k.a. “peak points”). Consequently, we establish bounds on the expected rate of returns
to origin for such modified random walks as well as peak points; we also need a concentration bound
for total positive moves made by the walk to bound the fraction of optimal sessions. We obtain
the concentration bounds by proving that the Doob’s Martingale defined over the sum of positive
movements is bounded and hence Azuma’s inequality can be applied. To the best of our knowledge,
these results are new and of independent interest (see Section 4).1 In the special case when p < 0.5,
if we limit the number of maximum open sessions, we can also estimate the number of returns to
origin using a finite state Markov chain as t ! 1. This approach is somewhat simpler although it
only works for p < 0.5 (see Section 5.2).

Our Protocol. Since performance of Rosen-Shelat for average-case schedules deteriorates quickly
as p increases, we look for alternative protocols that are not so sensitive to p. In designing such
protocols, we must be careful to not “tailor” the construction to p-FIFO or p-LIFO models, but
instead look for general principles which would be helpful in other situations too. Towards this
goal, we construct a new black-box optimistic cZK protocol by generalizing the key idea in Rosen-
Shelat protocol, namely nested footers. We show that by generalizing the nested-footer condition to
“depth-d” sessions for constant values of dmaintains polynomial time simulation without decreasing
the optimal sessions in any model. At a high level, a depth d session contains a fully nested session
of depth d� 1 and so on; such sessions are easy to simulate in time O(nd) (see Section 6 for more
details). More interestingly, by changing values of d we can control the performance of the protocol
in any model. For example, by setting d = 1 all sessions of our protocol terminate optimally in the
p-FIFO model; furthermore, the protocol also does extremely well for the p-LIFO model with very
moderate values of d, e.g., d = 5 (see Section 7).

1.2 Related work

Early works on concurrent zero-knowledge rely on “timing constraints” on the network [DNS98,
DS98, Gol02] to obtain feasibility results. These constructions are constant rounds but require large
delays; these delays were later significantly improved in [PTV10]. The lower bound of [CKPR01] on
the round complexity of black-box cZK builds upon [KPR98, Ros00], and the eO(log n) protocol of
[PRS02] builds upon prior work in [RK99, KP01]. Several other setup assumptions have been used
to obtain constant round cZK constructions with minimal trust, most notably the bare-public key
model [CGGM00, CPV04, SV12] and the global hash model [CLP13a].

Using non-black-box simulation, a constant round construction for bounded cZK was first ob-
tained in [Bar01], with further improvements in [PV05, CJP14] who consider the client-server model
of cZK as in this work, [GJO+13] who assume a bound on the number of players rather than the
total sessions in cZK. Constant round constructions can also be obtained by using ‘knowledge
assumptions” [Dam91, HT98, GS14] but without an explicit simulator. Constant round cZK with

1 We were not able to find these results, or derive them as simple corollaries of known results, in any standard texts
on probability such as [Fel68].
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explicit simulator can be achieved using non-black-box simulation under new assumptions such
as strong P -certificates [CLP13b], public-coin indistinguishability obfuscation [PPS15, IPS15], and
indistinguishability obfuscation [CLP15, BGI+01, GGH+13].

2 Preliminaries

We use standard notation and assume familiarity with standard cryptographic concepts such as
commitment schemes, interactive proofs, zero-knowledge, and so on. We use x, n = |x|, and N to
denote the NP instance, the security parameter, and the set of natural numbers. Notation hP, V i
denotes an interactive proof with P, V as prover and verifier algorithms and viewP

V ⇤(x) denotes the
view of algorithm V ⇤ in an interaction with P on common input x. The transcript of the interaction
between two parties contains the messages exchanged between them during an execution of the
protocol.

2.1 Optimistic Concurrent Zero-Knowledge

We now recall the setting for optimistic concurrent zero-knowledge from [RS10]. The setting for
optimistic cZK is syntactically identical to the standard cZK where we consider an adversarial
verifier V ⇤ interacting with many provers concurrently; V ⇤ controls the message scheduling of all
sessions as described by Dwork, Naor, and Sahai [DNS98].

However, in optimistic cZK all parties are allowed to learn relevant information about scheduling
of network messages (such as the presence of other sessions and even the scheduling itself). This
is necessary to allow the provers to terminate the protocol earlier if favorable network conditions
are present. Following [RS10], we consider a concurrent V ⇤ that interacts with a single prover P
proving the same instance x in many concurrent sessions. For such a V ⇤, viewP

V ⇤(x) denotes the
entire view, including x, the randomness of V ⇤, and the messages it exchanges with P in all sessions
in the order they are sent/received.

Definition 1 (Concurrent Zero-Knowledge). Let hP, V i be an interactive proof system for a
language L. We say that hP, V i is concurrent zero-knowledge (cZK), if for every probabilistic strict
polynomial-time concurrent adversary V ⇤ there exists a probabilistic polynomial-time algorithm SV ⇤

such that the ensembles {viewP
V ⇤(x)}x2L and {SV ⇤(x)}x2L are computationally indistinguishable.

2.2 Random Walks in One Dimension

We now recall some basic definitions and facts about random walks in one dimension. We follow the
convention from [Fel68, Chapter 3]. Consider a sequence of coin-tosses (✏1, ✏2, ✏3, ...) where each ✏i
takes values +1 or �1 with probability p 2 (0, 1) and q = 1� p respectively. We imagine a particle
on the number line at initial position s0 2 N, and moves one step to its right or left depending
upon the coin toss ✏i. Note that the position of the particle at any step t 2 N is given by the partial
sum st = s0 +

Pt
i=1 ✏i.

The sequence of partial sums, S = (s0, s1, s2, ...), is called a random walk. If s0 = 0, we say that
the walk starts at the origin (or zero); if st = 0, the walk is said to return to the origin (or “hit
zero”) at step t � 1. Unless stated otherwise s0 = 0 for all random walks in this paper. Such walks
have been extensively studied [Fel68]. The probability that the walk returns to the origin at step
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t is denoted by ut where ut = 0 for odd t and ut =
� t

t
2

�
(pq)

t
2 otherwise. The generating function

corresponding to the sequence {ut}1t=0 is given by:

U(s) =
1p

1� 4p(1� p)s2
=

1X

t=0

ut · st (1)

Another important quantity is the probability of first return to the origin. Let ft be the probability
that the walk returns to the origin at step t for the first time, i.e., s1 > 0, . . . , st�1 > 0, st = 0).
The generating function for the sequence {ft}1t=0 is given by:

F (s) = 1�
p
1� 4p(1� p)s2 =

1X

t=0

ft · st (2)

It can be seen that f2t = 1
2t�1 · u2t and f2t�1 = 0 for all t � 1. Furthermore, for unbiased (i.e.,

p = 0.5) random walks, if we use f⇤
i , u

⇤
i to denote fi, ui (where ⇤ is to insist that p = 0.5), then:

f⇤
2t = u⇤2t�2 � u⇤2t, and

Pt
i=1 f

⇤
2t = 1� u⇤2t.

2.3 Azuma’s Inequality

Theorem 1 (Azuma Inequality). If {Bi}ti=1 is a Martingale (i.e., for every i 2 [t], E[Bi|B1, . . . , Bi�1] =
Bi�1) and |Bi �Bi+1|  ci, then for any real ":

Pr
⇥��Bt �B0

�� � "
⇤
 2 · exp

 
� "2

2 ·
Pt

i=1 c
2
i

!
.

2.4 Canonical Protocol and Slots

Fig. 1. k-round preamble in Rosen-shelat model

We specify some important (though standard) terminology in this section. A canonical cZK
protocol has two stages (see Figure 1): a preamble stage (or stage-1) and a proof stage (or stage-
2). The preamble stage consists of messages denoted by (V 0), (P1), (V 1), . . . , (Pk), (V k) where
k = k(n) is a protocol parameter. Every pair (Pj, V j) for j = 1, . . . , k if called slot. All messages
of the preamble are completely independent of the common input x. Sometimes, the protocol may
also have an initial prover message (P0); however pair (P0, V 0) is not a slot and only serves as the
initialization step of the protocol. The proof stage of the protocol consists of a canonical 3-round
proof denoted by (p1), (v1), (p2).

When dealing with a concurrent schedule consisting of many sessions, if we wish to identify
a particular message of a session A, it will have A as the superscript; e.g., the j-th slot of A is
denoted as (PA

j , V A
j ). Furthermore, for cZK protocols of the canonical form (as in [RS10, PRS02]),

6



the second stage messages of a session pose no di�culty in simulation once the underlying trapdoor
has been extracted from the preamble phase. Due to this, without loss of generality, we adopt
the convention that when the second stage message (p1)A of a session A is sent, it is immediately
followed by all other messages of that stage, namely (v1)A, (p2)A. Messages (V 0) and (p2) are often
called the first and last messages of the session; however note that due to our convention of sending
all second stage messages together, we will sometimes call (p1) also as the last message.

3 Modeling the Network

To analyze the average-case performance of optimistic protocols, we propose a simple stochastic
network model called p-FIFO where FIFO stands for first-in first-out. The model is analogous to a
binary symmetric channel in coding theory and described below.

First, we describe this model for a general protocol and then later consider a simpler ver-
sion for the case of canonical protocols. We assume w.l.o.g. that the first message of each ses-
sion is sent by the verifier.2 Furthermore, honest provers send their next message immediately
after receiving the corresponding verifier message; the sequence of protocol messages is denoted by
{(V 0), (P1), (V 1), (P2), (V 2), . . .}. In the sequel, all sessions are an instance of the same protocol.

p-FIFO model. Let 0  p  1 be a parameter. The p-FIFO model samples a concurrent schedule
sch as follows. We view sch as an ordered list of messages belonging to di↵erent concurrent sessions.
sch is initially empty; messages are added to sch as follows. At each time step t 2 N, an independent
coin Xt 2 {�1,+1} is tossed such that Pr[Xt = +1] = p.

1. If Xt = +1, a new session s is added to the list by adding the first message of that session,
denoted (V 0)s to sch; due to our convention the next prover message of s, denoted (P1)s, is
also added to sch.

2. Otherwise, let s0 be the oldest active session in sch; i.e., s0 is the first session in sch whose last
message does not appear in sch up to and including time step t� 1.
(a) If no such s0 exists, open a new session s as in step (1).
(b) Else, add the next verifier message of session s0, denoted (V j)s

0
, to sch. Due to our conven-

tion, the corresponding prover message (Pj)s
0
is also added to sch.

p-LIFO model. Identical to p-FIFO except that in step (2), sessions s0 is chosen to be the last active
session in sch.

Remark 1. Due to step 2(a), a new session is opened with probability 1 if there are no active sessions
in sch. Therefore, the schedule continues to evolve forever. This allows us to study the asymptotic
e↵ectiveness of the optimistic protocols. It is possible to formulate interesting variations of these
models. E.g., we can restrict the number of active sessions to not grow beyond a maximum value
N , or allow p and N to change as a function of t.

3.1 Optimal Termination and the 1-Slot Model

The fastest possible termination of a canonical protocol (including the Rosen-Shelat protocol)
occurs if the protocol terminates after only one slot.

2 For canonical protocols, we can allow an inconsequential first message from the prover (see Section 2.4).
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Definition 2 (Optimal Session). An execution of a canonical cZK protocol is said to terminate
optimally if the preamble stage of the execution ends after the first slot (P1, V 1). A session that
terminates optimally is called an optimal session.

Restricting to one slot. We will primarily be interested in optimal sessions. Due to this it su�ces
to work with a simpler model in which each canonical protocol is terminated after exactly 1 slot.
If this termination is not optimal, then the entire sessions will not be optimal no matter what
happens in the rest of the slots. On the other hand, if it is optimal, the protocol will end after this
slot any way. This model is called the “1-slot p-FIFO” model.

– 1-Slot p-FIFO model. The 1-slot p-FIFO model is identical to the p-FIFO model where the
underlying protocol is a canonical protocol with exactly one slot (i.e., k = 1) in the preamble
phase.

We can define 1-Slot p-LIFO analogously. Note that the 1-Slot restriction is also used by Rosen-
Shelat in their empirical study. Our primary model of investigation will be the p-FIFO and p-LIFO
models with 1 slot when working with canonical protocols.

4 Random Walks with Reflection at the Origin

As stated in the introduction, we analyze the round complexity of average-case cZK protocols by
establishing a connection to random walks with reflection at the origin. In this section, we present a
formal treatment for this process. We will first give the formal definition and then establish various
results about characteristics of such random walks. To the best of our knowledge, these results are
not known and may be of independent interest.

A Road Map. In this section, one important goal is to bound the expected number of times the
walk returns to the origin (Theorem 2). Toward this goal, we first show two lemmata in Section
4.1, which will help in understanding such random walks. In Section 4.2, we then establish the
asymptotic characterization of the expected fraction of returns to origin. In Section 4.3, we prove
concentration bounds for the number of movements to the “right” (called “positive movements”).
These bounds play a control role in deriving the results of round complexity analysis in Section 5.
We start with the following definition.

Recall that a random walk is defined by a sequence of partial sums S = (s0, s1, s2, ...) over
variables ✏1, ✏2, . . .. A random walk with reflection at the origin is a random walk with the additional
constraint that whenever the partial sum st reaches 0, the next coin toss ✏t+1 must be +1.

Definition 3 (Random Walk with Reflection at Origin). A random walk with reflection at
the origin is defined by the partial sum process S = (s0, s1, s2, ...) where s0 2 N is the starting point
of the walk, st =

Pt
i=1 ✏i, and ✏i 2 {�1,+1} for all i, t 2 N such that: Pr [✏t+1 = 1 |st = 0] = 1 and

Pr [✏t+1 = 1 |st 6= 0] = p, where p 2 (0, 1) is a parameter of the random walk. If s0 = 0, we say that
the walk starts the origin.

4.1 Two Lemmata of Generating Functions

In this part, we prove two lemmata of interest for the random walks with reflection at origin (defined
in Definition 3), all of which are assumed to start at the origin s0 = 0.

8



Recall that in a standard random walk without reflection (Section 2.2) the probability of first
return to origin at time t is denoted by ft, and just a return is denoted by ut. When we want to be
explicit about the parameter of the random walk, we will sometimes use the notation ut(p), ft(p), . . .
etc.

Lemma 1. In a random walk with reflection at zero let gt denote the probability that walk returns
to the origin for the first time at step t. Then:

ft(p) = 2p · gt(p), 8p 2 (0, 1), 8t 2 N

In the sequel, the parameter p will be the same for both functions ft, gt and hence we will drop it
from the notation and simply write:

ft = 2p · gt. (3)

Proof. First, for all odd number step 2t + 1, in both models, the particle cannot return to the
origin. So we have f2t+1 = g2t+1 = 0, thus f2t+1 = 2p · g2t+1. We then only need to show the case
for even-number steps, namely f2t = 2p · g2t.

In a random walk model, denote f+
2t as the probability that a particle only traveling positive

part of the number line returns to the origin for the first time at step 2t, i.e. s0 = s2t = 0 and si > 0
for i = 1, 2, ..., 2t � 1; denote f�

2t as the probability that a particle only traveling negative part of
the number line returns to the origin for the first time at step 2t, i.e. s0 = s2t = 0 and si < 0 for
i = 1, 2, ..., 2t� 1; These two cases constitute all the possibilities for returning to zero for the first
time at step 2t. Also, these two cases are “symmetric”, thus have the same probability. Therefore
we have: (

f2n = f+
2n + f�

2n

f+
2n = f�

2n

(4)

In a model having the same “going right” probability p but with reflection at zero, g2t is exactly
the same as f+

2t except the first step: g2t paths “go right” in the first step with probability 1, while
f+
2t paths “go right” in the first step with probability p. So we have the relation:

f+
2t = p · g2t (5)

From the above three equations, we get:

f2t = 2p · g2t

ut

Let G(s) be the generating function for {gt}. Combining Lemma 1 with the generating function
F (s) (see Section 2.2), we get:

G(s) =
F (s)

2p
=

1

2p
· [1�

p
1� 4p(1� p)s2] =

1X

t=0

gt · st (6)

Next, for random walks with reflection at zero, we want to compute the probability of visiting the
origin at time step t. Let vt denote this probability and p be the parameter of the random walk.
We prove the following.
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Lemma 2. In a random walk with reflection at the origin, let vt denote the probability that the walk
is at the origin at time step t, p be the parameter of the random walk, and V (s) be the generating
function for sequence {vt}1t=0. Then,

V (s) =
2p

2p� 1 +
p
1� 4p(1� p)s2

(7)

and (
v2t = 1� p

1�p

�Pt
i=0 g2i

�

v2t+1 = 0
t 2 N (8)

Note that in the equations above, the parameter for function g2i is p (as before).

Proof. By definition of random walk with reflection, returning to zero cannot happen in odd steps.
This proves v2t+1 = 0.

For all the paths returning to 0 at some even step 2t, we can partition them by their first visiting
to 0. This gives us the following relation:

v2t = g0 · v2t + g2 · v2t�2 + g4 · v2t�4 + ...+ gt�2 · v2 + g2t · v0 (9)

From the above equation, we know:

V (s) = 1 + V (s)G(s)

Then with the expression of G(s), the expression for V (s) can be derived as follows:

V (s) =
1

1�G(s)
=

2p

2p� 1 +
p
1� 4p(1� p)s2

The remaining task is to derive the expression for v2t. To do this, we transform the expression for
V (s) so that we can relate it to known quantities, such as F (s). For succinctness, we use q = 1� p.

V (s) =
2p · (2p� 1�

p
1� 4pqs2)

(2p� 1)2 � (1� 4pqs2)
=

1

2
· (2p� 1�

p
1� 4pqs2)

(p� 1) + qs2

=
1

2q

 
q � p

1� s2
+

p
1� 4pqs2

1� s2

!
=

q � p

2q
· 1

1� s2
+

1

2q
· 1� F (s)

1� s2

=
1

1� s2
� 1

2q
· F (s)

1� s2

Again, since a random walk cannot return to 0 at odd steps, f2t+1 = 0. Therefore, we know
that F (s) =

P1
t=0 ft · st =

P1
t=0 f2t · s2t. We also know the expansion 1

1�s2 =
P1

t=0 s
2t. Thus the

expression for V (s) can be expanded as:

V (s) =
1

1� s2
� 1

2q
· F (s)

1� s2
=

1X

t=0

s2t � 1

2q
·

1X

t=0

(
tX

i=0

f2i)s
2t

=
1X

t=0

(1� 1

2q
·

tX

i=0

f2i) · s2t

Substituting q back to (1� p), we get the expression for v2t:

v2t = 1� 1

2(1� p)
·

tX

i=0

f2i = 1� p

1� p
·

tX

i=0

g2i
ut
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4.2 Expected Number of Returns to Origin

We are now ready to establish the expected number of returns to the origin (also called “equal-
izations”) which plays an important role when we try to analyze the round complexity of cZK in
p-FIFO model later.

Let ht denote the expected number of equalizations in a random walk of length t with reflection
at the origin. We define the corresponding generating function by:

H(s) =
1X

t=0

hts
t (10)

Now we establish the expression for H(s) from G(s) or V (s) using convolutions.

Lemma 3. Generating function H is given by:

H(s) =
G(s)

(1� s) · (1�G(s))
=

V (s)� 1

1� s
(11)

and

h2t = h2t+1 =
tX

i=0

v2i � 1 t 2 N (12)

Proof. A similar argument as in the derivation for equation (9) can be used. For paths visiting 0
for the first time at step i, this visiting gives 1 equalization. For the remaining part (i.e. from step
i+1 to step t), the expected number of equalizations is just ht�i. So we have the following recursive
relation:

ht =
tX

i=0

gi · (1 + ht�i) =
tX

i=0

(gi + gi · ht�i)

From this recursive format, we get the relation between H(s) and G(s):

H(s) =
G(s)

1� s
+G(s) ·H(s)

Then we have the expression for H(s):

H(s) =
G(s)

(1� s) · [1�G(s)]
=

V (s)

1� s
� 1

1� s
(13)

Note that the last equality sign comes from the relation V (s) = 1
1�G(s) .

In equation (13), we know the expansion for both V (s) and 1
1�s , so the expansion of H(s) can

be calculated:

H(s) =
1X

t=0

 
tX

i=0

vi � 1

!
· st (14)

This expansion tells that: ht =
Pt

i=0 vi � 1.
Note the fact that for any odd number step 2t+ 1, we have v2t+1 = 0. Thus:

h2t+1 =
2tX

i=0

vi + v2t+1 � 1 =
tX

i=0

v2i � 1 = h2t

ut

11



We are now ready to establish the main result of this section, which shows the asymptotic
behavior of ht in relation to t. The following theorem captures this behavior. Since it may be
of independent interest, we state the result as a rate of return to origin in a random walk with
reflection at the origin. We highlight both, the asymptotic behavior in big-O notation as well as
the limit behavior.

Theorem 2 (Expected Rate of Returns to Origin). In a random walk with reflection at the
origin, for p 2 (0, 1), q = 1� p, and every positive t, the rate of return to the origin is given by:

ht
t

=

8
>><

>>:

1
2 (1� p/q) +O (1/t) p < 0.5

O
�
1/
p
t
�

p = 0.5

O (1/t) p > 0.5

Furthermore, limt!1
ht
t = 1

2

⇣
1� p

q ·G(1)
⌘
which equals 0 for p � 0.5 and 1

2

⇣
1� p

q

⌘
for p < 0.5.

Proof. First, note that

h2t =
tX

k=0

v2k � 1 =
tX

k=0

 
1� p

q

kX

i=0

g2i

!
� 1 = t+ 1� p

q

tX

k=0

kX

i=0

g2i � 1

= t� p

q
·

t · g2 + (t� 1) · g4 + ...+ 2 · g2t�2 + 1 · g2t

�

If p = 1
2 , we have:

h2t
2t

=
t� [t · g2 + (t� 1) · g4 + ...+ 2 · g2t�2 + 1 · g2t]

2t

=
t� [t ·

Pt
i=1 g2i �

Pt
i=1(i� 1)g2i]

2t

=
1

2
·
 
1�

tX

i=1

g2i +
tX

i=1

(i� 1)

t
g2i

!
=

1

2
·
 
1�

tX

i=1

g2i +
tX

i=1

(i� 1)

t
f2i

!

Observe that for p = 0.5, g2i = f⇤
2i so that (a) 1�

Pt
i=1 g2i = u⇤2t = O

�
1/

p
t
�
(see last few lines of

Section 2.2); (b) furthermore, by using the facts that (i) f2i = f⇤
2i = O(1/i

p
i) for p = 0.5, and (ii)Pn

i=1
1p
i
< 2

p
n, we get:

tX

i=1

(i� 1)

t
f2i = O

✓
1p
t

◆
.

Combining observations (a) and (b), we see that for p = 0.5, ht/t = O(1/
p
t).

If p 6= 1
2 , let us first observe (simply consider the di↵erence between G(s) and its di↵erentiation

G0(s) w.r.t. s, details omitted):

1X

i=1

(i� 1) · g2i =
1

2
G0(1)�G(1).

12



Then we have:

h2t
2t

=
1

2
·
"
1� p

q

 
tX

i=1

g2i �
tX

i=1

(i� 1)

t
g2i

!#

 1

2
·
"
1� p

q

 1X

i=1

g2i �
1X

i=1

(i� 1)

t
g2i

!#

=
1

2
·
"
1� p

q

 
G(1)�

1
2G

0(1)�G(1)

t

!#
=

1

2
·

1� p

q
·G(1) +O

✓
1

t

◆�

=
1

2
·
✓
1� p

q
·G(1)

◆
+O

✓
1

t

◆

This establishes that for p 6= 1
2 :

h2t
2t

=
1

2
·
✓
1� p

q
·G(1)

◆
+O

✓
1

t

◆

Using s = 1 in the expression of G(s), we see that G(s) = 1 for p  0.5 and G(s) = q/p for p > 0.5.
Using these values gives us the bounds for cases p < 0.5 and p > 0.5 for all values of the form 2t,
or equivalently all even values of t.

For odd values, observe that h2t = h2t+1, so that:

h2t+1

2t+ 1
=

h2t
2t+ 1

 h2t
2t

Thus the bound holds for odd t as well.
To get the claim about the limit behavior, the derivation for h2t

2t involving G(1) requires some
minor manipulations, but nevertheless follows easily. The details are omitted. ut

Remark 2. We notice that in the work of Essifi and Peigné [EP15] (and its precursor [Lal95]),
similar results were obtained using measure-theory techniques. But their results are not applicable
for our purpose for the following reasons. Their work does not capture the (most important) case
of p < 0.5. Even for other cases (p = 0.5 and p > 0.5), they only consider the “limit” behavior
when t tends to infinity; in contrast, we provide a “Computer-Science flavor” result which shows
direct dependence on t.

4.3 Concentration Bounds for Positive Movements

To measure the true number of optimal sessions in terms of total sessions, we need to know the
distribution of total sessions in the 1-slot p-FIFO model. This is related to the total number of
movements to the “right” (also called “positive movements” since it corresponds to variables ✏t =
+1). We prove that the total number of positive movements is sharply concentrated around its
expectation.

It is tempting to think that we can obtain these bounds using some form of Cherno↵-Hoe↵ding
in the limited dependence setting. Unfortunately, all of our attempts to use this approach were
unsuccessful. Instead, we rely on Martingales.
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In fact, we are able to prove a stronger result. We show that the Doob Martingale defined for,
roughly speaking, the sum of coin-tosses of the random walk is bounded. The proof relies on the
properties of the random walk. This allows us to apply Azuma’s inequality, but is of independent
interest.

Theorem 3. Let S = (s0 = 0, s1, s2, . . .) be a random walk with reflection at the origin, defined
over binary random variables (✏1, ✏2, . . .). For all positive i, let

Xi =
1 + ✏i
2

=

(
1 if ✏i = 1

0 if ✏i = �1

Then, random variable Mt =
Pt

i=1Xi counts the number of positive movements in the walk. Fur-
thermore, if Bi := EXi+1,Xi+2,..,Xt [Mt|X1, X2, ..., Xi] for i 2 {1, . . . , t � 1} then {Bi}t�1

i=1 is a Mar-
tingale for all t 2 N \ {0} such that:

|Bi �Bi+1|  1.

Proof. Observe that the variables Xi correspond to the movements on right, and since nega-
tive movements are discarded by setting Xi = 0, the sum Mt indeed represents the total pos-
itive movements. Furthermore, the sequence {Bi} is the standard Doob’s Martingale so that
E[Bi|B1, . . . , Bi�1] = Bi�1 (see, e.g., [AS04, Chap. 7]).

The main task is now to show that the martingale {Bi}i is indeed bounded by 1. The proof is
somewhat tedious and relies on certain characteristics of random walks with reflection. The proof
of this bound is given in Section A. ut

Corollary 1.

Pr
h���

tX

i=1

Xi � E
⇥ tX

i=1

Xi
⇤��� � "

i
 2 · exp

✓
� "2

2 · t

◆
(15)

Proof. Consider the Doob’s Martingale {Bi} from Theorem 3. Observe that B0 = E[Mt] =
E[
Pt

i=1Xi] and Bt = E[Mt|X1, X2, ..., Xt] = Mt =
Pt

i=1Xi. Furthermore, since |Bi � Bi+1|  1,
we can set ci = 1 for all i in Azuma’s inequality (Theorem 1) to get stated bound. ut

Note: We prefer this form since it makes it easier to see that we are comparing the sum of Xi

with its expectation. However, in future, we will freely substitute Mt for the sum
Pt

i=1Xi for
succinctness.

5 Analysis of Rosen-Shelat Protocol

We are now ready to analyze the e↵ectiveness of Rosen-Shelat protocol against an average-case
network, as modeled by the 1-Slot p-FIFO process described in Section 3.1. We also establish bounds
for 1-Slot p-LIFO.

We start by recalling the Rosen-Shelat protocol (see Protocol 1). The protocol relies on the
notion of a “nested footer” recalled below:3

3 The statement of this definition in [RS10] actually has (V k) instead of (p1) as A’s nested message. However, we
believe that it is a typo and by (V k) authors really mean the presence of second stage messages; this is guaranteed
by having (p1) in the definition but not by (V k). Indeed, many nested protocols may terminate without ever
reaching (V k). If (V k) is used in the definition, the simulator in [RS10] will run in exponential time even for the
simple concurrent schedule described in [DNS98] (and shown in red in Fig. 1 in [RS10]).
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Protocol 1 Rosen-Shelat Protocol [RS10]
Common Input: x 2 {0, 1}n, security param. n, round param. k 2 !(log n).
Prover’s Input: a witness w such that RL(x,w) = 1
Stage 1:
P ! V (P0): Send first message of perfectly hiding commitment Com.
V ! P (V 0): Using the commitment Com, commit to random � 2 {0, 1}n, {�0

i,j}ki,j=1, {�1
i,j}ki,j=1 such that

�0
ij � �1

ij = � for all i, j.
Slot j 2 [k]:
P ! V (Pj): Send a random challenge ri = r1,j , · · · , rk,j .
V ! P (V j): Upon receiving a message ri, decommit to �

r1,j
1,j , · · · ,�rk,j

k,j .
P ! V: If any of the decommitments fails verification, abort.

If slot j is footer-free or j = k move to stage 2.
If slot j is not footer-free and j < k move to slot j + 1.

Stage 2:
P and V engage in Blum’s 3-round Hamiltonicity protocol using challenge �:
1. P ! V (p1): Use witness to produce first message of Ham protocol

2. V ! P (v1): Decommit to � and to {�1�ri,j
ij }ki,j=1.

3. P ! V (p2): If decommitments are valid and �0
ij � �1

ij = � for all i,j, answer � with third message of Ham
protocol. Otherwise abort.

Definition 4 (Nested Footer). Slot j of session B is said to have a nested footer of session A
within it if session A’s (p1) message occurs between messages (Pj), (V j) of session B. A slot is
said to be footer free if it has no nested footer.
5.1 Bounding Optimal Sessions

We measure the e↵ectiveness of Rosen-Shelat protocol by counting the number of optimal sessions
as the schedule evolves over time t according to the 1-slot p-FIFO process. Since t does not represent
the actual number of total sessions, we will also bound the expected ratio of optimal sessions w.r.t.
total sessions.

We start by proving the following key proposition. It states that the number of optimal sessions
in 1-slot p-FIFO are equal to the number of returns to the origin in a random walk defined over the
coin-tosses of p-FIFO.

Proposition 1. Let X = (X1, X2, . . .) be the sequence of coin tosses defining the 1-Slot p-FIFO
process. Let S = (s0 = 0, s1, s2, . . .) be the partial sum process defined over X. Then, S is a random
walk with parameter p and reflection at the origin. Furthermore, for any finite time step t 2 N,
the number of optimal sessions in X up to and including t is equal to the number of returns to the
origin in the random walk S.

Proof. Note that return to the origin at step t is denoted by st = 0.
We first show that every return to the origin gives an optimal session. If st = 0, there is no

session remaining active when step t is finished. Then a new session A will be opened at step t+1.
By the 1-Slot p-FIFO rule, every session opened later will be closed after A’s closing. Thus A is an
optimal session.

Then we show that for every optimal session, there is a corresponding return to zero (or st = 0).
Given an optimal session A which is opened at step t+1. If we assume st 6= 0, there must be some
session B, which is opened before A and still active up to step t. By 1-Slot p-FIFO rule, B has to
be closed before A’s closing. So A contains B’s footer, thus cannot be optimal. Therefore, we must
have st = 0.

Combining the above two claims together completes the proof. ut
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According to Proposition 1, we can compute the expected fraction of optimal session for 1-Slot
p-FIFO model by analyzing the behavior of returns to the origin in a random walk. With the
notations defined in Section 4, the following theorem gives the asymptotic bounds for the Rosen-
Shelat protocol.

Theorem 4. Let OPTRS(p, t) denote the expected fraction of optimal sessions for the Rosen-Shelat

protocol in the 1-slot p-FIFO model. Then, except with probability �t := 2 · exp
⇣
�

p
t

2

⌘
,

OPTRS(p, t) =

✓
1� p

q
·G(1)

◆
±O

✓
1

t1/4

◆

where q = 1 � p, p 2 (0, 1), and t 2 N. Furthermore, limt!1OPTRS(p, t) = 1 � p
q · G(1), which

equals 0 for p � 0.5 and (1� p/q) otherwise.

Proof. This proof is based on Theorem 2 and Corollary 1.
To get the ratio of optimal sessions with total sessions, we first need a concentration bound

for the total sessions. Using notation from Section 4.3, the total sessions are represented by the
variable Mt =

Pt
i=1Xi so that

E[Mt] =
tX

i=1

E[Xi] = t · p+ (1� p) ·
tX

i=1

vi�1 = t · p+ q · (ht�1 + 1).

Let " = t
3
4 and apply inequality (15) (Corollary 1); we get that except with probability �t =

2 · exp
⇣
�

p
t

2

⌘
,

Mt 2

E[Mt]� ", E[Mt] + "

�
. (16)

Now, let zt denote the actual number of optimal sessions after t steps. By definition, E[zt] = ht.
Using the range bound for Mt above, we conclude that except with probability �t, the fraction
zt/Mt of optimal sessions satisfies:

zt
Mt

2


zt
E[Mt] + "

,
zt

E[Mt]� "

�
(17)

Substituting the value of E[Mt],

zt
Mt

2


zt
tp+ q(ht�1 + 1) + "

,
zt

tp+ q(ht�1 + 1)� "

�

=) E


zt
Mt

�
2


E[zt]

tp+ q(ht�1 + 1) + "
,

E[zt]

tp+ q(ht�1 + 1)� "

�

We now make a few observations. First, note that OPTRS(t, p) = E[zt/Mt] and E[zt] = ht.
Furthermore, ht�1/t = ht/t asymptotically. If we define �t = ht/t = ht�1/t, "1 = (" + q)/t =
O(t�1/4), and "2 = ("� q)/t = O(t�1/4), the above range equation simplifies to:

OPTRS(t, p) 2


�t
p+ q�t + "1

,
�t

p+ q�t � "2

�
(18)
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To complete the proof, simply plugin the value of �t from Theorem 2 and observe that "1, "2 are
small enough to be sucked into the O-notation. Specifically, (1) if p < 0.5, �t =

1
2(1� p/q)+O(1/t)

and (p + q�t) =
1
2 + O(1/t). Note that the O(1/t) term will also be absorbed into "1 or "2, which

then gives the claimed bound; (2) if p  0.5, �t grows slower than "1 and "2 so that both sides of
range become O(t�1/4) which is also the bound for OPTRS since G(1) = q/p when p � 0.5.

For the limit behavior, we simply use the claim from Theorem 2 regarding limit behavior of
ht/t. ut

5.2 Markov Chain Approach

In the case p < 0.5, a simpler analysis is possible by using Markov chains for a slightly modified
model where the total number of sessions are not allowed to grow beyond some fixed bound, say
n. This is equivalent to having a reflection boundary at time step n in the random walk model so
that walk always stays between 0 and n. Without this bound, or when p � q, the resulting Markov
chain may not be finite.

To analyze the expected number of returns to the origin when p < 0.5, consider a Markov chain
M with n states marked from ‘0’ to ‘n � 1’. The transition probabilities to capture the p-FIFO
model are as follows. If the chain is in state ‘0’, it goes to state ‘1’ with probability 1. Likewise, if
it is in state ‘n� 1’ it returns to state ‘n� 2’ with probability 1. For any other state ‘i’ the chain
goes to state ‘i+1’ with probability p and ‘i�1’ with probability q = 1�p. Let ⇡ = (⇡0, . . . ,⇡n�1)
denote the state steady distribution where ⇡i is the probability that the chain is in state ‘i’ for
i 2 [0, n� 1]. The steady state equations for this chain are:

⇡0 = q ⇥ ⇡1,

⇡1 = ⇡0 + q ⇥ ⇡2,

⇡2 = p⇥ ⇡1 + q ⇥ ⇡3,

. . .

⇡n�2 = p⇥ ⇡n�3 + ⇡n�1,

⇡n�1 = p⇥ ⇡n�2

Using
Pn�1

i=0 ⇡i = 1 and solving for ⇡0, we get:

⇡0 =

 
1 +

 
1� (p/q)n�2

q � p

!
+

✓
p

q

◆n�2
!�1

Observe that every time the walk returns to the origin, the chain would be in state 0. Therefore,
the expected number of returns to the origin in a walk of length t can be estimated as ⇡0t for
su�ciently large t.

When p < 0.5 and n is large, we can ignore the term
⇣
p
q

⌘n�2
since p < q. This yields:

⇡0 ⇡
q � p

2q
=

1

2

✓
1� p

q

◆

This is indeed the same asymptotic behavior we proved about the rate of return to origin. This
analysis does not hold for p � q or without the bound n since the chain may not have a sta-
tionary distribution. Nevertheless, this approach can be useful when dealing with more complex
distributions such as the Poisson distribution.
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5.3 Deriving the Bounds for LIFO Model

In this section, we use the approach developed in Section 5.1 to measure the e↵ectiveness of Rosen-
Shelat protocol under the set 1-Slot p-LIFO setting. First, we give a proposition to relate the optimal
session in p-LIFO process to a so-called “peak point” in the random walk with reflection at the origin.
Then by analyzing the frequency of peak points, we derive the bounds for the expected fraction of
optimal sessions.

In a random walk, if the particle moves left immediately after a right movement, we say that
it forms a “peak point”. A formal definition using our standard notations follows. Let S = (s0 =
0, s1, s2, ...) be a random walk defined over binary random variables (✏1, ✏2, ...). The pair (✏i, ✏i+1)
forms a peak point if and only if ✏i = 1 and ✏i+1 = �1.

The following proposition shows the relation between peak points and optimal sessions in p-LIFO
process.

Proposition 2. Let X = (X1, X2, . . .) be the sequence of coin tosses defining the 1-Slot p-LIFO
process. Let S = (s0 = 0, s1, s2, . . .) be the partial sum process defined over X. Then, S is a random
walk with parameter p and reflection at the origin. Furthermore, for any finite time step t 2 N, the
number of optimal sessions in X up to and including t is equal to the number of peak points in the
random walk S.

Proof. Consider a peak point (Xi = 1, Xi+1 = �1). In the protocol, it means a new session s is
opened at step i, and an active session is closed at step i+1. Due to the LIFO strategy, the session
closed at step i + 1 must be the newestly opened session, namely s. Therefore, session s does not
contain a footer, thus it is an optimal session. And one can easily check that this is the only case
when the 1-slot p-LIFO setting gives an optimal session. So the proposition follows. ut

We now present a theorem of the expected fraction of peak points, which plays a similar role
as Theorem 2 in p-FIFO model. It will later help us to investigate the behavior of optimal sessions
in p-LIFO process.

Theorem 5 (Expected Rate of Peak Points). In a random walk with reflection at origin, for
p 2 (0, 1), q = 1 � p, and every position t, denote the expected number of peak points as `t. The
rate of peak points is given by:

`t
t

=

8
>><

>>:

q
2 +O

�
1
t

�
p < 0.5

p · q +O
⇣

1p
t

⌘
p = 0.5

p · q +O
�
1
t

�
p > 0.5

Proof. Let Xi be the random variable which takes the value 1 if the particle moves right at step i
and then moves left at step i+1; otherwise, Xi = 0. The number of peak points up to step t would
be

Pt�2
i=0 Xi. Also, it is easy to see E[Xi] = vi · q + (1� vi) · p · q if we divide the event Xi = 1 into

tow cases by whether the particle is at the origin at step t. We then have:

`t = E[
t�2X

i=0

Xi] =
t�2X

i=0

E[Xi] =
t�2X

i=0

[vi · q + (1� vi) · p · q]

= q2 ·
 

t�2X

i=0

vi

!
+ (t� 1) · p · q = q2 · (ht�2 + 1) + (t� 1) · p · q
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Divide both sides by t and notice that (ht�2 + 1)/t = ht/t asymptotically. We then have:

`t
t
= q2 · ht

t
+ p · q � p · q

t
= q2 · ht

t
+ p · q �O

✓
1

t

◆

Plugging the previous result of ht/t into the above equation gives us the claimed bound in the
theorem. ut

Now we are ready to bound the expected fraction of the number for optimal sessions under the
p-LIFO setting.

Theorem 6. Let OPT
LIFO

RS
(p, t) denote the expected fraction of optimal sessions for the Rosen-

Shelat protocol in the 1-slot p-LIFO model. Then, except with probability �t := 2 · exp
⇣
�

p
t

2

⌘
,

OPT
LIFO

RS (p, t) = q ±O

✓
1

t1/4

◆

where q = 1� p, p 2 (0, 1), and t 2 N.

Proof. The proof is almost the same as the one for Theorem 4, except the �t in the numerator of
interval (18) should be substituted by �0t = `t/t. Namely:

OPT
LIFO

RS (t, p) 2


�0t
p+ q�t + "1

,
�0t

p+ q�t � "2

�
(19)

Going through the same argument as in the proof of Theorem 4 with the result for `t/t from
Theorem 5 will complete the proof. ut

6 Our Protocol and Simulator

We now present our modification to the Rosen-Shelat protocol. Our modification simply replaces the
footer-free condition with a slightly more complex condition that we call “depth d” slots. This results
in increasing the expected running time of the simulator to poly(nd), which remains polynomial if
d is chosen to be a constant, but does not change anything else. By setting d appropriately, one
can improve the overall performance of the protocol.

At a high level, a “depth d” slot is a generalization of a slot with a nested-free where the slot is
allowed to contain nested sessions so long as the total recursive depth of all the nested sessions is
at most d. Such sessions can be solved easily in exponential time in d (in expectation) using näıve
recursive rewinding. We start with a few definitions regarding depth of nested sessions and slots.

Definition 5 (Session Nested in a Slot). We say that a session B is nested in slot j of session
A if both (V 0)B and (p1)B (i.e., the first and the last messages of session B) appear after PA

j but

before V A
j in the schedule.

Note that if (p1)B appears in a slot of A then by our convention all second-stage messages of B
occur in that slot. Therefore, the above definition simply says that slot j of session A contains the
entire session B (except possibly (P0) which is irrelevant). Next, we define slots with increasing
levels of nesting. This is done by defining the depth of a session and a slot recursively. The definition
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Protocol 2 Our Protocol
Common Input: x 2 {0, 1}n, sec. param. n, round param. k = !(log n), degree d.
Prover’s Input: a witness w such that RL(x,w) = 1
Stage 1:
P ! V (P0): Send first message of perfectly hiding commitment Com.
V ! P (V 0): Using the commitment Com, commit to random �.

Slot j 2 [k]:
P ! V (Pj) : Send a random challenge
V ! P (V j): Upon receiving a message ri, decommit.
P ! V : If any of the decommitments fails verification, abort.

If depthj  d or j = k, move to stage 2.
If depthj > d and j < k, move to slot j + 1.

Stage 2:
P and V engage in Blum’s 3-round Hamiltonicity protocol using challenge �.
1. P ! V (p1): Use witness to produce first message of Ham protocol
2. V ! P (v1): Decommit to �
3. P ! V (p2): If decommitments are valid, answer � with third message of Ham protocol. Otherwise abort.

below states that the depth of a slot is 0 if it does not contain any nested sessions; otherwise, it
is 1 more than the depth of the session that is nested in the slot and has the maximum depth of
all sessions nested in that slot. The depth of a session is equal to the depth of the slot(s) with
maximum depth.

Definition 6 (Slot Depth and Session Depth). For a session A and index j 2 [k], let FA
j

denote the set of all sessions B such that B is nested in slot j of session A. Then, the depth of slot
j of session A, denoted depth

A
j , is defined recursively as follows:

depth
A
j =

(
0, FA

j = ;
1 + maxB2FA

j
{depthB}, FA

j 6= ;

where depth
B (without any subscript) denotes the depth of session B, which in turn, is simply the

depth of its highest nested slot; i.e.,

depth
B = max

i2[k]
{depthBi }.

If depthAj = d we say that slot j of session A is a depth-d slot; likewise, A is a depth-d session

if depthA = d. When we do not need to be explicit about the the session, we will write depthj to
refer to the depth of the j-th slot of some underlying session.

Our protocol. Our new protocol is obtained by simply replacing the footer-free condition in
Rosen-Shelat protocol with the condition that the depth of the slot is at most d. For completeness,
we give the description in Protocol 2.

The completeness and soundness of this protocol follow from that of Rosen-Shelat. The proof
of zero-knowledge property is given in Section 6.2.

6.1 Bounding Optimal Sessions for Our Protocol

Bounding optimal sessions for our protocol in the p-FIFO model turns out to be trivial. Actually,
the p-FIFO model is the best case scenario where all sessions are optimal with just d = 1. Due to
this, it does not matter if p-FIFO stops after 1 slot and result holds for arbitrary k-slots.
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Proposition 3. All sessions of our protocol in the p-FIFO model are optimal if the depth parameter
d � 1, for all values of p and number of slots k.

Proof. Assume that there exist a session A whose first slot has a depth more than 0. Then there
must be some session B nested between messages PA

1 and V A
1 . That means B is opened after A,

but its last message is scheduled before that of A. This contradicts the FIFO order of closing the
slots. Thus, every session must be optimal. ut

We note that for our protocol, p-LIFO provides more insight into protocol’s performance than the
p-FIFO model. This can be seen from the experimental simulations we perform and provide in
Section 7.

6.2 Proof of Zero-Knowledge Property of Our Protocol

In this section, we prove the zero-knowledge property of our protocol by describing an expected
polynomial-time simulator and proving corresponding indistinguishability claim regarding its out-
put. We will first present a subroutine to simulate depth-d schedules, and then show the full
simulator based on the subroutine.

Simulating Depth-d Schedules. If a concurrent adversary V ⇤ is guaranteed to never produce
schedules of depth > d, then its view can be simulated in poly(nd) time using the näıve rewinding
strategy which solves each slot (of each session) by rewinding it immediately after it is closed; if a
previously solved session gets rewound past its first message, the simulator just solves it again as
needed. This is presented as the subroutine näıve recurse below; the description contains additional
details (to make it compatible with our full simulator presented later).

In the sequel, we only focus on preamble messages and timely extraction of the simulation
trapdoor for each session; for standard details on how to handle second stage messages see [Ros04,
PRS02].

Subroutine näıve recurse(d, view, V s
j , aux). The input to the subroutine consists of a maximum

depth parameter d, a partial view of the adversary V ⇤ containing V s
j as the last message in the

transcript so far denoting the closure of slot j of some sessions s, and a list of auxiliary inputs
aux containing the simulation trapdoors �s0 for every session s0 not nested in slot (P s

j , V
s
j ) (where

j, s, P s
j are implicit in view). The goal of the subroutine is to extract simulation trapdoor �s for

session s and append it to aux.
Let stj denote the state of V ⇤ before message P s

j is sent. Proceed as follows:

1. Rewind V ⇤ to state stj and send a freshly sampled prover message P
0s
j for slot j of sessions s.

2. If V ⇤ sends a second-stage message of an already solved session, send the next message of that
session (by using trapdoors from aux).

3. If V ⇤ opens a new session s0, send next message of s0 honestly.

4. If V ⇤ closes a slot j0 of an unsolved session s0 6= s by sending V j0

s0 :
4

– if depths
0
j0 < d, call:

näıve recurse(depths
0
j0 , view

0, V j0

s0 , aux
0)

where view
0, aux0 are current values of variables view and aux.

4 Note that by our restriction on aux, if s0 is not solved, it must have started after the slot j of s was already opened.
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– else go to step 1.
5. If V ⇤ halts without sending a valid V s0

j , go to step 1.

6. Otherwise, extract �s from values (P s
j , V

s
j , P

0s
j , V

0s
j ) and append it to aux.5

This completes the description of näıve recurse.

Lemma 4. The expected running time of näıve recurse(d, view, V s
j , aux) is

poly(nd)

⇣j,s,view

where ⇣j,s,view denotes the probability that interaction with V ⇤
j,s results in successful closing of j-th

slot of session s with depth at most d, and V ⇤
j,s is algorithm V ⇤ starting from the state immediately

before slot j of s is opened in view.

Proof. The proof is straightforward but some care is needed since the slot may contain many nested
sessions. The lemma holds for d = 0 since in this case the slot cannot contain any nested sessions
so that all steps are strict polynomial time, repeated 1

⇣j,s,view
times in expectation.

Consider the case for d = 1. The slot can contain several nested sessions a1, a2, . . ., each of
depth at most 0. The messages of these sessions can overlap with each other but no si is (fully)
nested in aj since otherwise they will not be of depth 0. Now let us consider the running time of
a single execution attempt (i.e., without executing the go to steps) to complete this slot. Either
the slot will be successfully closed or the execution will decide to reach the go to step. The running
time of a single execution is thus the sum of the running times for each internal depth 0 sessions
a1, a2, . . . (polynomially many). Note that the trapdoors �ai for each internal session ai only needs
to be extracted if ai is successfully completed with degree at most 0. We now apply the standard
“p ⇥ 1/p” argument: the expected time for completing each of sessions ai along with extracting
trapdoors �ai is polynomial (since the lemma holds for d = 0). Therefore, the expected running
time to complete a single run is at most poly(n).

Now, the total number of runs, in expectation, are 1
⇣j,s,view

, and these runs are independent of

each other. So we can just multiply the two expectations to get the total expected time to extract
� for d = 1.

Assume by induction that the claim is true for all depths less than d. We now simply repeat
the above argument. Specifically, the transcript of a depth d slot can be viewed as consisting of
several sessions A1, A2, . . ., each of depth at most d�1. The expected time to simulate each of these
sessions is poly(nd�1) due to the induction assumption and the “p⇥ 1/p” argument as above. The
expected time for a single run for depth d slot is the sum of values poly(nd�1) for poly(n) times,
which is at most poly(nd). And since there are 1

⇣j,s,view
independent runs, we get the bound in the

lemma. ut

Full Simulator. Our full simulator is identical to the simulator for Rosen-Shelat except that we use
the subroutine näıve recurse described above instead of the nested-footer strategy used by them. All
claims also follow easily without any significant changes (except the näıve recurse related changes).
At a high level, this is su�cient because the Rosen-Shelat simulator relies on following two key
conditions:
5 We assume wlog that �s can always be extracted from such values; in rare cases (e.g.,when P s

j = P
0s
j ) the trapdoor

can be extracted in exponential time by a higher level simulator without a↵ecting the expected running time
overall.
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1. When the PRS-based recursive simulation reaches the bottom level of recursion (i.e., recursion
depth ` = 1), the näıve “rewind until successful” strategy (used for footer-free slots) contributes
only polynomial amount in expectation to the running time of the full simulator. We can replace
this with essentially any other procedure that maintains the polynomial contribution condition,
e.g., the näıve recurse procedure if d is a constant.

2. When employing the näıve rewinding strategy for footer-free sessions, the trapdoors for all
sessions that start before the slot have already been extracted (either by the PRS-strategy
or by the näıve one). This invariant is also maintained for our simulator and reflected in the
condition for input aux. Indeed, a depth-d slot considers sessions that are fully nested in it with
their first and last messages. If a session starts in the slot but ends outside, its trapdoor is not
needed during the slot; if it starts before the slot but ends in the slot, its trapdoor must have
been extracted either by näıve recurse or the PRS-strategy.

For completeness, we now present the full simulator. It is taken almost verbatim from [RS10];
we only incorporate changes corresponding to the ` = 1 case in the recursion.

We construct a black-box simulator S to demonstrate that the cZK property holds. Given
a dishonest verifier V ⇤ that acts as the adversary in our concurrent scenario, S will rewind the
interaction with V ⇤ and examine the behavior of inputs and outputs. We define SOLVE procedure
that supplies the simulator with challenges from V ⇤ before it reaches stage 2 in the protocol. This
is done by rewinding the interaction with V ⇤ while trying to achieve two “di↵erent” answers to
some (Pj) message using the näıve recursesubroutine.

The timing of the rewinds performed by SOLVE depends on the number of stage 1 verifier
messages received so far and on the size of the schedule. Whenever SOLVE encounters a situation
where the slot in the session is depth

s
j  d, it adaptively assumes this is a case where it can solve

that session using the näıve “rewind until successful” strategy to extract the simulation trapdoor.

SOLVE subroutine splits the Stage 1 messages passed as input to it into two halves and invokes
itself recursively twice for each half (completing the two runs of the first half before proceeding to
the two runs of the second half). At the top level of the recursion, the messages that are about
to be explored consist of the entire schedule, whereas at the bottom level the procedure explores
only a single message. It may read a message multiple times via rewinding depending on the depth.
SOLVE outputs a message only once after the first encounter with it.

The input to SOLVE consists of a triplet (`, hist,T). The parameter ` corresponds to the total
number of messages from the verifier, hist is a string of messages in the “first-visited” history of
interaction, and T is a table containing the contents of all the messages explored upto that point.
The messages stored in T are used in order to determine � according to answers (V j) to di↵erent
(Pj). They are kept relevant by constantly keeping track of the sessions that are rewound past
their initial commitment. That is, whenever SOLVE rewinds past the (V 0) message of a session, all
messages belonging to this session are deleted from T.

The analysis takes advantage of the fact that no naı”vely rewound slot has depth > d, building
on the assumption that a slot with depth  d is an event of non-negligible probability (or otherwise
it would not have occurred). Repeated rewinding means that the simulator will obtain an execution
of this slot with depth  d again pretty soon in expectation. This will enable it to successfully solve
the session even though the sessions may have less than k slots.

The SOLVE procedure is described below (Figure 2).
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Procedure SOLVE (`, hist,T):

Bottom level (` = 1):

1. For each s 2 {1, · · · ,m}, if the initial commitment, (V 0), of session s does not appear in hist, delete all session
s messages from T.

2. Run �  V ⇤(hist, p). If � is of the form (recv, V,↵, t), then continue to the next step. Else if it is (send, V, t), then
uniformly choose a first stage prover message p, append it to the transcript at time t, and repeat this step. If t
or ↵ are invalid, then halt the simulation and output the current transcript.

3. Let
– (p1, v1, · · · , pt, vt) = (hist, p, v)
– i be the session number to which v corresponds. vt is the ith message from verifier to prover in some session

s, namely vt = V s
i .

4. If there exists a pair of indices (a, b) such that a 2 [t] and b = t for which:
– vb 6= ABORT

– both vb and pa belong to session s and (pa, vb) construct slot i of some session s, namely (pa, vb) = (P s
i , V

s
i ).

– and, depthsi  d.
Then solve such (a, b) using näıve recurse(depthsi , view, V

s
i ,T);

it stores all the necessary information for this sessions in T, including the second successful run of the slot,
denoted (p, v).

5. output T, (p,v).

Recursion (` > 1):

1. Set T1, (p1, v1, · · · , p `
2
, v `

2
) SOLVE ( `

2 , hist,T).

2. Set T2, (ep1, ev1, · · · , ep `
2
, ev `

2
) SOLVE ( `

2 , hist,T1).

3. Set T3, (p( `
2+1), v( `

2+1), · · · , p`, v`) SOLVE ( `
2 , (hist, p1, v1, · · · , p `

2
, v `

2
),T2).

4. T4, (ep( `
2+1), ev( `

2+1), · · · , ep`, ev`) SOLVE ( `
2 , (hist, p1, v1, · · · , p `

2
, v `

2
),T3).

5. Output T4, (p1, v1, · · · , p`, v`).

Fig. 2. The SOLVE Procedure

The analysis of the simulator is almost identical to that of [RS10] except that we use the bound
poly(nd)
⇣j,s,view

for the running time of näıve recurse instead of 1
⇣a,b

in the calculation of the expected running

time of the simulator. The details are omitted.

7 Experimental Simulations

In this section we display some empirical results of simulation to show the performance of our
protocol as well as Rosen-Shelat protocol in various models.

Figure 3 shows the average fraction of non-optimal sessions on 1-slot p-FIFO and p-LIFO. In
the p-FIFO setting, all sessions in our protocol are optimal, just as we proved in Proposition 3.
In addition, it is clear in this plot that the empirical result agrees with the theoretical bound we
derived for 1-Slot p-FIFO and p-LIFO earlier. In 1-Slot p-LIFO setting, our model performs the
same as Rosen-Shelat. We expect it to be so because, in this setting, our model is the same as
Rosen-Shelat’s model in terms of optimal sessions. Again, this plot shows that the empirical results
coincide with our theoretical bound.

Next, we consider the simulation for higher number slots, e.g., 10 slots. Note that even with 10-
slots, in the p-FIFO model our protocol will always have all sessions to be good (due to Proposition
3). Therefore, we only generate the plot for the p-LIFO model. This plot is appears in figure 4
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Fig. 3. Comparison for Fraction of Non-Optimal Sessions in 1-Slot Setting

Fig. 4. Comparison for Fraction of Non-Optimal Sessions in 10-Slot Setting

and shows that our protocol performs significantly better than the Rosen-Shelat protocol (even for
moderate values of the depth parameter, such as 5). By picking a higher constant for depth we can
expect to see a higher fraction of optimal sessions for our model.
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Appendix

A Proof for |Bi � Bi+1| < 1

(All symbols in this proof are inherited from Section 4.)
We start with two lemmas about some general truth of the random walk with reflection at zero.

Lemma 5. In a random walk with reflection at zero, at any step t, for any length L and any
current position a 2 N, the following holds:

0  E[
LX

i=1

Xt+i|St = a]� E[
L�1X

i=1

Xt+i|St = a]  1

Remark 3. The proof is omitted for this lemma since it is obvious once we use the linearity of the
expectation operator. But note that St means the position at step t (St =

Pt
i=1 ✏i), while

PL
i=1Xt+i

is the number of “going right” from step t+ 1 to step t+ L.

The following corollary follows immediately from Lemma 5.

Corollary 2. In a random walks with reflection at zero, at any step t, for any length L and any
a 2 N, the following holds:

0  E[
LX

i=1

Xt+i|St = a]� E[
L�1X

i=1

Xt+1+i|St+1 = a]  1

Proof. Substitute t+ 1 by t in E[
PL�1

i=1 Xt+1+i|St+1 = a] dose not change its value since this value
only related to L, a and p. Thus we have

E[
LX

i=1

Xt+i|St = a]� E[
L�1X

i=1

Xt+1+i|St+1 = a] = E[
LX

i=1

Xt+i|St = a]� E[
L�1X

i=1

Xt+i|St = a]

Then according to Lemma 5, we proved the bounds in this Corollary

Here comes the second lemma, which is critical to our main theorem.

Lemma 6 (Di↵-1 Lemma). Given a random walks with reflection at zero {Xi}, at any step t,
for any length L and any a 2 N , we have:

0  E[
LX

i=1

Xt+i|St = a]� E[
LX

i=1

Xt+i|St = a+ 1]  1

Proof. Construct two sets of events: K = {k0, k1, k2, ..., kL} and K 0 = {k00, k01, k02, ..., k0L}.
kj (j 6= 0) denote the event that starting from St = a, our first visit to the origin (position 0)

happens at step t+ j. k0 means we do not visit position 0 up to step t+ L.
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Let k0j (j 6= 0) denote the event that starting from St = a + 1, we our first visit to position 1
happens at step t+ j. k00 means we do not visit position 1 up to step t+ L.

E[
LX

i=1

Xt+i|St = a] = EK

"
E[

LX

i=1

Xt+i|St = a,K]

#

=
X

kj2K
E[

LX

i=1

Xt+i|St = a,K = kj ] · P (K = kj |St = a)

Similarly,

E[
LX

i=1

Xt+i|St = a+ 1] =
X

k0j2K0

E[
LX

i=1

Xt+i|St = a+ 1,K 0 = k0j ] · P (K 0 = k0j |St = a+ 1)

By definition, it is obvious that

P (K = kj |St = a) = P (K 0 = k0j |St = a+ 1).

To finish the prove, now we only need to show:

0  E[
LX

i=1

Xt+i|St = a]� E[
LX

i=1

Xt+i|St = a+ 1]  1

Further, we know that:

E[
LX

i=1

Xt+i|St = a]� E[
LX

i=1

Xt+i|St = a+ 1]

=
LX

j=0

 
E[

LX

i=1

Xt+i|St = a,K = kj ]� E[
LX

i=1

Xt+i|St = a+ 1,K 0 = k0j ]

!
· P (K = kj |St = a)

Then once we show the following holds for all j, we are done with the proof:

0  E[
LX

i=1

Xt+i|St = a,K = kj ]� E[
LX

i=1

Xt+i|St = a+ 1,K 0 = k0j ]  1 (20)

For j = 0, this model is equivalent to a segment of pure random walk, because we never visit 0
thus no “bumping up” can happen. The above inequality holds because

E[
LX

i=1

Xt+i|St = a,K = k0]� E[
LX

i=1

Xt+i|St = a+ 1,K 0 = k00] = p · L� p · L = 0

Now let us focus on the case that j 6= 0:

E[
LX

i=1

Xt+i|St = a,K = kj ] = E[
jX

i=1

Xt+i +
LX

i=j+1

Xt+i|St = a,K = kj ]

= E[
jX

i=1

Xt+i|St = a,K = kj ] + E[
LX

i=j+1

Xt+i|St = a,K = kj ]
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The first term in the above step means the expected number of “going right” starting from St and
end at step t + j, which is the first time we reach 0 after step t. Actually this expectation is a
constant, which can be calculated easily. It is j�a

2 .
For the second term in the above step, note that we must bump right at step t + j + 1 since

we have already reached 0 at step t+ j. Further, since we now are already at step St+j+1 and the
expectation is taken on {Xt+j+2, Xt+j+3, ..., Xt+L}, so the previous steps dose not matter once we
condition it on the current position. That means we can change the condition (St = a,K = kj) to
(St+j+1 = 1) now. So

E[
LX

i=j+1

Xt+i|St = a,K = kj ] = 1 + E[
LX

i=j+2

Xt+i|St+j+1 = 1]

Pull them together, we have:

E[
LX

i=1

Xt+i|St = a,K = kj ] =
j � a

2
+ 1 + E[

LX

i=j+2

Xt+i|St+j+1 = 1] (21)

Now consider the case for St = a+ 1. A similar argument gives us:

E[
LX

i=1

Xt+i|St = a+ 1,K 0 = k0j ] =
j � a

2
+ E[

LX

i=j+1

Xt+i|St+j = 1] (22)

Equation (21) minus (22) gives us:

E[
LX

i=1

Xt+i|St = a,K = kj ]� E[
LX

i=1

Xt+i|St = a+ 1,K 0 = k0j ]

= 1�

0

@E[
LX

i=j+1

Xt+i|St+j = 1]� E[
LX

i=j+2

Xt+i|St+j+1 = 1]

1

A

By Corollary 2, we know that:

0 

0

@E[
LX

i=j+1

Xt+i|St+j = 1]� E[
LX

i=j+2

Xt+i|St+j+1 = 1]

1

A  1

thus Equation (20) holds. Therefore we proved this Lemma.

With these two lemmas above, we are now ready to prove |Bi � Bi+1|  1. To shorten the
notation, we will use Et

i+1[Mt|X1 : Xi] to substitute

EXi+1,Xi+2,..,Xt [Mt|X1, X2, ..., Xi]

By definition,

Bi �Bi+1 = Et
i+1[Mt|X1 : Xi]� Et

i+2[Mt|X1 : Xi, Xi+1]

= EXi+1

�
EXi+2:Xt [Mt|X1 : Xi, Xi+1]|X1 : Xi

 
�

Et
i+2[Mt|X1 : Xi, Xi+1] (23)

= P (Xi+1 = 0|X1 : Xi) · Et
i+2[Mt|X1 : Xi, Xi+1 = 0]+

P (Xi+1 = 1|X1 : Xi) · Et
i+2[Mt|X1 : Xi, Xi+1 = 1]�

Et
i+2[Mt|X1 : Xi, Xi+1] (24)
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Remark 4. At step (23) in the above, we take advantage of the property of expectation operator
that E[X|A] = EB{E[X|A,B]|A}. It following from the linearity of expectation and Law of Total
Probability.

Note that Bi � Bi+1 is indeed a function on random vector (X1, X2, ..., Xi+1). So we can use
the notation f(X1, X2, ..., Xi+1) := Bi � Bi+1. We want to prove that |Bi � Bi+1| < ci, which is
the same as: Find some constant ci such that |f(X1, X2, ..., Xi+1)| < ci holds for all points in the
sample space of random vector (X1, X2, ..., Xi+1). Now let us partition the sample space of this
random vector by its last element and discuss the corresponding behavior.

For x 2 {(X1, X2, ..., Xi+1)|Xi+1 = 1}, equation (24) becomes:

f(x) = P (Xi+1 = 0|X1 : Xi) · Et
i+2[Mt|X1 : Xi, Xi+1 = 0]+

P (Xi+1 = 1|X1 : Xi) · Et
i+2[Mt|X1 : Xi, Xi+1 = 1]�

Et
i+2[Mt|X1 : Xi, Xi+1 = 1]

= P (Xi+1 = 0|X1 : Xi) · Et
i+2[Mt|X1 : Xi, Xi+1 = 0]+

(P (Xi+1 = 1|X1 : Xi)� 1) · Et
i+2[Mt|X1 : Xi, Xi+1 = 1]

= P (Xi+1 = 0|X1 : Xi)·�
Et

i+2[Mt|X1 : Xi, Xi+1 = 0]� Et
i+2[Mt|X1 : Xi, Xi+1 = 1]

�

= P (Xi+1 = 0|X1 : Xi)·0

@Et
i+2[

tX

j=i+1

Xj |X1 : Xi, Xi+1 = 0]� Et
i+2[

tX

j=i+1

Xj |X1 : Xi, Xi+1 = 1]

1

A

= �P (Xi+1 = 0|X1 : Xi) + P (Xi+1 = 0|X1 : Xi)·0

@Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 0]� Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 1]

1

A (25)

For x 2 {(X1, X2, ..., Xi+1)|Xi+1 = 0}, similar derivation shows that:

f(x) = P (Xi+1 = 1|X1 : Xi)·0

@Et
i+2[

tX

j=i+1

Xj |X1 : Xi, Xi+1 = 1]� Et
i+2[

tX

j=i+1

Xj |X1 : Xi, Xi+1 = 0]

1

A

= P (Xi+1 = 1|X1 : Xi) + P (Xi+1 = 1|X1 : Xi)·0

@Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 1]� Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 0]

1

A (26)

From Equation (25) and (26), we know that if we could show the following bounds for some
positive number c

0  Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 0]� Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 1]  c (27)

then by denoting p⇤ = P (Xi+1 = 1|X1 : Xi) and q⇤ = P (Xi+1 = 0|X1 : Xi), we will have
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(
8x 2 {(X1, X2, ..., Xi+1)|Xi+1 = 1}, �q⇤  f(x)  (c� 1) · q⇤

8x 2 {(X1, X2, ..., Xi+1)|Xi+1 = 0}, (1� c) · p⇤  f(x)  p⇤

That is to say for any point x in the sample space of (X1, X2, ..., Xi+1), f(x) = Bi � Bi+1 is
bounded by

min{�q⇤, (1� c) · p⇤}  Bi �Bi+1  max{(c� 1) · q⇤, p⇤}, (28)

Now if we can show that c = 2 satisfies Inequality (27), we are done with the proof. This is
because setting c = 2 in Inequality (28) gives us:

� 1  min{�p⇤,�q⇤}  Bi �Bi+1  max{p⇤, q⇤}  1, (29)

which means |Bi �Bi+1|  1.
The next lemma tells us that c = 2 indeed satisfies Inequality (27). So this lemma finishes our

proof for |Bi �Bi+1|  1.

Lemma 7.

0  Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 0]� Et
i+2[

tX

j=i+2

Xj |X1 : Xi, Xi+1 = 1]  2 (30)

Proof. It is obvious that for any point (x1, x2, ..., xi) in the sample space of random vector (X1, X2, ..., Xi),
we have

(
Et

i+2[
Pt

j=i+2Xj |X1 : Xi, Xi+1 = 1] = Et
i+2[

Pt
j=i+2Xj |Si+1 = a+ 1]

Et
i+2[

Pt
j=i+2Xj |X1 : Xi, Xi+1 = 0] = Et

i+2[
Pt

j=i+2Xj |Si+1 = a� 1]
,

where a = Si =
Pi

j=1 ✏j .
Then by Lemma 6, we have

(
0  Et

i+2[
Pt

j=i+2Xj |X1 : Xi, Xi+1 = 0]� Et
i+2[

Pt
j=i+2Xj |Si+1 = a]  1

0  Et
i+2[

Pt
j=i+2Xj |Si+1 = a]� Et

i+2[
Pt

j=i+2Xj |X1 : Xi, Xi+1 = 1]  1

Adding them together proves the inequality in this lemma
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