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Abstract
In the Correlation Clustering problem, we are
given a complete weighted graph G with its edges
labeled as “similar” and “dissimilar” by a noisy
binary classifier. For a clustering C of graph G, a
similar edge is in disagreement with C, if its end-
points belong to distinct clusters; and a dissimilar
edge is in disagreement with C if its endpoints
belong to the same cluster. The disagreements
vector, dis, is a vector indexed by the vertices
of G such that the v-th coordinate disv equals
the weight of all disagreeing edges incident on
v. The goal is to produce a clustering that mini-
mizes the `p norm of the disagreements vector for
p ≥ 1. We study the `p objective in Correlation
Clustering under the following assumption: Every
similar edge has weight in the range of [αw,w]
and every dissimilar edge has weight at least αw
(where α ≤ 1 and w > 0 is a scaling parameter).
We give an O

(
(1/α)1/2−1/2p · log 1/α

)
approxima-

tion algorithm for this problem. Furthermore, we
show an almost matching convex programming
integrality gap.

1. Introduction
Grouping objects based on the similarity between them is
a ubiquitous and important task in machine learning. This
similarity information between objects can be represented
in many ways, some of them being pairwise distances be-
tween objects (objects which are closer are more similar)
or the degree of similarity between pairs of objects (objects
which are more similar have a higher degree of similarity).
Bansal, Blum, and Chawla (2004) introduced the Correla-
tion Clustering problem, a versatile model that elegantly
captures this task of grouping objects based on similarity
information. Since its introduction, the correlation clus-
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tering problem has found use in a variety of applications,
such as co-reference resolution (see e.g., Cohen and Rich-
man (2001; 2002)), spam detection (see e.g., Ramachandran
et al. (2007), Bonchi et al. (2014)), image segmentation
(see e.g., Wirth (2010)) and multi-person tracking (see e.g.,
Tang et al. (2016; 2017)). In the Correlation Clustering
problem, we are given a set of objects with pairwise simi-
larity information. Our goal is to partition the objects into
clusters that agree with this information as much as possible.
The pairwise similarity information is given as a weighted
graph G with edges labeled as either “positive/similar” or
as “negative/dissimilar” by a noisy binary classifier. For a
clustering C, a positive edge is in disagreement with C, if its
endpoints belong to distinct clusters; and a negative edge is
in disagreement with C if its endpoints belong to the same
cluster.

To ascertain the quality of the clustering produced, Bansal
et al. (2004) studied the Correlation Clustering problem
under two complimentary objectives. Over the years, the
objective that has received the most attention is to find a clus-
tering that minimizes the total weight of edges in disagree-
ment. For the case of complete unweighted graphs, Bansal
et al. (2004) gave a constant factor approximation algorithm
for this objective. Ailon, Charikar, and Newman (2008) im-
proved the approximation ratio to 3 by presenting a simple-
yet-elegant combinatorial algorithm. They also presented
a 2.5-approximation algorithm based on Linear Program-
ming (LP) rounding which was later derandomized with-
out any loss in approximation ratio by van Zuylen, Hegde,
Jain, and Williamson (2007). Finally, Chawla, Makarychev,
Schramm, and Yaroslavtsev (2015) gave an LP rounding
algorithm which improved the approximation ratio to 2.06.
The standard LP was shown to have an integrality gap of 2 by
Charikar, Guruswami, and Wirth (2003) for the case of com-
plete unweighted graphs. For the case of general weighted
graphs, Charikar et al. (2003) and Demaine, Emanuel, Fiat,
and Immorlica (2006) gave an O(log n)-approximation al-
gorithm.

Define the disagreements vector to be a vector indexed by
the vertices of G. Given a clustering P , dis(P, E+, E−) ∈
RV is a |V |-dimensional vector where the u-th coordi-
nate is equal to the weight of disagreements at u with
respect to P . That is, disu(P, E+, E−) =

∑
(u,v)∈E

wuv ·
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minimize ‖y‖p (P)
subject to yu =

∑
v:(u,v)∈E+

wuvxuv +
∑

v:(u,v)∈E−

wuv(1− xuv) for all u ∈ V (P1)

xv1v2
+ xv2v3

≥ xv1v3
for all v1, v2, v3 ∈ V (P2)

xuv = xvu for all u, v ∈ V (P3)
xuv ∈ [0, 1] for all u, v ∈ V (P4)

Figure 1. Convex relaxation for Correlation Clustering with min `p objective for p ≥ 1 or p =∞.

1{(u, v) is in disagreement with P}. Thus, minimizing the
total weight of disagreements is equivalent to finding a
clustering minimizing the `1 norm of the disagreements vec-
tor. Another objective for Correlation Clustering that has
received attention recently is to minimize the weight of dis-
agreements at the vertex that is worst off (also known as Min
Max Correlation Clustering). This is equivalent to finding a
clustering that minimizes the `∞ norm of the disagreements
vector. Observe that minimizing the `1 norm is a global
objective since the focus is on minimizing the total weight
of disagreements. In contrast, for higher values of p (par-
ticularly p = ∞), minimizing the `p norm becomes a more
local objective since the focus shifts towards minimizing
the weight of disagreements at a single vertex. Minimizing
the `2 norm of the disagreements vector can thus provide
a balance between these global and local perspectives – it
considers the weight of disagreements at all vertices but
penalizes vertices that are worse off more heavily. The fol-
lowing scenario is a showcase that minimizing the `2 norm
might be a more suitable objective than minimizing the `1
norm. Consider a recommender system such that input is
a bipartite graph with left and right sides representing cus-
tomers and services, respectively. A positive edge implies
that a customer is satisfied with the service; whereas a neg-
ative edge implies that they are dissatisfied with or have
not used the service. We may be interested in grouping
customers and services so that the total and the individual
dissatisfaction of customers are minimized.

Definition 1.1. (Local Correlation Clustering) Given an
instance of Correlation Clustering G = (V,E = E+∪E−)
and p ≥ 1, the local objective is to find a partitioning P
that minimizes the `p norm.

We use the standard definition of the `p norm of a vec-
tor x: ‖x‖p = (

∑
u |xu|p)

1
p . Since its introduction

by Puleo and Milenkovic (2018), local objectives for Cor-
relation Clustering have been mainly studied under two
models (see Charikar, Gupta, and Schwartz (2017), Ahmadi,
Khuller, and Saha (2019), Kalhan, Makarychev, and Zhou
(2019)). We will refer to these models as (1) Correlation
Clustering on Complete Graphs, and (2) Correlation Cluster-
ing with Noisy Partial Information. In the first model, the in-

put graph G is complete and unweighted. For this model, the
first approximation algorithm was by Puleo & Milenkovic
(2018) with an approximation factor of 48 for minimizing
the `p norm. This was later improved to 7 by Charikar
et al. (2017). Lastly, Kalhan et al. (2019) provided a 5
approximation algorithm. In the second model, G is an
arbitrary weighted graph with possibly missing edges. For
minimizing the `∞ norm of the disagreements vector in this
model, Charikar et al. (2017) provided a O(

√
n) approxima-

tion. Kalhan et al. (2019) gave an O(n
1
2−

1
2p · log

1
2+

1
2p n)-

approximation algorithm for minimizing the `p norm of the
disagreements vector.

We study local objectives in a different model – Corre-
lation Clustering with Asymmetric Classification Errors
– recently introduced by Jafarov, Kalhan, Makarychev, and
Makarychev (2020). In this model, the input graph G is
complete and weighted. Furthermore, the ratio of the small-
est edge weight to the largest positive edge weight is at least
α ≤ 1. Thus, for some w > 0, each positive edge weight
lies in the interval [αw,w] and each negative edge weight is
at least αw. This model better captures the subtleties in real
world instances than the standard models. Since real world
instances rarely have equal edge weights, assumptions in the
Correlation Clustering on Complete Graphs model are too
strong. In contrast, in the Correlation Clustering with Noisy
Partial Information model, we can have edge weights that
are arbitrarily small or large, an assumption which is too
weak. In many real world instances, the edge weights lie in
some range [a, b] with a, b > 0. For this model, Jafarov et al.
(2020) gave a (3 + 2 ln 1

α ) approximation for minimizing
the `1 norm of the disagreements vector.

Definition 1.2. Correlation Clustering with Asymmetric
Classification Errors is a variant of Correlation Clustering
on Complete Graphs. We assume that the weight of each
positive edge lies in [αw,w] and the weight of each negative
edge lies in [αw,∞), where α ∈ (0, 1] and w > 0.

Our Contributions. In this paper we study the task of
minimizing local objectives (Definition 1.1) under the
Correlation Clustering with Asymmetric Classification
Errors model (Definition 1.2). Our main result is an
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O
((

1
α

) 1
2−

1
2p · log 1

α

)
approximation algorithm for mini-

mizing the `p norm of the disagreements vector, which we
now state.

Theorem 1.3. There exists a polynomial-time

O
((

1
α

) 1
2−

1
2p · log 1

α

)
-approximation algorithm for

the `p objective in the Correlation Clustering with
Asymmetric Classification Errors model.

For p = 1, our algorithm provides an O(log 1
α ) approxi-

mation, which matches the approximation guarantee given
by Jafarov et al. (2020) up to constant factors. Consider
p = 2, that is, the `2 norm. If we ignored the edge weights
and applied the state of the art algorithm in the Correlation
Clustering on Complete Graphs model, we would get an
O( 1

α ) approximation. If we were to use the state of the art
algorithm in the Correlation Clustering with Noisy Partial
Information model, we would get an Õ

(
n1/4

)
approxima-

tion. However, by using our algorithm (Theorem 1.3), we
obtain an Õ

((
1/α
)1/4)

approximation, which is a huge im-
provement when 1/α � n.

Corollary 1.4. There exists a polynomial-time O
((

1/α
)1/4 ·

log 1
α

)
-approximation algorithm for the `2 objective in the

Correlation Clustering with Asymmetric Classification Er-
rors model.

Finally, we present the implication of our main result for the
`∞ norm. For the `∞ norm, Kalhan et al. (2019) presented
an Õ(

√
n) approximation under the Correlation Clustering

with Noisy Partial Information model. Using our algorithm
for Correlation Clustering under Asymmetric Classification
Errors we obtain an Õ(

√
1/α)-approximation factor, which

is a significant improvement to the approximation guarantee
in this setting.

Corollary 1.5. There exists a polynomial-time O(
√

1/α ·
log 1/α)-approximation algorithm for the `∞ objective in
the Correlation Clustering with Asymmetric Classification
Errors model.

We emphasize that our approximation ratio for the `p norm
is independent of the graph size and only depends on α.

Our algorithm relies on the natural convex programming
relaxation for this problem (Section 2). We compliment our
positive result (Theorem 1.3) by showing that it is likely to
be the best possible based on the natural convex program,
by providing an almost matching integrality gap.

Theorem 1.6. The natural convex programming relaxation
for the `p objective in the Correlation Clustering with Asym-
metric Classification Errors model has an integrality gap of

Ω
((

1/α
) 1

2−
1
2p
)
.

Organization of the paper. In Section 2, we describe the
convex relaxation that we will use in our algorithm for Cor-

relation Clustering. In Section 3, we introduce a novel tech-
nique for partitioning metric spaces. This forms the main
technical basis for our algorithm for Correlation Clustering.
In Section 4, we prove our main result, Theorem 1.3. In
Section 5, we describe our metric space partitioning scheme
and give a proof overview of its correctness. In Appen-
dices A, B, C and D, we formally prove the correctness of
our partitioning scheme, Theorem 3.1. In Appendix E, we
prove our integrality gap result, Theorem 1.6.

2. Convex Relaxation
Our algorithm for minimizing local objectives is based on
rounding the optimal solution to a suitable convex program
(Figure 1). This convex program is similar to the relaxations
used in Charikar et al. (2017) and Kalhan et al. (2019). In
this convex program, we have a variable xuv for every pair
of vertices u, v ∈ V . The variable xuv captures the distance
between u and v in the “multicut metric”. In the integral
solution, xuv = 0 if u and v are in the same partition and
xuv = 1 if u and v are in different partitions. In order to
enforce that the partitioning is consistent, we add triangle
inequality constraints between all triplets of vertices (P2).
We also require that distance xuv is symmetric (P3).

For every vertex u ∈ V , we use the variable yu to denote
the total weight of violated edges incident on u (P1). The
objective of the convex program is thus to minimize ‖y‖p
– the `p norm of the vector y. Notice that each constraint
in the convex program is linear, and the objective function
‖ · ‖p : Rn → R is convex (by the Minkowski inequality).

What remains to be shown is that the relaxation presented
in Figure 1 is valid. To this end, consider any partition
P = (P1, P2, . . . , Pk) of the set of vertices V . For every
pair of vertices u, v, if u and v lie in the same partition, we
assign the corresponding variable xuv a value of 0, else we
assign it a value of 1. Note that such an assignment satisfies
the triangle inequality (P2). Variable yu thus captures the
total weight of violated edges incident on u; every similar
edge (u, v) incident on u that crosses a partition contributes
wuv · xuv = wuv to yu, and every dissimilar edge present
within a cluster contributes wuv · (1 − xuv) = wuv to yu.
Thus, yu is equal to disu(P, E+, E−). Hence, an integral
convex program solution defined in such a manner is feasible
and has the same cost as the partitioning. It is possible,
however, that the cost of the optimal fractional solution
is less than the cost of the optimal integral solution, and
hence the convex program in Figure 1 is a relaxation to
our problem. We note that our relaxation is simpler than
the relaxation used in Kalhan et al. (2019). The additional
variables in their convex program are not needed in our case
because all edge weights belong to the interval [αw,w].
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3. A New Technique for Partitioning Metric
Spaces

We will use the following notation: Given expressions X
and Y , we write X . Y if X ≤ C · Y for some constant
C > 0 (that is, X = O(Y )). We define & similarly. Fur-
thermore, let X+ = 0 if X < 0 and X+ = X if X ≥ 0.
We use Ball(v, l) = {u : d(u, v) ≤ l} to denote the set of
vertices at a distance of at most l from v.

In this section, we describe our main technical tool – a
novel probabilistic scheme for partitioning metric spaces
which may be of independent interest. This partitioning
scheme forms the basis of our algorithm (Algorithm 1) for
Correlation Clustering. We begin by stating this technical
result.

Theorem 3.1. For every q ≥ 1 there exists a β∗
q =

Θ
(

1
q ln(q+1)

)
< 1 such that the following holds. Consider

a finite metric space (X, d). Fix two positive numbers r
and R such that β = r/R ≤ β∗

q . Let Dβ = 2(q + 1) ln 1/β.
Then, there exists a probabilistic partitioning P satisfying
properties (1), (2), and (3):

(1) diam(P ) ≤ 2R for every P ∈ P (always);

(2) For every point u in X , the following bound holds:

∑
v∈Ball(u,R)

(
Pr
{
P(u) 6= P(v)

}
−Dβ

d(u, v)

R

)+

.

. βq
∑

v∈Ball(u,2R)

d(u, v)

R
,

where P(u) denotes the partition of P that contains u.

(3) Moreover, for every u in X , we always have,∑
v∈Ball(u,r)

1
{
P(u) 6= P(v)

}
.

. β ·D2
β

∑
v∈Ball(u,2R)

d(u, v)

R
.

The partitioning we construct in Theorem 3.1 resembles
a 2D–separating 2R-bounded stochastic decomposition
of a metric space (Bartal, 1996; Călinescu et al., 2000;
Fakcharoenphol et al., 2004). Recall that a 2D–separating
2R-bounded stochastic decomposition satisfies property (1)
of Theorem 3.1 and the 2D-separating condition: for every
u, v ∈ X ,

Pr
{
P(u) 6= P(v)

}
−D

d(u, v)

R
≤ 0. (3.1)

At a very high level, the goals of our partitioning and the
2D–separating 2R-bounded stochastic decomposition are

similar: decompose a metric space in clusters of diameter
at most 2R so that nearby points lie in the same cluster
with high enough probability. However, the specific con-
ditions are quite different. Loosely speaking, property (2)
of Theorem 3.1 says that the decomposition satisfies (3.1)
with D = Dβ on average up to an additive error term of
O(βq)

∑
v∈Ball(u,2R)

d(u,v)
R . Crucially, property (3) pro-

vides an analogous guarantee not only in expectation, but
also in the worst case (which a 2D-separating decomposi-
tion does not satisfy).

Property (3) plays a key role in proving our main result, The-
orem 1.3. For the standard objective function for Correlation
Clustering (minimizing the `1 norm of the disagreements
vector), properties (1) and (2) are sufficient since an upper
bound on the expected weight of disagreements on a single
vertex implies an upper bound on the expected weight of
the total disagreements. The situation gets trickier when
we consider minimizing arbitrary `p (p > 1) norms of the
disagreements vector. For instance, having an upper bound
on the expected weight of disagreements on a single ver-
tex does not necessarily translate to an upper bound on the
expected weight of disagreements on a worst vertex (`∞
norm). We overcome this nonlinear nature of the problem
for higher values of p by using the deterministic (worst-case)
guarantee given by property (3) of Theorem 3.1.

Also note that coefficients Dβ and β do not depend on the
size |X| of the metric space (in our algorithm, they will only
depend on α, which is defined as the ratio of the smallest
edge weight to the largest positive edge weight). However,
the optimal value of D in the 2D-separating condition is
Θ(log |X|).

4. Correlation Clustering via Metric
Partitioning

In this section, we will prove our main theorem, Theo-
rem 1.3. Our algorithm (Algorithm 1) for minimizing local
objectives for Correlation Clustering with Asymmetric Clas-
sification Errors begins by solving the convex relaxation in
Figure 1 to obtain a solution {xuv}u,v∈V . It then defines a
metric d(·, ·) on V by setting distances d(u, v) = xuv .

We let q = 2. Let α∗ be the solution of equation
3
√
α∗/ ln 1/α∗ = β∗

2 (note that α∗ is an absolute constant).
We assume that α ≤ α∗. If α > α∗, we just redefine α
as α∗ (this will increase the approximation ratio only by a
constant factor). We set r =

√
α/ln 1/α and R = 1/3. Note

that r/R ≤ β∗
2 < 1.

At this point, the algorithm makes use of our key technical
contribution – a new probabilistic scheme for partitioning
metric spaces (Algorithm 2) – and outputs the partitioning
thus obtained. Please refer to Algorithm 1 for a summary.
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Algorithm 1 Correlation Clustering Algorithm
Input: G = (V,E+, E−,w, α), {xuv}u,v∈V

Define a metric d on V such that d(u, v) = xuv for all
u, v ∈ V .
Define r = (

√
α/ln 1/α), R = 1/3, q = 2.

P = Metric Space Partitioning Scheme(V, d, r, R, q).
Output P .

To show that P has the desired approximation ratio in The-
orem 1.3, we bound the weight of disagreements at every
vertex u ∈ V with respect to P . To this end, we show
that two useful quantities, the total weight of disagreements
at u and the expected weight of disagreements at u can be
bounded in terms of yu, the cost paid by the convex program
for vertex u. In Theorem 4.1, we make use of the properties
of P given by Theorem 3.1 to get a bound on these two
quantities for each vertex u ∈ V . Then, in Section 4.1, we
use the bounds from Theorem 4.1 to complete the proof of
Theorem 1.3: we show that if the total cost of disagreements
and the expected cost of disagreements with respect to P are
bounded for every u ∈ V , then the partitioning P achieves
the desired approximation ratio in Theorem 1.3. We remind
the reader that given a partitioning P of the vertex set and
a vertex u ∈ V , disu(P, E+, E−) denotes the weight of
edges incident on u that are in disagreement with respect
to P . Moreover, yu denotes the convex programming (CP)
cost of the vertex u.

Define A1 = ln 1/α and A∞ = ln( 1
α )/

√
α = 1/r. Our analy-

sis focuses on bounding two key quantities related to a ver-
tex u ∈ V . The first quantity, disu(P, E+, E−), is the total
weight of edges incident on u that are in disagreement with
P . We show that this quantity can be charged to the CP cost
of u and is at most A∞ ·yu. We then get a stronger bound
for our second quantity of interest, E[disu(P, E+, E−)],
the expected cost of a vertex u. In particular, we show that
E[disu(P, E+, E−)] ≤ A1 · yu.

Theorem 4.1. Given an instance of Correlation Clustering
with Asymmetric Classification Errors (Definition 1.2), Al-
gorithm 1 outputs a partitioning P of the vertex set such
that the following holds for every vertex u ∈ V :

(a) disu(P, E+, E−) . A∞ · yu;

(b) E[disu(P, E+, E−)] . A1 · yu,

where A1 = ln(1/α) and A∞ = ln( 1
α )/

√
α.

Proof. Without loss of generality we assume that the scaling
parameter w is 1. Thus, for every positive edge e+ ∈
E+, we+ ∈ [α, 1], while for every negative edge e− ∈
E−, we− ≥ α. Write the formula for disu(P, E+, E−) for
a given vertex u ∈ V ,

disu(P, E+, E−) =
∑

(u,v)∈E+

wuv · 1{P(u) 6= P(v)}

+
∑

(u,v)∈E−

wuv · 1{P(u) = P(v)}.

Let E≥r be the set of positive edges (v, w) in E+ with
xvw ≥ r. Observe that

disu(P, E+, E−) = disu(P,∅, E−) (4.1)

+ disu(P, E≥r,∅)

+ disu(P, E+ \ E≥r,∅).

Recall that β = r/R = 3
√
α/ln 1/α, q = 2, and Dβ =

Θ(ln 1/β) = Θ (ln 1/α). From Theorem 3.1, part (a), we
know that the diameter of each partition P in P is at most
2R. For any negative edge to be in disagreement, both its
endpoints must lie in the same partition. Thus, the length
xuv for any such edge (u, v) ∈ E− is at most 2R, and hence
its CP contribution is at most (1− 2R) = 1/3. Hence,

disu(P,∅, E−) =
∑

(u,v)∈E−

wuv1{P(u) = P(v)} ≤ 3yu.

Then,

disu(P, E≥r,∅) ≤ |{v : (u, v) ∈ E≥r}| ≤ yu
r

= A∞ yu.

To complete the proof of Theorem 4.1, part (a) we write:

disu(P, E+ \ E≥r,∅) =
∑

v∈Ball(u,r)

wuv · 1
{
P(u) 6= P(v)

}
≤

∑
v∈Ball(u,r)

1
{
P(u) 6= P(v)

}
.

The inequality above holds because the weight of each
positive edge is at most 1. Next, using the bound for∑

v∈Ball(u,r) 1
{
P(u) 6= P(v)

}
from Theorem 3.1 part (c),

we get,∑
v∈Ball(u,r)

1
{
P(u) 6= P(v)

}
. β ·D2

β

∑
v∈Ball(u,2R)

d(u, v)

R

.

√
α

ln(1/α)
· (ln2(1/α))

∑
v∈Ball(u,2R)

d(u, v)

R

.

√
α

ln(1/α)
· ln2(1/α) · yu

α
= A∞ · yu,

where the last inequality follows from the fact that each pos-
itive edge weight is at least α. Thus, from (4.1) it follows:

disu(P, E+, E−) . A∞ ·yu.
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We now prove Theorem 4.1, part (b). We separately consider
short and long positive edges. Let E≤R be the set of positive
edges (v, w) ∈ E+ with xvw ≤ R. Note that

yu ≥
∑

v∈Ball(u,R)

wuv min(d(u, v), 1− d(u, v)) (4.2)

=
∑

v∈Ball(u,R)

wuvd(u, v) =
1

3

∑
v∈Ball(u,R)

wuv
d(u, v)

R
.

Therefore, we have

E[disu(P, E≤R,∅)− 3Dβ · yu] ≤

≤ E
[ ∑
v∈Ball(u,R)

wuv · 1{P(u) 6= P(v)}

−Dβ

∑
v∈Ball(u,R)

wuv
d(u, v)

R

]
=

∑
v∈Ball(u,R)

wuv

(
Pr{P(u) 6= P(v)} −Dβ

d(u, v)

R

)
≤

∑
v∈Ball(u,R)

wuv

(
Pr{P(u) 6= P(v)} −Dβ

d(u, v)

R

)+
.

Since all edges (u, v) in E≤R are positive, we have wuv ≤ 1.
Consequently,

E[ disu(P, E≤R,∅)− 3Dβ · yu]

≤
∑

v∈Ball(u,R)

s.t. (u,v)∈E+

(
Pr{P(u) 6= P(v)} −Dβ

d(u, v)

R

)+
.

We bound the right hand side using property (2) of Theo-
rem 3.1:∑
v∈Ball(u,R)

(
Pr{P(u) 6= P(v)} −Dβ

d(u, v)

R

)+
. β2

∑
v∈Ball(u,2R)

d(u, v)

R
.

α

ln2(1/α)

∑
v∈Ball(u,2R)

d(u, v)

≤ 1

ln2(1/α)

∑
v∈Ball(u,2R)

wuv · 2min(d(u, v), 1− d(u, v))

≤ 2

ln2(1/α)
· yu.

Here, we used that wuv ≥ α and d(u, v) ≤ 2(1− d(u, v))
for v ∈ Ball(u, 2R). Thus,

E[disu(P, E≤R,∅)] .
(
ln(1/α)+

1

ln2(1/α)

)
yu . A1 ·yu.

Furthermore, disu(P, E+ \ E≤R,∅) ≤ 1
R · yu ≤ A1 · yu.

Therefore, from (4.1) it follows that

E[disu(P, E+, E−)] . A1yu.

We now use Theorem 4.1 to prove Theorem 1.3.

4.1. Proof of Theorem 1.3

In this section, we show that the partitioning P output by Al-
gorithm 1 achieves the desired approximation ratio – thereby
proving our main theorem, Theorem 1.3. To show this, we
will use the fact that P satisfies the properties in Theo-
rem 4.1.

Proof of Theorem 1.3. If p = ∞, then we get an O(A∞) =
O((1/α)1/2 ln 1/α) approximation by Theorem 4.1, item (a),
as desired. So we assume that p < ∞ below. Given the
guarantees from Theorem 4.1, we observe,

E

[∑
u∈V

disu(P, E+, E−)p

]
=
∑
u∈V

E[disu(P, E+, E−)p−1 · disu(P, E+, E−)]

.
∑
u∈V

E
[
(A∞ ·yu)p−1 · disu(P, E+, E−)

]
=
∑
u∈V

(A∞ ·yu)p−1E
[
disu(P, E+, E−)

]
.
∑
u∈V

(A∞ ·yu)p−1 ·A1 · yu =
∑
u∈V

Ap · ypu,

where A =
(
Ap−1

∞ ·A1

) 1
p . Note that the desired approxi-

mation factor is O(A). From Jensen’s inequality, it follows
that

E

[(∑
u∈V

disu(P,E+, E−)p
) 1

p

]
≤

≤

(
E

[∑
u∈V

disu(P, E+, E−)p

]) 1
p

.

(∑
u∈V

Ap · ypu

) 1
p

= A · ‖y‖p.

This finishes the proof.

5. Overview of Metric Partitioning Scheme
In this section we describe our partitioning scheme and give
a proof overview of Theorem 3.1. More specifically, in
Section 5.1 we reduce the problem to choosing a random set
of particular interest as stated in Theorem 5.1. In Section 5.2
we describe an algorithm for choosing such a random set
and give a proof overview of its correctness.

5.1. Iterative Clustering

Given a metric space (X, d), our partitioning scheme uses
an iterative algorithm – Algorithm 2 to obtain P . Let Xt

denote the set of not-yet clustered vertices at the start of
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Algorithm 2 Metric Space Partitioning Scheme
Input: Metric Space (X, d) and r,R > 0, q ≥ 1.
Define t = 0, X1 = X .
repeat
t = t+ 1.
Pt = Cluster Select(Xt, d, r, R, q).
Xt+1 = Xt \ Pt.

until Xt = ∅
Output (P1, P2, . . . , Pt).

iteration t of Algorithm 2. At step t, the algorithm finds
and outputs random set Pt ⊆ Xt. It then updates the set of
not-yet clustered vertices (Xt+1 = Xt \ Pt), and repeats
this step until all vertices are clustered. Algorithm 2 makes
use of the following theorem in each iteration to find the
random set Pt.

We need the following notation to state the theorem. Let
δP (u, v) be the cut metric induced by the set P : δP (u, v) =
1 if u ∈ P and v /∈ P or u /∈ P and v ∈ P ; δP (u, v) = 0 if
u ∈ P and v ∈ P or u /∈ P and v /∈ P . Also, let ∨P (u, v)
be the indicator of the event u ∈ P or v ∈ P or both u and
v are in P . We denote [k] = {1, 2, . . . k}.
Theorem 5.1. For every q ≥ 1 there exists a β∗

q =

Θ
(

1
q ln(q+1)

)
< 1 such that the following holds. Consider

a finite metric space (X, d). Fix two positive numbers r
and R such that β = r/R ≤ β∗

q . Let Dβ = 2(q + 1) ln 1/β.
Then, there exists an algorithm for finding a random set P
satisfying properties (a), (b), and (c):

(a) diam(P ) ≤ 2R (always);

(b) For every point u in X , the following bound holds:∑
v∈Ball(u,R)

(
Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
Pr{∨P (u, v) = 1}

)+

. βq ·E

[ ∑
v∈Ball(u,2R)

d(u, v)

R
· ∨P (u, v)

]
.

(c) Moreover, for every u in X , we always have∑
v∈Ball(u,r)

δP (u, v) .

. β ·D2
β ·

∑
v∈Ball(u,2R)

d(u, v)

R
· ∨P (u, v).

Informally, Theorem 5.1 is a “single-cluster” version of The-
orem 3.1, and there is a one-to-one correspondence between
their properties. In Appendix A, we show that Theorem 3.1
holds for P if we assume that each partition P ∈ P satisfies
Theorem 5.1. Thus, to obtain Theorem 3.1, it remains to
prove Theorem 5.1.

Algorithm 3 Cluster Select
Input: Metric space (X, d) and r,R > 0, q ≥ 1
Define: β = r/R, Dβ = 2(q + 1) ln 1/β .
Define: R0 = R/Dβ, R1 = R−R0, ρq(β) = (1/β)q+1.
Select z = argmaxu∈X |Ball(u,R0)|.
if |Ball(z,R1)| ≥ ρq(β) · |Ball(z,R0)| then

Set P = Ball(z,R1).
else

Consider S as stated in Definition 5.2.
Consider πinv

S as stated in Definition 5.3.
Let F be the cumulative distribution function stated in
Definition 5.4.
Choose a random x ∈ [0, R/2] according to F .
Set P = Ball(z, πinv

S (x)).
end if
Output P .

z

R0 = R/Dβ

R

R1 t

Figure 2. Balls with Different Radii
R > r > 0, q ≥ 1, β = r/R, Dβ = 2(q + 1) ln 1/β,

R0 = R/Dβ , R1 = R−R0.

5.2. Selecting a Single Cluster

We will use the following definitions. Let r and R be pos-
itive numbers with r < R. Define β = r/R ≤ β∗

q and
Dβ = 2(q + 1) ln 1/β where q ≥ 1. Let R0 = R/Dβ and
R1 = R−R0. We let ρq(β) = (1/β)q+1 (see Figure 2). We
choose β∗

q so that r < R0 < R (see Appendix B for details).

Given a metric space (X, d) and parameters r and R, our
procedure for finding a random set P ⊆ X begins by finding
a pivot point z with a densely populated neighborhood –
namely, z is chosen such that a ball of radius R0 around z
contains the maximum number of points. More formally,

z = argmax
u∈X

|Ball(u,R0)|. (5.1)
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We refer to this ball of small radius around z as the “core”
of the cluster. Our choice of the pivot z is inspired by the pa-
pers by Charikar et al. (2003); Puleo & Milenkovic (2018);
Charikar et al. (2017). We then consider a ball of large
radius R1 around the pivot z and examine the following
two cases – “Heavy Ball” and “Light Ball”. If this ball
of large radius around z is sufficiently populated, that is,
if the number of points in Ball(z,R1) is at least (1/β)q+1

times the number of points in the core, we call this case
“Heavy Ball”. In the case of Heavy Ball, we will show that
P = Ball(z,R1) (a ball around z of radius slightly less
than R) satisfies the properties of Theorem 5.1. In the case
of “Light Ball”, the ball of large radius around z is not suffi-
ciently populated. In this case, the algorithm finds a radius
t (t ≤ R) such that P = Ball(z, t) satisfies the properties
of Theorem 5.1. In the following subsections we provide an
overview of the proof for these two cases. A formal proof
of Theorem 5.1 can be found in Appendix B.

5.2.1. HEAVY BALL

The Heavy Ball P is a ball of radius R1 around z which
contains many points. As the diameter of P is 2R1 < 2R,
it is easy to see that a Heavy Ball satisfies property (a) of
Theorem 5.1. We now focus on showing that properties
(b) and (c) hold for Heavy Ball. Observe as z was chosen
according to (5.1), for every point u ∈ X \ {z}, u has
a less populated neighborhood of radius R0 than that of
z. This combined with the fact that Ball(z,R1) is heavy,
implies that for every u, there are sufficiently many points
in P at a distance of at least R0 from u. Thus, for any
point u ∈ X , we can expect the sum of distances between
u and the points in P to be large. In fact, we show that
the left hand sides of properties (b) and (c) can be charged
to
∑

v∈P
d(u,v)

R , the sum of distances between u and the
points in P . For points u such that d(z, u) ≤ R, P ⊆
Ball(u, 2R) and hence,

∑
v∈Ball(u,2R)

d(u,v)
R ∨P (u, v) ≥∑

v∈P
d(u,v)

R . Thus, for every u ∈ X , we can charge the
left hand sides of properties (b) and (c) to the quantity∑

v∈Ball(u,2R)
d(u,v)

R ∨P (u, v). This allows us to conclude
that a Heavy Ball satisfies Theorem 5.1.

5.2.2. LIGHT BALL

In this subsection, we consider the case of |Ball(z,R1)| <
ρq(β) · |Ball(z,R0)|, which we call Light Ball. In the case
of Light Ball, we choose a random radius t ∈ (0, R1] and set
P = Ball(z, t). Observe that property (a) of Theorem 5.1
holds trivially since the radius t < R.

Now consider property (c) of Theorem 5.1. Recall that
for every point u ∈ X , property (c) gives a bound on the
total number of points separated from u (by P ) residing in
a small ball Ball(u, r), i.e.,

∑
v∈Ball(u,r)

δP (u, v). Note that

property (c) gives a deterministic guarantee on P . Therefore,
we choose a random radius t ∈ (0, R1] from the set of all
radii for which property (c) of Theorem 5.1 holds. More
specifically, we define the following set.
Definition 5.2. Let S be the set of all radii s in (3R0, R1]
such that for every u ∈ X set P = Ball(z, s) satisfies:∑

v∈Ball(u,r)

δP (u, v) ≤

≤ 25β ·D2
β ·

∑
v∈Ball(u,2R)

d(u, v)

R
· ∨P (u, v). (5.2)

The set S can be computed in polynomial time since the
number of distinct clusters P = Ball(z, t) is upper bounded
by the size of the metric space, |X|. By the same token, S
is a finite union of disjoint intervals.

Now we show why we can expect the set S to be large.
Consider P = Ball(z, s) such that s ∈ S. As S is com-
puted according to Definition 5.2, it implies that the bound-
ary of P is somewhat sparsely populated – as for every
u ∈ X , it bounds the number of points within a small neigh-
borhood of Ball(u, r) that are separated from u (note that∑

v∈Ball(u,r) δP (u, v) is trivially 0 for points u that are not
close to the boundary of P ). Since Ball(z,R1) does not
contain many points, the number of points in Ball(z, s′)
cannot grow too quickly as we increase the radius s′ from
0 to R1. This suggests that for many of such radii s′, the
ball P = Ball(z, s′) has a sparsely populated boundary,
and hence the set S should be large. In fact, we use the
above argument to show that the Lebesgue measure of the
set S satisfies µ(S) ≥ R/2. This will allow us to define a
continuous probability distribution on S.

What remains to be shown is that for a random radius t ∈ S,
the set P = Ball(z, t) satisfies property (b) of Theorem 5.1.
For this purpose we define a measure preserving transfor-
mation πS that maps an arbitrary measurable set S to the
interval [0, µ(S)].
Definition 5.3. Consider a measurable set S ⊂ [0, R]. De-
fine function πS : [0, R] → [0, µ(S)] as follows πS(x) =
µ([0, x] ∩ S). Also, for y ∈ [0, µ(S)], let

πinv
S (y) = min{x : πS(x) = y}.

Recall that the set S stated in Definition 5.2 is a finite union
of disjoint intervals. In this case, what πS does is simply
pushing the intervals in S towards 0, and thus, allowing us
to treat the set S as a single interval [0, µ(S)]. For the rest
of the proof overview, we assume that S = [0, µ(S)] and
πS is the identity. This simplifies the further analysis of
Theorem 5.1 immensely.

Next, we define a cumulative distribution function F on
[0,R/2] ⊆ [0, µ(S)]:
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Definition 5.4. Let F : [0, R/2] → [0, 1] be a cumulative
distribution function such that

F (x) =
1− e−x/R0

1− e−R/2R0
. (5.3)

We choose a random x ∈ [0, R/2] according to F and set
P = Ball(z, πinv

S (x)) (see Algorithm 3). Since we as-
sume in this proof overview that πS is the identity, P =
Ball(z, x). Now, we show that the radius x chosen in such
a manner guarantees that the cluster P satisfies property
(b). Loosely speaking, the motivation behind our particular
choice of cumulative distribution function F is the follow-
ing: For two points u, v ∈ X , function F bounds the proba-
bility of u and v being separated by P , in terms of Dβ times
the probability that either u or v lies in P . Unfortunately,
this bound does not hold for points u with d(z, u) close to
R/2. However, the choice of parameters for function F in
Definition 5.4 gives us two desired properties. Without loss
of generality assume that d(z, u) ≤ d(z, v). Then, the prob-
ability that P separates the points u and v, Pr(δP (u, v)) =
Pr(d(z, u) ≤ x ≤ d(z, v)) = F (d(z, v)) − F (d(z, u)).
Moreover, as d(z, u) ≤ d(z, v), the probability that either
u or v lies in P , Pr(∨P (u, v)) = 1 − F (d(z, u)). Thus,
choosing F according to Definition 5.4 ensures:

• (Property I) F (d(z, v)) − F (d(z, u)) is bounded
in terms of Dβ times 1 − F (d(z, u)) (Please see
Claim C.8 for a formal argument).

• (Property II) The probability that the cluster P includes
points u such that d(z, u) > R/2 − R0, is very small
(please see Claim C.7).

In fact, (Property II) of function F is the reason why we
are able to guarantee that property (b) satisfies (3.1) only
on average, with the error term coming from our inability
to guarantee (3.1) for points on the boundary. We refer the
reader to Section C.2 for a formal proof. Thus, we conclude
the case of Light Ball and show that it satisfies Theorem 5.1.
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A. Proof of Theorem 3.1
In this section, we present the proof of our main tech-
nical result – Theorem 3.1 – an algorithm for partition-
ing a given metric space (X, d) into a number of clusters
P = (P1, . . . , Pk) (where k is not fixed).

Recall our iterative process for obtaining this partitioning
– Algorithm 2 – which makes use of Theorem 5.1 in each
iteration to select a cluster from the set of not-yet clustered
vertices.

The proof of Theorem 5.1 is presented in Appendix B.
We now present the proof of Theorem 3.1 assuming Theo-
rem 5.1.

Proof of Theorem 3.1. Property (a) of Theorem 5.1 guaran-
tees that diam(Pi) ≤ 2R for every i ∈ [k] and thus property
(1) of Theorem 3.1 holds.

We now show that property (2) holds. Fix u ∈ X . Consider
iteration i ∈ [k]. Note that set Pi satisfies property (b)
of Theorem 5.1 regardless of what set Xi we have in the
beginning of iteration i. That is, for every set Y ⊂ X and
u ∈ Y , we have

∑
v∈Ball(u,R)∩Y

(
Pr
{
δPi(u, v) = 1 |Xi = Y

}
−Dβ

d(u, v)

R
Pr{∨Pi(u, v) = 1 |Xi = Y }

)+

. βq ·E

[ ∑
v∈Ball(u,2R)∩Y

d(u, v)

R
·∨Pi(u, v) |Xi = Y

]
.

(A.1)

We observe that inequality (A.1) can be written as follows
(for all u ∈ X).

∑
v∈Ball(u,R)

(
Pr
{
δPi(u, v) = 1 and u, v ∈ Xi |Xi = Y

}
−Dβ

d(u, v)

R
Pr{∨Pi(u, v) = 1 and u, v ∈ Xi |Xi = Y }

)+

. βq ·E
[ ∑
v∈Ball(u,2R)

d(u, v)

R
· ∨Pi(u, v)

· 1 {u, v ∈ Xi} |Xi = Y

]
. (A.2)

If u /∈ Y , then all terms in (A.2) are equal to 0, and the
inequality trivially holds. If u ∈ Y , then corresponding
terms in (A.1) and (A.2) with v ∈ Y are equal to each other;
all terms in (A.2) with v /∈ Y are equal to 0. Denote the
event that u, v ∈ Xi by Evi (that is, Evi happens if both
points u and v are not clustered at the beginning of iteration

i). We take the expectation of (A.2) over Xi = Y and add
up the inequalities over all i ∈ [k]. Using the subaddivity of
function x 7→ x+, we obtain

∑
v∈Ball(u,R)

(∑
i∈[k]

Pr
{
δPi(u, v) = 1 and Evi

}
−Dβ

d(u, v)

R
Pr{∨Pi(u, v) = 1 and Evi}

)+

≤
∑

v∈Ball(u,R)
i∈[k]

(
Pr
{
δPi(u, v) = 1 and Evi

}

−Dβ
d(u, v)

R
Pr{∨Pi(u, v) = 1 and Evi}

)+

. βq ·E

[ ∑
v∈Ball(u,2R)

i∈[k]

d(u, v)

R
·∨Pi(u, v)·1{Evi}

]
.

(A.3)

Now consider any v ∈ X \ {u}. If u and v are separated by
the partitioning P , then they are separated at some iteration
i. That is, for some i ∈ [k]:

• Evi happens (in other words, u and v are not clustered
at the beginning of iteration i)

• δPi(u, v) = 1 (exactly one of them gets clustered in
iteration i)

Further, there is exactly one i such that both events above
happen. On the other hand, if u and v are not separated by
P then δPi(u, v) = 0 for all i ∈ [k]. We conclude that

1{P(u) 6= P(v)
}

=
∑
i∈[k]

1
{
δPi(u, v) = 1 and Evi

}
.

(A.4)
In particular, the expectations of the expressions on both
sides of (A.4) are equal:

Pr{P(u) 6= P(v)} =
∑
i∈[k]

Pr
{
δPi(u, v) = 1 and Evi

}
.

(A.5)
Now consider the first iteration i at which at least one of
the vertices u and v gets clustered. Note that (i) event Evi
happens and (ii) ∨Pi(u, v) = 1 (that is, (i) both points u and
v are not clustered at the beginning of iteration i; (ii) but at
least one of them gets clustered in iteration i). Further, for
j < i, ∨Pi(u, v) = 0 and for j > i, Evj does not happen.
We conclude that event “∨Pi(u, v) = 1 and Evi” happens
exactly for one value of i ∈ [k]. Therefore,∑

i∈k

∨Pi(u, v) · 1{Evi} = 1 (A.6)
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and ∑
i∈[k]

Pr{∨Pi(u, v) = 1 and Evi} (A.7)

=
∑
i∈[k]

E[∨Pi(u, v)1{Evi}] = 1.

Plugging (A.5) and (A.7) into (A.3), we obtain

∑
v∈Ball(u,R)

(
Pr
{
P(u) = P(v)

}
−Dβ

d(u, v)

R

)+

. βq ·E
[ ∑
v∈Ball(u,2R)

d(u, v)

R

]
.

We conclude that property (2) holds. Next, we show that
property (3) holds for every u ∈ X . As in the analysis of
property (2), we consider some iteration i. Then property
(c) of Theorem 5.1 guarantees that if u ∈ Xi then∑
i∈[k]

∑
v∈Ball(u,r)∩Xi

δPi(u, v) . (A.8)

.
∑
i∈[k]

β ·D2
β ·

( ∑
v∈Ball(u,2R)∩Xi

d(u, v)

R
· ∨Pi(u, v)

)

We rewrite (A.8) as follows:∑
i∈[k]

∑
v∈Ball(u,r)

δPi(u, v) · 1{Evi} .

.
∑
i∈[k]

β·D2
β ·

( ∑
v∈Ball(u,2R)

d(u, v)

R
·∨Pi(u, v)·1{Evi}

)
.

Note that this inequality holds for all u ∈ X: if u ∈ Xi, it
is equivalent to (A.8); if u /∈ Xi, then both sides are equal
to 0, and the inequality trivially holds. Using formulas (A.4)
and (A.6), we get∑
v∈Ball(u,r)

1
{
P(u) 6= P(v)

}
. β·D2

β ·
∑

v∈Ball(u,2R)

d(u, v)

R
.

Therefore, property (3) holds.

B. Proof of Theorem 5.1
In Section 5.1, we describe an iterative approach to find-
ing a probabilistic metric decomposition for Theorem 3.1.
In this section, we show how to find one cluster P of the
partitioning. Given a metric space (X, d) and positive num-
bers r and R, our algorithm selects a subset P ⊆ X that
satisfies the three properties listed in Theorem 5.1. Re-
call that β = r/R, Dβ = 2(q + 1) ln 1/β, R0 = R/Dβ,
R1 = R − R0 and ρq(β) = (1/β)q+1 (see Figure 3). In

z

R0 = R/Dβ

R

R1 t

γ−light shell
of width r

Figure 3. Light Ball
R > r > 0, q ≥ 1, β = r/R, Dβ = 2(q + 1) ln 1/β,

R0 = R/Dβ , R1 = R−R0.

this proof, we assume that β = r/R is sufficiently small
(i.e, β ≤ β∗q for some small β∗q = Θ

(
1

(q ln(q+1)

)
and, conse-

quently, R0 = R/Dβ is also small. Specifically, we assume
that r < R0 < R1 < R and R0 + r < R1/100.

Our algorithm for selecting the cluster P starts by picking
a pivot point z that has the most points within a ball of
small radius R0. That is, z is the optimizer to the following
expression:

z = arg max
u∈X
|Ball(u,R0)|. (B.1)

The algorithm then checks if the ball of a larger radius, R1,
around z has significantly more points in it in comparison
to the ball of radius R0 around z. If the ratio of the number
of points in these two balls exceeds ρq(β), the algorithm se-
lects the set of points Ball(z,R1) as our cluster P . We refer
to this case as the “Heavy Ball” case. In Section B.2, we
show that this set P satisfies the properties of Theorem 5.1.

If, however, |Ball(z,R1)| < ρq(β) · |Ball(z,R0)|, then the
algorithm outputs cluster P = Ball(z, t) where t ∈ (0, R]
is chosen as follows. First, the algorithm finds the set S
of all radii s ∈ (3R0, R1] for which the set P = Ball(z, s)
satisfies Definition 5.2. Then, it chooses a random radius
t in S (non-uniformly) so that random set P = Ball(z, t)
satisfies property (b) of Theorem 5.1. In Appendix C.1, we
discuss how to find the set S and show that µ(S) ≥ R/2
(where µ(S) is the Lebesgue measure of set S). Finally,
in Appendix C.2, we describe a procedure for choosing a
random radius t in S.

B.1. Useful Observations

In this section, we prove several lemmas which we will
use for analyzing both the “Heavy Ball” and “Light Ball”
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cases. First, we show an inequality that will help us lower
bound the right hand sides in inequalities (b) and (c) of
Theorem 5.1.

Lemma B.1. Assume that z is chosen according to (B.1).
Consider t in (3R0, R1] and u inX with d(z, u) ∈ [2R0, R].
Let P = Ball(z, t). Denote:

YP =
∑

v∈Ball(u,2R)

d(u, v) ∨P (u, v)

R
.

Then, |P | ≤ 2DβYP .

Remark: Note that in Theorem 5.1, the right side of in-
equality (b) equals βqE[YP ], and the right side of inequality
(c) equals β ·D2

β · Yp.

Proof. Observe that P ⊂ Ball(u, 2R). Hence,

YP =
∑

v∈Ball(u,2R)

d(u, v) ∨P (u, v)

R
≥
∑
v∈P

d(u, v)

R
.

For every v ∈ P \ Ball(u,R0), we have d(u,v)
R ≥ R0

R =

D−1β . Thus,

YP ≥ D−1β |P \ Ball(u,R0)|.

We need to lower bound the size of P \Ball(u,R0). On the
one hand, we have

|P \ Ball(u,R0)| ≥ |P | − |Ball(u,R0)|
≥ |P | − |Ball(z,R0)|.

Here, we used that Ball(z,R0) is the largest ball of
radius R0 in X . On the other hand, Ball(z,R0) ⊂
P \ Ball(u,R0), since d(z, u) ≥ 2R0. Thus, |P \
Ball(u,R0)| ≥ |Ball(z,R0)|. Combining two bounds
on |P \ Ball(u,R0)|, we get the desired inequality |P \
Ball(u,R0)| ≥ |P |/2.

We now provide a lemma that will help us verify property
(b) of Theorem 5.1 for that point u.

Lemma B.2. Consider an arbitrary probability distribution
of t in (3R0, R1]. Let P = Ball(z, t), where z is chosen
according to (B.1). If for each point u ∈ Ball(z,R) at least
one of the following two conditions holds, then P satisfies
property (b) of Theorem 5.1 for all points u in X .
Condition I:

Pr{t ≥ d(z, u)−R0} . βq+1 · E|Ball(z, t)|
|Ball(z,R0)|

. (B.2)

Condition II: For every v ∈ Ball(u,R0), we have

Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
Pr{∨P (u, v) = 1} .

. βq+1. (B.3)

Remark: This lemma makes the argument about the dis-
tribution of t from the proof overview section (Section 5)
more precise. As we discuss in subsection Light Ball 5.2.2,
we have chosen the distribution of t (Cumulative distribu-
tion function F , Definition 5.4) to satisfy two properties:
(Property I) the probability that u and v are separated by P
is upper bounded by the probability that u or v is in P times
O(Dβ); and (Property II) The probability that t is close to
πinvS (R/2) is small. Thus, Condition I of Lemma B.2 holds
for u with d(z, u) that are sufficiently close to πinvS (R/2),
and Condition II holds for u with for smaller values of
d(z, u).

Proof. Consider one term from the left hand side of prop-
erty (b) of Theorem 5.1 for some u in X:

(
Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
·Pr{∨P (u, v) = 1}

)+
.

Note that {δP (u, v) = 1} denotes the event that exactly one
of the points u and v lies in P ; whereas {∨P (u, v) = 1}
denotes the event that at least one of u and v lies in P .
Thus, Pr{∨P (u, v) = 1} ≥ Pr{δP (u, v) = 1}. Hence,
this expression is positive only ifDβ ·d(u, v)/R < 1, which
is equivalent to

d(u, v) < R/Dβ = R0.

Thus, in the left hand side of property (b), we can consider
only v in Ball(u,R0) (rather than Ball(u,R)). Moreover,
if d(z, u) > R, then for all v ∈ Ball(u,R0), we have
d(z, v) > R − R0 = R1 and, consequently, δP (u, v) = 0.
Therefore, for such u, the left hand side of property (b)
equals 0, and the inequality (b) holds trivially. We will
thus assume that d(z, u) ≤ R (which is equivalent to u ∈
Ball(z,R)). Similarly, since t > 3R0, we will assume
that d(z, u) ≥ 2R0 (otherwise, u ∈ P and every v ∈
Ball(u,R0) is in P , and thus δP (u, v) = 0).

We now show that if Condition I or II of Lemma B.2 holds
for u ∈ Ball(z,R) then property (b) is satisfied for that u.

I. Suppose, the first condition holds for u ∈ Ball(z,R). If
δP (u, v) = 1 then either u ∈ P, v 6∈ P or v ∈ P, u 6∈ P .
In the former case, t ≥ d(z, u); in the latter case, t ≥
d(z, v) ≥ d(z, u) − R0. In either case, t ≥ d(z, u) − R0.
Using that |Ball(u,R0)| ≤ |Ball(z,R0)| by our choice of
z (see (B.1)), we bound the left hand side of (b) as follows∑

v∈Ball(u,R0)

Pr{δP (u, v) = 1}

≤ |Ball(u,R0)|Pr{t ≥ d(z, u)−R0}
≤ |Ball(z,R0)|Pr{t ≥ d(z, u)−R0}
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We now use the inequality from Condition I to get the bound∑
v∈Ball(u,R0)

Pr{δP (u, v) = 1} . βq+1E|Ball(z, t)|

= βq+1E|P |.

Finally, by Lemma B.1, we have the following bound on
βq+1E|P |:

βq+1E|P | ≤ βq+1 · 2DβE[YP ] ≤ βqE[YP ]. (B.4)

Here, we used that 2βDβ = 2r/R0 < 1 by our choice of
β∗q . The right hand side of the inequality in property (b)
equals βqE[YP ]. Thus, property (b) holds.

II. Suppose now that the second condition holds for u ∈
Ball(z,R). Then, each term in the left hand side of (b) is
upper bounded by O(βq+1). Hence, the entire sum is upper
bounded by O(βq+1|Ball(u,R0)|), which in turn is upper
bounded by O(βq+1|Ball(z,R0)|). Then,

βq+1|Ball(z,R0)| ≤ βq+1|Ball(z, t)| = βq+1E|P |
≤ βqE[YP ].

The last inequality follows from (B.4). We conclude that
property (b) of Theorem 5.1 holds.

B.2. Heavy Ball Case

In this subsection, we analyze the case when
|Ball(z,R1)| ≥ ρq(β) · |Ball(z,R0)|. If this condi-
tion is met, then the algorithm outputs P = Ball(z,R1).
We will show that Theorem 5.1 holds for such a cluster P .

We first prove properties (a) and (b). Since the radius of P is
R1 ≤ R, its diameter is at most 2R. So property (a) of The-
orem 5.1 holds. To show property (b), we apply Lemma B.2
(item I) with t = R1. Trivially, Pr{t ≥ d(z, u)−R0} ≤ 1
and E|Ball(z, t)| = |Ball(z,R1)| ≥ ρq(β)|Ball(z,R0)|.
Thus, (B.2) is satisfied and property (b) also holds.

We now show property (c) of Theorem 5.1. Observe that
if d(z, u) /∈ [R1 − r,R1 + r], then δP (u, v) = 0 for all
v ∈ Ball(u, r) (because P = Ball(z,R1)). Hence, for
such u, property (c) holds. Thus, we assume that u ∈
[R1 − r,R1 + r] ⊆ [2R0, R].

We bound the left hand side of (c) as follows:∑
v∈Ball(u,r)

δ(u, v) ≤ |Ball(u, r)| ≤ |Ball(u,R0)|

≤ |Ball(z,R0)|,

here we first use that r ≤ R0 and then that z satisfies
(B.1). Since we are in the Heavy Ball Case, we have |P | ≥
ρq(β)|Ball(z,R0)|. Therefore,∑

v∈Ball(u,r)

δ(u, v) ≤ |P |/ρq(β).

By Lemma B.1, the right hand side is upper bounded by

2DβYP /ρq(β) = 2Dβ β
q+1 YP . βD2

β YP .

The right hand side of (c) equals βD2
β YP . Hence, property

(c) is satisfied.

Thus we have shown that Theorem 5.1 holds for the case
of Heavy Balls. To complete the proof, we show that Theo-
rem 5.1 also holds for the case of Light Balls – we give this
proof in Appendix C.

C. Light Ball Case
We now consider the case when |Ball(z,R1)| ≤ ρq(β) ·
|Ball(z,R0)|. Recall that S is the set of all radii s ∈
(3R0, R1] for which property (c) of Theorem 5.1 holds (Def-
inition 5.2). The set S can be found in polynomial time since
the number of distinct balls Ball(z, s) is upper bounded by
the number of points in the metric space. We now recall
map πS used in Algorithm 3.

Map πS . In Section 5.2, we define a measure preserv-
ing transformation πS that maps a given measurable set
S ⊂ [0, R] to the interval [0, µ(S)] (Definition 5.3). We
need this transformation in Algorithm 3. If S is the union
of several disjoint intervals (as in our algorithm) then πS
simply pushes all intervals to the left so that every two con-
secutive intervals touch each other. We show the following
lemma.

Lemma C.1. For any measurable set S, πS is a continuous
non-decreasing 1-Lipschitz function, and πinvS is a strictly
increasing function defined for all y in [0, µ(S)]. Moreover,
there exists a set Z0 of measure zero such that for all y ∈
[0, µ(S)] \ Z0, we have πinvS (y) ∈ S.

Proof. Note that πinvS (y) is a right inverse for πS(x):
πS(πinvS (y)) = y (but not necessarily a left inverse). Let

IS(x) =

{
1, if x ∈ S
0, otherwise

be the indicator function of set S. Then πS(x) =∫ x
0
IS(t)dt (we use Lebesgue integration here). Since

0 ≤ IS(t) ≤ 1, function πS is non-decreasing, 1-Lipschitz,
and absolutely continuous. By the Lebesgue differentiation
theorem, πS(x) is almost everywhere differentiable and
dπS(x)
dx = IS(x) almost everywhere. Let X0 = [0, R] \ S

and Z0 = πS(X0). Since πS is absolutely continuous and
IS(x) = 0 for x ∈ X0, we have

µ(Z0) ≤
∫
X0

dπS(x)

dx
dx =

∫
X0

IS(x)dx = 0.

Now if y /∈ Z0, then πS(πinvS (y)) = y /∈ Z0, thus
πinvS (y) /∈ X0 or, equivalently, πinvS (y) ∈ S, as required.
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Finally, we verify that πinvS is strictly increasing. Consider
a, b ∈ [0, µ(S)] with a < b. Note that a = πS(πinvS (a))
and b = πS(πinvS (b)). Thus, πS(πinvS (a)) < πS(πinvS (b)).
Since πS is non-decreasing, πinvS (a) < πinvS (b).

Note that if S is a union of finitely many disjoint open
intervals, then Z0 is the image of the endpoints of those
intervals under πS .

C.1. Clusters Satisfying Property (c) of Theorem 5.1

We first show that if |Ball(z,R1)| < ρq(β) · |Ball(z,R0)|,
then µ(S) ≥ R/2. To this end, we define a ball with a
γ-light shell of width r.
Definition C.2. We say that the ball of radius t ≥ r around
z has a γ-light shell of width r if

|Ball(z, t+r)|−|Ball(z, t−r)| ≤ γ
∫ t−r

0

|Ball(z, x)| dx.

We let Sγ be the set of all radii t in the range (3R0, R1] such
that Ball(z, t) has a γ-light shell of width r. We now show
that (a) Sγ ⊂ S and (b) µ(Sγ) ≥ R/2 for γ = 25r/R2

0.
and, therefore, µ(S) ≥ R/2.
Lemma C.3. We have Sγ ⊂ S.

Proof. Consider a number t from Sγ and the ball of radius
t around z: P = Ball(z, t). Let us pick an arbitrary point
u. We are going to prove that inequality (5.2) holds and
therefore t ∈ S. Consider v ∈ Ball(u, r). Observe that
δP (u, v) = 1 only if both u and v belong to the r neighbor-
hoods of P andX \P . Thus, if δP (u, v) = 1, we must have
d(z, u), d(z, v) ∈ [t − r, t + r]. If d(z, u) /∈ [t − r, t + r],
then the left side of (5.2) equals 0, and we are done. Hence,
we can assume that d(z, u) ∈ [t− r, t+ r].

Using the observation above, we bound the left hand side of
(5.2) as∑
v∈Ball(u,r)

δP (u, v) ≤ |Ball(z, t+ r)| − |Ball(z, t− r)|.

We now need to lower bound the right hand side of (5.2).
Note that Ball(u, 2R) contains Ball(z, t), since

d(z, u) ≤ t+ r ≤ R1 + r = R−R0 + r < R,

and t < R. Thus,∑
v∈Ball(u,2R)

d(u, v)

R
∨p(u, v) ≥ 1

R

∑
v∈Ball(z,t)

d(u, v)∨p(u, v).

For all v ∈ Ball(z, t) ≡ P , we have ∨P (u, v) = 1. Hence,∑
v∈Ball(z,t)

d(u, v) ∨p (u, v) =
∑

v∈Ball(z,t)

d(u, v) (C.1)

By the triangle inequality, we have

d(u, v) ≥ (d(z, u)− d(z, v))+ ≥ ((t− r)− d(z, v))+.

Observe that

((t− r)− d(z, v))+ =

∫ t−r

0

1
{
d(z, v) ≤ x

}
dx.

Hence, (C.1) is lower bounded by

∑
v∈Ball(z,t)

∫ t−r

0

1
{
d(z, v) ≤ x

}
dx =

=

∫ t−r

0

∑
v∈Ball(z,t)

1
{
d(z, v) ≤ x

}
dx =

=

∫ t−r

0

|Ball(z, x)| dx.

Since the ball of radius t has a γ-light shell of width r, the
expression above is, in turn, lower bounded by

|Ball(z, t+ r)| − |Ball(z, t− r)|
γ

.

Thus, the right hand side of inequality (5.2) is lower bounded
by

25βD2
β

R
· |Ball(z, t+ r)| − |Ball(z, t− r)|

γ
.

This completes the proof of Lemma C.3, since

25βD2
β

R
· 1

γ
=

25βD2
βR

2
0

25R · r
=

(r/R)D2
β (R/Dβ)

2

Rr
= 1.

Lemma C.4. We have µ
(
Sγ
)
≥ R/2.

To prove this lemma, we use the following result from Ap-
pendix D.

Lemma C.5. Consider a non-decreasing function Φ :
[0, R] → R with Φ(0) = 1 and R > 0. Let r ∈ (0, R]
and γ ≤ (0, 1/r]. Then, for the subset S of numbers
t ∈ [0, R− r] for which inequality

Φ(t+ r) ≥ Φ(t) + γ

∫ t

0

Φ(x)dx (C.2)

holds, we have Φ(R) ≥ eηµ(S)−1, where η =
√
γ/(e−1)r,

and µ(S) is the measure of set S.

Proof of Lemma C.4. We apply Lemma C.5 to the function

Φ(t) =
|Ball(z, t+ 3R0)|
|Ball(z, 3R0)|
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with parameters r′ = 2r, R′ = R1 − 3R0 − r, and γ =
25r/R2

0. Note that to be able to apply Lemma C.5 we
need γ < 1/r′ which is equivalent to βDβ < 1/5

√
2. The

latter holds due to β being sufficiently small, i.e., β ≤
Θ
(

1
(q ln(q+1)

)
. Observe that Φ(0) = 1 and

Φ(R′) ≤ |Ball(z,R1)|
|Ball(z, 3R0)|

≤ ρq(β)|Ball(z,R0)|
|Ball(z,R0)|

= ρq(β).

Here, we used that the Ball(z,R1) is light. From
Lemma C.5, we get that Φ(R′) ≥ eη

′µ(S′)−1, where
η′ =

√
γ/(e−1)r′, and S′ is the set of t for which Inequal-

ity (C.2) holds. Thus,

µ(S′) ≤ 1 + ln Φ(R′)

η′
≤ 1 + ln ρq(β)

η′
=

1 +Dβ/2

η′

=

√
(e− 1)r′

γ
· (1 +Dβ/2)

=

√
2(e− 1)r

25r
·R0 · (1 +Dβ/2)

=

√
2(e− 1)

25
· (R0 +R/2) < 0.4(R+R0).

where we used R0 · Dβ = R and that
√

2(e− 1) < 2.
Therefore for the measure of the set S′′ = [0, R′] \ S′ is at
least µ(S′′) ≥ ((R−R0)−3R0−r)−0.4(R+R0) ≥ R/2.
Here, we relied on our assumption that R0 + r < R1/100.

We claim that S′′ + 3R0 + r ⊂ Sγ . Consider an arbitrary
t ∈ S′′. First, observe that t+ 3R0 + r ∈ (3R0, R1]. Then,

|Ball(z, t+ 3R0 + r′)|
|Ball(z, 3R0)|

− |Ball(z, t+ 3R0)|
|Ball(z, 3R0)|

= Φ(t+ r′)− Φ(t) < γ

∫ t

0

Φ(x)dx

= γ

∫ t

0

|Ball(z, x+ 3R0)|
|Ball(z, 3R0)|

dx.

For t′ = t+ 3R0 + r, we get

|Ball(z, t′ + r)| − |Ball(z, t′ − r)| <

< γ

t′−3R0−r∫
0

|Ball(z, x+ 3R0)|dx

= γ

t′−r∫
3R0

|Ball(z, x)|dx < γ

t′−r∫
0

|Ball(z, x)|dx.

Thus, t′ ∈ Sγ . This finishes the proof.

Lemma C.4 together with Lemma C.3 imply the following
corollary.
Corollary C.6. Let S be the set defined in Definition 5.2.
Then, µ(S) ≥ R/2.

C.2. Clusters Satisfying Property (b) of Theorem 5.1

We now show how to choose a random t ∈ S, so that the
random cluster P = Ball(z, t) satisfies property (b) of The-
orem 5.1. We first choose a random x ∈ [0, R/2] with
the cumulative distribution function F (x) defined in Defi-
nition 5.4, and then let t = πinvS (x), where S ⊂ (3R0, R1]
is the set obtained in the previous section. Note that by
Lemma C.1, t = πinvS (x) ∈ S with probability 1, since
Pr{x ∈ Z0} = 0 (see Lemma C.1).

To show that property (b) is satisfied, we verify that for every
u in Ball(z,R), Condition I or Condition II of Lemma B.2
holds.

Pick a point u in Ball(z,R). We consider two cases:
πS(d(z, u)) > R/2 − R0 and πS(d(z, u)) ≤ R/2 − R0.
We prove that u satisfies Condition I of Lemma B.2 in the
former case and Condition II in the latter case.

First case: πS(d(z, u)) > R/2−R0. Write,

Pr{t ≥ d(z, u)−R0} = Pr{x ≥ πS(d(z, u)−R0)}.

Since πS is a 1-Lipschitz function, we have

πS(d(z, u)−R0) ≥ πS(d(z, u))−R0 ≥ R/2− 2R0.

Therefore,

Pr{t ≥ d(z, u)−R0} ≤ 1− F (R/2− 2R0).

We prove the following claim.

Claim C.7. We have

1− F (R/2− 2R0) . βq+1.

Proof. Write:

F (R/2− 2R0) =
1− e

−R
2R0 · e

2R0
R0

1− e
−R
2R0

=
1− e2e−Dβ/2

1− e−Dβ/2
.

Note that e−Dβ/2 = βq+1. Then,

1− F (R/2− 2R0) =
(e2 − 1)

1− βq+1
· βq+1.

Since the denominator of the right hand side is greater than
1/2 (recall that we assume that β is sufficiently small), we
have 1− F (R/2− 2R0) . βq+1.

Claim C.7 finishes the analysis of the first case, since
|Ball(z, t)|/|Ball(z,R0)| ≥ 1 for every value of t ≥ R0.

Second case: πS(d(z, u)) ≤ R/2 − R0. In this case, for
every v ∈ Ball(u,R0), we have

πS(d(z, v)) ≤ πS(d(z, u) +R0) ≤ R/2.
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Here, we used that πS is a 1-Lipschitz function. We claim
that inequality (B.3) holds for every two points v1, v2 ∈ X
with πS(d(z, v1)), πS(d(z, v2)) ≤ R/2 and d(v1, v2) ≤
R0. In particular, it holds for v1 = u and v2 = v. Without
loss of generality assume, that d(z, v1) ≤ d(z, v2). Then,

Pr{δP (v1, v2) = 1} = Pr{d(z, v1) ≤ t < d(z, v2)}
= Pr{πS(d(z, v1)) ≤ x < πS(d(z, v2))}
= F (πS(d(z, v2)))− F (πS(d(z, v1))).

Here, we used that random variable x has distribution func-
tion F . We show the following claim.

Claim C.8. For all x1 ≤ x2 in the range [0, R/2], we have

F (x2)−F (x1) ≤ Dβ ·
(x2 − x1)

R
·
(
1−F (x1) + 2βq+1

)
.

Proof. We have

F (x2)− F (x1) =

∫ x2

x1

F ′(x)dx

≤ (x2 − x1) max
x∈[x1,x2]

F ′(x)

= (x2 − x1) · e
−x1/R0/R0

1− e−R/2R0

= Dβ ·
(x2 − x1)

R
· e−x1/R0

1− e−R/2R0
.

Here, we used that R0 = R/Dβ . We now need to upper
bound the third term on the right hand side:

e−x1/R0

1− e−R/2R0
= 1− (1− e−R/2R0)− e−x1/R0

1− e−R/2R0

= 1− F (x1) +
e−R/2R0

1− e−R/2R0
.

As in Claim C.7, let us use that e−R/2R0 = βq+1 and 1 −
βq+1 ≥ 1/2 to get

e−x1/R0

1− e−R/2R0
≤ 1− F (x1) + 2βq+1.

Combining the bounds above, we get the following inequal-
ity:

F (x2)− F (x1) ≤ Dβ ·
x2 − x1
R

·
(

1− F (x1) + 2βq+1
)
.

Using Claim C.8 and the inequality

πS(d(z, v2)))− πS(d(z, v1) ≤ d(z, v2)− d(z, v1)

≤ d(v1, v2),

we derive the following upper bound

Pr{δP (v1, v2) = 1} ≤

≤ Dβ
d(v1, v2)

R
·
(
1− F (πS(d(z, v1)))) + 2βq+1

)
.

Then,

Pr{∨P (v1, v2) = 1} = Pr{d(z, v1) ≤ t}
= 1− F (πS(d(z, v1))).

Therefore,

Pr{δP (v1, v2) = 1}−Dβ
d(v1, v2)

R
·Pr{∨P (v1, v2) = 1} ≤

≤ 2Dβ
d(v1, v2)

R
βq+1.

Thus, the left hand side of (B.3) is upper bounded by

2Dβ · βq+1 · d(v1, v2)

R
≤ 2βq+1.

Here, we use that d(v1, v2) ≤ R0 and R0 = R/Dβ .

D. Proof of Lemma C.5
We first prove Lemma C.5 for the case when S is a measure
zero set. Specifically, we show the following lemma.

Lemma D.1. Suppose, a non-decreasing function Φ :
[0, R]→ R with Φ(0) = 1 satisfies the following inequality
for all t ∈ [0, R− r] \ Y0, where set Y0 has measure zero:

Φ(t+ r) ≥ Φ(t) + γ

∫ t

0

Φ(x)dx, (D.1)

for some R > 0, r ∈ (0, R/2] and γ ∈ (0, 1/r], then
Φ(t) ≥ max{eηt−1, 1} for all t ∈ [0, R], where η =√
γ/(e−1)r. Consequently, we have Φ(R) ≥ eηR−1.

Proof. Since Φ(0) = 1 and Φ(t) is non-decreasing, we have
Φ(t) ≥ 1 for all t ≥ 0. We now prove that Φ(t) ≥ eηt−1.
We establish this inequality by induction. The inductive
hypothesis is that this inequality holds for t ∈ [0, 1/η +
ir] ∩ [0, R] for integer i ≥ 0. For t ≤ 1/η, we have Φ(t) ≥
1 > eηt−1. Thus, the inductive hypothesis holds for i = 0.
Suppose, it holds for i, we prove it for i+ 1.

First, consider an arbitrary t∗ ∈ [1/η, 1/η + (i + 1)r] ∩
[0, R] \ (Y0 + r), where Y0 + r is the set Y0 shifted right
by r. Let t = t∗ − r. Note that t > 0, since r < 1/η.
Also, t /∈ Y0. Then, by the inductive hypothesis, we have
Φ(x) ≥ eηx−1 for all x ∈ [1/η, t]. Using Inequality (D.1),
we obtain the following bound

Φ(t∗) = Φ(t+ r)
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≥ Φ(t) + γ

∫ 1/η

0

Φ(x)dx+ γ

∫ t

1/η

Φ(x)dx

≥ eηt−1 + γ

∫ 1/η

0

1 dx+ γ

∫ t

1/η

eηx−1 dx

= eηt−1 + γ/η + γ/η · (eηt−1 − 1)

= eηt−1(1 + γ/η).

Since η =
√
γ/(e−1)r, we have γ/η = (e−1)ηr. Now, using

the inequality ex ≤ 1 + (e− 1)x for x ∈ [0, 1], we get

Φ(t∗) ≥ eηt−1(1 + γ/η) = eηt−1(1 + (e− 1)ηδ)

≥ eηt−1 · eηr = eη(t+r)−1 = eηt
∗−1.

To finish the proof, we need to show that Φ(t∗∗) ≥ eηt∗∗−1
for t∗∗ ∈ [1/η, 1/η + (i+ 1)r] ∩ [0, R] ∩ (Y0 + r). Since
Y0 +r has measure zero, there exists an increasing sequence
t∗k of numbers in [0, 1/η+(i+1)r]∩([0, R]\(Y0 +r)) that
tends to t∗∗ as k → ∞. Using that Φ is a non-decreasing
function and eηt−1 is a continuous function, we have

Φ(t∗∗) ≥ lim
k→∞

Φ(t∗k) ≥ lim
k→∞

eηt
∗
k−1 = eηt

∗∗−1.

We now show that Lemma D.1 implies Lemma C.5. Loosely
speaking, in the proof, we shift all intervals from the set
S to the left to obtain a single interval [0, µ(S)]. We then
apply Lemma D.1 to the transformed function.

Proof of Lemma C.5. Let πS and πinvS be the maps defined
in Appendix C. Define Φ∗(t) as Φ∗(t) = Φ(πinvS (t)) and
let Y0 be a measure zero set as in Lemma C.5. We claim
that Φ∗(t) satisfies (D.1) for all t ∈ [0, π(S)] \ Y0. Fix
t ∈ [0, π(S)] \ Y0. Write

Φ∗(t+ r) = Φ(πinvS (t+ r)) ≥ Φ(πinvS (t) + r).

Here, we used that (a) πinvS (t+ r) ≥ πinvS (t) + r and (b) Φ
is a monotone function. By Lemma C.5, πinvS (t) ∈ S, thus

Φ∗(t+ r) ≥ Φ(πinvS (t) + r)

≥ Φ(πinvS (t)) + γ

∫ πinvS (t)

0

Φ(x)dx.

We now observe that Φ∗(t) = Φ(πinvS (t)) and∫ πinvS (t)

0

Φ(x)dx ≥
∫ πinvS (t)

0

Φ(x) · 1(x ∈ S)dx

=

∫ πinvS (t)

0

Φ(x)dπS(x)

=

∫ t

0

Φ∗(x)dx.

Here, we used that dπS(x) = 1(x ∈ S)dx and
πS(πinvS (t)) = t. Thus, we showed that for all t ∈
[0, π(S)] \ Y0, we have

Φ∗(t+ r) ≥ Φ∗(t) +

∫ t

0

Φ∗(x)dx.

We now use Lemma D.1 with function Φ∗ and R′ = µ(S).
We obtain the following inequality:

Φ∗(µ(S)) ≥ eηµ(S)−1,

which concludes the proof of Lemma C.5.

E. Integrality Gap
In this section, we present an integrality gap example for
the convex program (P ) in Figure 1.

Construction. Let n = 1 + d
√

1/αe. Consider a com-
plete graph on n vertices. Let P be a path of length n− 1.
Denote its endpoints by s and t and the set of its edges by
EP . All edges in P are positive edges of weight 1. Edge
(s, t) is a negative edge of weight 1. All other edges are
positive edges of weight α.

The cost of the integral solution Clearly, every integral
solution P should violate some edge (u, v) ∈ P ∪ {(s, t)}
(since all these edges cannot be satisfied simultaneously).
Thus, disu(P, E+, E−) ≥ 1 and ‖dis(P, E+, E−)‖p ≥ 1.

The cost of the CP solution. We define the CP solution
as follows. Denote the distance between u and v along P
by distP (u, v). Let xuv = distP (u, v)/(n− 1). Note that
xst = 1. The values of variables yu are determined by
constraints (P1) of the convex program.

Now we upper bound the contribution of every edge (u, v)
(incident on u) to yu in formula (P1). The contribution of
(u, v) ∈ EP is wuvxuv = 1 · 1/(n− 1); the contribution of
edge (s, t) is wst(1−xst) = 0 (whether or not it is incident
on u), and the contribution of every other edge (u, v) is
wuvxuv ≤ α. Since every vertex u is incident on at most
2 edges from EP , we have yu ≤ 2/(n − 1) + αn .

√
α.

Now,

‖y‖p ≤ n1/p ·max
u
|yu| . n1/pα1/2 . α1/2−1/(2p).

Integrality gap We conclude that the integrality gap is at
least Ω((1/α)1/2−1/(2p)).
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